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Abstract

This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields
with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally
achieved using the Karhunen-Loève expansion of a prior Gaussian process assuming covariance function with
fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of
the Karhunen-Loève coordinates is then inferred using available observations. The resulting inferred field
is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the
field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Loève
expansion is derived using a coordinate transformation to account for the dependence with respect to the
covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian
inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution
dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method
on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The
inferred profiles were found closer to the true profiles when including the hyper-parameters’ uncertainty in
the inference formulation.

Keywords: Karhunen-Loève expansion, dimensionality reduction, Markov Chain Monte Carlo, polynomial
chaos, Bayesian inference

1 Introduction

Inverse problems arise in many applications whenever we seek to find some information about a physical
system based on some observations. From a computational point of view, a major challenge of inverse
problems is their ill-posedness where there is no guarantee that a solution exists, multiple solutions may
exist, or even the solution does not depend continuously on the observations. This can be significantly
affected by measurement errors, and inferring a suitable solution from noisy observations is an important
and challenging topic.

In this paper, we are only concerned with Bayesian approaches to inverse problems. This is motivated
by their ability of providing complete posterior statistics and not just a single value for the quantity of
interest. The multi-dimensional posterior can be directly explored via Markov Chain Monte Carlo (MCMC).
This, however, requires repeated simulations (sometimes hundreds of thousands) of the forward model, once
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for every proposed set of parameters of the Markov chain [1]. This practice renders Bayesian methods
computationally prohibitive for large-scale applications. Acceleration techniques have been proposed in the
literature in which a surrogate model is constructed that requires a much smaller ensemble of forward model
runs which is then used in the sampling MCMC step instead at a significantly reduced computational cost.
Marzouk et al. [2] for instance proposed a spectral projection method that uses spectral expansion of the
prior model in Polynomial Chaos (PC) basis. The PC method has been extensively investigated in the
literature, and its suitability for large-scale models has been demonstrated in various settings, including
ocean [3, 4, 5, 6], tsunami [7, 8], climate modeling [9] and subsurface flow modeling [10].

The PC method has been shown to be efficient for inverse problems involving a limited number of
stochastic parameters; yet in some cases the unknown quantity is a spatial or temporal field in which the
number of stochastic parameters is quite large. Computational challenges in this case arise in the surrogate
model construction as PC suffers from the curse of dimensionality [11]. In addition, convergence is hard
to achieve using the Bayesian inference due to the high dimensionality of the posterior. To overcome this
numerical issue, Marzouk et al. [12] introduced truncated Karhunen-Loève (KL) expansions to parametrize
the stochastic field, endowed with a hierarchical Gaussian process prior. The idea is to transform the
high-dimensional stochastic forward problem into a smaller problem whose solution captures that of the
deterministic forward model over the support of the prior. Galerkin projection on a PC basis was used to
seek the solution of the problem, and a reduced-dimensionality surrogate posterior density was constructed
that is inexpensive to evaluate.

The Gaussian process prior assumed in Marzouk et al. [12] is associated with hyper-parameters that
are rarely known in practice. Assuming otherwise renders the quantification of prior uncertainty unrealistic
and incomplete. Hierarchical Bayesian inference is proposed in the literature for calibration in presence of
uncertain hyper-parameters but is done a priori [13]. The method proposed by Marzouk et al. [12] does
not explicitly consider the effect of length-scales and only includes one hyper-parameter accounting for prior
variance. An attempt to extend the method proposed by Marzouk et al. [12] for priors with uncertain hyper-
parameters has been recently proposed by Tagade and Choi [14]. In their work, a methodology is introduced
to obtain a KL expansion of a stochastic process in terms of functions of the hyper-parameters. The prior
uncertainty in these hyper-parameters was expanded in a PC basis, and Galerkin projection was used to
evaluate PC coefficients of the surrogate model. The hyper-parameters hence become part of the inference
problem and are estimated from the observations.

This paper proposes an extension of the method of Marzouk et al. [12] that is also an alternative to Tagade
and Choi method [14]. Our proposed method explores the origin of the KL expansion where it is based on
the eigen-functions and eigen-values of a given covariance function. These eigen-functions form a basis in
a space dictated by the covariance hyper-parameters. Our method utilizes a change of basis methodology
and therefore transforming the KL expansion based on one certain set of hyper-parameters into another. A
fundamental distinction of the present work is that we avoid constructing a PC expansion for the uncertain
hyper-parameters, and instead use the PC expansion constructed for a reference set of hyper-parameters
and apply transformations to obtain PC expansion for any another set of hyper-parameters. The advantage
of the proposed method is that the dimensionality of the PC expansion is not augmented by the number
of hyper-parameters of the covariance function. Also, our method avoids cases when the hyper-parameters
have complex distributions and PC bases may not even exist.

To outline the proposed developments, we start in Section 2 by providing a statistical formulation of the
inverse problem based on Bayesian inference. Section 3 then presents the KL expansion and its generalization
to account for uncertain hyper-parameters by means of change of basis. Section 4 describes the role of PC
in Bayesian inference acceleration. In Section 5, numerical results for the calibration of a one-dimensional
toy problem are presented and Section 6 concludes the paper with a summary of the results, discussion and
conclusion.

