
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 369 (2020) 113191
www.elsevier.com/locate/cma

Hierarchical matrix approximations for space-fractional diffusion
equations

Wajih Boukarama, Marco Lucchesia, George Turkiyyahb, Olivier Le Maîtrec,
Omar Knioa,∗, David Keyesa

a King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
b Department of Computer Science, American University of Beirut, Beirut, Lebanon

c Centre de Mathématiques Appliquées, CNRS, Inria, Ecole Polytechnique, Palaiseau, France

Received 18 January 2020; received in revised form 27 May 2020; accepted 29 May 2020
Available online xxxx

Abstract

Space fractional diffusion models generally lead to dense discrete matrix operators, which lead to substantial computational
challenges when the system size becomes large. For a state of size N , full representation of a fractional diffusion matrix would
require O(N 2) memory storage requirement, with a similar estimate for matrix–vector products. In this work, we present H2

matrix representation and algorithms that are amenable to efficient implementation on GPUs, and that can reduce the cost
of storing these operators to O(N) asymptotically. Matrix–vector multiplications can be performed in asymptotically linear
time as well. Performance of the algorithms is assessed in light of 2D simulations of space fractional diffusion equation with
constant diffusivity. Attention is focused on smooth particle approximation of the governing equations, which lead to discrete
operators involving explicit radial kernels. The algorithms are first tested using the fundamental solution of the unforced space
fractional diffusion equation in an unbounded domain, and then for the steady, forced, fractional diffusion equation in a bounded
domain. Both matrix-inverse and pseudo-transient solution approaches are considered in the latter case. Our experiments show
that the construction of the fractional diffusion matrix, the matrix–vector multiplication, and the generation of an approximate
inverse pre-conditioner all perform very well on a single GPU on 2D problems with N in the range 105 – 106. In addition,
the tests also showed that, for the entire range of parameters and fractional orders considered, results obtained using the H2

approximations were in close agreement with results obtained using dense operators, and exhibited the same spatial order of
convergence. Overall, the present experiences showed that the H2 matrix framework promises to provide practical means to
handle large-scale space fractional diffusion models in several space dimensions, at a computational cost that is asymptotically
similar to the cost of handling classical diffusion equations.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Fractional diffusion; Smooth particle approximation; Hierarchical matrix; Linear complexity; GPU

1. Introduction

Nonlocal continuum models, expressed as fractional differential equations, have gained significant popularity
in recent years, as they have shown great success in representing the behavior of a variety of systems in

∗ Corresponding author.
E-mail address: omar.knio@kaust.edu.sa (O. Knio).

https://doi.org/10.1016/j.cma.2020.113191
0045-7825/ c⃝ 2020 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113191
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113191&domain=pdf
mailto:omar.knio@kaust.edu.sa
https://doi.org/10.1016/j.cma.2020.113191

2 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

scientific and engineering application domains [1]. Nonlocal models allow the representation of solutions that
exhibit more singular and anomalous behavior than is possible with local continuum PDE models, which have
long been the mainstay of scientific and engineering modeling. One of the most successful fractional differential
equations is perhaps the space-fractional diffusion equation, which uses a fractional Laplacian operator that
generalizes its classical counterpart. This fractional diffusion equation appears as a canonical model for transport
problems involving anomalous diffusion that is of great relevance to industrial and environmental applications [2].
Applications from many other disciplines including image processing, finance, and many others [1,3,4] have also
come to rely on fractional Laplacian operators. In its simplest form, the equation assumes a uniform diffusivity
coefficient in space and a constant fractional order derivative, however non-homogeneous coefficients in general
geometries and varying fractional orders are also of practical interest.

Numerical approximations for the fractional derivatives that appear in the fractional diffusion equations have
received much attention in the literature [5]. Many different equivalent definitions of the fractional Laplacian have
been presented [6] and used as the starting point for appropriate discretizations of the fractional operator. Finite-
difference and variational methods are often adopted to numerically discretize the equations [7–18]. Particle-based
methods, using random walk approaches [19–24], have also been used to simulate the equations. Smoothed particle
approximations have been recently proposed [25] and shown to be quite flexible in discretizing and simulating the
fractional diffusion equations.

The practical discretization schemes proposed, however, share serious computational difficulties that limit their
scalability. The resulting discrete operator they produce is fully dense due to the non local nature of the underlying
equations and hence requires O(N 2) memory and O(N 2) operations for the core matrix vector multiplication
operation. For simple cartesian geometries with constant coefficients, translation invariance characteristics can
be exploited [26] to reduce the storage and operator application costs. However, the general setting inevitably
leads to a quadratic growth in computational resource requirements. This must be tamed if the simulation
of fractional diffusion, or other fractional differential equations, is to be done at scale. Hierarchical matrix
approximations have been proposed as algebraic representations of the discretized fractional operators. In 1D,
H-matrix approximations [27] were shown to be effective and were used in a geometric multigrid solver. The
H-matrix approximability of the discrete operators in two spatial dimensions was studied in [28,29] starting from
finite difference approximations of the fractional operator. Our work here compresses the fractional operator using
the more memory-efficient H2 representation, and develops a performant GPU implementation to demonstrate it
2D. We also construct, algebraically, an approximate inverse, as a preconditioner for a Krylov solver.

Starting from a smoothed particle discretization of the fractional diffusion operator, we construct asymptotically
optimal H2-matrix approximations of the resulting matrix operator. We show that the memory requirements of the
discretized fractional operator grow only as O(N) where N is the number of particles in the discretization, and that
the cost of matrix–vector multiplication also grows at the same optimal linear rate. In addition, the constants that
appear in these complexity estimates depend on the ranks of blocks in the matrix, which grow only very weakly with
the desired accuracy of the matrix approximation, k ∼ log |ϵ|c where k is a representative rank of low rank blocks of
the H matrix, ϵ is the accuracy of the hierarchical matrix relative to the fully dense representation, and c is a constant
that depends on the spatial dimension of the problem. Our numerical experiments, with different problem sizes and
fractional orders, show the broad applicability of H2-matrix representations for fractional diffusion problems.

In practice, we show that these H2 representations are effective in multiple spatial dimensions, not only in their
optimal asymptotic growth, but importantly in their practicality on modern workstations. The operators can be
compressed by more than 3 orders of magnitude relative to a dense representation, and generated in under a couple
of minutes, to reasonably high accuracy, on problems of size 2M on a standard scientific workstation. We also
show that a higher order variant of Newton–Schulz iteration can be used to generate an approximate inverse of the
discretized operator, which can be used as an effective preconditioner for the fractional elliptic Poisson problem.

Another major benefit of the H2 matrix approximations is that their small, and asymptotically optimal, storage
requirements make them amenable to an effective GPU implementation. Modern scientific workstations generally
feature manycore GPU accelerators, and algorithms that do not effectively take advantage of these architectures are
unlikely to be competitive for scientific and financial applications. Modern GPU architectures feature decreasing
ratios of memory bandwidth to processing power, smaller amounts of fast memory per processing core, and
substantial latencies for accessing data in deep memory [30]. Competitive algorithms must therefore be able to
orchestrate their computations for effective execution in this environment. Through the efficient compression of the

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 3

discretized operator via its H2 representation, matrix data can be made to reside high on the memory hierarchy to
allow substantial efficiencies to be realized, beyond the reduction in operations count to produce. Our numerical
experiments demonstrate the effectiveness of the representation on GPUs. For example, on problems of size 2M,
the operator application can be performed in under 40 ms on a modest NVIDIA P100 GPU.

The rest of this paper is organized as follows. Section 2 presents the particle approximation of the fractional
diffusion equation. Section 3 describes the hierarchical H2 representation, the algorithm for generating an H2

representation of the operator, as well as the algorithms for matrix vector multiplication and construction of an
approximate inverse. Section 4 shows the computational performance of these algorithms on various test problems,
including memory footprint and processing times on CPUs and GPUs, to show scalability. The effect of desired
accuracy on rank growth, and hence memory footprint, is shown as well. The effectiveness of different hierarchical
approximate inverses, constructed to different accuracies, when used as preconditioners in a Krylov solver is also
presented. Section 5 shows the results on two test applications. Transient, pseudo-transient, and steady state solutions
are obtained and analyzed to show the approximation quality of the computed solution for various values of the
fractional order of the operator, and to demonstrate the applicability of the hierarchical matrix representation across
problem parameters. We conclude and outline future work in Section 6.

2. The fractional diffusion equation and its particle approximation

In this section, we briefly outline the formulation of the mathematical problem, and its particle approximation.

