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Abstract

Dynamical analysis tools are well established for deterministic models. How-

ever, for many biochemical phenomena in cells the molecule count is low, leading

to stochastic behavior that causes deterministic macroscale reaction models to fail.

The main mathematical framework representing these phenomena is based on jump

Markov processes that model the underlying stochastic reaction network. Conven-

tional dynamical analysis tools do not readily generalize to the stochastic setting

due to non-differentiability and absence of explicit state evolution equations. We

developed a reduced order methodology for dynamical analysis that relies on the

Karhunen-Loève decomposition and polynomial chaos expansions. The methodol-

ogy relies on adaptive data partitioning to obtain an accurate representation of the

stochastic process, especially in the case of multimodal behavior. As a result, a mix-

ture model is obtained that represents the reduced order dynamics of the system.

The Schlögl model is used as a prototype bistable process that exhibits time-scale

separation and leads to multimodality in the reduced order model.

1 Introduction

The simplest description of chemical reaction processes is based on rate equations, i.e. or-

dinary differential equations (ODEs) for species concentrations. This macroscopic setting
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fails when the relevant volume or the species numbers are small because of the increased

significance of stochastic noise due to random molecular collisions [23, 45]. Stochastic

reaction networks (SRNs) account for intrinsic stochastic noise, and provide a general

framework for chemical reaction models at the microscopic, molecular level. SRNs are

generally governed by the Chemical Master Equation [20] (CME), which is a differen-

tial equation governing the time evolution of the Probability Density Function (PDF) of

species numbers. The chemical master equation is obtained by modeling a SRN as a jump

Markov process [19, 47], i.e. discrete-state, continuous-time stochastic processes with no

memory. Since computing direct numerical solutions for CMEs is still challenging (for re-

cent efforts, see [32,33,35] and references therein), simulation-based methods become the

main analytical tools. In particular, Gillespie’s Stochastic Simulation Algorithm [17, 18]

(SSA) provides a simulation mechanism for the time-evolution of species numbers at the

microscopic scale, thereby effectively sampling the CME solution. This allows determining

useful statistical properties of the system by averaging without solving the CME itself.

There are well-developed tools [46] for dynamical analysis of features of deterministic

systems such as, for instance, attractors, limit-cycles, chaotic behavior, lower-dimensional

manifolds. A priori analysis methods of stochastic systems have also been extensively dis-

cussed [2, 44]. However, such approaches for jump Markov processes are still very much

underdeveloped [5], mainly due to the absence of explicit governing state evolution equa-

tions. Also, derivative-based characteristics of the system, such as jacobians, eigenmodes

and sensitivity coefficients, do not readily generalize to the stochastic context because of

the non-differentiability of the time series.

In this paper, we rely on Karhunen-Loève (KL) expansions [15, 25, 31] that represent

the underlying stochastic processes in terms of orthonormal random variables, truncated

to a reduced order model. This low-order representation is constructed based on the

observed statistics of the stochastic process over a given period of time. The larger the

number of retained expansion terms, the smaller the energy in the neglected fluctuations
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is. With a truncated KL expansion, each realization of a stochastic process corresponds

to a finite number of random variables. Note that these random variables are in general

uncorrelated, but not independent. Further, they have general, non-standard distributions

determined by the data. As a result, it is desirable to represent these random variables

with polynomial chaos (PC) expansions. Polynomial chaos representations of random

variables enable computationally efficient estimation of system properties. First defined

by Wiener [49], PC expansions found applications in porous media transport, thermo-

fluid systems, solid mechanics, chemical systems [11–13,27, 30, 36, 37], and in the general

stochastic finite elements context [14, 15].

A distinct feature that sets SRNs apart from the above-mentioned applications is the

presence of intrinsic noise due to randomness of reaction processes. In order to apply

standard orthogonal projection methods to obtain the PC coefficients, one needs to form

a one-to-one correspondence between the underlying stochastic sample space and a space

of standard random variables that serves as a domain for the PC expansion. In this work,

the Rosenblatt transformation [39], which maps any set of jointly distributed random

variables to the same number of independent uniform random variables, is implemented

to provide such a correspondence.

However, a global PC representation with a finite order and dimensionality does not

accurately capture random variables that exhibit strong multimodalities [40]. Adaptive

multi-wavelet [26, 28, 29] or PC [48] bases, both relying on stochastic domain decomposi-

tion, enable efficient analysis of such processes in the continuous deterministic setting. In

this work, we extend the methodology proposed in [40] to obtain an adaptive partitioning

that is data-driven, rather than domain-based, and thus is able to capture the structure

and modalities of intrinsic stochasticity exhibited by the data. We show that our data

partitioning algorithm, which involves a combination of clustering and data range de-

composition, leads to a mixture of PC expansions that properly represents multimodal

distributions by taking advantage of the underlying data structure.
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The paper is organized as follows. In Section 2, the Karhunen-Loève decomposition is

introduced as a tool to obtain a reduced order model of a stochastic process. The same

section also presents a prototype bistable model - the Schlögl model - as a benchmark

process to test the algorithmic developments of this work. Then, Section 3 introduces PC

expansions, and provides details of obtaining PC coefficients via an approximate inverse

Rosenblatt transformation. Next, the case for decomposition methods is advocated due

to the failure of finite global expansions for multimodal distributions. Data partitioning

schemes are proposed and discussed in Section 4, where we develop a new hybrid algorithm

that involves data clustering and data range bisection. Numerical tests are presented in

Section 5 for both a test sample set and one obtained from the KL projection of the

Schlögl model. Finally, Section 6 summarizes the results and outlines ongoing and future

work.

2 Reduced Order Modeling via Karhunen-Loève De-

composition

In order to simplify the dynamical analysis of a stochastic process, the Karhunen-Loève

spectral decomposition is applied. This leads to a reduced order model, which recognizes

the temporal scales present in the time series data of the process and effectively reduces

the time-dependent process to a countable (in practice, finite) set of uncorrelated random

variables.

2.1 Karhunen-Loève Decomposition

Assume a stochastic process X(t, θ) is defined on a sample space Θ up to time T < +∞,

i.e. θ ∈ Θ and t ∈ [0, T ]. Denote the mean of this process over sample realizations by

X̄(t) = 〈X(t, θ)〉, where the angle brackets denote the average over samples. Separating
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the mean, one can write

X(t, θ) = X̄(t) +X0(t, θ), (1)

where X0(t, θ) is a centered stochastic process, i.e. its mean vanishes for all t ∈ [0, T ].