2 Bayesian Inference

Bayesian inference is a statistical approach to inverse problems that has gained much interest in different
applications including ocean [15, 16, 4], climate [17] and geophysical [1] modeling. We review the Bayesian
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approach briefly below and discuss its implementation to our problem. Our objective is to infer a de-
terministic field m(x), for some x ∈ D, from a finite set of No ≥ 1 observations d ∈ RNo . We consider
situations where the observations d are not direct measurements of m(x), but are derived quantities that
can be predicted using a model-problem (typically a set of partial differential equations), often called the
forward model, relating the m(x) to the model predictions: m(x) 7→ u(m) ∈ RNo . The Bayesian formula
updates our prior knowledge of the m introducing an error model for the discrepancy between the model
predictions u(m) and the observations d; the Bayes’ rule is expressed as [18]:

p(m,σ2
o |d) ∝ p(d|m,σ2

o)pm(m)po(σ
2
o), (1)

where p(d|m,σ2
o) is the likelihood of the observations, given m and σ2

o the error model hyper-parameter with
prior po(σ

2
o), and pm(m) is the field’s prior. For simplicity, an unbiased additive Gaussian error model will

be considered,
ε
.
= d− u(m), ε ∼ N (0, σ2

oINo), (2)

where N(0, σ2
oINo) denotes the centered multivariate Gaussian distribution with diagonal covariance σ2

oINo .
In other words, the errors in the observations are assumed independent. For this choice, the likelihood
becomes

p(d|m,σ2
o) =

No∏

i=1

pε(di − ui(m), σ2
o), pε(x, σ

2
o)

.
=

1√
2πσ2

o

exp

[
− x2

2σ2
o

]
. (3)

The main difficulties with the posterior above are the infinite dimensional character of m(x) and its
prior definition. A discretization of m(x) is needed to perform the inference and setting a finite dimensional
prior distribution. If m(x) is endowed with a Gaussian prior, it is fully characterized by its second-order
properties, namely its mean µ(x) and covariance function C(x,x′). From µ and C, one can rely on truncated
Karhunen-Loève (KL) decomposition to represent m(x) as a convergent series involving a finite set of KL
coordinates (or expansion coefficients) ηk, k = 1, . . . ,K as discussed in Section 3. The inference problem
can then be reformulated for the vector η of coordinates ηk, leading to

p(η, σ2
o |d) ∝ p(d|η, σ2

o)pη(η)po(σ
2
o), (4)

where pη(η) = exp(−ηTη/2)/(2π)K/2 is the Gaussian prior of the KL coordinates.
As discussed below, the covariance function C(x,x′) is generally selected on the basis of limited knowledge

and the inference of m(x) can be improved by introducing additional hyper-parameters q in the definition
of C i.e. C(x,x′, q). This yields the generalized Bayes’ formula,

p(η, q, σ2
o |d) ∝ p(d|η, q, σ2

o)pη(η)pq(q)po(σ
2
o), (5)

where pq is the prior distribution of the covariance parameters. For the case of covariance with hyper-
parameters q, the likelihood takes the following general form,

p(d|η, q, σ2
o) =

No∏

i=1

pε(di − ui(η, q), σ2
o), (6)

with pε defined in Eq. (3), and ui(η, q) being a short-hand notation for the model prediction ui(m) with
m(η, q) the reconstructed field.

Inferring the field then amounts to sampling the posterior of KL coordinates η and hyper-parameters
q. In general, the sample space is high-dimensional and suitable computational strategy is the Markov
chain Monte Carlo (MCMC) method. In this work, we rely on an adaptive Metropolis-Hastings MCMC
algorithm [19, 20] to accurately and efficiently sample the posterior distribution p(η, q, σ2

o |d). This requires
the evaluation of the posterior (up to its normalization constant) for multiple sample values of (η, q, σ2

o). The
computational flow-chart for an evaluation of the posterior is schematically illustrated in Figure 1. Briefly,
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given a sample value of q, the dominant KL modes of C(x,x′, q) are computed and the corresponding field
m(x) is constructed using the sampled value of η. This field is fed into the solver to compute the model
predictions u(η, q) which are used, together with the sample value of the model error parameter σ2

o , to
successively compute the likelihood and finally the posterior.

KL decomp

p(d|⌘, q, �2
0) p(⌘, q, �2

0 |d)

Model solve

(�k, �k)k=1,K

Likelihood Posterior

�2
0

⌘

q

m(x) =
KX

k=1

p
�k�k(x)⌘k u(m) = u(⌘, q)

Figure 1: Flow-chart for the evaluation of the posterior distribution in the inference problem.