2.1. The fractional Laplacian

We shall focus on the simulation of the multi-dimensional fractional diffusion equation,

∂u
∂t

= −∇ · Qβ, (1)

where

Qβ(x, t) ≡ −D∇
βu(x, t) = −D

2α−1Γ
(d+α

2

)
π

d
2 Γ

(2−α
2

) p.v.

∫
Rd

y
|y|

α+d u(x + y, t) dV (y), (2)

is the fractional diffusion flux of order β ∈ (0, 1), α ≡ β + 1, x, y ∈ Rd with d ≥ 1, dV (y) is the measure in Rd ,
D is the diffusivity, ∇

β denotes the fractional gradient operator of order β, and “p.v.” indicates a principal value
integral.

Assuming D ≡ 1, (1) reduces to:

∂u
∂t

= ∆αu, (3)

where ∆αu is the fractional Laplacian operator of order α [31]:

∆αu =
α2α−1Γ

(d+α
2

)
π

d
2 Γ

(2−α
2

) p.v.

∫
Rd

u(y) − u(x)
|y − x|

d+α
dV (y). (4)

Note that in the limit α → 2, the fractional Laplacian ∆α defined in (4) coincides with the classical Laplacian.
Also note that in some of the literature the fractional Laplacian is denoted as ∆α/2, or as power of the Laplacian
with an exponent falling between 0 and 1. Because we have started from the flux expression, involving a fractional
operator of order 0 < β < 1, we find it more convenient to denote the resulting diffusion in terms of a fractional
operator of order α = β +1, with 1 < α < 2. This also provides a natural way to eventually extend the formulation
to variable properties.

For an infinite domain with no internal boundaries, the fundamental solution of (4) is available in integral
form [31] for the general d-dimensional case; see Appendix A.

4 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

2.2. Particle approximation

Smooth particle methods consist in discretizing the n-dimensional spatial domain using a finite set of particles.
The i th particle is defined by its position xi , volume Vi , and strength ui . The particle representation of a function,
u(x), is expressed as [32–36]:

u(x) ≈ uς (x) ≈

∑
i∈I

Vi uiης (x − xi), ης (x) =
1
ςd

η

(
x
ς

)
, (5)

where I ⊆ Z is a finite index set, η is a radial kernel of unit mass, and ς is the so-called smoothing parameter. In
this work, we adopt the second-order exponential kernel [37,38]:

η(x) =
1

π
d
2

exp
(
−|x|

2) . (6)

Recently, Lucchesi et al. [25] exploited the regularized particle representation in (5) to construct different methods
to approximate the fractional Laplacian (4) and the fractional diffusion flux (2). These included various variants
of the so-called particle strength exchange (PSE) algorithms [39–43], a diffusion-velocity method [44], as well as
a methodology based on direct (fractional) differentiation [36] of the particle representation in (5). Whereas the
various approaches explored in [25] all led to consistent approximations, the resulting schemes exhibited different
properties. In the present work, we focus exclusively on the direct differentiation (DD) approach, but note that
developments outlined below readily extend to other approaches, provided diffusion is treating using a fixed particle
grid.

In the DD approach, the fractional diffusion flux is estimated by estimating the fractional Laplacian of (5)
analytically. (See Appendix B for details.) We next use a midpoint rule to estimate the evolution of the particle
strength, leading to:

∂ui

∂t
=

1
ςα

∑
j∈I

V j u j Gς

(
xi − x j

)
, (7)

where

Gς (r) =
1
ςd

G
(

r
ς

)
, G(r) = −

2αΓ

(
α + d

2

)
π

d
2 Γ

(
d
2

) 1 F1

(
α + d

2
,

d
2
, −|r|2

)
, (8)

and 1 F1 denotes the confluent hypergeometric function of the first kind [45]. For additional details regarding the
construction, see [25].

Capitalizing on the indexing scheme used to enumerate the particles, the DD scheme can be written as a matrix
system,

U̇ = AU, (9)

where U is the vector concatenating the particle strengths, ui , U̇ is its time derivative, and A is a matrix with
elements

Ai, j =
1
ςα

V j Gς

(
xi − x j

)
. (10)

Note that the computation of each entry, Ai, j , requires the evaluation of a confluent hypergeometric function,
which is computationally demanding [46]. However, if the particle grid is held fixed, evaluation of the diffusion
matrix, A, may be performed once. Even if the diffusion is estimated using a fixed particle grid, however, a
significant challenge arises because the matrix, A, is full. This generally leads to an O(N 2) storage requirement,
where N is the total number of particles. This storage requirement can become prohibitively large, even for a relative
modest computational grid. For instance, with particles uniformly distributed on a 2D grid with 301 cells in each
direction, storage of the matrix in double precision would require about 61 GB of RAM. Even though this storage
requirement could potentially be avoided by directly computing the local diffusion terms individually, such direct
computation would necessitate an O(N 2) operation cost. Thus, one is generally faced with potentially prohibitive

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 5

Fig. 1. Schematic representation of H2 approximation of a dense matrix operator.

memory and CPU requirements, unless the drawbacks of the direct matrix representation and source term evaluation
are suitably addressed. The hierarchical methodology developed in the following section specifically focuses on this
objective.

3. Hierarchical matrix methods for particle discretizations of FDE

3.1. Representation

The asymptotically smooth nature of the kernel G allows the discrete operator A to admit a hierarchical matrix
representation that does not suffer from the polynomial growth in memory and computational complexity of dense
matrix representations [47]. While some hierarchical matrix representations have log-linear complexity, the H2

representation we use in this work has an asymptotically optimal linear complexity both in its memory requirements
and in the key matrix–vector multiplication operation that is at the core of the time evolution computations of the
fractional PDE.

Fig. 1 shows a schematic of the H2 representation. Matrix blocks Ats of size nb × nb are approximated by low
rank factorizations of the form Ats = Ut Sts Vs

T with rank kb ≪ nb. These blocks are of different sizes representing
different granularities. The matrix is stored as a quadtree, where coarser levels of the quadtree, closer to the root,
include large blocks of size nb ≈ N/2l where l ∈ [0, q] is the level number in a tree of depth q . At every level,
l, of the quadtree some of the blocks are stored as low rank blocks while others are refined further. Leaves of the
quadtree with size nb ≤ nmin are stored as dense blocks.

A geometric boolean “admissibility condition” determines whether a matrix block needs to be further subdivided
or can be represented as a single low rank block. Since our matrix A is a discretization of a spatial operator, the
admissibility condition encodes the intuition that a matrix block Ats can be properly approximated by a low rank
factorization to the desired accuracy ϵ if the set of particles t are sufficiently far from the set of particles s. Simple
bounding box and distance computations can be performed to determine whether a matrix block is stored as a
low rank block or not. The particular admissibility condition we use in the example simulations is described in
Section 4.

In this representation, low rank matrix blocks may therefore appear in arbitrary locations in the matrix, as guided
by the general admissibility condition. This allows for more flexibility than other fixed-structure representations,
and allows the matrix structure to be adapted to the nature and patterns of the spatial discretization of the domain.

Another feature of the H2 representation, which allows it to reach the optimal asymptotic complexity O(N), is
its use of a nested basis representation of the bases U and V . In a nested basis representation, a column basis for
block row t is not stored explicitly but rather computed on-demand from the bases of the two children clusters t1
and t2 of t via small transfer matrices E of size corresponding to block rank rather than block size,

Ut =

[
Ut1

Ut2

] [
Et1
Et2

]
, (11)

6 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Fig. 2. Clustering produced by a binary k-d tree partitioning for a regular (left) and irregular (right) spatial discretization of square and
circular regions. The labels t and s identify the clusters that affect a matrix block Ats .

resulting in optimal complexity, as only the basis for leaf-level rows are explicitly computed and stored. A similarly
nested basis is also used for the row basis V of block columns s. In the case of symmetric matrices, as in the case
of pure fractional diffusion with no advection, V is identical to U and does need to be stored separately. GPU data
structures and algorithms for operating on hierarchical matrices are described in [48].

The construction of the hierarchical approximation A is done in two phases. In a first phase, an initial
approximation is generated via an interpolatory construction process which approximates the kernel function G
by a high-order polynomial using Lagrangian interpolation. This is followed, in a second phase, by an algebraic
compression process which essentially generalizes the SVD decomposition to hierarchical matrices, and truncates
it to produce an optimal memory footprint to the desired accuracy ϵ in the approximation. These two phases are
described next.