The covariance function C(t1, t2) = 〈X0(t1, θ)X0(t2, θ)〉 of a centered stochastic process

is symmetric, bounded and positive definite. Hence, it can be expanded as a sum [15]

C(t1, t2) =

∞∑

n=1

λnfn(t1)fn(t2) (2)

with respect to its complete, orthonormal set of eigenfunctions fn(t) and real positive

eigenvalues λn (in a descending order) that are defined as solutions of the integral equation

∫ T

0

C(t1, t2)fn(t1)dt1 = λnfn(t2). (3)

The underlying stochastic process X(t, θ) then admits the KL decomposition [25, 31]

X(t, θ) = X̄(t) +

∞∑

n=1

ξn(θ)
√

λnfn(t) (4)

in terms of the eigenfunctions fn(t) and random variables ξn(θ) : Θ → R, which satisfy

the orthonormality conditions

〈ξn(θ)〉 = 0 and 〈ξn(θ)ξm(θ)〉 = δnm. (5)

Using the orthonormality of the eigenfunctions, one can recover these uncorrelated - but

not independent - random coefficients ξn(θ) by projection of the sample trajectories onto

the eigenfunction basis:

ξn(θ) =
1√
λn

∫ T

0

X0(t, θ)fn(t)dt. (6)

In practice, the sum in Eq. (4) is truncated, leading to a finite KL decomposition

in terms of L zero-mean, uncorrelated random variables {ξi}L
i=1. Hitherto in this paper,
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the argument θ as an element of the sample space is dropped for convenience. The finite

KL decomposition essentially reduces the time dependence in the stochastic process to a

finite number of generally dependent random variables. More time scales are taken into

account as more terms in the decomposition are considered.

2.2 Numerical Tests for a Deterministically Bistable Process

As a benchmark process with a wide time scale separation, the Schlögl model [19, 41] is

used. It is a reaction network involving three species X, A and B and two reversible

reactions:

A+ 2X
a1
−→
←−

a2

3X,

B
a3
−→
←−

a4

X.
(7)

The species A and B are assumed to be in large excess compared to X: their numbers

will be held fixed. The propensity functions ai for the reactions are:

a1 = k1AX(X − 1)/2,

a2 = k2X(X − 1)(X − 2)/6,

a3 = k3B,

a4 = k4X.

(8)

Note that, for simplicity, we denote by A, B and X the number of molecules as well

as their names. Table 1 presents the nominal parameter set, with inverse-time units for

the rates.

Table 1: Nominal parameter set for the Schlögl model
Parameter Value
k1A 0.03
k2 0.0001
k3B 200
k4 3.5
A 105

B 2 · 105

X(0) 250
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The corresponding rate equation for the concentration of X, i.e., the large volume

continuum limit, has three stationary points: two stable equilibria and an unstable one

in between. As for the discrete state system (7), some realizations fluctuate near the first

basin of attraction, and the rest fluctuate near the other one. The nominal parameter

values from Table 1 are chosen to lead to a system that behaves in such a way, with

approximately equal proportions of realizations ending up near each of the metastable

states, see Figure 1.
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Figure 1: Hundred sample realizations of the Schlögl model with the nominal parameter
set of Table 1.

For the Schlögl model, the covariance was discretized with 200 time steps and com-

puted based on 10000 SSA realizations. The KL eigenvalues and corresponding eigenfunc-

tions (called KL modes) for this covariance are plotted in Figure 2. All KL modes, except

the first one, fluctuate around zero with decreasing amplitudes. The first KL mode seems

to saturate to a constant value for this particular time window [0, 20]. However, if one

extends the time horizon to include values of switching times between the two basins, the

first KL mode would also show an oscillatory behavior. Equivalently, if the gap between

the first two eigenvalues is smaller (i.e., there is a smaller separation between the two

basins of attractions), the switching time would decrease, leading to faster oscillations in

revised draft sent to SIAM SISC on 10/12/09 7



the first KL mode. The large gap between the first and second eigenvalues is explained by

the bistability. The first eigenvalue corresponds to the evolution of the system state from

the initial state to the vicinity of the upper or lower branches. The truncation in the KL

expansion essentially removes the higher-frequency, smaller-amplitude fluctuations. This

effect can be seen in the 1-term KL expansion, in Figure 3. It illustrates truncated KL

sums for L = 1, 2, 5, 10, 50, 100, while Figure 4 shows the corresponding SSA realizations,

together with the PDFs of X(tf) and its KL representations at a fixed time tf = 20.

Clearly, as L increases, the KL trajectories converge to those obtained by the SSA, and,

consequently, so do the corresponding PDFs.
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Figure 2: a) First ten KL eigenvalues. b) Rescaled eigenmodes for the Schlögl model with
the nominal parameter set of Table 1.

The bimodality of the SSA realizations in the Schlögl model lead to the bimodality of

the KL random variable ξ1. Since the first KL mode is much larger than the others (see

Figure 2) the sign of the random variable ξ1 determines whether the particular realization

follows the upper or the lower branch. Indeed, the first order KL expansion is X(t) ≈

X̄(t)+ ξ1
√
λ1f1(t). The first KL random variable ξ1 has a bimodal marginal distribution,

hence leading to bimodality in realizations. Next, Figure 5 shows a scatter plot of the

first two KL random variables ξ1 and ξ2. As can be seen, although the variables ξ1 and
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ξ2 are uncorrelated, there is a strong dependence between them. For example, the range

of values of ξ2 depends on the sign of ξ1. Consequently, it is important to take this

dependence into account in further representations of these variables.
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Figure 3: The truncated KL expansion XKL(t) with the number of terms set to L =
1, 2, 5, 10, 50, 100. As the number of terms increases, smaller time scales are taken into
account.

3 Polynomial Chaos Expansion of the Reduced Or-

der Model

After the original stochastic process is essentially reduced to a random vector ξ =

(ξ1, . . . , ξL), we use spectral methods to properly represent the latter. In this section,

polynomial chaos expansions of random variables are introduced, together with challenges

associated with their computations, some of these challenges being specific to SRNs.
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Figure 4: Ten SSA realizations with the nominal parameter set, together with the PDFs
of X for SSA realizations and its KL representations (with L = 1, 10, 50, 100) at tf = 20
based on 100000 samples.
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Figure 5: The scatter plot of the first two KL random variables ξ1, ξ2. They are uncorre-
lated, not independent, and exhibit strong bimodality in the ξ1-direction.

3.1 Polynomial Chaos Expansion

Any random variable with finite variance can be expanded in terms of an orthogonal

set of functions of specific standard random variables, where the orthogonality is with

respect to the density of the latter. These expansions are referred to as polynomial chaos
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(PC) expansions [15,49]. Two of the most commonly used expansions for continuous ran-

dom variables are Gauss-Hermite (Hermite polynomials as functions of standard normal

random variables) and Legendre-Uniform (Legendre polynomials as functions of uniform

random variables) PC expansions [50]. The major conclusions of this work are inde-

pendent of the basis choice; we will primarily work with the Gauss-Hermite (GH) PC

basis. The Hermite polynomial with a multi-index p = (p1, p2, . . . , pL) is a multivariate

polynomial function of L variables (ζ1, ζ2, . . . , ζL) = ζ defined by

Ψp(ζ) = ψp1(ζ1)ψp2(ζ2) · · ·ψpL
(ζL), (9)

where ψpi
(ζ) is the standard one-dimensional Hermite polynomial of degree pi, for i =

1, 2, . . . , L. The first five Hermite polynomials are

ψ0(ζ) = 1

ψ1(ζ) = ζ

ψ2(ζ) = ζ2 − 1 (10)

ψ3(ζ) = ζ3 − 3ζ

ψ4(ζ) = ζ4 − 6ζ2 + 3,

satisfying the recurrence relation [1] for all m = 1, 2, . . .