In general, the most computationally demanding part for sampling the posterior is the computation of
the model predictions, given (η, q) (that is the realization of the field). This is particularly the case when
the predictions involve the solution of partial differential equations. This computational cost motivates the
substitution of u(η, q) with a polynomial surrogate model ũ(η, q), whose evaluation is inexpensive compared
to the solution of the complete model. The surrogate is constructed offline and subsequently used on-line
when running the MCMC algorithm. Specifically, the likelihood of the observations is approximated using

p(d|η, q, σ2
o) =

No∏

i=1

pε(di − ui(η, q), σ2
o) ≈

No∏

i=1

pε(di − ũi(ξ(η, q)), σ2
o), (7)

where, as mentioned previously, ũ(ξ) is a polynomial and ξ : (η, q) 7→ ξ(η, q) is an explicit change of
coordinates. Construction of the surrogate model for the predictions is detailed in the next two sections;
Section 3 introduces the q-dependent coordinate transformation, while the polynomial approximation ũ(ξ)
is discussed in Section 4, together with the resulting surrogate-based sampling scheme.

3 Coordinate transformation for Uncertain Covariance Functions

3.1 Karhunen-Loève expansion

Let D ⊂ Rd, d ≥ 1, be a bounded domain, and denote X
.
= L2(D) equipped with inner product (·, ·)X

and norm ‖ · ‖X :

u ∈ X ⇔ ‖u‖X <∞, ‖u‖2X = (u, u)X =

ˆ
D

|u(x)|2dx. (8)

Consider a real-valued stochastic process M(x, ω) with mean µ(x) and continuous covariance function
C(x,x′) on D×D; ω is a random event belonging to a sample space Ω of a probability space (Ω,Σ, P ). The
covariance function is defined as

C(x,x′) = E [(M(x, ·)− µ(x))(M(x′, ·)− µ(x′))] , (9)

where E denotes the expectation operator. The covariance function C is symmetric positive semi-definite
and thus by Mercer’s theorem [21] it has the following spectral decomposition:

C(x,x′) =

∞∑

k=1

λkφk(x)φk(x′), (10)
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where the λk and φk(x) are the eigen-values and associated (normalized) eigen-functions of the linear operator
corresponding to the covariance function C; they satisfy the Fredholm equation of the second kind:

ˆ
D

C(x,x′)φk(x′)dx = λkφk(x), ‖φk‖X = 1. (11)

The eigen-values λk are real and countable and the eigen-functions φk(x) are continuous and constitute an
orthonormal basis in L2(D). Ordering the eigen-values in a decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ 0, the
truncated Karhunen-Loève (KL) expansion MK of M is given by [22]

M(x, ω) ≈MK(x, ω)
.
= µ(x) +

K∑

k=1

√
λkφk(x)ηk(ω), (12)

where K is the number of expansion terms retained in the spectral approximation. The stochastic coefficients

ηk(ω) = (M(x, ω)− µ(x), φk(x))X , (13)

are mutually uncorrelated random variables with zero mean and unit variance, such that E [ηkηk′ ] = δkk′ .
Under the assumption that M is a Gaussian Process (GP) denoted by M ∼ GP (µ, C), the ηk’s are Gaussian
and also independent. The truncated KL expansion is optimal in the mean square sense, meaning that of
all possible K-term expansions, the MK in Eq. (12) with λk and φk(x) satisfying Eq. (11) minimizes the
mean-squared error in the approximation of M [22]. While it is known that the KL decomposition of M
converges uniformly as K →∞ [23], the truncation error has implicit dependence on the covariance function
C.

The KL expansion is often employed to reduce the dimensionality in inverse problems, considering
the expansion coefficients ηk=1,...,K in Eq. (12) as reduced coordinates for the field m(x) to be inferred
from the collected observations [24]. In the Bayesian framework, this amounts to the determination of the
posterior distribution of the expansion coefficients vector η, which can be sampled or analyzed to estimate the
characteristics of the field m(x) (in particular, retrieving the median, MAP value, confidence intervals,. . . ).
However, the posterior and so the inferred field m have implicit dependencies on the assumed prior covariance
structure. This point has motivated the introduction of parametrized covariance families, as discussed in
the following section, where the covariance parameters are treated as hyper-parameters in the inference
procedure.

3.2 Covariance function with uncertain hyper-parameters

From now on, we assume the prior of m(x) to be Gaussian and so completely characterized by its mean
µ(x) and covariance function C. However, in many applications, not all the aspects of the covariance function
are well-known a priori. The stationarity of the covariance function can be easily determined and confirmed,
yet, we have a large uncertainty in the other characteristics such as the values of the hyper-parameters. An
example of a parametrized covariance function is

C(x,x′) = σ2
f exp

(
−1

2
(x− x′)TM(x− x′)

)
+ σ2

dx
Tx′ + σ2

b + σ2
nδpq (14)

where M is a symmetric positive definite matrix. The covariance hyper-parameters M, σ2
f , σ2

b , σ2
d, σ2

n are
usually not exactly known a priori and should be treated as uncertain quantities. For many covariance
functions it is easy to interpret the meaning of the hyper-parameters, which is of great importance when
trying to understand the data. Traditionally, the hyper-parameters are estimated using Gaussian Process
Regression (GPR) before inferring the model parameters [13]. To this end, a set of possibly noisy observations
of the field m(x) are used to perform stochastic interpolation of static data collected at few locations and
maximize the marginal likelihood function using Bayesian inference or optimization techniques. Optimal
values of the inferred hyper-parameters are then used in the covariance function and KL expansion is applied
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as described in Eq. (12). The uncertainty bound can be estimated using GPR but is usually not considered
in the expansion due to the complexity of the resulting model. This paper addresses the uncertainty in
the hyper-parameters of covariance models. Specifically we develop a formulation that enables inferring the
covariance function hyper-parameters along with the KL stochastic coordinates ηk. The formulation is based
on basis transformations as described below.