Related hybrid analytical-algebraic methods have been presented in the literature, including the HCA method [49]
which overcomes the unreliability of the heuristic algebraic adaptive cross approximation (ACA) [50] method, by
combining it with an interpolation-based separable approximation of the kernel. SMASH [51] also uses a hybrid
compression method for the construction of H2 matrices using rank revealing QR factorizations. The use of linear
algebra-based operations in hybrid methods generally results in better compression, smaller ranks, and more general
applicability, than is possible with fast multipole methods [52].

3.2. Interpolatory construction

We start by clustering the N particles into small regions with clusters of cardinality ≤ nmin using a k-d tree
binary partitioning procedure. The spatial partitioning procedure, which repeatedly divides the point set into two
halves with roughly equal cardinality, uses axis-aligned hyperplanes with median split in the direction of maximum
extent of a bounding box of the point set. Fig. 2 shows the resulting clusters for two sample particle discretizations
of a square and a disk. The k-d tree partitioning procedure generates a hierarchy of clusters that define the block
rows and block columns of the hierarchical matrix at different levels of granularity, ending at the leaf level clusters.
The labels t and s of Fig. 2 refer to sample clusters in these hierarchies. Each such pair will generate the block Ats

of the matrix. The cluster tree together with an admissibility criterion define the matrix structure. A construction
algorithm needs to generate: (1) the leaf-level bases Ut for all leaf clusters t , (2) the corresponding interlevel transfer
matrices Et for all clusters at all levels, and (3) the matrix blocks Sts for all low rank blocks.

The basic element of the construction consists of tensor product grids of Chebyshev interpolation points of size
md that are overlaid on axis-aligned bounding boxes Ωt and Ωs of clusters t and s, respectively. This construction
is used to build Lagrange polynomials p(x) of order dm over d-dimensional boxes. Chebyshev points have a well-
known best approximation property for representing smooth functions. The core observations for constructing the

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 7

Fig. 3. Schematic illustration of a row having three blocks (shaded) at the same level of hierarchy.

nested basis hierarchical matrix are (1) that the kernel function can be written as a separable approximation:

G(xt , xs) ≈ G̃(xt , xs) =

∑
i

∑
j

Si j pt,i (xt) ps, j (xs), xt ∈ Ωt , xs ∈ Ωs, and i, j = 1 : md (12)

where pt,i and ps, j are the i th and j th basis polynomials over Ωt and Ωs , and (2) that the md polynomials pt,i used
in the approximation over a region Ωt are expressed in terms of the approximating polynomials over the subregions
of children clusters tc (t = ∪c tc)

pt,i (x) =

∑
k

(Etc)k,i ptc,k(x), x ∈ Ωtc , k = 1 : md , and c = 1, 2. (13)

Based on these interpolation points, we can evaluate the elements of the hierarchical matrix approximation. The
leaf-level bases Ut are of size nt × kt , where nt is the cardinality of cluster t and kt = md is the number of points
in the interpolation grid. Their columns can be computed by evaluating the basis polynomials at the nt points of
t . The interlevel transfer matrices Etc for a child cluster tc with parent cluster t can also be computed column by
column by simply evaluating the basis polynomial of Ωt at the interpolation points of Ωtc . Finally, the i j entries of
the small Sts matrices can be computed by evaluating the kernel function at the i th interpolation point of Ωt and
the j th interpolation point of Ωs .

One question to address concerns the best values of m (which may vary from cluster to cluster as well from level
to level) needed in order to reach a desired target approximation accuracy, ϵ, in the matrix. The order, m, used in the
Lagrangian interpolation directly affects the error ϵG = ∥G(xt , xs) − G̃(xt , xs)∥ in the polynomial approximation of
the kernel function. For smooth kernel functions the convergence of the approximating polynomial is exponential
in m. It can also be shown that the error in the resulting hierarchical matrix approximation, measured either by
the spectral or Frobenius norms, is also directly related to ϵG [53]. Unfortunately, the constants that appear in the
matrix error estimates depend on the geometric sizes and shapes of the clusters and their relative position and
orientations, and the bounds are not always tight. Therefore our strategy for constructing our matrix approximation
is to use a conservative value, m, that first generates a tighter error than desired (and therefore uses more memory
in the approximation of A), and then compress it algebraically to the desired tolerance, ϵ, to obtain the optimal
approximation. We discuss the compression phase next.

3.3. Algebraic compression

The Sts coupling blocks at different levels of the matrix constructed above are of size kt ×ks where kt = ks = md

is the size of the interpolation grids over Ωt and Ωs . Algebraic compression seeks to reduce the memory footprints
of these Sts blocks. An obvious way to do so would be to compute an SVD decomposition of Sts = Ũ Σ̃ Ṽ T , and
truncate the singular values at the desired approximation level, Σk+1 < ϵ. The matrix blocks are then compressed
to rank k blocks as Ats = U ′

tsΣ
′V ′

st
T where U ′

ts = UtŨ:,1:k and V ′
ts = Vt Ṽ:,1:k .

This compression works for a single block but will not generate the common and nested basis U ′
t that is needed

for optimal memory complexity of the whole matrix. In order to generate a common new column basis U ′
t for

the whole block row t , the SVD needs to include all blocks Stsi in it. Fig. 3 illustrates a block row t containing

8 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

three blocks at the same level in the hierarchy. The common basis to use for compression of this block row can be
obtained from the SVD of a matrix combining these blocks:

Bt = [Stsa Stsb Stsc]. (14)

An efficient way to perform these computations is to factor Bt as Rt Qt using a Q R decomposition of BT
t and use

Ut Rt as the new common basis for block row t . An SVD of the small matrix Rt can be generated and truncated
to the desired accuracy to yield a rank k block. If we denote the left singular vectors of Rt by Ũt , its truncated
approximation is Ūt = Ũt (1 : k). Assuming an orthogonal basis Ut , the new basis is now compressed to produce
the desired U ′

t = UtŪt .
In other words, the algebraic compression of the block row t produces the following approximation:

Ut [Stsa Stsb Stsc] ≈ U ′

t [S̄tsa S̄tsb S̄tsc], (15)

where S̄ts j = Ū T
t Sts j are the compressed coupling blocks expressed in the new basis U ′

t . A similar compression can
be done for the bases Vs for non-symmetric matrices where V ̸= U . Once the new compressed U ′

t and V ′
s bases

are obtained, the new coupling blocks S′
ts can be obtained by projecting Sts on the new bases, S′

ts = Ũ T
t Sts Ṽs . This

yields new compressed representations U ′
t S′

ts V ′
s

T for all matrix blocks.
This construction does not yet yield nested bases however. In order to produce the nested basis U ′

t for all block
rows t at all levels of granularity, the information at the coarse block levels must also be present at the finer levels in
the cluster tree. This can be accomplished by propagating the relevant basis information from the root to the leaves
in a downsweep pass through the basis and matrix trees. Every Rt will then have information from the coarser
levels. Compression then proceeds in an upsweep pass through the basis tree. At the leaf level, this is done via
an SVD of the leaf-level bases Ut Rt of size n × k with n < nmin. At higher levels of the hierarchy, this involves
also the SVD of only small matrices involving the interlevel transfer operators Et , of size comparable to the ranks,
not the extent, of the blocks. These algorithms are described in [48]. Assuming a bounded number of blocks in
each block row and block column of the various levels of the hierarchy, the compression can be done in linear
complexity O(N) and includes substantial data parallelism that is exploitable for efficient execution on GPUs and
manycore architectures.

3.4. Matrix–vector multiplication

A core operation in time dependent fractional diffusion simulation is the product of the hierarchical matrix
approximation of the discretized fractional Laplacian by a vector. This operation can be performed in optimal
complexity O(k N) where k is a bound on the block ranks for a problem of size N . The multiplication can be
expressed as

Ax = Ad x + Alr x = Ad x +

⎛⎝∑
l

∑
(t,s) in level l

U l
t Sl

ts V l
s

T

⎞⎠ x . (16)

The dense part of the matrix (Ad) is a block sparse matrix and its multiplication by a vector can be done by
standard sparse matrix vector routines. The low rank (Alr) part of the product is a generalization of the low rank
dense matrix vector multiplication operation. When a matrix of the form U SV T is to be multiplied by a vector x ,
the computation is done in three phases: first the product V T x is formed, then S is multiplied by that intermediate
vector, and finally the product of U is multiplied by this latter vector to generate the desired result. Generalizing
this operation to the H2 representation, produces the following three steps:

• an upsweep pass through the basis tree V of the block columns produces the products V l
s

T x for all block rows
s at all levels l;

• the products Sl
ts with the vector of the first phase are performed concurrently for all blocks at all levels;

• a downsweep pass through the basis tree U of the block rows produces and accumulates the products U l
t with

the vectors generated in the second phase. This result is added to the result of the dense phase to generate the
product Ax .