ψm+1(ζ) = ζψm(ζ) −mψm−1(ζ). (11)

By convention, the sum of all degrees p1 + p2 + · · · + pL is called the degree of the

multidimensional Hermite polynomial (9).

Furthermore, the p-th order, L-dimensional Gauss-Hermite PC expansion of a random
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vector ξ = (ξ1, ξ2, . . . , ξL) is

ξ =

P∑

k=0

ckΨk(ζ) ≡ g(ζ; C), (12)

or

ξi =
P∑

k=0

cikΨk(ζ), for i = 1, 2, . . . , L, (13)

where ζ = (ζ1, . . . , ζL) is a vector of independent, standard normal random variables

and C denotes the matrix of coefficients cik. In Eq. (12), the scalar subscript in the

multidimensional polynomials Ψk(ζ) refers to the graded lexicographic ordering of the

underlying multi-indices [6,51]. The number of these polynomials that have a degree ≤ p

is P+1 = (p+L)!
p!L!

, see [50]. Note that in the one-dimensional case (L = 1), P is equal to the

order (i.e., the highest degree of the polynomials in that expansion) of the PC expansion

p.

The above multivariate Hermite polynomials are orthogonal on R
L with respect to the

probability distribution function of the standard normal random variable. This orthogo-

nality implies Hilbert space projection formulae for the PC coefficients (also referred to

as Galerkin projection [15]):

ck =
〈ξΨk(ζ)〉
〈Ψ2

k(ζ)〉 =
1

〈Ψ2
k(ζ)〉

∫

ξΨk(ζ)ρ(ζ)dζ, (14)

where ρ(·) is the PDF of ζ. The angle brackets here denote the expectation, or the

integral, with respect to ζ.

The orthogonality of Hermite polynomials also leads to formulae for the statistical

moments of ξ in terms of its PC coefficients. In particular, the mean vector and the

covariance matrix can be found from

µ = 〈ξ〉 = c0 and Cov(ξi, ξj) = 〈(ξi − µi)(ξj − µj)〉 =
P∑

k=1

cikcjk〈Ψ2
k(ζ)〉. (15)
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Note that throughout this work, since ξ are found by the KL projection of a centered

stochastic process, 〈ξ〉 = 0 and Cov(ξi, ξj) = δij, see Eq. (5).

Two widely-used approaches for determining the PC coefficients using the Galerkin

projection are Intrusive Spectral Projection (ISP) and Nonintrusive Spectral Projection

(NISP) [8, 9, 36–38]. The ISP approach is based on a direct application of the Galerkin

projection to the governing equations. The governing dynamical equations for X are

replaced with equations for the PC coefficients, using the projection (14). However, the

absence of a deterministic forward model renders the ISP method inapplicable in the SRN

context. In this work we will use the NISP approach, which involves sampling of ξ and

ζ in order to compute the stochastic projection integral 〈ξΨk(ζ)〉. However, since ξ does

not belong to the same stochastic space as ζ, one needs to define a map Γ : ζ → ξ which

preserves the probabilities, i.e. Γ(ζ) and ξ have the same distributions. This is achieved

by employing the inverse Rosenblatt transformation, as explained in the following section.

3.2 Rosenblatt Transformation and its Approximate Inverse

Given any set of L random variables ξ1, . . . , ξL with known (or, in an approximate setting,

statistically estimated) joint cumulative distribution function (CDF) F (ξ1, . . . , ξn), one

can obtain a set of ηi’s that are independent uniform random variables on [0, 1] for all

i = 1, 2, . . . , L, using the conditional cumulative distributions

η1 = F1(ξ1)

η2 = F2|1(ξ2|ξ1)

η3 = F3|2,1(ξ3|ξ2, ξ1) (16)

...

ηL = FL|L−1,...,1(ξL|ξL−1, . . . , ξ1).
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This map, denoted by the shorthand notation η = R(ξ), is called the Rosenblatt trans-

formation [39]. Note that the Rosenblatt transformation is not unique: by ordering the

ξi’s in different ways, one can obtain L! different sets of uniform random variables.

In practice the exact joint cumulative distribution F (ξ1, . . . , ξL) is generally not avail-

able. Instead, in this work it is estimated by sampling ξ using a standard Kernel Density

Estimator (KDE), see [42, 43]. Assume that we have N samples ξ(1), ξ(2), . . . , ξ(N) of a

random vector ξ. The KDE estimate of its joint probability density function is a sum of

N multivariate gaussian functions centered at each data point ξ(n):

pξ(x) =
1

NσL(2π)L/2

N∑

n=1

exp

(

−(x − ξ(n))T (x − ξ(n))

2σ2

)

(17)

or

pξ1,...,ξL
(x1, . . . , xL) =

1

NσL(2π)L/2

N∑

n=1

exp

(

−(x1 − ξ
(n)
1 )2 + · · · + (xL − ξ

(n)
L )2

2σ2

)

, (18)

where the bandwidth σ should be chosen to balance smoothness and accuracy, see [42,43]

for discussions of the choice of σ.

Now the conditional CDF is KDE-estimated by

Fk|k−1,...,1(ξk|ξk−1, . . . , ξ1) =

∫ ξk

−∞
pk|k−1,...,1(ξ

′

k|ξk−1, . . . , ξ1)dξ
′

k

=

∫ ξk

−∞

pk,...,1(ξ
′

k, ξk−1, . . . , ξ1)

pk−1,...,1(ξk−1, . . . , ξ1)
dξ
′

k

≈ 1

σ
√

2π

∫ ξk

−∞

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξ

′

k
−ξ

(n)
k

)2

2σ2

)

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξk−1−ξ

(n)
k−1)

2

2σ2

)dξ
′

k
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=

∫ ξk

−∞

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξk−1−ξ

(n)
k−1)

2

2σ2

)

× 1
σ
√

2π
exp

(

− (ξ
′

k
−ξ

(n)
k

)2

2σ2

)

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξk−1−ξ

(n)
k−1)2

2σ2

) dξ
′

k

=

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξk−1−ξ

(n)
k−1)

2

2σ2

)

× Φ

(

ξk−ξ
(n)
k

σ

)

N∑

n=1

exp

(

− (ξ1−ξ
(n)
1 )2+···+(ξk−1−ξ

(n)
k−1)

2

2σ2

) , (19)

where Φ(z) is the CDF of a standard normal random variable. Note that the numerator in

(19) differs from the denominator only by an extra factor Φ

(

ξk−ξ
(n)
k

σ

)

in each summand,

allowing an efficient computation scheme.

