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Partial differential equations
preconditioner resilient to soft and
hard faults
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Abstract
We present a domain-decomposition-based preconditioner for the solution of partial differential equations (PDEs) that
is resilient to both soft and hard faults. The algorithm reformulates the PDE as a sampling problem, followed by a solu-
tion update through data manipulation that is resilient to both soft and hard faults. This reformulation allows us to recast
the problem as a set of independent tasks, and exploit data locality to reduce global communication. We discuss two dif-
ferent parallel implementations: (a) a single program multiple data (SPMD) version based on a one-to-one mapping
between subdomain and MPI processes responsible for both state and computation; and (b) an asynchronous server–
client implementation where all state information is held by the servers and clients are designed solely as computational
units. We present a scalability comparison of both implementations under nominal conditions, showing efficiency within
~80% for up to 12,000 cores. We present a resilience analysis under different fault scenarios based on the server–client
implementation. This framework provides resiliency to hard faults such that if a client crashes, it stops asking for work,
and the servers simply distribute the work among all of the other clients alive. Erroneous subdomain solves (e.g. due to
soft faults) appear as corrupted data, which is either rejected if that causes a task to fail, or is seamlessly filtered out dur-
ing the regression stage through a suitable noise model. Three different types of faults are modeled: hard faults modeling
nodes (or clients) crashing; soft faults occurring during the communication of the tasks between server and clients; and
soft faults occurring during task execution. We demonstrate the resiliency of the approach for a 2D elliptic PDE, and
explore the effect of the faults at various failure rates.
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1 Introduction

Past changes in computer architectures have yielded
changes in both hardware and computational models.
Exascale simulations are expected to continue along
this path, and due to the fast-approaching limit of
Moore’s law, the change we are about to face might be
even more radical than before. Two main features are
arising as the defining mark of exascale simulations,
namely concurrency and resiliency. Exascale simula-
tions are indeed expected to rely on thousands of nodes,
and take advantage of local concurrency through cores
and threads per node, as well as accelerators (Ang
et al., 2014; Cappello et al., 2009, 2014; DOE-ASCR,
2011, 2014). This framework will lead to systems with a
large number of components with an associated large

communication cost for data exchange. One of the
main challenges thus involves reducing the cost of com-
munication. The presence of many components and the
increasing complexity of these systems (e.g. more and
smaller transistors, lower voltages, and heterogeneous
hardware) can become a liability in terms of system
faults. Exascale systems will suffer from errors and
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faults much more frequently than the current petascale
systems (Cappello et al., 2009). This will likely make the
current parallel programming models and approaches
for resiliency to be unsuitable for fault-free simulations
across many cores for reasonable amounts of time.

Scientists, engineers, and software developers face
the challenge to address new questions involving, e.g.
how to make a simulation less sensitive to communica-
tion bottlenecks, how to formulate a scientific simula-
tion to remain well-defined even in the presence of
system faults, how to design and develop codes that are
reliable and use extensive exception handlers, and how
to rigorously assess the predictive fidelity of extreme-
scale scientific simulations in this context. Possible
approaches to fault-tolerance include algorithm-based
fault tolerance (ABFT) (Ali et al., 2014; Bosilca et al.,
2009; Chen, 2011; Ding et al., 2011; Du et al., 2012),
process-level redundancy (Shye et al., 2007), algorith-
mic error correction code (Malkowski et al., 2010), and
checkpoint/restart (Ferreira et al., 2011). ABFT is
labeled as a non-masking approach because algorithms
need to integrate ABFT by incorporating some level of
redundancy (Cappello et al., 2009). If an error or a
fault occurs, data redundancy allows reconstruction of
the missing part of the result and/or computational
units, see, e.g., Ali et al. (2014) for an example in the
context of PDE solvers, and Hoemmen and Heroux
(2011) for fault-tolerant iterative methods. It is increas-
ingly more recognized that new approaches are needed
to be incorporated at the algorithm level to account for
potential faults, so that the algorithms themselves are
made more robust and resilient, without relying exclu-
sively on hardware (Cappello et al., 2014).

This paper presents a domain-decomposition pre-
conditioner for the solution of 2D partial differential
equations (PDEs) that is resilient to both soft and hard
faults. The work presented here complements and
extends that presented in Rizzi et al. (2015). The algo-
rithm consists of recasting the original PDE problem as
a sampling problem, followed by a resilient data manip-
ulation to achieve the final solution update. One of the
main features of the algorithm is that we do not charac-
terize all types of system faults that can occur, but focus
solely on the information that a simulation provides.
We discuss two different parallel implementations: (a) a
single program multiple data (SPMD) version based on
a one-to-one mapping between subdomain and
Message Passing Interface (MPI) processes responsible
for both state and computation; and (b) an asynchro-
nous server–client (SC) implementation where all state
information is held by the servers, and clients are
designed solely as computational units.

We discuss resiliency for the SC implementation.
Erroneous subdomain solves (e.g. due to soft faults)
appear as corrupted data, which is either rejected if a
task fails, or is seamlessly filtered out during the

regression stage through a suitable noise model. We
explore the effect of three different types of faults: hard
faults modeling nodes (or clients) crashing; soft faults
occurring during the communication of the tasks
between server and clients; and soft faults occurring
during task execution. The occurrence of these faults is
modeled as a Poisson process defined by a failure rate
extracted from literature. We demonstrate the resiliency
of the approach for a 2D elliptic PDE, and explore the
effect of the faults at various failure rates. To frame this
paper in the proper context, our approach is intended
for future exascale platforms, assuming that fault rates
will be sufficiently high that checkpoint–restart will not
be a feasible option, and current solvers will fail to ade-
quately scale due to system size.

The paper is organized as follows. In Section 2 we
describe the mathematical formulation; in Section 3 we
illustrate the actual implementation details; Section 4
describes the PDE used in both scalability and resi-
liency analysis. Scalability results are shown in Section
5; the resilience setup and fault model is described in
Section 6 and the corresponding results in Section 7.
Section 8 presents the conclusions.