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 9

The tree traversals for the upsweep and downsweep passes, and the products with the coupling blocks S, can all be
done in linear complexity. In addition there is substantial data parallelism in all phases which allows for substantial
performance improvements on GPUs, limited primarily by the bandwidth of the GPU memory. Performance results
are shown in the next section.

3.5. General linear algebra operations on hierarchical matrices

The algebraic nature of hierarchical matrices allows the development of high performance algorithms that
implement general linear algebra operations. Of particular interest is the low rank update operation

A = A + XY T (17)

which produces the sum of a hierarchical matrix A of size N × N and a globally low rank matrix whose X
and Y factors are of size N × k with k ≪ N . This operation can be efficiently implemented [30,54] by first
adding the contributions of XY T to the various blocks of A at all levels, and recompressing the resulting sum
algebraically as described earlier. The low rank update operation is a key routine for an operation that generates
an explicit hierarchical matrix representation of an operator accessible only via matrix vector products. Such an
algorithm generalizes the popular randomized algorithms for generating low-rank approximations of large dense
matrices [55] to the hierarchical case. The ability to sample a “black-box” matrix to produce a hierarchical matrix
representation allows matrix multiplication and evaluation of general algebraic expressions of hierarchical matrices
to be performed.

Approximate hierarchical matrix inverses can be generated via an iterative Newton–Schulz method or its higher
order variants. Newton–Schulz allows matrix inverses to be generated by iterating on the evaluation of

X p+1 = (2I − X p A)X p, (18)

involving two matrix multiplication operations per iteration, which can be performed directly in the hierarchical
matrix format. For positive definite matrices, the iterations converge globally to A−1 starting from the scaled identity
X0 = I/∥A∥∞. In practice, we do not need to converge to a tight tolerance, since the inverse is meant to be used as
a preconditioner in a Krylov solver. The termination condition ∥AX p − I∥2 < ϵ can be used to produce approximate
inverses that can be practical and effective preconditioners, as we demonstrate in the numerical results in the
following section. Hierarchical inverse preconditioners for non-fractional operators have been studied in [56,57].

Newton–Schulz iterations can be generalized to hyperpower iterative methods that improve the second order
convergence to higher order. An order v hyperpower iteration is defined as [58]:

X p+1 = X p
(
I + Rp + · · · + Rl−1

p

)
= X p

v−1∑
i=0

Ri
p, (19)

where Rp = I − AX p, involving l matrix products. Setting v = 2 gives the standard Newton–Schulz iteration. In
our hierarchical matrix computation framework, the computation of X p+1 requires sampling the right-hand side of
Eq. (19), i.e., multiplying the polynomial expression by sampling vectors. This can be performed efficiently using
Horner’s method for evaluating polynomials. The resulting products are used in the level by level construction of
the hierarchical matrix X p+1 [54]. We use methods of order 16 to construct the approximate inverse preconditioners
used in the results shown below.

4. Performance of hierarchical matrix operations

In this section, we demonstrate the efficiency of the hierarchical matrix operations used in this work on both CPU
and GPU machines. For these experiments we use a set of N particles placed at the nodes of a regular n ×n grid in
order to assess the scalability, in both time and memory, of the hierarchical matrix computations with problem size.
In all experiments, the matrix structure is constructed by hierarchically clustering the N points using a k-d tree data
structure. The k-d tree partitioning algorithm subdivides the point set until a leaf size of nmin = 64 is reached. A
pair of clusters t and s at level l of the hierarchy generates a low rank matrix block Al

ts if the inter-center distance
between the point sets is large relative to their average size, ∥xt −xs∥ > η(Dt +Ds)/2. In this algebraic admissibility
condition, x represents the location of the center of the cluster, D the diameter of a ball enclosing it, and η is a

10 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Fig. 4. Hierarchical Matrix Structure produced by admissibility parameter η = 0.8 for a regular 2D grid.

Fig. 5. Performance of matrix construction to an error threshold of 10−5 on a range of problem sizes: (a) CPU time for interpolation and
algebraic compression phases; (b) Memory footprint of the dense and low rank blocks of the resulting matrix (before and after algebraic
compression).

tuning parameter of the condition that eventually has the effect of controlling the block refinement of the resulting
hierarchical matrix. We fixed η = 0.8 for these experiments, and used a fractional order α = 1.5. The resulting
matrix structure for a problem size N = 16,384 is shown in Fig. 4.

Fig. 5(a) shows the performance of the two phases of the construction of the discrete operator as well as the
overall time needed to produce the final compressed matrix. For the first phase, as described in Section 3.2, we
use a constant rank of 100 for the interpolation to achieve an overall accuracy of about 10−6 which we verify by
sampling 5% of the entries of the output of the full dense matrix with a random vector and comparing against
the output of the hierarchical matrix vector product. The resulting storage requirement of the low rank portion of
the matrix grows linearly with the problem size, but it is still relatively high. The second phase, as described in
Section 3.3, performs algebraic compression to an accuracy of 10−5 to greatly reduce the overall memory footprint.
Both phases have linear asymptotic complexity which is seen in Fig. 5(a). The memory consumption of the dense
(Ad) and low rank (Alr) portions of the matrix are shown in Fig. 5(b). The reduction in memory footprint achieved

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 11

Table 1
The memory consumption in GB and memory savings of using a hierarchical
representation instead of a dense one.

N H2 memory Dense memory Memory ratio

16384 0.095 2 21
32768 0.204 8 39
65536 0.403 32 79
131072 0.846 128 151
262144 1.653 512 310
524288 3.471 2048 590
1048576 6.743 8192 1215
2097152 14.01 32768 2339

Fig. 6. Impact of the choice of the compression threshold on the memory footprint and maximum block rank of a fractional diffusion
hierarchical matrix of size 220.

by the algebraic compression can be seen by comparing the two low rank curves in Fig. 5(b). A factor of more
than 20× reduction in storage for the low rank blocks can be achieved on the larger problem sizes.

Table 1 also shows the total savings in memory of the hierarchical matrix (dense blocks plus low rank blocks)
computed to an overall accuracy of ϵ = 10−5 when compared with a full dense matrix representation. The linear
growth in memory footprint of the H2 hierarchical representation stands in sharp contrast to the quadratic growth
of the dense representation. This is, principally, why these hierarchical matrices have the potential for being the
basic computational engine of fractional diffusion simulations at scale.

Fig. 6(a) shows the effect of increasing the compression threshold ϵ on the low rank memory consumption. As
expected there is a weak, logarithmic, dependence of the memory footprint on the accuracy of the approximation,
and we observe a growth of about O(|log ϵ|2). This translates to an almost tenfold increase in low rank block storage
for an increase of 4 digits of accuracy from an initial 2 digits when compressing a matrix of size 220. The memory
footprint of the dense blocks is obviously not affected. Fig. 6(b) shows the maximum block rank for every level
of the hierarchy in the matrix. The corresponding increase in the maximum ranks of each level of the hierarchical
matrix for compression thresholds of 10−2, 10−4, and 10−6 also shows a weak logarithmic dependence on desired
approximation accuracy, of about O(|log ϵ|2).

Once the matrix has been compressed, we can efficiently perform the necessary matrix vector products on both
the CPU and the GPU. These experiments are performed on a 12-core workstation and a P100 NVIDIA Pascal
GPU, respectively. Though the GPU memory is limited to 16 GB, this does not pose any issues for problem sizes
up to about two million, due to the greatly reduced storage requirements of the compressed matrix. Fig. 7 shows
the performance of the hgemv operation averaged over 10 runs, clearly demonstrating the linear complexity of the
algorithm, and the high efficiency of the GPU in particular, which is able to perform the matvec operation in under
40 ms on a problem of size 2M.

Using the hierarchical matrix compression and matrix vector product operations, we construct an approximate
inverse and evaluate its effectiveness as a preconditioner for the conjugate gradient method. The inverse of a

12 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Fig. 7. Performance of the matrix–vector multiplication.

Fig. 8. Performance of the order 16 hyperpower iterative inversion.

regularized version of the discretized operator (Ã = A+σ I) is constructed and used. We use an order 16 hyperpower
iterative method to compute the approximate inverse as described in Section 3.5 and an approximation accuracy ϵ

for the constructed iterates.
Fig. 8(a) shows the convergence of the hyperpower iterates for a problem size of 216 for two values of the

regularization parameter σ =
(
10−3, 10−4

)
, where each iterate is constructed to a threshold of ϵ = 10−5. The

runtime per iteration depends heavily on the ranks of the iterates which tend to increase for the intermediate iterates.
For example, the first iteration completes in about 56 s, whereas the final iteration takes 763 s, taking about 1771 s
in total for the five iterations performed. Fig. 8(b) shows the maximum block ranks for each level of the hierarchy
for the approximate inverses reached after five iterations. There is a noticeable growth in the block ranks of the
approximate inverse compared to the ranks of the original matrix.