3.3 Stochastic coordinate transformation

Without loss of generality, we assume that the stochastic prior process M is centered (µ(x) = 0) and
has a parametrized covariance function C(x,x′, q) defined by a random vector q ⊂ Rh of hyper-parameters
(h is the number of hyper-parameters, e.g. q = {M, σ2

f , σ
2
b , σ

2
d, σ

2
n} for the example in Eq. (14)), with joint

density pq. Because of the dependence of the covariance function on q, the KL expansion of M in Eq. (12)
becomes:

MK(x, ω, q) =

K∑

k=1

√
λk(q)φk(x, q)ηk(ω),

ˆ
D

C(x,x′, q)φk(x′, q)dx = λk(q)φk(x, q). (15)

To simplify the notation, we drop the x and x′ dependence and introduce the scaled eigen-functions Φk(q):

Φk(q)
.
=
√
λk(q)φk(q), so MK(ω, q) =

K∑

k=1

Φk(q)ηk(ω). (16)

We further assume the continuity of the scaled eigen-functions Φk with respect to q, in the sense (see [25])

∃Dk(q) > 0, ‖Φk(q)− Φk(q + δq)‖2X ≤ Dk(q)‖δq‖2
`2h

, and
∑K
k=1Dk(q)

.
= D(K)(q) <∞ uniformly, so that

E
[
‖MK(q)−MK(q + δq)‖2X

]
≤ DK(q)‖δq‖2`2h . (17)

In practice, when decomposing a covariance function C(q), the normalized eigen-functions are defined up
to a factor of ±1. To ensure the q-continuity of the φk(q)’s, we have to select a consistent orientation of
eigen-functions. A possibility, followed in this work, is to define the orientation of the eigen-functions with
respect to a reference set of eigen-functions {φrk, k = 1, . . . ,K}, e.g. the reference set defined below, such that
(φk(q), φrk)X has a constant sign for all q [26]. The dependence of the eigen-functions on the hyper-parameter
q is further illustrated in Section 3.4 below.

Let Cr be a covariance function representative of the q-dependent covariance function C(q) of M . As
investigated below, a possible choice for Cr can be

Cr = C .
=

ˆ
C(q)pq(q)dq, (18)

that is the q-averaged of C(q), or a particular realization of C corresponding to a deterministic value qr

of the random parameters (e.g. nominal values obtained using GPR [13]). We denote φrk the ordered and
normalized eigen-vectors of Cr. Note that {φrk, k = 1, 2, . . . ,∞} is an orthonormal basis of X; as a result,
any scaled eigen-function Φk(q) can be expressed in this basis:

Φk(q) =

∞∑

k′=1

bkk′(q)φrk′ , bkk′(q) = (φrk,Φk′(q))X . (19)

The continuity of the scaled eigen-functions implies the continuity of the projection coefficients bkk′(q). For
computational purposes, the expansion in Eq. (19) needs to be truncated to the first Kr terms. Without
loss of generality we shall use in the following Kr = K, allowing for convergence analysis with respect to a
single parameter K.
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Further, the change of basis gives:

MK(ω, q) =

K∑

k=1

Φk(q)ηk(ω) ≈
K∑

k=1

(
K∑

k′=1

bkk′(q)φrk′

)
ηk(ω) =

K∑

k=1

φrkη̂k(ω, q), (20)

where we have denoted

η̂k(ω, q) =

K∑

k′=1

bk′k(q)ηk′(ω). (21)

The transformation shows that the q-dependence of C can be translated into an expansion MK with q
dependent scaled eigen-functions, see Eq. (16), or approximated by a q-dependent linear transformation of the
random variables in Eq. (20). Specifically, denoting the latter approximation M̂K we have the approximations

M(ω, q) ≈MK(ω, q) =

K∑

k=1

Φk(q)ηk(ω) ≈ M̂K(ω, q) =

K∑

k=1

φrkη̂k(ω, q), (22)

with η̂k related to the ηk’s by Eq. (21).
We observe that η̂k(ω, q) is a linear combination of standard Gaussian random variables, so it is also Gaus-

sian (with zero mean). However, the η̂k(ω, q) are generally correlated. The change of random coordinates
in Eq.(21) can be cast in matrix form:

η̂(ω, q) = B(q)η(ω). (23)

The covariance matrix for the random coefficients η̂, denoted Σ2(q), can be expressed as

Σ2(q) = E
[
η̂(q)η̂t(q)

]
= B(q)Bt(q). (24)

We shall assume that Σ2(q) is invertible (for almost every q); a sufficient condition is that Φ1≤k≤K(q) is not
orthogonal to span{φr1, . . . , φrK}. In addition, the conditional distribution of η̂, given q, is

pη̂(η̂|q) =
1√

2πK |Σ2(q)|
exp

[
− η̂

t(Σ2)−1(q)η̂

2

]
, (25)

where |Σ2(q)| is the determinant of Σ2(q).