2 Mathematical formulation

The algorithm illustrated below extends the 1D solver devel-
oped in Sargsyan et al. (2015). We present below the formu-
lation for a generic 2D linear elliptic PDE of the form

LyðxÞ= gðxÞ ð1Þ
where L is a linear elliptic differential operator, gðxÞ is
a given source term, and x= fx1; x2g 2 O � R

2, with O
being the target domain region. We focus on Dirichlet
boundary condition yðxÞjx2G = yG along the boundary
G of the domain O. The extension to other types of
PDEs is outside of the scope of this paper, and will be
the subject of a future publication.

Figure 1 shows a high-level schematic of the algo-
rithm’s workflow. The starting point involves defining
a discretization of the computational domain. In gen-
eral, the choice of the discretization method is arbi-
trary, potentially heterogeneous across the domain.

After discretizing the computational domain, the
second step is the partitioning stage, in which the target
2D domain, O, is split into a grid of nðsÞx1

3 nðsÞx2
overlap-

ping regions (or subdomains), with nðsÞxk
being the num-

ber of subdomains along the xkth axis. The size of the
overlap between neighboring subdomains is an arbi-
trary parameter playing an important role for non-
linear problems, while having only a minor effect for
linear PDEs. The effect of the overlap is discussed in
Sargsyan et al. (2015). The size of the overlap does not
need to be equal and uniform among all partitions, and
can vary across the domain. The partitioning stage
yields a set of nðsÞx1

3 nðsÞx2
subdomains OðsÞ

ij , and their
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corresponding boundaries Gsij , for i= 0, . . .ðsÞx1
� 1, and

j= 0, . . .ðsÞx2
� 1, where Gsij represents the boundary set

of the ij th subdomain OðsÞ
ij .

One of the advantages of the above decomposition
for the elliptic problem in (1) is that if we knew the true
solution along the subdomain boundaries, then this
information could be used as boundary condition
within each subdomain to perform a single local solve
yielding the full solution over the full domain, O.
Consequently, it is sufficient to define as our object of
interest the set of solution fields along the boundaries,
which we denote yðxÞjx2Gsij

for i= 0, . . .ðsÞx1
� 1, and

j= 0, . . .ðsÞx2
� 1. Due to the overlapping, each subdo-

main OðsÞ
ij includes inner boundaries, Gin

sij
, i.e. the parts

of the boundaries contained within OðsÞ
ij that belong to

the intersecting (neighboring) subdomains. The core of
the algorithm relies on exploiting the relationship
between the solution at the subdomain boundaries as
follows: within each subdomain OðsÞ

ij , our goal is to
find the map relating the solution on the inner bound-
aries, yðxÞjx2Gin

sij

, to the solution on the subdomain
boundaries, yðxÞjx2Gsij

. These maps can be written
compactly as

yðxÞjx2Gin
sij

= fðijÞ yðxÞjx2Gsij

� �
ð2Þ

for i= 0, . . .ðsÞx1
� 1, and j= 0, . . .ðsÞx2

� 1. The system of
equations assembled from these boundary-to-boundary
maps collected from all subdomains, combined with the
boundary conditions on the full domain yðxÞjx2G, yields
a fixed-point problem of the form yðxÞ=FyðxÞ, where
y represents the vector of the solution values at all sub-
domains boundaries. This problem is only satisfied by
the true solution. We remark that these boundary maps

f ðijÞ relate the y values, since they are built from the
restrictions of the subdomain solutions at the corre-
sponding boundaries. As discussed in Sargsyan et al.
(2015), even though general (non-)linear solvers can
solve the fixed point problem, this approach is not the
best because it involves an overhead due to global com-
munication and would require on the fly subdomain
solutions to evaluate the maps. The main idea is to con-
struct approximations (or surrogates) of the boundary-
to-boundary maps, which we call ef ðijÞ. One of the main
advantages of this approach is that the computations
can be done locally and independently within each sub-
domain without requiring information from the neigh-
bors. This allows us to satisfy data locality and avoid
the overhead due to communication, which is crucial to
achieve scalability on extreme scale machines. To build
these surrogate maps we use a sampling strategy that
involves solving the equation locally on each subdo-
main for sampled values of the boundary conditions on
that subdomain. These samples are used within a
regression approach to ‘‘infer’’ the approximate bound-
ary maps. In general, for non-linear problems, the
maps are non-linear and using linear surrogate maps
will carry an additional source of discrepancy, due to
the linear approximation of a generally non-linear
map. For linear PDEs, however, the boundary maps
are linear as well (Sargsyan et al., 2015).

To build these maps we need a current ‘‘state’’ of the
solution at the subdomains boundaries, and a sampling
range that is used to generate samples within each sub-
domain, see stage 3 in Figure 1. Using the current solu-
tion state and the current sampling range values, we
can generate samples within each subdomain which are
then used in a regression stage to build the approximate
maps. This stage plays a key role for addressing soft
faults. As shown in Sargsyan et al. (2015), in fact, when
inferring linear maps, using a suitable ‘1 noise model
one can seamlessly filter out the effects of a few cor-
rupted data. The ‘1 noise model allows us to find the
solution with as few non-zero residuals as possible.
Under the assumption that faults are rare, the inferred
maps will fit the non-corrupted data exactly while effec-
tively ignoring the corrupted data. Following the con-
struction of the surrogate boundary-to-boundary
maps, we can then solve the approximate version of the
fixed point system in (2), which provides us with the
new solution state at all of the subdomains boundaries
and represents an approximation of the true solution.
For the case of linear PDEs, because the boundary-to-
boundary maps are linear, and given that the effect of
faults is filtered out in the regression stage, the approxi-
mate solution obtained after one iteration coincides
with the true solution. An important measure of the
accuracy of the current solution yðxÞjx2Gsij

is the resi-
dual vector, defined as zðTÞ =FyðTÞ � yðTÞ which can be
computed by extra subdomain solves using boundary

Figure 1. Schematic of the algorithm’s workflow. For clarity,
starting with stage 2 we only show the steps for OðsÞ

01 but the
same ‘‘operations’’ are applied to all subdomains.