Employing the resulting matrices as preconditioners for the solution of the system Ax = b using a conjugate
gradient method, we obtain the iteration counts of Fig. 9. The right-hand side vector used in the figure is a vector
of all ones, b = 1, with the solution started at x0 = 0, although comparable results were obtained for values of b
randomly sampled from the uniform [0, 1] distribution. We note that the diagonal preconditioner cannot produce a
reliable solution, while the two approximate inverses obtained after five iterations of the iterative scheme (19)
are able to produce a solution robustly to high accuracy. Not unexpectedly, the approximate inverse with the
smaller regularization term is more effective than the one with the larger regularization term when it comes to
CG iteration count. In both cases, we note that a coarse approximation of the regularized inverse is sufficient for
robust convergence.

In order to assess the impact of finer spatial discretizations on the effectiveness of this preconditioner, we consider
a set of increasingly finer grids for a 1D problem with α = 1.5 in the spatial region [−10, 10], ranging from

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 13

Fig. 9. The convergence behavior of the preconditioned conjugate gradient method using a diagonal preconditioner and the two approximate
(regularized) inverse preconditioners.

Table 2
Number of CG iterations for increasingly finer discretizations, using two different preconditioners. Only mild growth in number
of iterations is experienced using the first one–an approximate inverse. The second preconditioner, using a pre-converged
Newton–Schulz iterate, is less robust.

Problem size 1K 2K 4K 8K 16K 32K 64K 128K

Preconditioner 1 3 3 3 4 5 7 10 11
Preconditioner 2 5 5 5 5 8 12 20 33

Nx = 1024 to Nx = 131072, corresponding to a mesh spacing ranging from about h = 2 × 10−2 to h = 2 × 10−4.
We construct the H2 discrete fractional operator A as above with an approximation accuracy of ϵ = 10−8 and
construct the approximate inverse of the regularized operator Ã = A + σ I with σ = 10−4 using an 8th order
hyperpower Newton–Schulz iteration cold-started with a scaled identity as X0. We first construct an inverse X k by
iterating until the 2-norm of (ÃX k

− I) is less than 10−2, which took about 8 high order NS iterations on the larger
problem sizes. Construction cost of the preconditioner grows log-linearly with problem size and takes less than 2s
per high-order NS iteration for the 128K problem on an NVIDIA P100 GPU. For contrast, we also constructed
a lower-quality preconditioner by simply iterating a fixed number of iterations in the pre-convergence regime of
NS (5 iterations on the larger problem sizes). Table 2 shows the number of CG iterations it took to converge to a
relative tolerance ∥Ax −b∥/∥b∥ of 10−9 starting from a zero-vector, using these two preconditioners. There is only
very mild growth in the number of CG iterations when using the first preconditioner. However, as expected, the
second preconditioner X5 experiences slightly larger growth in the resulting number of iterates with problem size,
as it has not yet converged to an inverse with reasonable accuracy. With fewer NS iterations, the preconditioner’s
efficacy will naturally deteriorate further. With a simple diagonal preconditioner, we get very little decrease in the
residual even after several hundred CG iterations.

5. Applications

In this section, we analyze the performance of the hierarchical solution algorithm in the context of two
applications. In the first application (Case 1), we focus on the solution of the fractional diffusion equation in
an unbounded 2D domain, and rely on the available analytical solution to test the approximation quality of the
computed solution. This enables us to assess the impact of approximating the full diffusion matrix by its hierarchical
counterpart, and also to analyze the computational gains achieved through this approximation. In the second
application (Case 2), we consider the solution of the forced fractional diffusion equation in a bounded domain,
and carry out the integration for a sufficiently long interval so as to effectively reach a steady-state solution. In this
second setting to explore the potential of applying the hierarchical matrix algorithms as means to obtain a (pseudo-
transient) solution of a fractional elliptic problem. We also compare the pseudo-transient solution to that obtained
by the conjugate gradient method, preconditioned by a hierarchical approximate inverse, for solving directly the
corresponding steady state fractional Poisson problem.

14 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Fig. 10. Fundamental solution at t f = 1.5 for α = 1.5. Also plotted are profiles obtained using the full diffusion matrix and its hierarchical
approximation; in both cases Nx = 161.

5.1. Case 1

In this section, we assess the performance of the hierarchical decomposition algorithm based on the transient
solution of the fractional diffusion equation (3) in R2. We use as initial condition the fundamental solution at
t0 = 0.5 and carry out the integration until a final time t f = 1.5. The availability of the analytical solution A and of
numerical solutions computed with direct particle–particle interactions [25] provide a suitable setup to assess both
performance, as well as errors associated with hierarchical approximation of the full diffusion matrix.

To provide a suitable spatial discretization throughout the period of integration, particles are distributed over a
uniform grid covering a square domain of side 2D, where

D = 4t1/α

f Rα, (20)

and Rα is the characteristic length defined in (A.4). The grid size (inter-particle distance) is h = 2D/(Nx − 1),
where Nx is the number of points in the x and y directions.

5.1.1. Accuracy
Fig. 10 contrasts the analytical and numerical solutions at t f = 1.5 for the case α = 1.5. The numerical solutions

are obtained using the full diffusion matrix with Nx = 161 and ς = 2h, and its hierarchical approximation. A good
agreement with the exact solution is observed, though small but noticeable errors are observed near the boundaries of
the truncated domain. As discussed in [25] the observed discrepancies are dominated by domain truncation effects.
Fig. 10 also shows that solutions obtained using the full and hierarchical diffusion matrices are in close agreement
throughout the domain. This suggests that the hierarchical matrix representation does not appreciably affect the
quality of the computed solution.

To further quantify prediction accuracy, as in [25] we estimate the l1 error defined according:

εDε =

∑
i∈Iϵ

Vi |ui (t f) − Gα(xi , t f)|∫
Dε

Gα(x, t f) dV (x)
, (21)

where Dε denotes the subregion [−5, 5] × [−5, 5]. Fig. 11 shows estimates of εDε for different orders (α = 1.1,
1.5, and 1.9) and grid resolutions (Nx = 41, 81, 161, 321, and 641). In all cases, the regularization parameter
ς = 2h. The results indicate that the hierarchical approximation of the diffusion matrix has insignificant impact
on the computed errors. In particular, the error in the case of the hierarchical algorithm also exhibits second-order
behavior. Note that as h decreases, estimates of εDε tend to level off. As discussed in [25] this phenomenon occurs
as discretization errors drop and approach domain truncation errors.

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 15

Fig. 11. L1-error εDε for different values of α and h, as indicated. Plotted are results obtained using the full diffusion matrix (circles) and
its hierarchical approximation (squares).

Table 3
Computational cost and memory requirements of the full-matrix and the hierarchical-matrix computations. All
the simulations were conducted on the same workstation, comprising 28 physical cores (56 in hyperthreading)
on Intel CPU’s, and 127 GB of RAM. The codes were designed to run in shared memory parallelism, and
compiled using the same compiler.

Nx DD Hierarchical DD

α = 1.1 α = 1.5 α = 1.9

Time to form the matrix (s)

41 1 17 18 18
81 1 17 18 18
161 4 24 25 25
321 30 49 49 50
641 - 124 122 121

Time to integrate the system (s)

41 0.2 4 4 4.1
81 5.6 4.3 4 3.9
161 96 18 16 15
321 1700 76 70 66
641 - 606 569 560

Required workspace (GB)

41 0.021 0.014 0.014 0.013
81 0.32 0.074 0.072 0.066
161 5 0.341 0.329 0.297
321 79.1 1.457 1.406 1.26
641 - 6.041 5.82 5.205

5.1.2. Performance
The performance gains achieved by the hierarchical algorithm are assessed in terms of the wall time required

to construct the hierarchical matrix representation, the time required to integrate the governing equation, and the
memory requirements. Note that the wall time is affected by other system loads, and so its measurement may not
provide a precise estimate of the required CPU time. Nonetheless, it still provides a systematic means of comparing
and scaling the performance of the full and hierarchical matrix computations.