3.4 Example

We now provide a brief illustration of the convergence of the error in the approximation of M(q). To
this end, we consider D = [0, 1] and a centered Gaussian process M with covariance function

C(x, x′, q) = σ2
f exp

(
− (x− x′)2

2l2

)
, (26)

with hyper-parameter vector q = {σ2
f , l}. In this case, only the correlation length l affects the shape of the

eigen-functions, while the process variance σ2
f simply scales the eigen-values. Therefore, we fix σ2

f = 0.5
through-out the section and assume uncertainty in l only, that is q = {l}. Specifically, we assume the hyper-
parameter l to have a uniform distribution in the range [0.1, 1]. It is important to note that the number of KL
modes needed for convergence highly depends on the hyper-parameter l. In particular, if M has small-scale
features (small l) a large number of KL modes will be needed.

For the selection of the reference covariance function, we contrast the choice Cr = C(lr), for several values
lr ∈ [0.1, 1], with the case Cr = C. The KL decompositions are numerically approximated with Galerkin
piecewise constant modes over a uniform grid having N = 128 elements in space. Figure 2 compares in the
left plot the considered reference covariance functions Cr and in the right plot the respective decay rates
with k of their eigen-values λrk. When using C(lr), it is seen that the smaller lr the slowest the decay rate,
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as expected, whereas for the q-averaged covariance C the decay rate is asymptotically similar (but with a
lower magnitude) to the lowest lr in the uncertainty range. Also, note that C is evidently not Gaussian.
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Figure 2: (Left) Reference covariance functions Cr = C(lr) for different values of lr, as indicated. Also plotted is the q-averaged
covariance C . (Right) Spectra of the corresponding eigen-values decay with K.

To quantify the error in the approximation of M(ω, q) by the proposed transformation method, we
introduce the following relative error measure

εM (K, q) =

∥∥∥M(q)− M̂K(q)
∥∥∥
L2(Ω,D)

‖M(q)‖
L2(Ω,D)

, (27)

where
‖U‖2

L2(Ω,D)

.
= E [(U,U)X ] . (28)

The error εM (K, q) integrates both the truncation error in approximating M with MK , and the subse-
quent projection error of MK into the space of reference modes φrk. The error εM is estimated by means of
Monte Carlo sampling where realizations of M are generated given q; these realizations are projected on the
K-dimensional dominant space of C(q) in order to compute the coordinates ηk (see Eq. (13)) which are trans-
formed using Eq. (21) to obtain the corresponding realizations of M̂K . Observe also that ‖M(q)‖

L2(Ω,D)
= σf .

Finally, the local (squared) error ε2M (K, q) can be averaged over q to yield the averaged error, which we
denote EM (K).

The mean square error EM (K) is shown in the left plot of Figure 3. Plotted are curves for different
reference bases: using Cr = C(lr) with selected correlation lengths lr within [0.1, 1.0], and the q-averaged
covariance function C. A first comment from these curves is that the error decreases as K increases as
expected. However, for lr > 0.1, the error EM (K) stagnates as K increases when using Cr = C(lr). The
stagnation occurs at lower K when lr increases. This stagnation can be explained from the spectra reported
in Figure 2 which shows that when using lr > 0.1 the magnitude of λrk quickly decays with k to zero machine
precision, such that subsequent modes are not correctly estimated and cannot provide a suitable projection
basis. To further illustrate the effect of finite numerical accuracy, we provide in Figure 4 plots of eigen-
functions φk(x, l) for selected k and (x, l) ∈ D× [0.1, 1]. It is seen that for k = 1, 4 and 7, the dependence on
l of the numerical eigen-functions is smooth. In contrast, for k = 10 (resp. 13 and 19) the computed eigen-
functions are seen to be noisy for l & 0.9 (resp. l & 0.5 and 0.25) because of finite numerical accuracy. Clearly,
this indicates that under-resolved modes could be disregarded and that the reference basis should include
only modes with indices k such that λrk/λ

r
1 remains in achievable accuracy (≈ 10−16 for double precision).

To keep the analysis simple, and because our approach is in fact robust to under-resolved modes, we continue
in the following to compare for the same K the different choices of reference covariance functions. Note also
that for the reference basis using the shortest correlation length, lr = 0.1, and the q-averaged covariance,
this numerical issue has not yet emerged for the range of considered K, and the corresponding errors decay
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monotonically up to K = 25. In addition, it is seen that the error curve corresponding to the q-averaged
reference covariance function C has the lowest approximation error EM (K) for all K. This is not a surprise
since by construction this choice uses eigen-functions φrk spanning the optimal subspace to represent M(ω, q)
when q varies with law pq(q). In fact, finding the K-term expansion minimizing the q-averaged mean square
error approximation of M ∼ GP(0, C(q)) amounts precisely to the decomposition of C. In other words, if
using the K dominant eigen-modes of Cr = C to construct the reference basis is non optimal to represent
M(q) for any value q (obviously for each q the optimal choice is the eigen-modes of C(q)), there is no better
choice on average over q.
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Figure 3: (Left) Error EM (K) in approximating the Gaussian Process M by M̂K for different reference covariance functions
based on selected correlation lengths lr as indicated. Also plotted are results obtained with C. (Right) Relative error εM (K =
15, l) for the same cases as in the left plot.