The above Rosenblatt transformation maps the set of i.i.d. uniform random variables

ηi to the random vector ξ. However, the projection (14) requires the inverse of the

Rosenblatt transformation. Nevertheless, the approximate conditional distributions are

monotonic, hence they are guaranteed to have an inverse function. Also note that in order

to achieve the map needed for the Galerkin projection (14), an extra function Φ(ζi) = ηi

should be applied for i = 1, . . . , L to switch from a standard normal random variable ζi

to a uniform random variable ηi. This leads to a KDE-approximated inverse Rosenblatt

transformation composed with the Φ(·) map between ζi and ηi, denoted by ξ = Γ(ζ).

Now the expectation in the Galerkin projection formula (14) is well defined and can be

computed in ζ-space, with the help of quadrature integration:

ck =
〈ξΨk(ζ)〉
〈Ψ2

k(ζ)〉 =
1

〈Ψ2
k(ζ)〉

∫

Γ(ζ)
︸︷︷︸

ξ

Ψk(ζ)ρ(ζ)dζ. (20)
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3.3 Global Expansion

Putting both KL and PC expansions together, one arrives at the following, global repre-

sentation of the stochastic process X(t, θ):

X(t, θ) − X̄(t) ≈
L∑

n=1

ξn(θ)
√

λnfn(t) ≈
L∑

n=1

(
P∑

k=0

cnkΨk(ζ)

)
√

λnfn(t) (21)

The representation (21) effectively reduces the time dependence and the intrinsic stochas-

ticity to a matrix of coefficients cik. It is important to note that the representation in (21)

can be interpreted in a strong sense, due to the point-by-point correspondence between θ

and ξ (Karhunen-Loève), as well as between ξ and ζ (Rosenblatt).

Data-driven approaches that combine KL projections with PC representation have

been used before, e.g. [7, 10]. In [10], a PC representation of the KL-projected random

variable is found by maximum likelihood estimation, but without taking into account

the dependencies between various components of the vector ξ. In [7], the Rosenblatt

transformation was used to capture these dependencies. However, it has been shown [26,

28,40,48], that the global PC representations with fixed finite dimension and order fail to

properly represent random variables with multimodal distributions. Figure 6 shows the

scatter plot of data samples obtained from the KL projection of the Schlögl model samples

and the corresponding samples that are obtained from the subsequent PC expansion,

for two parameter regimes: one leading to a unimodal distribution (b), and the other

corresponding to the nominal parameters, i.e. leading to a bimodal distribution (a). Even

the 10-th order expansion does not properly capture the behavior of a bimodal random

variable, while a unimodal random variable is represented well with relatively low order.

Multidomain PC expansions resolve this issue to some extent. The essence of domain

decomposition procedures proposed in [28, 29] is splitting domains in ζ-space, when the

current representation is not satisfactory according to certain criteria, and then proceeding

recursively. In [40], in order to better recognize the modalities, we proposed a different
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Figure 6: a) Global PC representation is illustrated to fail for the bimodal case, even with
the higher order representation. The random vector (ξ1, ξ2) is obtained by KL projection
of the Schlögl process’s time series onto two eigenmodes. b) The unimodal case is obtained
by setting the initial value X(0) = 750 that leads to a single branch. Both KL and PC
expansions are based on 10000 realizations; only 1000 of them are shown for clarity of
presentation.

adaptive algorithm that is based on splitting the data domain instead of the η-domain,

and then inferring the PC representations of each partition independently. However,

this strategy might be inefficient when dealing with multidimensional and multimodal

data structures. In this work, we extend this domain-based data partitioning approach

to include data clustering, which finds natural groupings in the data sample set first,

effectively reducing the problem to a set of unimodal cases. This results in a faster

convergence to data partitions that allow accurate PC representations.

4 Adaptive Data Partitioning Algorithm

In this section, we develop adaptive algorithms that use data partitioning and then proceed

recursively until the PC representation is satisfactory according to a specified distance

measure. We explore the advantages and shortcomings of two data partitioning strate-

gies: data range bisection and approximate k-center clustering, and introduce a hybrid
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approach that uses initial clustering to find natural groupings in the data and then adap-

tively and recursively partitions the data by splitting corresponding data domains in each

direction.

4.1 Data range bisection

Let us consider range-based bisection as a data partitioning strategy, i.e. first the smallest

and the largest data values in each dimension are found, and then the data itself is

partitioned by splitting the range of the data values in half. Here, we will only focus on

a brute-force procedure, where all directions are divided into two equal intervals. In [40],

we call this strategy ‘data domain decomposition’. To avoid confusion with η-domain

decomposition methods [28, 29, 48], we will rather refer to it as range-based bisection. In

the current form, the number of new data sets scales exponentially with the dimension

L; each subdivision results in 2L new domains per divided domain. On the other hand,

this procedure breaks the data into much smaller and relatively equal-sized sets, leading

to a simpler and faster treatment of each subset. However, there is no prior quantitative

guarantee on the quality of PC representation for each data partition.

4.1.1 Adaptive algorithm based on Kullback-Leibler divergence

One commonly used measure of the quality of a probabilistic model representation is

the Kullback-Leibler (K-L) divergence or distance [3, 16] (otherwise called the relative

entropy) between the sample set PDF P (x) and the PDF Q(x) of samples obtained from

the model:

d(P ||Q) =

∫

P (x) log
P (x)

Q(x)
dx. (22)

Note that the K-L divergence is not a distance measure in a conventional sense, since it is

not symmetric and does not satisfy the triangle inequality. However, it provides an upper

bound for the total variation distance between two probability measures; dTV(P,Q) ≤
√

d(P ||Q)/2, see [16]. Exact computation of the K-L divergence requires an integration
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that is extremely costly in multiple dimensions. Nevertheless, it can be estimated by

Monte-Carlo integration in terms of the data samples that are available. Namely,

d(P ||Q) =

∫

P (x) log
P (x)

Q(x)
dx ≈ 1

N

N∑

n=1

log
P (ξ(n))

Q(ξ(n))

= 1
N

(
N∑

n=1

logP (ξ(n)) −
N∑

n=1

logQ(ξ(n))

)

,

(23)

where ξ(n) for n = 1, 2, . . . , N are the samples drawn from the distribution P (·), i.e.

exactly the data samples that are to be PC-represented. In this form, the K-L divergence

allows simple intuitive interpretation: the second sum is the log-probability of having the

particular data set {ξ(n)}N
n=1 given a model that leads to the PDF Q(·) (in other terms,

the likelihood of the model), while the first sum is the likelihood if the model had the

exact same PDF as the original data set (in a sense, a target likelihood). The PDFs in

(23) are computed by standard KDE techniques [42, 43].

The adaptive PC representation algorithm then proceeds as follows:

0. Obtain N SSA realizations X(t).

1. Perform KL decomposition up to the eigenmode (dimension) L: XKL(t) = X̄(t) +
∑L

n=1 ξn
√
λnfn(t).

1a. As a result, obtain a set ofN data samples of the random vector ξ = (ξ1, . . . , ξL)

and call it the current data set S = {ξ(1), ξ(2), . . . , ξ(N)} with Eq. (6).