Table 3 reports computational times and workspace requirement estimates for full and hierarchical matrix
computations. Provided are results obtained for different values of Nx and α. It is clear when the system size
is small (Nx = 41 and 81), application of the hierarchical representation algorithm is not attractive. This is the case
because of the overheads incurred in forming the hierarchical representation, which in this parameter range dominate
the relatively small gains achieved during the integration. However, as the system size increases, Nx ≥ 161, the

16 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

advantages of the hierarchical algorithms become substantial. Specifically, despite the effort required to form the
hierarchical matrix, the hierarchical algorithm results in net savings. The overall savings are about a factor of 2
at Nx = 161; they amount to a factor of 14 approximately for Nx = 321. Note that for Nx = 641, we are no
longer able to form the full diffusion matrix, as storage of the full matrix would require an estimated 1250 GB of
RAM. In contrast, the workspace required by the hierarchical algorithm remains at a reasonable level, as it is seen
to grow linearly with system size (N 2

x). The efficiency gains can also be appreciated by noting that the hierarchical
simulation at Nx = 641 required a fraction of the time needed to perform the full matrix simulation at the coarser
resolution level (Nx = 321). In light of the present experiences, the hierarchical representation can be viewed as an
enabling feature for extending the present fractional diffusion algorithms to large systems in multiple dimensions.

5.2. Case 2

In this section, we apply the hierarchical matrix representation to compute the evolution solution of forced,
fractional diffusion equation:

∂u
∂t

= ∆αu − q(x), (22)

in the square domain D = (−D, D) × (−D, D), with initial condition u(x, 0) = 0, and boundary condition
u(x, t) = 0 for x /∈ D. Here q(x) is a given steady source term.

We also use a conjugate gradient method, preconditioned by an approximate hierarchical inverse, to solve directly
the fractional elliptic problem:

∆αu = q(x). (23)

5.2.1. Transient solution
We first carry out the simulations to approximate the steady solution of (22), and thus apply the present setting

as a pseudo-transient approach to simulate the solution of (23).
We rely on a uniform particle grid with size h = 2D/(Nx − 1). We set D = 4, and q to be a Gaussian pulse

with zero mean and unit variance.
Let U be the vector of particle strengths, and let q denote the corresponding source term vector. Applying a

first-order explicit time discretization of (22) leads to the following evolution equation for the particle strengths

Us+1
− Us

∆t
= AUs

− q, (24)

where the superscript denotes the time level.
We consider three values of the fractional order, namely α = 1.1, 1.5, and 1.9, and carry out the computations

up to t f = 64. For all considered values α, this final time is sufficiently large for the solution to become essentially
steady. To verify that this is the case, we estimate the relative change in time of the solution at the origin

δus+1
=

us+1(x = 0, y = 0)
us(x = 0, y = 0)

− 1. (25)

Results are plotted in Fig. 12. At early times, the evolution of the solution near the origin is dominated by the
source term, and so the curves for different α are almost identical. When the diffusion becomes significant, the
evolution exhibits substantial dependence of α. As we approach t f , in all cases the relative change becomes very
small, showing that the solution can be considered as essentially steady.

Fig. 13 illustrates the computed solutions at the final for all considered values of α. The simulations are conducted
using a grid with Nx = 161, i.e. with N = 25,921 particles. The time integration uses a step size ∆t = 2.5 · 10−3,
selected within the stability range of the explicit integration scheme [25]. Despite the large number of integration
steps (25,600), implementation of the hierarchical scheme enables us to estimate the steady solution efficiently.
Examination of the results (not shown) indicates that in all cases the solution remains radially symmetric, as
expected. Consequently, the depicted axial profiles provide a full characterization of the predictions. In all cases, a
smooth solution is obtained, with a peak at x = 0.

To examine the dependence of the computed solution on the resolution, we repeat the same experiment for a
higher number of grid points, Nx = 321 and 641. For brevity, we only report in Fig. 14 results obtained for α = 1.5.

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 17

Fig. 12. Relative variation in time of the solution at x = 0 and different values of α as indicated. The simulations are performed using
Nx = 161 and ∆t = 2.5 · 10−3.

Fig. 13. Profile of the computed solution at t = 64 along y = 0. Plotted are curves generated for different values of α, as indicated.

Fig. 14. Profile of the computed solution at t = 64 along y = 0. Plotted are curves generated α = 1.5, and different values of Nx , as
indicated.

The plot indicates that for all values of Nx , the solutions are nearly identical over most of the computational domain,
whereas small differences are discernible near the boundaries. Note that the boundary condition is not exactly
satisfied, which is in fact anticipated because a simplified treatment of boundary condition is adopted, specifically
based on setting to zero the strength of particles falling outside the domain. Because a smoothing function is used,
the boundary condition is not exactly achieved. However, as the discretization is refined, the predictions at the
boundary are seen to drop towards zero. The rate of convergence of the solution is estimated to be approximately 1.
Thus, in the present case, though it is evidently accurate in the interior, the scheme is effectively behaving as first

18 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Table 4
Cost of A and its approximate inverse, and CG iterations, for different values of α.

α Ad mem Alr mem Approx inverse Inversion time CG iterations
(GB) (GB) LR mem (GB) (s)

1.1 0.173 0.078 0.181 529.4 60
1.5 0.173 0.071 0.134 478.2 39
1.9 0.173 0.052 0.149 421.3 26

order. This is also expected because in a bounded domain, solutions of the fractional elliptic equations are generally
not smooth at the boundary (e.g. [59–62]). Evidently, the loss of regularity at the boundary does not impact the
performance of the algorithm in the present pseudo-transient approach. As reflected in the results below, this is also
the case for the inverse approach.

5.2.2. Steady state solution
Finally, we consider the behavior of a CG method for solving the steady state equations (23) for the same

fractional order values α = 1.1, 1.5, and 1.9, Nx = 161, and the same problem parameters D and q used above.
The hierarchical discrete operator A is generated to an accuracy of 10−6 for all values of α as above. We construct
an approximate inverse preconditioner (A+σ I)−1 with σ = 10−4 by using five iterations of an order 16 hyperpower
iterative inversion method. The final iterate is compressed to an accuracy of ϵ = 10−5 for the cases of α = 1.1 and
1.3, but required a tighter accuracy of ϵ = 10−6 for the α = 1.9 case to be an effective preconditioner. The CG
solution was computed to a relative accuracy ∥AU − q∥/∥q∥ of 10−10 using these preconditioners.

Table 4 shows in columns 2–4 the memory footprint of the dense and low rank blocks of the forward operator
A and of its approximate inverse used as preconditioner. The fifth column shows the time needed to generate the
preconditioner on the P100 Pascal GPU. The final column of the table shows the number of CG iterations for
convergence with the Gaussian pulse input used above, starting from an initial all-zeros guess. Except for using
a compression accuracy of 10−6 for α = 1.9 and a looser accuracy of 10−5 for α = 1.1, 1.5, the hierarchical
preconditioners are all quite robust across the range of the order of the fractional operator. We note that increasing
α leads to slightly lower inversion time primarily due to slightly lower ranks in the matrix and its inverse.

The approximate inverse requires more memory than the forward operator, as the ranks of the low rank blocks
increase, however the overall savings remain substantial across the values of α. Whereas a fully dense representation
of the operator or its dense inverse would require 5GB, the hierarchical inverse is quite compressible with a 12–15×

reduction in overall memory use even for this relatively small problem with N = 25,921. We also note that the
solution time, once the preconditioner is built, is always a fraction of a second on the GPU.

6. Conclusions

Fractional diffusion operators, generalizing the venerable Laplacian operator, have received substantial interest in
recent years because of their usefulness in modeling a variety of problems in application domains such as financial
option pricing, image processing, anomalous diffusion, and many others. However, the non local nature of fractional
diffusion equations produces discretizations that generally involve dense matrices. As simulations scale up in size,
the computational costs, both in memory and processing time, go up super-linearly and the resulting computations
become far too expensive to be feasible even on high performance machines.

In this work, we presented hierarchical matrix representations and algorithms, specifically H2 representations, that
can effectively handle discretizations of fractional diffusion operators. H2 matrices reduce the computational cost of
storing these operators to an asymptotically optimal O(N), with a constant that depends on the ranks of the matrix
blocks and directly controlled by the desired accuracy of the approximation. Matrix–vector multiplication operations,
the core of time-evolution simulations, can be also be performed in asymptotically linear time O(N). The validity of
the hierarchical representations and algorithms was tested in the context of 2D space-fractional diffusion equations
with constant diffusivity. The latter were discretized using smooth particle approximations using fixed uniform grids,
which led to dense discrete operators involving explicit radial kernels. The numerical applications first focused on
the simulation of the fundamental solution of the unforced space fractional in an unbounded domain. Using the
analytical solution of the problem, the tests showed that, for the entire range of parameters and fractional orders

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 19

considered, results obtained using the hierarchical approximations were in close agreement with results obtained
using dense operators, and exhibited the same spatial order of convergence. The implementations also considered
simulation of the steady, forced, space-fractional diffusion equation in compact domain with Dirichlet boundary
conditions. This setup was specifically used to demonstrate the possibility of practically constructing a hierarchical
inverse of the system matrix via iterative methods. In particular, we showed that few iterations of a high order
Newton–Schulz method can produce high quality and robust preconditioners for various values of the fractional
order α. The validity of the resulting approximations was analyzed using the original dense operators, as well
as solutions obtained using a pseudo-transient approaches relying on either dense operators or their hierarchical
representations.