To better appreciate the behavior of the error with the hyper-parameter l in the present example, the
right plot in Figure 3 reports the evolution of εM (K, l) for K = 15, using the same reference covariance
functions considered previously. It is seen that for all reference covariance functions, the error εM (K = 15, l)
increases when l decreases, reflecting the increasing truncation error for K = 15 when M involves smaller
features. However, different behaviors are reported depending on the choice of Cr when l increases. When
using Cr = C(lr) with lr ≥ 0.3, the error converges to machine precision when l & lr, meaning that in this
situation the 15-dimensional reference subspace span {φrk = φk(lr), k = 1, . . . ,K} essentially encompasses the
15-dimensional dominant subspace of C(l & lr). Further, this behavior highlights the robustness of the change
of coordinates, even for situations where finite numerical accuracy prevents the correct determination of the
whole set of eigen-functions. On the contrary, the choice C(lr) with lr ≤ 0.2, while yielding a lower error at
small correlation length l . lr, exhibits a stagnating error for l & lr, denoting that the corresponding K = 15-
dimensional reference subspace is not rich enough to encompass the dominant subspaces at larger correlation
lengths. Roughly speaking, the reference eigen-functions are too oscillating to properly represent processes
with long-range correlations. Finally, the selection of C for the reference covariance function provides the
best compromise, by construction, maintaining a maximum error εM (K = 15, l) less than 10−2 over the
whole range of l.

4 Polynomial Chaos Surrogate

A suitable Polynomial Chaos (PC) expansion for the model predictions is constructed to accelerate the
Bayesian inference process. In Section 4.1 we briefly review the PC methodology and provide some details
regarding the numerical methods used in the examples provided in Section 5. Then, in Section 4.2 we
focus on exploiting the PC surrogates to efficiently handle uncertain hyper-parameter through the change
of coordinates introduced previously in Section 3.3. Finally, Section 4.3 provides a brief analysis of the PC
surrogate error.

9



0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 7

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 13

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

l

K = 19

Figure 4: Dependence of eigen-functions φk(q) with the length-scale hyper-parameter l and selected k as indicated.

4.1 Polynomial Chaos expansion

Polynomial Chaos (PC) is a probabilistic methodology that expresses the dependencies of a model solution
on some uncertain model inputs, through a truncated spectral polynomial expansion [22, 11]. Let U ∈ Y be
solution of a mathematical model L (e.g. Partial Differential Equations), formally expressed as LU = 0. We
are interested in situations where the model L is uncertain and parametrized with a finite set of independent
second-order random variables ξ = (ξ1, ..., ξN ) with known probability distribution. For simplicity, we shall
restrict ourselves to the case of i.i.d. standard Gaussian random variables ξi, and will denote pξ the density
function of ξ, and L2(pξ) the space of second order random functionals in ξ, that is

v(ξ) ∈ L2(pξ)⇔
˙

|v(ξ)|2pξ(ξ)dξ <∞. (29)

Since the model depends on ξ, its solution is also generally dependent on ξ and satisfies

L(ξ)U(ξ) = 0, a.s. (30)

Let {Ψα, α ∈ N} be a complete orthonormal set of L2(pξ), such that the model solution has an expansion of
the form

U(ξ) =
∑

α∈N
UαΨα(ξ), 〈Ψα,Ψβ〉 .=

˙
Ψα(ξ)Ψβ(ξ)pξ(ξ)dξ = δα,β , (31)

where the equality stands in the mean square sense and the expansion coefficients Uα ∈ Y are called the
stochastic modes of U . A classical choice for the random functionals Ψα are orthonormal multi-variate
polynomials in ξ, leading to the so-called PC expansion of U(ξ). The ξi being standard Gaussian random
variables, the Ψα are in fact normalized multi-variate Hermite polynomials [27]. For practical purposes, the
PC expansion of U(ξ) needs to be truncated. When the basis is truncated to total order o the total number of
terms in the PC expansion is given by P+1 = (N+o)!/(N !o!) and therefore increases exponentially fast with
both the expansion order o and the number N of random variables ξi. The series expansion approximating
U(ξ) is then finite and will be denoted Ũ(ξ) in the following:

U(ξ) ≈ Ũ(ξ)
.
=

P∑

α=0

UαΨα(ξ). (32)
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The existence and convergence of this series is asserted by the Cameron-Martin theorem [28] with the
condition of U having a finite variance. The rate of convergence, and hence the number of terms in the
series, depends on the smoothness of U with respect to ξ. The series converges spectrally fast with P when
U is infinitely smooth.