660 The International Journal of High Performance Computing Applications 32(5)



conditions defined by the current solution yðTÞ, and
subtracting the corresponding current solutions yðTÞ

from the resulting values at all boundaries. It follows
from the definition that the residual vanishes if the cur-
rent solution yðTÞ is the exact solution.

3 Algorithm implementation

We have developed two algorithms implemented in
C++: one based on the SPMD, the other on a SC pro-
gramming model. Both versions use the Boost MPI
library for the communication, which itself wraps the
MPI library.

The SPMD implementation follows the most com-
mon model used in high-performance computing appli-
cations. It involves a one-to-one mapping between
subdomains and MPI processes, implying that each MPI
process exclusively handles a specific subdomain and all
of its local information and related computations. There
are two potential alternatives to this scenario. One would
be to map one subdomain onto multiple MPI ranks, thus
yielding both data and computation effectively split
among multiple ranks. This would be advantageous for
problems with subdomains sufficiently large in terms of
computational requirement so that having the local com-
putations performed in parallel among multiple ranks
can be more efficient. The opposite scenario is one where
each MPI rank owns multiple subdomains. This is suit-
able if the subdomains are small enough in terms of
memory needs, and all the local computational workload
can be efficiently handled through multi-threading
within a single rank.

The SC version involves grouping a set of available
MPI processes into servers and clients. The servers are
safe units holding the data, whereas the clients are
designed solely to accept and perform work. Figure 2
shows a schematic of our SC structure. Starting from a
set of available MPI ranks, some play the role of ser-
vers, while some play the role of clients. Separate clus-
ters are built, each containing a server and, for resource
balancing purposes, the same number of clients. These
clusters are designed such that all servers can communi-
cate between each other, while the clients within any
cluster are only visible to the server within the same
cluster. The data is distributed among the servers, and
these are highly resilient (safe or under a sandbox
model implementation). The sandbox model assumed
for the servers can be supported by either hardware or
software. The former assumption is supported by hard-
ware designer specifications on the variable levels of
resilience that can be allowed within large computer
systems. In the case of software support, a sandbox
effect can be accomplished by a programming model
relying on data redundancy and strategic synchroniza-
tion (Bridges et al., 2012; Engelmann and Naughton,
2013; Li et al., 2008).

The servers hold the data, generate work in the form
of tasks, asynchronously dispatch them to their pool of
available clients, as well as receive and process com-
pleted tasks. Since each client can comprise multiple
MPI ranks, when it is ready to perform new work, it is
its root process that receives the new task to perform.
Once the task is received by that root process, it is then
broadcast to all of the ranks in the client so that the cli-
ent as a whole can work in parallel to solve the task.
This paradigm can be exploited in certain hardware
configurations, because leveraging local communica-
tion within a client is more efficient than having the ser-
ver communicate a task to all the MPI ranks in a client.
One example is the case where a client occupies a single
node, so that one can exploit in-node parallelism and
faster memory access, e.g. in massive multi-core chips.
All communications between server and clients are
done with non-blocking operations, allowing us to
overlap them on the server side with the computational
operations involved in the creation and processing of
the tasks.

4 Test PDE

As a test case for all results presented henceforth, we
consider the following 2D steady diffusion equation

∂

∂x1
kðxÞ ∂yðxÞ

∂x1

� �
+

∂

∂x2
kðxÞ ∂yðxÞ

∂x2

� �
= gðxÞ ð3Þ

where x= fx1; x2g, the field variable is yðx1; x2Þ,
kðx1; x2Þ is the variable diffusivity, and gðx1; x2Þ is the
source term. This PDE is solved over a unit square
ð0; 1Þ2, with homogeneous Dirichlet boundary condi-
tions, and the following diffusivity and source:

Figure 2. Schematic of our SC model.
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kðx1; x2Þ= 5:5+ 4:5 � tanh dðx1; x2Þ
0:01

� �
ð4Þ

gðx1; x2Þ= tanh
dðx1; x2Þ
0:01

� �
ð5Þ

where dðx1; x2Þ= 0:25�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 0:5Þ2 + ðx2 � 0:5Þ2

q
.

This yields a non-trivial solution due to the steep gradi-
ent in the diffusivity and the source term, which can
pose some challenges in the numerical solution if the
spatial discretization is not sufficiently fine.

For demonstration purposes, Figure 3 shows the
surface plot of the precomputed solution (grayscale),
superimposed to the solution along the boundaries of a
33 3 decomposition. Knowing the state at the bound-
aries of all of the subdomains fully defines the solution,
since we are dealing with an elliptic PDE. To find the
solution over the inner grids of the subdomains, we
would need an additional step in which we use the
boundaries state as boundary conditions to perform
one more single PDE solve over each subdomain. This
would yield the full solution over all grids points in the
mesh.

To numerically solve the PDE within each subdo-
main during the sampling stage, we rely on a second-
order finite difference (FD) approximation over the
local rectangular mesh. Due to linearity, the FD
approximation yields a linear system of equations,
which is solved using the AztecOO package in Trilinos
which provides parallel solvers for large linear systems.
The setup procedure is somewhat arbitrary, in the sense
that one does not necessarily have to rely on a pre-
defined discretization mesh to choose the subdomain
partitioning.

We envision, in fact, the case where the user can
decide the partitioning first, and then define local dis-
cretization within each subdomain, which do not neces-
sarily need to agree. As stated previously, our
algorithm is independent of the type of solver used
within each subdomain.

5 Nominal scalability

This section discusses scalability tests for both imple-
mentations performed at NERSC on Edison a Cray
XC30, with peak performance of 2.57 Petaflops, Cray
Aries high-speed interconnect with Dragonfly topology
with approximately 8GB/sec MPI bandwidth. Table 1
lists the parameters used for the scalability runs. In this
section, we concentrate on simulations completed in
the absence of faults.

5.1 SPMD weak scaling

Figure 4 shows weak-scaling results obtained for the
SPMD case focusing on the two most time-consuming
stages, namely sampling and regression. Both sampling
and regression show efficiency within 90% over the

Table 1. Details of the scalability runs for SPMD and server–
client implementations.