An important feature of the algorithms is that they are also amenable to efficient implementation on GPUs. Our
experiments show that the construction of the fractional diffusion matrix, the matrix–vector multiplication, and the
generation of an approximate inverse preconditioner all perform very well on two-dimensional problems of size in
the 105–106 range with a single GPU. The generation of the matrix and its approximate inverse can be done in
minutes, and the core matrix–vector multiplication can be done in milliseconds, to useful accuracy, on problems of
this size. We expect that a multiGPU version of these algorithms will scale near linearly to larger sizes. Overall,
the H2 matrix framework promises to provide the practical ability to handle multidimensional large scale fractional
diffusion simulations at a computational cost that is asymptotically similar to the cost of handling classical diffusion
equations. In future work, we plan to take advantage of various integral approximations of the fractional diffusion
flux and source term, which provide a natural framework for accommodating generalized boundary conditions. In
particular, we plan to capitalize on strength exchange type approximations [25], which appear to be ideally suited
to address generalized Neumann type conditions. Because they involve smooth positive kernels, having similar
asymptotic properties as those explored in the present work, one would expect that the H2 matrix framework would
also prove effective in such settings. Finally, we also plan to explore extensions of this framework to large-scale
3D problems, and to models involving variable coefficients and/or variable order fractional operators.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgment

Research reported in this publication was supported by research funding from King Abdullah University of
Science and Technology (KAUST).

Appendix A. The fundamental solution

The fundamental solution of the fractional diffusion equation in Rd can be expressed in integral form as [31]:

Gα(x, t) =
1

td/α
Φd,α

(
1

t1/α
x
)

(A.1)

where the (dimensionless) shape function Φd,α is given by:

Φd,α (r) =
1

(2π)d

∫
Rd

e−|w|
α
−ir·w dV (w). (A.2)

It can be verified that as α → 2, Gα becomes the fundamental solution of the Fickian diffusion equation [31].
In this work we relied on the two-dimensional fundamental solution, containing the function [31]

Φ2,α (r) =
1

2π

∫
∞

0
ωe−ωα

J0 (rω) dω, (A.3)

where J0(x) is the Bessel function of the first kind [45].
A characteristic length Rα can be obtained as first moment of Φ1,α:

Rα ≡

∫
∞

−∞

|x |Φ1,α(x)dx∫
∞

−∞

Φ1,α(x)dx
. (A.4)

20 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

Fig. A.15. Φ1,1.5(r), given by Eq. (A.5) (solid lines) and by Eq. (A.6) (symbols), represented with K and A terms respectively. Note that
Rα rapidly decays with increasing α.

The function Φ1,α is an even, bell-shaped function, having the series representation [63]:

Φ1,α(x) =
1

xπ

∞∑
m=1

(−x)m Γ (1 + m/α)
m!

sin
[
−mπ

2

]
. (A.5)

For x → +∞, it admits the following asymptotic expansion [63]:

Φ1,α(x) ∼
−1
xπ

∞∑
m=1

(−x−α)m Γ (1 + αm)
m!

sin
[
αm

π

2

]
. (A.6)

Φ1,1.5 is illustrated in Fig. A.15, showing the convergence of Eq. (A.5) and (A.6) with respect to the number of
terms in the series.

In our simulations, we used the values R1.1 = 6.688, R1.5 = 1.705, R1.9 = 1.19.

Appendix B. Derivation of the direct differentiation method

In this appendix, we provide a brief outline of the construction of the DD method, as originally proposed in [25].
We aim to solve the fractional diffusion equation (3), which features the fractional Laplacian (4). The Fourier
transform of the fractional Laplacian is:

F
[
∆α

]
= −|2π f |

α. (B.1)

where f is the frequency. Using the basic properties of the Fourier transform, the fractional Laplacian of uς (5) is:

F[∆αuς] = −|2π f |
αF[ης]F[u], (B.2)

where F[ης] denotes the Fourier transform of the regularization kernel. For the second-order exponential kernel
in (6), the Fourier transform is:

F

⎡⎣exp
(
−

x2

ς2

)
ςdπ

d
2

⎤⎦ = exp
(
−π2ς2 f 2) . (B.3)

One readily observes that the fractional Laplacian of uς can be expressed as

∆αuς = ς−αu ∗ Gς (x), (B.4)

where Gς (x) is a function defined via its Fourier transform:

F[ς−αGς (x)] = −|2π f |
αF[ης]. (B.5)

W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191 21

Making use of the result∫
Rd

|y|
µ exp

(
−a|y|

2
+ ibx · y

)
dV (y) = π

d
2 a−

µ+d
2

Γ
(

µ+d
2

)
Γ

(d
2

) 1 F1

(
µ + d

2
,

d
2
, −

b2

4a
|x|

2
)

, (B.6)

we obtain the kernel Gς given in (8). The discrete evolution equation (7) is obtained by applying the midpoint rule
to (B.4). The same result is obtained if one differentiates term by term the particle approximation of uς in (5).

References
[1] Q. Du, Nonlocal Modeling, Analysis, and Computation, SIAM, 2019.
[2] J. Klafter, I.M. Sokolov, Anomalous diffusion spreads its wings, Phys. World 18 (8) (2005) 29.
[3] P. Gatto, J.S. Hesthaven, Numerical approximation of the fractional laplacian via hp-finite elements, with an application to image

denoising, J. Sci. Comput. 65 (1) (2015) 249–270.
[4] S.G. Kou, A jump-diffusion model for option pricing, Manage. Sci. 48 (8) (2002) 1086–1101.
[5] C. Li, M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives, SIAM, 2020.
[6] M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (1) (2017) 7–51.
[7] V.E. Lynch, B.A. Carreras, D. del Castillo-Negrete, K. Ferreira-Mejias, H. Hicks, Numerical methods for the solution of partial

differential equations of fractional order, J. Comput. Phys. 192 (2) (2003) 406–421.
[8] C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation,

J. Comput. Phys. 213 (1) (2006) 205–213.
[9] H. Zhang, F. Liu, V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl.

Math. Comput. 217 (6) (2010) 2534–2545.
[10] X. Li, C. Xu, Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method

approximation, Commun. Comput. Phys. 8 (5) (2010) 1016.
[11] K. Mustapha, An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite

elements, IMA J. Numer. Anal. 31 (2) (2010) 719–739.
[12] C. Çelik, M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput.

Phys. 231 (4) (2012) 1743–1750.
[13] K. Mustapha, W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM

J. Numer. Anal. 51 (1) (2013) 491–515.
[14] W. Deng, J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM Math. Model. Numer.Anal.

47 (6) (2013) 1845–1864.
[15] K. Mustapha, B. Abdallah, K. Furati, A discontinuous Petrov–Galerkin method for time-fractional diffusion equations, SIAM J. Numer.

Anal. 52 (5) (2014) 2512–2529.
[16] H. Zhou, W. Tian, W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comp. 56 (1)

(2013) 45–66.
[17] K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems, Numer. Math. 130 (3) (2015) 497–516.
[18] Y. Liu, Y. Yan, M. Khan, Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations,

Appl. Numer. Math. 115 (2017) 200–213.
[19] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space–time fractional diffusion, Chem.

Phys. 284 (1) (2002) 521–541.
[20] R. Gorenflo, A. Vivoli, F. Mainardi, Discrete and continuous random walk models for space–time fractional diffusion, Nonlinear Dynam.

38 (1) (2004) 101–116.
[21] R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons

Fractals 34 (1) (2007) 87–103.
[22] H. Zhang, F. Liu, V. Anh, Numerical approximation of Lévy–Feller diffusion equation and its probability interpretation, J. Comput.

Appl. Math. 206 (2) (2007) 1098–1115.
[23] L. Shi, Z. Yu, Z. Mao, A. Xiao, H. Huang, Space–time fractional diffusion equations and asymptotic behaviors of a coupled continuous

time random walk model, Physica A 392 (23) (2013) 5801–5807.
[24] Y. Luchko, A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis, Math. Model. Nat. Phenom.