Various methods have been proposed for the determination of the PC coefficients Uα. They can be
distinguished into the Non-intrusive and Galerkin methods. Non-intrusive methods rely on an ensemble
of deterministic model evaluations of U(ξ), for particular realizations of ξ selected either at random or
deterministically. Non-Intrusive methods include Non-Intrusive Spectral and Pseudo-Spectral Projection [29,
30, 31], Least-Square-Fit and regularized variants [32, 33, 34], Collocation (interpolation) methods [35, 36,
37], that are often combined with Sparse-Grid algorithms to reduce computational complexity.

In the present paper, we instead rely on the Galerkin projection method [22, 11] for which the expansion
coefficients Uα are defined through a reformulation of the model Eq. (30), using a weak form at the stochastic
level. Specifically, Eq. (30) is projected on the PC basis, a procedure resulting in a set of P + 1 coupled
problems, 〈

L(ξ)

P∑

α=0

UαΨα(ξ),Ψβ(ξ)

〉
= 0, β = 0, . . . , P. (33)

Numerical algorithms have been proposed to efficiently solve this set of coupled problems, both in the case
of linear operators L(ξ) (see e.g. [38] for elliptic and parabolic problems) and non-linear operators (see e.g.
[39, 40] and references in [11]).

4.2 PC surrogate for a parametrized covariance

Returning to the inference problem, we now want to construct a global PC surrogate for the model
predictions, that accounts both for randomness ofMK , through its random coordinates η, and the uncertainty
in its covariance function, through the random hyper-parameter vector q. We assume that the model problem
amounts to solving for U a model depending on MK . Using the notations above, it is written formally as

L(η, q)U(η, q) = 0. (34)

The previous equation has motivated the idea of expanding the dependence of U with respect to the random
vectors η and q on a PC basis [12, 14], that is using U(η, q) ≈∑α UαΨα(η, q). In the following, we consider
an alternative approach, taking advantage of the change of coordinates discussed in Section 3. The change
of coordinates allows us to approximate MK(q) on the fixed reference basis of KL modes {φrk, k = 0, . . . ,K},
through the linear mapping η 7→ η̂(q) = B(q)η. Eq. (25) provides the density of η̂ conditioned on q. The
model problem can therefore be recast as

L(η̂)U(η̂) = 0, where η̂ ∼ pη̂(η̂|q). (35)

The last expression shows that we only need to construct an approximation of the mapping η̂ 7→ U(η̂)
which is accurate enough with respect to the conditional density pη̂(η̂|q) when q varies. To get rid of the
q-dependence of the conditional density, we can consider averaging pη̂ over q. In the case of the reference
covariance function Cr = C, it can be shown that

˙
pη̂(η̂|q)pq(q)dq =

1√
2πK |Λ2|

exp

[
− η̂

t(Λ2)−1η̂

2

]
, (36)

where Λ2 = diag (λr1, . . . , λ
r
K). In other words, the q-marginal of the conditional density yields independent

Gaussian random variables. This suggests constructing an approximate mapping of η̂ 7→ U , solving the
model problem for a reference Gaussian field defined as

M̂PC
K (ξ) =

K∑

k=1

√
λrkφ

r
kξk, (37)
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where the ξk’s are independent standard Gaussian random variables. It corresponds to a reference model
problem L̂(ξ) based on the reference Gaussian process M̂PC

K (ξ). As before, we denote Ũ(ξ) the PC approx-

imation of the reference model problem L̂(ξ)U(ξ) = 0. From this PC approximation, we can approximate
the model problem solution for couples (η, q) through

U(η, q) ≈ Ũ(ξ(η, q)) =

P∑

α=0

UαΨα(ξ(η, q)), ξ(η, q) = B̂(q)η, (38)

where the q-dependent matrix B̂(q) expresses the change of coordinates (η, q) 7→ ξ(η, q). Based on Eq. (37),
we propose to use

B̂kl(q) =





Bkl(q)√
λrk

, λrk/λ
r
1 > κ,

0, otherwise,

(39)

where κ > 0 is a small constant related to the numerical accuracy (typically κ ∼ 10−12) introduced to
avoid ill-definition of the ξk’s associated to negligibly small λrk. The κ-thresholding leads to transformed
coordinates ξ(η, q) where the first KPC(κ) components are non trivial, with KPC(κ) ≤ K. Note that the
number of non-trivial components of ξ only depends on the reference covariance, Cr, and not on q. Also, the
PC construction of Ũ(ξ) can in fact be reduced, considering M̂PC

KPC(κ) instead of M̂PC
K , with computational

complexity reduction as a result when KPC < K. However, we shall continue to report results as a function
of K for simplicity.

When the reference covariance Cr is not the q-averaged of C(q), the q-marginal conditional density pη̂
remains Gaussian but introduces correlations between components. These correlations can be dealt with by
introducing an additional change of basis in order to redefine a reference Gaussian process M̂PC

K in terms of
independent standard Gaussian random variables ξk’s. In that case, Eq. (39) must be accordingly modified
to account for the additional change of coordinates. Alternatively, when using Cr = C(qr), we can continue
to define the reference Gaussian process M̂PC

K by Eq. (37), which corresponds to solving the uncertain model
problem assuming that η̂ has for density pη̂ conditioned on q = qr. Although simpler, the approach is
expected to yield a higher approximation error on average (over q), as explained below.