SPMD Server–Client

Subdomains 122, 242, 482, 962 62, 122, 182, 242

Total cores 144, 576, 2304, 9216 772, 3088, 6948, 12352
Subdomain
size

;1002 ;1202

Servers NA 4, 16, 36, 64
Clients per
server

NA 48

Size of each
client

NA 4

Figure 3. Representative solution of the 2D linear diffusion
equation superimposed to solution at the boundaries of the
subdomains obtained for a sample no-faults run. The colors
used to plot the solution at the boundaries match those used in
Figure 6.

Figure 4. Weak scaling for the SPMD implementation.
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range of cores explored. This was expected for the cur-
rent setting with one subdomain per MPI rank because
these two stages do not involve any communication
among ranks, since all information is local and compu-
tation within a single subdomain is completely indepen-
dent from all the others.

5.2 SC weak scaling

Weak scaling for the SC implementation can be setup
in two possible ways. The first involves fixing the num-
ber of servers, and as the problem size increases, the
number of clients is proportionally increased. One
drawback of this approach is that it limits the size of
the problem that one can tackle, because the number of
servers is fixed. This configuration would work well for
small problems, but in the limit of the problem size
increasing, the memory of the servers would impose a
constraint. The alternative is a configuration where the
number of clients per server and the amount of data
owned by each server is fixed, and the problem size is
increased by adding increasingly more clusters. This
setting imposes no constraint on the problem size. This
is the case that we adopt in this work, as shown in
Table 1.

Figure 5 shows weak scaling results for the SC imple-
mentation highlighting the sampling and regression
stages. The efficiency for both stays within 80% up to
12,000 cores, despite the substantial communication
inherent in the SC model. Sampling and regression are
the stages performed by the clients, while the solution
of the boundary maps system and the subdomains
updating are done by the servers since they fully own
the state.

5.3 Comparison between SC and SPMD

In this section, we compare the two implementations,
and highlight the performance differences between the
two on the same problem. We consider a problem with
482 subdomains, overlap of 18 grid cells, and a full
domain mesh of 40012 grid points. The local grid within
each subdomain is about ;1002, and the total number
of unknowns in the boundary maps system amounts to
742,976. For the SPMD case, the number of cores used
is 2304. In order to have a fair comparison between the
two implementations, we set up the SC such that the

computational power provided by all of the clients
matches the computational power used in the SPMD
case. This implies that the total number of MPI ranks
from all clients should equal 2304. The number of ser-
vers is fixed to 128, so that each server holds 18 subdo-
mains. Regarding the configuration of the clients, this
comparison can be achieved in several ways, but here
we consider only one scenario. We choose each client to
be made of 1. MPI rank, so that we have a total of 2304
clients, with 48 clients per cluster. This setup closely
matches the SPMD case because it maintains a virtual
one-to-one relationship between a subdomain and a
computational rank.

Table 2 shows the results obtained for the compari-
son runs between the SPMD and SC. We only report
the results for the two main stages. The first column
shows the timings (seconds) collected for the SPMD,
while the second column lists those obtained for the
SC, and the last column shows the ratios between them.
The overhead due to the communication in the SC is
visible only in the sampling stage while not appearing
for the regression. This is because the regression task
requires less data transfer than the sampling task. Even
though the SPMD implementation is about 30% faster
for the current configuration, the better scaling and
resilience properties of the SC approach make it better
suited for an extreme-scale machine with many more
cores and significant system fault frequencies, which is
the target configuration for this resilient PDE solver
approach.

Table 2. Comparison results for the SPMD against the server–client (SC), matching computational power (units: seconds).

SPMD SC SC/SPMD

Sampling 127.42 206.77 1.62
Regression 1351.57 1375.24 1.02
Total runtime 1512.62 2072.72 1.37

Figure 5. Weak scaling for the SC implementation.
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The SPMD implementation serves as a baseline pro-
viding a solver environment similar to current applica-
tions. From a resilience standpoint, the SPMD model
requires the full machine to be resilient. A fully resilient
implementation will require additional overhead, and
may not address other known weaknesses associated
with SPMD models. Some of these include the lack of
suitability for emerging manycore systems, the inability
to exploit functional on-chip parallelism, and difficulty
in tolerating dynamic latencies (Cascaval and
Montesinos, 2014). On the other hand, the SC imple-
mentation reduces the overall vulnerability by confin-
ing the data to the servers. This limits expensive
hardware and/or data redundancy protocols only to a
small part of the machine, allowing the rest to be less
reliable, less energy consuming, and, thus, cheaper.
This setting aligns well with the vision of future exas-
cale architectures involving hierarchical hardware
required to meet energy and cost constraints. For the
resilience analysis in the subsequent sections, we will
focus on the SC implementation only.

6 Resilience analysis: description

This section describes the type of faults, and the fault
model used for the resilience analysis.

6.1 Soft and hard faults

Various attempts have been made to model and simu-
late system faults by finding the statistical distribution
that best fits the data extracted for real systems (see
e.g. Gray, 1985; Lin and Siewiorek, 1990; Oppenheimer
et al., 2003; Sahoo et al., 2004; Schroeder and Gibson,
2010; Vaidya, 1995: and references therein). In general,
faults can be grouped under two main categories,
namely hard and soft (or silent). Hard faults have
many causes, and their effects are usually catastrophic
because they cause partial or full computing nodes or
network failures. These faults have an evident impact
on the run and the system itself. Silent errors, on the
other hand, are more subtle and can go undetected
since their effect is not to break a particular system
component, but simply alter in some way how the
information is stored, transmitted, or handled. The key
feature of silent errors is that, being undetected, there is
no opportunity for an application to recover from the
fault when it occurs. Designing algorithms that are resi-
lient to silent errors is an important line of future
research (Cappello et al., 2014).