11 (3) (2016) 1–17.
[25] M. Lucchesi, S. Allouch, O. Le Maître, K. Mustapha, O. Knio, Particle simulation of space-fractional diffusion equations, Comput.

Part. Mech. 7 (2020) 491–507.
[26] V. Minden, L. Ying, A simple solver for the fractional Laplacian in multiple dimensions, 2018, arXiv:1802.03770.
[27] X. Zhao, X. Hu, W. Cai, G.E. Karniadakis, Adaptive finite element method for fractional differential equations using hierarchical

matrices, Comput. Methods Appl. Mech. Engrg. 325 (2017) 56–76.
[28] M. Karkulik, J.M. Melenk, H-matrix approximability of inverses of discretizations of the fractional Laplacian, Adv. Comput. Math.

46 (2019).
[29] K. Xu, E. Darve, Efficient numerical method for models driven by Lévy process via hierarchical matrices, 2018, arXiv:1812.08324.
[30] D. Keyes, H. Ltaief, G. Turkiyyah, Hierarchical algorithms on hierarchical architectures, Philos. Trans. R. Soc. A 378 (2019) 201900,

http://dx.doi.org/10.1098/rsta.2019.0055.

http://refhub.elsevier.com/S0045-7825(20)30376-5/sb1
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb2
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb3
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb3
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb3
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb4
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb5
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb6
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb7
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb7
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb7
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb8
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb8
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb8
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb9
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb9
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb9
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb10
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb10
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb10
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb11
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb11
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb11
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb12
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb12
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb12
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb13
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb13
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb13
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb14
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb14
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb14
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb15
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb15
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb15
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb16
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb16
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb16
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb17
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb18
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb18
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb18
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb19
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb19
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb19
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb20
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb20
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb20
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb21
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb21
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb21
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb22
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb22
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb22
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb23
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb23
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb23
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb24
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb24
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb24
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb25
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb25
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb25
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://arxiv.org/abs/1802.03770
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb27
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb27
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb27
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb28
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb28
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb28
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://arxiv.org/abs/1812.08324
http://dx.doi.org/10.1098/rsta.2019.0055

22 W. Boukaram, M. Lucchesi, G. Turkiyyah et al. / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113191

[31] C. Pozrikidis, The Fractional Laplacian, Chapman and Hall/CRC, 2016.
[32] A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (4) (1973) 785–796.
[33] A. Leonard, Vortex methods for flow simulation, J. Comput. Phys. 37 (3) (1980) 289–335.
[34] A. Leonard, Computing three-dimensional incompressible flows with vortex elements, Annu. Rev. Fluid Mech. 17 (1) (1985) 523–559.
[35] G.-H. Cottet, P.D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, 2000.
[36] D. Fishelov, A new vortex scheme for viscous flows, J. Comput. Phys. 86 (1) (1990) 211–224.
[37] J.T. Beale, A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys. 58 (2) (1985) 188–208.
[38] J.D. Eldredge, A. Leonard, T. Colonius, A general deterministic treatment of derivatives in particle methods, J. Comput. Phys. 180 (2)

(2002) 686–709.
[39] P. Degond, S. Mas-Gallic, The weighted particle method for convection–diffusion equations. I. The case of an isotropic viscosity, Math.

Comp. 53 (188) (1989) 485–507.
[40] P.-A. Raviart, An analysis of particle methods, in: Numerical Methods in Fluid Dynamics, Springer, 1985, pp. 243–324..
[41] P. Degond, F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput. 11 (2)

(1990) 293–310.
[42] O.M. Knio, A.F. Ghoniem, Vortex simulation of a three-dimensional reacting shear layer with infinite-rate kinetics, AIAA J. 30 (1)

(1992) 105–116.
[43] J. Choquin, S. Huberson, Particles simulation of viscous flow, Comput. Fluid 17 (2) (1989) 397–410.
[44] P. Mycek, G. Pinon, G. Germain, E. Rivoalen, Formulation and analysis of a diffusion-velocity particle model for transport-dispersion

equations, Comput. Appl. Math. 35 (2) (2016) 447–473.
[45] K.B. Oldham, J. Myland, J. Spanier, An Atlas of Functions: With Equator, the Atlas Function Calculator, Springer Science & Business

Media, 2010.
[46] J.W. Pearson, Computation of Hypergeometric Functions (Ph.D. thesis), University of Oxford, 2009.
[47] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer, 2015.
[48] W. Boukaram, G. Turkiyyah, D. Keyes, Hierarchical matrix operations on GPUs: Matrix–vector multiplication and compression, ACM

Trans. Math. Software 45 (1) (2019) 3:1–3:28.
[49] S. Börm, L. Grasedyck, Hybrid cross approximation of integral operators, Numer. Math. 101 (2) (2005) 221–249.
[50] M. Bebendorf, S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing 70 (1) (2003) 1–24.
[51] D. Cai, E. Chow, L. Erlandson, Y. Saad, Y. Xi, Smash: Structured matrix approximation by separation and hierarchy, Numer. Linear

Algebra Appl. 25 (6) (2018) e2204.
[52] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the laplace equation in three dimensions, Acta Numer. 6

(1997) 229–269.
[53] S. Börm, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algorithms and Analysis, vol. 14, European

Mathematical Society, 2010.
[54] W. Boukaram, G. Turkiyyah, D. Keyes, Randomized GPU algorithms for the construction of hierarchical matrices from matrix–vector

operations, SIAM J. Sci. Comput. 41 (4) (2019) C339–C366.
[55] N. Halko, P. Martinsson, J.A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions, SIAM Rev. 53 (2) (2011) 217–288.
[56] R. Kriemann, S.L. Borne, H-FAINV: hierarchically factored approximate inverse preconditioners, Comput. Vis. Sci. 17 (3) (2015)

135–150.
[57] G. Chavez, G.M. Turkiyyah, S. Zampini, D.E. Keyes, Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic

pdes with variable coefficients, J. Comput. Appl. Math. 344 (2018) 760–781.
[58] V. Pan, F. Soleymani, L. Zhao, An efficient computation of generalized inverse of a matrix, Appl. Math. Comput. 316 (2018) 89–101.
[59] W. McLean, K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math. 105 (2007)

481–510.
[60] K. Mustapha, An implicit finite difference time-stepping method for a sub-diffusion equation with spatial discretization by finite

elements, IMA J. Numer. Anal. 31 (2011) 719–739.
[61] R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found.

Comput. Math. 15 (2015) 733–791, http://dx.doi.org/10.1007/s10208-014-9208-x.
[62] V.J. Ervin, N. Heuer, J.P. Roop, Regularity of the solution to 1-d fractional order diffusion equations, Math. Comp. 87 (2018) 2273–2294,

http://dx.doi.org/10.1090/mcom/3295.
[63] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space–time fractional diffusion equation, Fract. Calc. Appl. Anal.

4 (2001) 153–192.

http://refhub.elsevier.com/S0045-7825(20)30376-5/sb31
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb32
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb33
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb34
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb35
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb36
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb37
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb38
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb38
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb38
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb39
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb39
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb39
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb40
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb41
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb41
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb41
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb42
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb42
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb42
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb43
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb44
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb44
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb44
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb45
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb45
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb45
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb46
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb47
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb48
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb48
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb48
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb49
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb50
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb51
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb51
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb51
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb52
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb52
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb52
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb53
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb53
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb53
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb54
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb54
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb54
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb55
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb55
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb55
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb56
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb56
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb56
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb57
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb57
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb57
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb58
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb59
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb59
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb59
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb60
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb60
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb60
http://dx.doi.org/10.1007/s10208-014-9208-x
http://dx.doi.org/10.1090/mcom/3295
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb63
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb63
http://refhub.elsevier.com/S0045-7825(20)30376-5/sb63

	Hierarchical matrix approximations for space-fractional diffusion equations
	Introduction
	The fractional diffusion equation and its particle approximation
	The fractional Laplacian
	Particle approximation

	Hierarchical matrix methods for particle discretizations of FDE
	Representation
	Interpolatory construction
	Algebraic compression
	Matrix–vector multiplication
	General linear algebra operations on hierarchical matrices

	Performance of hierarchical matrix operations
	Applications
	Case 1
	Accuracy
	Performance

	Case 2
	Transient solution
	Steady state solution

	Conclusions
	Declaration of competing interest
	Acknowledgment
	Appendix A. The fundamental solution
	Appendix B. Derivation of the Direct Differentiation method
	References