2. Use the Rosenblatt transformation and quadrature evaluation of the Galerkin pro-

jection integrals (20) to find a finite order PC representation for the current data

samples: ξi =
∑P

k=0 cikΨk(ζ), for i = 1, 2, . . . , L.

2a. Compute the K-L divergence between the data and the PC model with Eq. (23).

3. If the number of samples in the current data set exceeds the threshold Nthr and

the K-L divergence is larger than the threshold dthr, partition the current data

revised draft sent to SIAM SISC on 10/12/09 19



set according to data domain decomposition, and recursively return to Step 2 for

each new data set. Else keep the current PC representation and move to the next

untreated data set.

4.1.2 Mixture model and its relation to stochastic domain decomposition

Following the procedure outlined above, the initial data sample set S = {ξ(1), ξ(2), . . . , ξ(N)}

is divided into Kf categories or partitions S1, S2, . . . , SKf
, each of them having been

treated independently, leading to Kf separate PC representations g(ζ; C (i)), for i =

1, 2, . . . , Kf . Let |S| be the total number of samples in the set S, and Kh(·) be the

Gaussian kernel function used in the KDE estimation of the PDFs in (23):

Kh(z) =
e−

zT z
2h2

hd(2π)d/2
, (24)

the KDE-estimated PDF of the data samples is then

P (y) =
1

|S|

|S|
∑

j=1

Kh(y − ξ(j)). (25)

Further, the KDE-estimated PDF of the samples in the k-th data set (Pk(y)) is K-L ap-

proximated by the KDE-estimated PDF of the samples of the k-th PC model g
(

ζ; C(k)
)

,

denoted by Qk(y):

Pk(y) =
1

|Sk|

|Sk|∑

j=1

Kh(y − ξ
(j)
k )

K-L≈ Qk(y). (26)

Furthermore, the PDF of the full data set can be written as

P (y) = 1
|S|

|S|
∑

j=1

Kh(y − ξ(j)) =

Kf∑

k=1

|Sk|
|S|




1

|Sk|

|Sk|∑

j=1

Kh(y − ξ
(j)
k )





=

Kf∑

k=1

|Sk|
|S| Pk(y)

K-L≈
Kf∑

k=1

|Sk|
|S| Qk(y) = Q(y),

(27)
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where Q(y) is a mixture PDF of all Qk(y) for k = 1, . . . ,Kf . Hence, we propose the

following global model for ξ:

ξPC = g(ζ; C(k)), with prob. pk = |Sk|/|S|, (28)

which, in terms of PDFs,

Q(y) =

Kf∑

k=1

|Sk|
|S| Qk(y) or PDFξ

PC

(y) =

Kf∑

k=1

pkPDF
g

„

ζ ;C
(k)

«(y) (29)

is simply a mixture model of PDFs of each component. It is worth noting that one

can arrive at this mixture representation by using a Bayesian model averaging (BMA)

methodology [22], too. We refer to Appendix 1 for rederiving the mixture model (28)

with the BMA approach.

Again, the final PC representation is not a single expansion; it is a combination of

PC expansions each representing a subset of the data (and each defined on the global

stochastic domain) and weighted accordingly to match the PDFs; i.e. the PDF of the fi-

nal representation is a mixture of the PDFs of samples resulting from each PC expansion.

Note that, in principle, the stochastic space decompositions (leading to so-called multido-

main expansions) [28, 29, 48] also can be interpreted as mixture models, except that the

grouping is based on the underlying sample space elements, rather than the data values

themselves. See Appendix 2 for a discussion of the relation between the two approaches.

Note that the range-based bisection is simply one of many possible ways of partitioning

the data set. We will also consider two other data-based partitioning strategies: median-

based bisection, where the data range is divided according to the median value of the data

in each dimension, and size-based bisection, where the data set is split into two-equal sized

subsets consecutively dimension-by-dimension, leading to a final partition of equally-sized

(to be precise, each subset will have N/2d samples) subsets. Figure 7 shows the result of

the application of each of the three strategies for an artificially constructed data sample
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Figure 7: Three different approaches of data partitioning of two-dimensional, bimodal
data obtained as a mixture of transformed Gamma distributions, given in (30) : a) range-
based bisection, b) median-based bisection, c) size-based bisection.

set of a random vector ξ = (ξ1, ξ2)
T , where

ξ =







T1χ w. prob. 0.7

T2χ + s w. prob. 0.3

, (30)

with the transformation (scaling and rotation, to be precise) matrices T1, T2, as well as

the shift vector s, defined as

T1 =






3 cos(π/4) sin(π/4)

−3 sin(π/4) cos(π/4)




 , T2 =






0 1

−0.5 0




 , s =






5

0




 , (31)

and a vector χ with i.i.d. Gamma(6, 10) distributed components. We will refer to this

test distribution as the ‘bi-Gamma’ distribution.

An evident disadvantage of the domain-based strategies is the inefficiency of their

first step; since they do not necessarily detect the two modalities. Therefore in some

cases, they can lead to partitions that still have a bimodal structure, making the spectral

representation challenging. For the current data set, as can be seen in Figure 7, all three

strategies lead to new subsets with bimodal structure. For most of the data sets we

have considered, the range-based approach works better than the median- and size-based

strategies. In particular, for a data set that is obtained from a 2-mode KL projection of
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Figure 8: Three different approaches of data partitioning of two-dimensional data obtained
from a KL projection of N = 105 realizations of the Schlögl process: a) range-based
bisection, b) median-based bisection, c) size-based bisection.

N = 105 Schlögl process realizations, the range-based bisection happens to resolve the

bimodality, since the data is bimodal along the first dimension, see Figure 8.

Nevertheless, to obtain an algorithm that is more robust and detects the bimodalities

independent of the underlying data structure, we turn to clustering approaches in the

next section.

4.2 Approximate k-center clustering

In the data clustering literature, the data domain-based approaches from the previous

section fall into the category of monothetic algorithms, i.e. single features (in our case,

the components of the vector ξ) of data samples are being compared sequentially, not

simultaneously [24]. Polythetic algorithms, on the other hand, take all the dimensions into

account at the same time, thus generally leading to more sensible groupings of the data.

Clustering approaches are well-known to find natural groupings in data sets, according to

similarity or distance measures, thus falling in the class of polythetic algorithms.

4.2.1 Formulation

Two of the most commonly used clustering methods are the k-center clustering [4] and

the k-means clustering [34]. The k-center clustering problem is posed as follows: given a

predefined number K, find a partition of the data samples into K clusters S1, S2, . . . , SK
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and cluster centroids s1, s2, . . . , sK respectively, that minimizes

max
i

max
ξ∈Si

d(ξ, si) (32)

for some distance measure d(x,y). In other words, this is a minimization of the largest

cluster, where the size of a cluster is defined as the largest distance from the corresponding

centroid. On the other hand, k-means clustering minimizes the average size of a cluster,

the latter itself being defined as the average distance from samples in that cluster to

the mean (which is the centroid) of the cluster. In some sense, the k-center clustering

focuses on the worst scenarios, rather than the average cases, hence it is better at detecting

multiple ‘islands’ of data samples as well as outliers. However, the exact k-center problem

is NP -hard. Instead, we will use the farthest point clustering greedy algorithm. Its

computational complexity scales linearly with the number of samples, and it is proven

to lead to a partitioning where the largest cluster is at most twice as large as the exact

optimal one [21].
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Figure 9: The best explained variance fraction versus the number of clusters for the ‘bi-
Gamma’ data set from (30). For each K, the largest explained variance fraction is shown
out of R = 50 trials. Clearly, there is a well defined ‘elbow’ in this graph and any sensible
criterion chooses K = 2 as the optimal number of clusters for the data set.