To test the resiliency of our algorithm to both hard
and soft faults, we synthetically inject faults into the
system as follows. Hard faults are modeled as entire cli-
ents crashing. This is achieved by assuming that if any
one of the MPI ranks defining a client dies, the entire
client is deemed as dead. This approach is taken to be

consistent with the realistic scenario of an entire node
failing. A potential alternative scenario is one where a
client loses some of its computational ranks, such that
its computational power is degraded but it remains
active. One real example of this kind would be in the
context of multi-core chips with individual cores dying,
or a GPU with individual internal processing units fail-
ing. We are currently investigating this scenario from
an implementation standpoint to explore how degraded
clients would affect the runtime. Since standard MPI
does not yet allow ranks within a communicator to fail
for real, we cannot actually kill the ranks because the
full run would crash, so we simulate that by simply
making those ranks sit idle for the rest of the computa-
tion. Silent errors, on the other hand, are modeled as
random bit-flips corrupting the data at three possible
stages: during the transmission of a task from a server
to a client; during the task execution; and, finally, dur-
ing the transmission of a completed task from a client
to its server. More specifically, for a given task, this is
implemented by performing bit-flips on randomly
selected bits of the task’s data.

6.2 Failure distribution

In this work, a memoryless Poisson process was chosen
as a means to introduce errors. The impact of, e.g., cor-
related error patterns using more advanced failure mod-
els is left for future work. A Poisson process is uniquely
defined by a single parameter, namely the rate of failure
r, leading to a failure distribution

FðtÞ=
Z t

0

r expð�rtÞdt= 1� expð�rtÞ ð6Þ

As stated previously, in this study we model three
different scenarios of faults: hard faults, communica-
tion soft faults, and computation soft faults. In order
to define suitable failure rates for modeling their occur-
rence, we rely on the data in Schroeder and Gibson
(2010). This reference was chosen because it provides
an extensive and detailed study on different faults for
real systems. Even though the hardware has improved
over the years becoming more reliable and less error-
prone, in this work we aim at investigating extreme
fault conditions in order to see how well the approach
performs under such conditions. We extract failure
rates by scaling up the results found in Schroeder and
Gibson (2010) assuming future architectures to have a
104-way local concurrency within nodes (stemming
from a combination of cores and threads), and com-
prising 105 nodes. Table 3 reports the computed failure
rates for each of the fault category target in this work.

From an implementation standpoint, to simulate the
occurrence of a fault for a target operation we proceed
as follows. For a given failure rate, we draw a sample
from a standard uniform random number, and extract
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from the corresponding failure density FðtÞ the amount
of time until the next fault occurs. We then measure the
execution time for the target operation to complete,
and if that time exceeds the next failure time, then a
fault is triggered. Once the fault is triggered, we pro-
ceed to simulate the effect of the fault as previously
described. If the total number of tasks involved in the
algorithm was known in advance, one potential alter-
native to simulate faults would be to randomly choose
in advance (‘‘offline’’) which tasks are hit by faults.
One advantage of this method is that failures would
not be correlated with aspects of the computation, e.g.
the longer the runtime, the more likely a fault can
occur. However, this ‘‘offline’’ approach is not feasible
for our algorithm because we do not know exactly how
many tasks are generated within the algorithm. In our
case, e.g. during the sampling stage as described below,
the number of tasks is unknown because the sampling
is run until a certain number of tasks comes back to
the servers. Pre-assigning tasks and failures is thus not
feasible. Moreover, from a different viewpoint, we also
think it is realistic that the more a computing unit
works, the more likely it is that a failure can occur, e.g.
due to overheating. We also remark that our implemen-
tation does not rely on actively detecting faults. When
a hard fault occurs, the client dies (this is simulated by
setting it idle) and stops communicating with its server.
From a practical standpoint, the server does not have
to query if a client is still alive, because the server gath-
ers only the data sent back by clients that are still alive.
In this work, we do not support the scenario of a hard
fault hitting a client such that it remains alive but
works in a degraded fashion. For soft faults, the algo-
rithm does not try to detect them, but simply works
with the data that is available.

6.3 Handling faults

The SC implementation handles two kinds of tasks,
namely sampling and regression tasks. The sampling
stage is designed such that we keep generating tasks
until a sufficient number of samples is collected for
each subdomain to have a well-posed regression stage.
If enough samples are not collected, the problem is
under-determined, and we know in advance that the

regression would not succeed. If this is the case, then
we simply repeat the iteration since running the regres-
sion would be a waste of resources. During the sam-
pling stage, if a task fails, it is simply discarded by the
server and its data is not used. During the regression,
instead, if a task fails, the server tries to resubmit it for
a fixed number of times (up to five times in the cases
described in this study), and, eventually, if none of
these succeed, the server simply does not use the corre-
sponding data. Since the regression is a fundamental
part of the algorithm for the final fixed point solve, the
server keeps track of what tasks come back and, even-
tually, when all regression tasks have been run at least
once, it recreates and executes itself those regression
tasks that were lost. In both cases, if a task is success-
ful, then its data is used, but there is no guarantee that
the data is ‘‘right’’, since it could be corrupted data due
to the modeling of soft faults. In the present work,
when a task is processed, we verify that the data stored
in that task does not contain NaN or Inf. If that is the
case, then the task is simply discarded.

6.4 Test problem

We adopt a nðsÞx1
= nðsÞx2

= 3 partitioning, with an under-
lying global mesh of nx = ny = 101 and a local subdo-
main grid size of about 372. Hereafter, we refer to this
setting using the label S9gs37

2, where S9 stands for 9
total subdomains, and 372 is the reference local grid
within each subdomain. The overlap between adjacent
subdomains is arbitrarily set to 7 grid cells along both
x1 and x2. Within each subdomain, the PDE is discre-
tized using a second-order FD approximation. A repre-
sentative plot of the discretization grid, the resulting
decomposition, the subdomains and their overlapping
is shown in figure 6.

For each value of the failure rate shown in Table 3,
we run an ensemble of N = 40 simulations for the
S9gs37

2 case. To explore the impact of the problem
size, a smaller ensemble N = 10 was ran for a bigger
problem. This larger case is referred to as S4gs103

2.
and involves an underlying grid of nx = ny = 201, parti-
tioning of nðsÞx1

= nðsÞx2
= 2 subdomains, and a local sub-

domain grid size of 1032. For all the results below,
unless stated otherwise, we focus on the case involving

Table 3. Failure rates ðnfaults=secÞ

Hard faults Soft faults computation Soft faults communication

r1 0.00005 0.00004 0.00069
r2 0.00009 0.00009 0.00140
r3 0.00018 0.00017 0.00270
r4 0.00034 0.00035 0.00550
r5 0.00072 0.00070 0.01100
r6 0.00090 0.00087 0.01400
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one MPI rank being the server, and 62 clients, each
consisting of 2 MPI processes, yielding a total of 125
running MPI processes.

7 Resilience analysis: results

The first part of the results focuses on the effects of
hard, computation and communication faults individu-
ally. The second part discuss the results when all three
types of faults are present at the same time.

7.1 Hard faults

The effect of hard faults on the algorithm implementa-
tion are first explored using the S9gs37

2 test case.
Figure 7 shows the dependence of the root-mean-
square (RMS) of the final residual as a function of the
number of faults for all runs in the S9gs37

2 test case.
The data points are color-coded based on the corre-
sponding failure rate. The errors bars are obtained for
the 0.25 and 0.75 quantiles, and the dashed line con-
nects the 0.5 quantiles. This figure is significant because
it shows that all of the runs converge regardless of the
number of hard faults hitting the ‘‘system’’, thus prov-
ing the resiliency of our algorithm with respect to hard
faults.

Figure 8 shows two sets of data: in black, we plot the
number of hard faults for all of the ensemble runs as a
function of the failure rate, and superimpose the error
bars displaying the 0.25 and 0.75 quantiles, as well as
the trend for the 0.5 quantile (dashed line); in blue, we
show the fraction of runs that successfully completed
without being hit by any fault as a function of the fail-
ure rate. The plot reveals that as the failure rate
increase, the number of faults occurring increases, on
average, monotonically, ranging from zero for the

smallest rate, r1, to a maximum value of 17 for r6. We
also note that even though we have an ensemble of 40
runs for any given value of the failure rate, the actual
variance of the number of faults is not large. This is
because several runs have the same number of faults,
even though these faults might affect different clients.
For instance, for the lowest rate r1, we only observe 0, 1
or 2 faults, whereas for the largest rate r6, we observed
a minimum of 5 and a maximum of 17 faults. Of course,
this is an effect of the finite-time of the simulation,
because if we were to run these cases long enough, even-
tually all clients would fail. The other data set plotted
in the figure shows the fraction of runs that complete

Figure 6. Schematic showing the n
ðsÞ
x1 = n

ðsÞ
x2 = 3 subdomains

partitioning, as well as the underlying nx = ny = 101
discretization grid.

Figure 7. Root-mean-square value of the final residual plotted
as a function of the number of hard faults. The errors bars are
obtained for the 0.25 and 0.75 quantiles, and the dashed line
connects the 0.5 quantiles. The markers are color-coded based
on the corresponding failure rate.

Figure 8. Number of faults for all ensemble runs (black circles)
plotted as a function of the failure rate obtained for the hard
fault case. The errors bars are obtained for the 0.25 and 0.75
quantiles, while the dashed line connects the 0.5 quantiles. The
dataset in blue shows the fraction of runs that complete without
faults. All results are obtained for the S9gs37

2 case.
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without encountering a fault. The data reveals that even
for the lowest rate case, only about 60% of the runs do
not have faults. This value drops to zero for r5 and r6.

For illustration purposes, Figure 9 shows a snapshot
of the status of the clients for one representative run for
each failure rate. The plot can be interpreted as follows.
The 62 clients cli, for i= 0, . . . , 61, that we have avail-
able are placed along the angular coordinate; the radial
coordinate identifies the failure rate, and increases as
we move outward. It follows that each marker in the
plot represents the status of a client during a represen-
tative run extracted for a given failure rate. Red mar-
kers identify clients that have failed at some point
during the run, while blue markers represent clients that
are alive. For this particular run, we can see that for
the smallest failure rate, r1, all clients remain alive. In
contrast, for the largest case we can see that nine clients
are dead. This is just a representative picture, and it
would change if a different run was selected.

To investigate what is the effect of the faults on the
runtime, Figure 10 shows for each run of each rate, the
time per iteration, t, normalized by t�, which is the cor-
responding time for the no-faults case, as a function of
the failure rate. The errors bars are obtained for the
0.25 and 0.75 quantiles, and the dashed line connects
the 0.5 quantiles. We remark that in all of these hard
fault cases, the solution is obtained after a single itera-
tion, which means that the time per iteration reported
in Figure 10 is also the time to converge. The data
reported in black shows the results obtained for the ref-
erence test case S9gs37

2. While the data displayed in
red, shows the results obtained for a bigger problem
size, test case S4gs103

2. The two data sets reveal differ-
ent trends: the data set obtained for the smaller case,
S9gs37

2 (shown in black) shows a slowly growing trend

as the number of faults increases, but the noise is too
large and, thus, the trend is not clear. Overall, the over-
head runtime that we face for the runs with faults seems
to only weakly depend on the number of faults. Even
though at first glance this result might be surprising, it
is the consequence of dealing with a problem that is too
small in terms of computational load. What the data
reveals is that the tasks that are generated for the cur-
rent problem are not sufficiently intensive such that
even when we lose 16 clients out of 62, we do not see
much impact on the overall execution time because we
are bounded by the communication cost. This explana-
tion is supported by the data plotted in red, which was
obtained for the larger problem, S4gs103

2 involving
finer grid. The figure shows that some runs for the
S9gs37

2 complete more quickly than the no-fault case.
This can be due to the fact that in some cases, the sam-
pling and regression stages happen to have sampled
data making individual tasks complete faster, which in
turn makes the overall execution faster. The increasing
trend is clearly visible for the S4gs103

2 case. By making
the problem bigger and, thus, more computationally
intensive, the computational cost surfaces, yielding a
net growing trend in the runtime cost when some of the
clients are killed. Overall, however, the algorithm han-
dles hard faults very well.