It is worth noting that the farthest point clustering algorithm is randomized: it de-

pends on a randomly picked initial centroid. To improve the robustness, we run the

clustering algorithm R times (set to R = 50, unless noted otherwise; this does not con-
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tribute much to the overall computational cost of our algorithms) and pick the outcome

that has the largest explained variance. The explained variance for a given clustering is

the variance of a new sample set that is obtained from the original sample set by replacing

each sample with its cluster mean. For example, the explained variance vanishes for just

one cluster, and it is equal to the total variance for the maximum possible number of

clusters, i.e. if K is equal to the number of samples. With the multiple-run approach,

well-separated modalities in data samples are readily detected, and there is less variability

in the clustering outcomes for fixed K.

Also note that the k-center clustering requires the number of clusters K to be defined

a priori. In order to find the optimal number of clusters for a given sample set, the

‘elbow’ criterion for the explained variance fraction is applied. We run the approximate

k-center clustering algorithm R times for each K = 1, 2, . . . , Kmax (typically, Kmax = 10

is taken), and, for each K, we pick the clustering that leads to the largest explained

variance. Figure 9 shows the fraction of this largest explained variance over the total

variance versus the number of clusters, for the ‘bi-Gamma’ data set sampled according

to the random vector (30). This graph is generally increasing and concave down. The

optimal number of clusters matching the data samples corresponds to the ‘elbow’ of the

graph, i.e. the point where the slope decreases the most with the addition of one cluster.

If the x-domain of the graph included real numbers, rather than integers, this ‘elbow’

would correspond to the largest negative magnitude of the second derivative. Two other

reasonable criteria based on the explained variance have been tested, and were found to

lead to comparable results for the purposes of this work. Namely, one can set an absolute

threshold on the explained variance fraction and choose the smallest K that passes that

threshold; or one can simply choose a cluster number K that corresponds to the highest

jump in the explained variance fraction.

The other important component of clustering algorithms is the definition of the dis-
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tance measure d(x,y) between two data points. We will take a weighted L2 measure

d(x,y)2 =

L∑

j=1

wj(xj − yj)
2, (33)

postponing the discussion about the weight choice to Section 5.

4.2.2 Comparison with the data range bisection

Note that k-center clustering partitions the data into a number of clusters that does not

depend on the dimensionality of the data, as opposed to data-based bisections. Also, k-

center clustering identifies data multimodalities and outliers much better while the data

domain bisection strategies blindly divide the data domain. For instance, consider the ‘bi-

Gamma’ random vector (30). While the k-center clustering with the explained variance

criterion easily recognizes the two clusters, the ‘brute-force’ data range bisection only

splits the data domains leading to at least one other data set with a bimodal structure, see

Figure 10. A drawback of the k-center clustering, however, is revealed when dealing with

data sets of relatively simple, unimodal structure. Because of the underlying randomness

of the algorithm and the absence of well-defined natural groupings or modalities in the

data, the clustering leads to a large variability in the results, as can be seen in Figure

11. In the presence of such a variability, the ‘elbow’ criterion is useless as the explained

variance curve lacks an apparent ‘elbow’, see Figure 12. In this case, the data is considered

to be already sufficiently unimodal, and there is no need to pursue with k-center clustering

at all. Hence we modify our explained variance criterion, i.e. we look for an ‘elbow’ in the

explained variance graph only if the best explained variance fraction for K = 10 is greater

than a threshold 0.8. Table 2 outlines the differences between the approximate k-center

clustering and the range-based bisection approaches. Note that although the data range

bisection leads to a relatively large number of new partitions, each of those partitions are

of a much smaller size, allowing faster spectral representations.

In the next section, to combine the advantages of both approaches, we extend the
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Figure 10: Illustration of a) data range bisection and b) k-center clustering for the ‘bi-
Gamma’ two-dimensional random vector from (30). The ‘brute-force’ data range bisection
blindly splits the data domain into four new ones, without detecting the bimodality.
On the other hand, the explained variance criterion, although based on a randomized
algorithm, chooses the optimal number of clusters to be equal to two, hence correctly
recognizing the underlying data structure.

Approximate k-center clustering Data range bisection

Polythetic (more effective use of data structure) Monothetic

Detects multimodalities and outliers Blind to multimodalities and outliers

No curse of dimensionality Number of new partitions scales exponentially with dimensions

Dimension-specific weight measure No weight measure

Non-unique (randomized) partitioning Unique partitioning

Not effective for unimodal data Performs well for unimodal data

New subset sizes are of a similar order of magnitude New subset sizes are extremely reduced

Table 2: Comparison table of features of both partitioning approaches.

data range bisection algorithm of Section 4.1.1 to include an initial k-center clustering

step that recognizes the modalities in the data structure and initially partitions the data

set according to it.

4.3 Hybrid algorithm

Finding the best number of clusters for a given sample set based on the explained variance

criterion leads to an initial natural partitioning that facilitates a better PC representation

for each of these partitions or clusters.

The final algorithm is essentially the same as before, with an addition of the initial
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Figure 11: The approximate k-center clustering algorithm is randomized, hence for uni-
modal data sets the results show huge variability. A two-dimensional gaussian data of
N = 10000 points is taken. The cluster number is fixed K = 3.

clustering step 1b:

0. Obtain N SSA realizations X(t).

1. Perform KL decomposition up to the eigenmode (dimension) L: XKL(t) = X̄(t) +

∑L
n=1 ξn

√
λnfn(t).

1a. As a result, obtain a set ofN data samples of the random vector ξ = (ξ1, . . . , ξL)

and call it the current data set S = {ξ(1), ξ(2), . . . , ξ(N)} with Eq. (6).

revised draft sent to SIAM SISC on 10/12/09 28



1 2 3 4 5 6 7 8 9 10

Number of clusters, K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex
pl

ai
ne

d 
 V

ar
ia

nc
e 

 fr
ac

tio
n

Figure 12: The ‘elbow’ criterion essentially fails for unimodal data sets. For each fixed
cluster number K = 1, . . . , 10, five different runs of the clustering algorithm are shown
with the largest explained variance highlighted. There is no well-defined ‘elbow’ in this
graph - a typical feature of all the unimodal data sets.

1b. If the explained variance criterion detects modalities, cluster the data into the

optimal number of clusters and proceed considering each cluster as a new data

set. Otherwise proceed to Step 2.