7.2 Soft faults during computation

While the effect of a hard fault effectively translates
into missing data, soft faults occurring in the clients
during the task execution can have different conse-
quences. In this case, if a soft fault occurs it can either
cause the task being executed to fail, which would be
detected by a convergence check on the subdomain, or

Figure 9. Status of all 62 clients (distributed along the angular
direction) for a representative simulation of each of the failure
rates ri, i= 1, . . . , 6. A red marker identifies a client that has
died during that run, while a blue marker identifies a client that
is alive.

Figure 10. Time per iterations t normalized by t�, which is the
corresponding time for the no-faults case, plotted as a function
of the failure rate for hard faults. The errors bars are obtained
for the 0.25 and 0.75 quantiles, and the dashed line connects the
0.5 quantiles.
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if the fault results in a very small perturbation, then
some iterative solvers or regression algorithms will
reach a solution. We anticipate that in the present
work, we do not observe the latter scenario.

Figure 11 shows for each run of each rate, the time
per iteration, t, normalized by t�, which is the corre-
sponding time for the no-faults case, as a function of
the failure rate. The data reported in black, once again,
shows the results obtained for the reference case
S9gs37

2. The data displayed in red, shows the results
obtained for a bigger problem, case S4gs103

2 which
runs for a smaller ensembles ðN = 10Þ for all failure
rates. The errors bars correspond to the 0.25 and 0.75
quantiles, and the dashed line connects the 0.5 quan-
tiles. The results indicate that the soft faults occurring
during the computational stage of the clients do not
strongly affect the time per iteration. In other words,
for the S9gs37

2 case, the overhead for completing the
runs with respect to the no fault case due the presence
of computation soft faults is very weakly dependent on
the failure rate. The trend does not change if we con-
sider the larger problem ðS4gs1032Þ with results shown
in red. In this case, even though the tasks themselves
are more expensive to run, the overall trend is the same
and the results do not depart too much from the
S9gs37

2 case. This suggests that for the current settings,
the combination of number of faults occurring and
computational load is not large enough to have an
effect as strong as we have seen for the hard fault case.
We can thus draw the conclusion that losing computing
nodes or clients has a greater impact on the runtime.

Figure 12 shows the average number of faults com-
puted over the ensemble runs as a function of the failure
rate obtained for the case with a 33 3 subdomains par-
titioning and an underlying grid of 1012 (case S9gs37

2

shown in black), and for the case with a 23 2 subdo-
mains and underlying grid of 2012 (case S4gs103

2

shown in red). For this type of fault, we observe limited
number of faults occurring, across all runs. More spe-
cifically, for a fixed value of the failure rate, the number
of faults increases with the problem size. The reason
behind these results is that if the task execution is com-
pleted quickly enough, then it is less likely that a fault
occurs. As the problem becomes larger and larger, tasks
become more and more expensive to run, and, thus, can
be hit more frequently by faults. In both cases, how-
ever, the number of faults hitting the clients is still too
small to have any substantial impact on the runtime, as
shown by Figure 11. Also for this type of faults, all of
the runs converge successfully, and the RMS of the resi-
dual for this category of faults behaves similarly to that
shown for hard faults, further confirming the resiliency
of the algorithm. For brevity, this plot is omitted.

7.3 Soft faults during communication

We now explore the effects of faults occurring during
the communications between server and clients. This
type of fault is the most complex for resilience pur-
poses, because it involves undetectable silent errors that
corrupt the data in the tasks objects. A suitable exam-
ple is one where a task object is being sent from a ser-
ver to a client, and there is some memory corruption
due to cosmic rays that corrupts the network. This
would affect the actual data owned by the object, or
even the object itself being completely corrupted. This
is what we are trying to model with this type of fault.
Our approach relies on synthetically corrupting all the
data of that object. There is an important distinction to
make between messages traveling from the server to a
client, and those traveling from a client to a server. In
the first case, when the server sends a task to a client

Figure 11. Time per iterations t normalized by t�, which is the
corresponding time for the no-faults case, plotted as a function
of the failure rate for computation faults. The errors bars are
obtained for the 0.25 and 0.75 quantiles, and the dashed line
connects the 0.5 quantiles.

Figure 12. Average number of faults computed over the
ensemble runs as a function of the failure rate obtained for the
computation faults.
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and a fault occurs, the client receives a task object car-
rying corrupted data. We remark once again that these
are silent errors so the client does not know that the
data is corrupted, unless the data is clearly unusable,
i.e. it contains NaN or Inf. After receiving the task, the
client proceeds with its execution. If the data is cor-
rupted, and depending on the size of the corruption,
that task is likely to fail. If that is the case, as men-
tioned in the previous section, the server then decides
what to do next, i.e. whether to rerun that task or dis-
card it.

The situation is different if the fault occurs when a
task is being transmitted from a client to a server. In
this case, the fault most likely corrupts the data owned
by that task, but the server will use that data to do the
update of the local solution. Again, this is because the
server does not have any way to know that the data
coming in is corrupted. Even if a subset of the samples
data is corrupted, the ‘1 regression is capable of filter-
ing out these effects and finding the right solution. This
procedure does not always work, because we might
have too many corrupted data, or the magnitude of the
perturbation may be so large that the regression solver
cannot overcome it. If this is the case, then it is likely
that using these data will lead to a bad solution, in
which case the algorithm runs another iteration since
the expected convergence is not achieved. If many
faults occur, then this can cause the run to perform
multiple iterations before converging. Figure 13 shows
the time per iteration, t, normalized by t�, which is the
corresponding time for the no-faults case, as a function
of failure rate. The results are shown for all the runs of
the S9gs37

2 case (black curve). The errors bars are
obtained for the 0.25 and 0.75 quantiles, and the
dashed line connects the 0.5 quantiles. The figure shows
that faults occurring during communication play a key
role, since they cause a net increase in the computa-
tional cost of a single iteration. As anticipated before,
this is due to the fact that if a task fails, it is rerun mul-
tiple times. More specifically, we can see that the cost
increases by 20% for the largest failure rate, which is
not a negligible amount also considering that these
results are obtained for the small problem, S9gs37

2.
The dataset plotted in red shows results obtained for
S4gs103

2. In this case, we note that the runtime over-
head per iteration with respect to the no fault case
increases rapidly for smaller rates, to eventually settle
into a plateau. The data also reveals that this larger
problem S4gs103

2 is more affected by soft faults than
the smaller case. This is because the number of faults
occurring for this problem is larger. This is due to the
fact that task objects for the bigger case are more
expensive to exchange via MPI, implying that these
communication operations take longer, and are thus
more susceptible to be hit by a fault. For brevity, we
omitted the plot for the convergence, but we remark

that in all cases, like shown for the other types of faults,
the runs complete successfully, but need more than a
single iteration.