2. Use the Rosenblatt transformation and quadrature evaluation of the Galerkin pro-

jection integrals (20) to find a finite order PC representation for the current data

samples: ξi =
∑P

k=0 cikΨk(ζ), for i = 1, 2, . . . , L.

2a. Compute the K-L divergence between the data and the PC model with Eq. (23).

3. If the number of samples in the current data set exceeds the threshold Nthr and

the K-L divergence is larger than the threshold dthr, partition the current data

set according to data domain decomposition, and recursively return to Step 2 for

each new data set. Else keep the current PC representation and move to the next

untreated data set.

Eventually, the data will be hierarchically partitioned into a number of sets, say, Kf .

Then, the final PC representation can be recovered as a mixture model, see Eqs. (28) and

(29). It is worth noting that the hybrid algorithm suffers from the curse of dimensionality,

starting from the domain decomposition step. However, it offers huge improvements
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compared to plain domain decomposition approaches essentially by replacing the initial

unnecessary domain splitting steps with a clustering technique.

5 Numerical Tests

In this section, we present the results of the adaptive hybrid algorithm for two data sets:

the data set of samples from the test ‘bi-Gamma’ random vector (30) and the data set of

samples obtained from KL projection of the Schlögl model.

5.1 Data obtained from the ‘bi-Gamma’ test distribution

The adaptive hybrid algorithm of Section 4.3 leads to a partitioning of the data set ob-

tained from the ‘bi-Gamma’ test distribution (30). Figure 13 illustrates the resulting

partitioning and the samples from the final PC mixture model representation. As can be

seen, the first level of partitioning simply recognizes the bimodal structure and separates

two unimodal clusters, while the subsequent refinement levels perform data range bisec-

tion. As the threshold parameters tighten, the highest refinement level increases. The

threshold parameters taken for the illustration in Figure 13 lead to a refinement level of 3.

Next, Figure 14 shows the convergence, in terms of the K-L distance, of the mixture PC

representation to the original data set, for the hybrid algorithm that includes the cluster-

ing step, as well as for the data bisection approaches of Section 4.1.2. The convergence

comparison in terms of the K-L distance is shown with respect to refinement level, as

well as in terms of the number of subsets generated, Kf and the CPU time. Clearly, the

hybrid methodology is more robust and converges faster than the plain domain-based,

monothetic approaches.
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Figure 13: a) The data partitions found by the hybrid algorithm for a data set of N = 105

samples of the ‘bi-Gamma’ random vector (30). The threshold parameters are set to
Nthr = 1000 and dthr = 0.003. b) The scatter plot of the original data set and samples
obtained from the mixture PC representation.

5.2 Data obtained from the Schlögl model

If the data is taken from the Karhunen-Loève decomposition of a stochastic process, each

dimension has an associated eigenvalue that indicates the importance of that particular

dimension. This is particularly important for multimodal systems, since they exhibit large

gaps in the eigenvalue spectrum. Therefore for KL-projected data samples, to weigh each

dimension according to its importance, an eigenvalue-weighted L2 measure is taken in

(33) with wj = λj.

As shown in Figure 16, data median bisection and size bisection do not converge well,

since they blindly split the data without detecting the bimodality. Even though all three

data-based bisection algorithms split the data set to significantly smaller partitions, the

unresolved bimodalities for the median- and size-based bisection algorithms require much

higher CPU times for the spectral representation because of the higher computational

cost of the inverse Rosenblatt transformation specifically for bimodal data sets. Data

range bisection works as well as the hybrid algorithm by chance, because of the structure

of the bimodality of this particular data set (well-separated by the first dimension).
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Figure 14: a) Convergence of the mixture PC representation as the refinement level
increases. The zeroth refinement level corresponds to the global representation, while the
first level is simply the clustering for the hybrid partitioning. The third refinement level
corresponds to the illustration from Figure 13. b) c) Convergence with respect to the
final number of generated subsets, Kf , and the computational cost of the algorithm. The
legend in the middle figure corresponds to all three graphs.

Finally, Figure 17 illustrates the 5-mode KL-truncated sum

XKL(t) = X̄(t) +
5∑

n=1

ξn
√

λnfn(t) (34)

of the underlying Schlögl process as well as the process, recovered from the third order

mixture PC representation of the KL-projected variables

XKLPC(t) = X̄(t) +

5∑

n=1

(ξPC)n

√

λnfn(t). (35)

Since the PDF of the vector ξ = (ξ1, . . . , ξ5) is approximated well by a mixture of PC

model PDFs, the resulting reduced order model in Figure 17a) is also approximated well

in a distributional sense, i.e. at each time point t̃ the PDFs of XKL(t̃) and XKLPC(t̃) are

close to each other. Thus, the stochastic process X(t), first reduced to XKL(t) (described

by a random vector ξ) by the KL projection, is further reduced to XKLPC(t) (described

by a set of deterministic matrices {C (k)}Kf

k=1, one for each partition of the data samples

of ξ) by our mixture PC representation while preserving the skeleton of the dynamics of

the original process for further analysis of the system. Although the PC representation

does not add any new information than what is already carried by SSA realizations, it
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Figure 15: a) The data partitions for the first two KL variables obtained from a KL
projection of N = 105 realizations of the Schlögl process. The threshold parameters are
set to Nthr = 1000 and dthr = 0.01. b) The scatter plot of the original data set and
samples obtained from the mixture PC representation.

allows a finite and manageable representation of the multidimensional stochastic system

state. This representation accounts for intrinsic noise in the system and can be extended

to propagate parametric uncertainties through this system.

6 Conclusions

In this work, we introduced a methodology for dynamical analysis of stochastic processes

relying upon reduced order modeling as well as stochastic spectral expansions for repre-

senting intrinsic noise. The Karhunen-Loève expansion has been employed to represent

the time-dependent stochastic process in terms of a finite number of random variables.

The latter then have been represented using Gauss-Hermite PC expansions. However,

since finite global PC expansions do not represent multimodal distributions well, we in-

troduced an adaptive procedure that recognizes the natural groupings in the data and

PC-represents each of these partitions separately. In order to perform the orthogonal

projection required for obtaining the PC coefficients, the Rosenblatt transformation has

been used, mapping the sample space responsible for the intrinsic noise, to a sample space

of a standard random variable. In order to reduce the problem to unimodal distributions,
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Figure 16: a) Convergence of the mixture PC representation as the refinement level
increases. The zeroth refinement level corresponds to the global representation, while the
first level is simply the clustering for the hybrid partitioning. The third refinement level
corresponds to the illustrations from Figure 15. b) c) Convergence with respect to the
final number of generated subsets, Kf , and the computational cost of the algorithm. The
legend in the middle figure corresponds to all three graphs.

an approximate version of the k-center clustering algorithm has been used, detecting mul-

timodalities present in the KL-projected data structure, followed by a data partitioning

for further refinement. The end result is a combination of PC representations leading to

a distribution that is a mixture of GH PC densities. In a sense, this is a step forward

from the well-known Gaussian mixture models, allowing not just a simple Gaussian vari-

able, but a polynomial function of it, in each mixture. The overall algorithm presents an

efficient approach to obtain a spectral expansion for a stochastic process, especially when

the data drawn from the process is multimodal. This adaptive, hybrid data-partitioning

algorithm has been demonstrated to work well on the Schlögl model - a benchmark model

that exhibits bimodality.

Some noteworthy extensions of the current work should be pointed out. It is worth

including parametric uncertainty in the dynamical analysis, essentially extending previ-

ous work [40] with the methods proposed here. Also, the approximate inverse Rosenblatt

transformation and subsequent quadrature integration for the spectral projection imple-

mented here becomes inefficient with the increase of dimensionality. Methods to address

these issues are the subject of ongoing work.
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Figure 17: a) The 5-mode KL truncated sum for the Schlögl process. b) The process’
final representation obtained from the mixture PC expansions of the underlying five-
dimensional KL random vector. Both expansions are obtained with N = 105 realizations
of the Schlögl process with nominal parameters. For illustration purposes, only every
hundredth realization is shown.
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Appendix 1: Relation to Bayesian Model Averaging

One can derive the mixture model (29) based simply on concepts of Bayesian model

averaging (BMA) theory [22]. Indeed, each data partition Sk = {ξ(1)
k , . . . , ξ

(|Sk|)
k } is used

to inform the construction of a PC model Mk ≡ g(ζ; C(k)) involving the parameter matrix

C(k). BMA incorporates all the information from single partitions into a global model in
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a consistent manner. The basic statement of BMA reads as

p(y|S) =

Kf∑

k=1

p(y|Mk, S)P (Mk|S). (36)

Now, since the data sets are independent,

P (Mk|S) =

Kf∑

i=1

P (Mk|Si)p(Si) (37)

Further, since, by the construction of the algorithm, the k-th PC model Mk is informed

only by the k-th data set Sk, we have

P (Mk|Si) = P (Mk|Sk)δki, (38)

or, combining (37) and (38)

P (Mk|S) = P (Mk|Sk)p(Sk) for all k = 1, . . . , Kf . (39)

Note further that P (Mk|Sk) = 1, since
∑Kf

i=1 P (Mi|Sk) = 1 and P (Mi|Sk)|i6=k = 0, per

Eq.(38). Thus,

P (Mk|S) = p(Sk) for all k = 1, . . . , Kf . (40)

Next, since the evidence for the data is obtained by the available samples, we have

pk ≡ p(Sk) =
|Sk|
|S| (41)

leading to the sought mixture model (compare it to Eq. (29))

p(y|S) =

Kf∑

k=1

pkp(y|Mk, S). (42)
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Appendix 2: Relation to Multidomain Expansions

Given a non-overlapping partition ∪Kf

i=1Qi = [0, 1]L of the stochastic space [0, 1]L, mul-

tidomain expansions can be written as

ξn =

Kf∑

i=1

P∑

k=0

c
(i)
nkΨ̃

(i)
k (η), for n = 1, . . . , L, (43)

with η ∈ [0, 1]L, and where the basis functions Ψ̃
(i)
k (·) vanish outside their support Qi,

usually rectangular, in a form

Qi = [a
(1)
i , b

(1)
i ] × · · · × [a

(L)
i , b

(L)
i ]. (44)

The basis functions are either rescaled (straightforwardly, since Qi’s are rectangular) ver-

sions of standard PC bases [48] (possibly composed with, say, standard Gaussian inverse

CDF Φ−1(·) for GH PC) or multiwavelets [26, 28, 29]. In the cited works above, the par-

tition {Qi}Kf

i=1 is obtained from adaptive domain splitting procedures, similar to the one

proposed in the beginning of section 4. However, these domain splits are conceptually dif-

ferent from the current work, since they are performed in the stochastic η-domain [0, 1]L.

On the other hand, note that the equality (43), if interpreted in a distributional sense,

leads to a mixture model (28) with weights pi = Area(Qi). The reverse, however, is not

true in general. A mixture model is a distributional equality by definition, and although

it can be written in the strong form (43), the stochastic space partition ∪Kf

i=1Qi = [0, 1]L

that corresponds to the data partitioning ∪Kf

i=1Si = S is not uniquely defined. In [40], we

chose a rectangular partitioning of the η-space that readily maps to a data domain par-

tition, in order to incorporate the parametric dependence in a straightforward, ‘physical’

manner. For instance, the first refinement level of the data range bisection would in fact

correspond to a rectangular partition of the η-domain, illustrated in Figure 18. However,

if one partitions the data according to, say, clustering approaches discussed in this work,
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the data domains may overlap (see Figure 19) and would not map straightforwardly to a

η-domain partition, where the overlaps are impossible by definition. Nevertheless, in the

present context, there is no reason to specify a particular η-domain partition, as the mix-

ture model representation is understood in a distributional sense, without point-to-point

correspondence between η samples and the data (ξ samples).

η1

η 2 
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Area(Q4) = |S4|/|S| = p4

Area(Q3) = |S3|/|S| = p3

b)

Figure 18: Illustration of the range-based bisection and the corresponding η-domain
decomposition for the ‘bi-Gamma’ data set (30). Note that, because of the structure
of this particular data set, the upper two partitions are of considerably smaller sizes than
the lower ones, hence the corresponding rectangles in the η-domain are smaller, too.

Figure 19: Two well defined clusters in the data set might lead to an overlap between data
domains of each cluster, hence not allowing a sensible map to the η-domain partitions.

To reinforce the relation between data-based bisection and η-domain decomposition,
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consider also the size-based bisection introduced in Section 4.1.2. This case would cor-

respond to the ‘brute-force’ η-domain decomposition by bisection [40], as illustrated in

Figure 20.
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b)

Figure 20: Illustration of the size-based bisection and the corresponding η-domain de-
composition for the ‘bi-Gamma’ data set (30).

Once again, in this work, a distributional representation is sought, hence we have a

freedom of choosing any partitioning in the data domain, while not having to specify

an η-domain decomposition. Although any rectangular η-domain decomposition with

Area(Qi) = pi will lead to a multidomain expansion that is in distribution equivalent to

the mixture model under consideration, there is no rectangular partitioning in the data

domain that would effectively split the two modalities.
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[30] O. Le Mâıtre, M. Reagan, H. Najm, R. Ghanem, and O. Knio. A stochastic projection
method for fluid flow II. Random process. J. Comput. Phys., 181:9–44, 2002.
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[38] M. Reagan, H. Najm, P. Pébay, O. Knio, and R. Ghanem. Quantifying uncertainty
in chemical systems modeling. Int. J. Chem. Kin., 37(6):368–382, 2005.

[39] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical
Statistics, 23(3):470 – 472, 1952.

[40] K. Sargsyan, B. Debusschere, H. Najm, and Y. Marzouk. Bayesian inference of
spectral expansions for predictability assessment in stochastic reaction networks. J.
Comput. Theor. Nanosci., 6(10), 2009.
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