Figure 14 shows two sets of data: in black, we plot
the number of faults for all of the ensemble runs in the
case S9gs37

2 as a function of the failure rate, and
superimpose the error bars displaying the 0.25 and 0.75
quantiles, as well as the trend for the 0.5 quantile
(dashed-line); in blue, we show the fraction of runs that
completed without faults as a function of the failure
rate. The total number of faults that hit the run is very
large in this case, ranging from zero for r1, to more

Figure 13. Time per iteration, t, normalized by t�, which is the
corresponding time for the no-faults case, as a function of failure
rate for communication faults. The errors bars are obtained for
the 0.25 and 0.75 quantiles, and the dashed line connects the 0.5
quantiles.

Figure 14. Number of faults for all ensemble runs (black
circles) plotted as a function of the failure rate for communication
faults. The errors bars are obtained for the 0.25 and 0.75
quantiles, while the dashed line connects the 0.5 quantiles. The
dataset in blue shows the fraction of runs that complete without
faults.
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than 130 for the r6. This is because the rates used for
this type of fault are quite large, and, thus, it is more
likely that faults occur. It is interesting to see that only
for the smallest rate, r1, we have some runs that com-
plete without encountering any fault. In all other cases,
all of the runs have at least one fault. At such high fault
rates, the main conclusion is that the algorithm is very
robust to silent communication faults, at the cost of an
extra iteration from time to time.

7.4 Mixed faults

The results discussed above were based on exploring
the effect of each type of fault individually. This analy-
sis allowed us to extract some patterns and highlight
their individual effects on the runs. We now investigate
how the algorithm behaves when all faults are activated
concurrently. To this end, we choose three different
scenarios: one involving a case where all three faults
are described by the smallest value of the failure rate
r1; a second case involves all three faults with rate r4;
finally, as a last case, we have r6 for all three types.
Figure 15 shows the time per iteration, t, normalized
by t�, which is the corresponding time for the no-faults
case, as a function of failure rate. The results are shown
for both the small and large problem (S9gs37

2 and
S4gs103

2 respectively), with errors bars obtained for
the 0.25 and 0.75 quantiles, and the dashed line con-
necting the 0.5 quantiles. As expected, the plot reveals
that the overhead cost per iteration due to the presence
of faults increases monotonically as a function of the
failure rate for both problems considered. On the one
hand, for the small problem ðS9gs372Þ, the overhead
cost of one iteration in the presence of faults for the
largest faults rate is on average about 20%. For the
larger case, as was seen in the previous section, an extra

iteration is often required for the large fault rates. For
a fixed problem, the plot reveals that the gap between
the 0.25 and 0.75 quantiles of the data increases pro-
portionally to the failure rate. This is due to the fact
that as the failure rate increases, so does the variability
in how the faults occur during the runs. From a differ-
ent viewpoint, for a fixed value of the failure rate, we
can see that variability in the data increases with the
size of the problem.

We finalize this section showing the resiliency
results. To this end, figure 16 shows the RMS of the
residual as a function of the mixed fault cases. Even
though the residuals show more variability as the fault
rates increase, the plot shows that all runs converge
with very good accuracy.

8 Conclusions

We presented a PDE preconditioner that is resilient to
hard and soft faults, and showed a test involving a 2D
steady diffusion equation with variable coefficients.
The algorithm exploits a novel reformulation of the
problem that allows us to cast it into a sampling prob-
lem over a set of subdomains such that ‘‘data’’ is gener-
ated, and then suitably manipulated to yield the final
updating of the solution state.

We discussed two implementations, one based on
the SPMD model and one based on a SC model. The
scalability of both implementations was presented, and
the main differences were highlighted. The scalability
results showed excellent scalability for the major com-
ponents of the algorithm. The comparison between the
SPMD and SC implementations showed that, for the
current configuration, the SPMD implementation is
about 30% faster than the SC. Despite this result, the
better scaling and resilience properties of the SC
approach make it better suited for extreme-scale appli-
cations with many more cores and significant system

Figure 15. Time per iteration, t, normalized by t�, which is the
corresponding time for the no-faults case, as a function of the
mixed fault case.

Figure 16. RMS of the residual as a function of the mixed fault
case.
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fault frequencies, which is the target configuration for
this resilient PDE solver approach.

The asynchronous SC framework provides resiliency
to hard faults since clients that have crashed are ignored
and the remaining clients handle all of the tasks. Faults
occurrence is modeled using a Poisson process defined
by a failure rate, and fault types are grouped under
three main categories: hard faults, which mimic clients
(or nodes) crashing; soft faults during computation,
which mimic silent errors affecting the system during
the computational work; and soft faults affecting the
MPI communication, mimicking the silent errors that
can occur within the network when data is being trans-
mitted. First, we remark that in all cases, the algorithm
always converges. The effect of the faults is to increase
the time per iteration and/or the number of iterations
that the algorithm needs to run to complete. We showed
that hard faults have a substantial impact on the run-
time for the larger problem investigated, while only hav-
ing a minor impact for the small problem. We explained
this apparent discrepancy in terms of communication
and computation cost. For the network faults, the effect
of the faults is substantial due to the large number of
faults happening, as well as the abrupt and undetectable
consequences that these faults have.

Finally, we showed the result for a more realistic case
where all faults can be triggered together. As intuitively
expected, this scenario is the most dramatic one, with
very large numbers of faults. Regardless, the algorithm
converges with good accuracy in all of the runs.
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