4.3 Example

We consider the following model-problem consisting in the 1D transient diffusion equation,

∂U

∂t
=

∂

∂x

(
ν
∂U

∂x

)
, (40)

where the diffusivity ν is a stochastic field. Eq. (40) is solved for t ∈ [0, T ], in the unit domain D = [0, 1],
and with deterministic boundary conditions U(x = 0, t) = −1, U(x = 1, t) = 1, and homogeneous initial
condition U(x, t = 0) = 0. We consider a log-normal stochastic diffusivity field of the form,

ν = ν0 + exp(M), (41)

M is a (centered) Gaussian process with uncertain covariance function C(q). With ν0 > 0 the diffusivity
is bounded away from 0 which ensures the well-posedness of the problem. In the computations we set
ν0 = 0.1. In addition, we re-use the settings of Section 3.4 with Gaussian covariance function having an
uncertain length-scale l with uniform distribution in [0.1, 1] and fixed variance σ2

f = 0.5. For the solution
of Eq. (40) we use a classical P1-finite element method (continuous piecewise linear approximation) for the
spatial discretization, with a second order implicit time-integration scheme.

To investigate the error introduced by approximating M 7→ U by the PC map M̂K 7→ Ũ , we define the
following error measures on the model problem solution. We first define the relative local error εU (o,K, q)
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as

ε2U (o,K, q)
.
=
‖U(M(q))− Ũ(ξ(·, q))‖2L2(Ω,Y )

‖U(M(q))‖2L2(Ω,Y )

, (42)

where

‖V ‖2L2(Ω,Y ) = E

[ˆ T

0

‖V (x, t)‖2L2(D)dt

]
. (43)

This error measure incorporates the effects of several approximations: the approximation of M(q) on the
K-dimensional reference subspace, the truncation of the PC expansion to finite order o, and the spatial
and time discretization errors inherent in the numerical resolution of the model problem. Because the PC
surrogate will be used in place of solving numerically the model problem (given η and q), we should not be
concerned with the spatial and time discretization errors, and rather use for U(M(q)) its discrete counterpart,
provided that the same spatial and time discretizations are used. For the tests presented in this section,
we use a uniform mesh with 56 elements and a fixed time-step ∆t = 10−4. These discretization parameters
were selected to ensure that the error measurements reported below are dominated by the K and o-order
truncation effects. Doing so, the local error ε2U can be estimated by means of Monte Carlo average proceeding
as follows. For a sample of q, a) we generate a sample of the Gaussian process M(q) on the finite-element
mesh and solve the corresponding deterministic diffusion problem for the sample of U(M(q)); b) we project
M(q) on the KL subspace, to obtain the KL coordinates η which are further translated to ξ(η, q), and the
PC approximation Ũ(ξ) is evaluated (see Eqs. 38-39); c) we compute ‖U(M(q)) − Ũ(ξ)‖2L2(D×T ) for the
sample. Further, we set T = 0.05 in order to focus the error measure in the transient period.

Similarly, the local error can be q-averaged to yield the relative global error counterpart:

E2
U (o,K)

.
=

¯
‖U(M(q))− Ũ(ξ(·, q))‖2L2(Ω,Y )pq(q)dq¯

‖U(M(q))‖2L2(Ω,Y )pq(q)dq
. (44)

Figure 5 reports the global error for the present test problem. The left plot depicts EU (o,K) as a function
of K and for a PC order o = 10. Errors are shown for same selection of reference covariance functions Cr
used in Section 3.4. We observe that for all the selected reference covariance functions, the global error on
U stagnates for K & 9. This indicates that the PC truncation becomes the dominant source of error for
K & 9. It is also seen that for all K shown, the error is the lowest when using C for reference covariance, as
expected.

Further, when using C(qr) as reference covariance function, the dependence of the global error on the
reference length-scale lr is non monotonic, but presents a minimum around lr = 0.4. This minimum can be
explained by the competition of two effects. On the one hand, we have seen that increasing lr causes an
increase in the approximation error of M , which translates in a larger approximation error on U . On the
other hand, it can be shown that the lower lr the more the q-marginal of pη̂ departs from the K-variates

standard Gaussian distribution assumed for the construction of Ũ , with increasing averaged approximation
error on U as a result. The right plot of Figure 5 also depicts the global error, but now for a fixed number
of KL modes, K = 15, and increasing PC order o ∈ [2, 10]. Again, curves are shown for the different
reference covariance functions. Similarly to the previous results, the global error is seen to stagnate for
o & 8, indicating here that for larger o the KL truncation error is dominant. In addition, for all shown o,
using C for reference covariance function appears to be superior to the choices C(lr), while the later choice
again exhibits a non-monotonic dependence of the error with respect to lr.

Figure 6 presents in the left plot the normalized local error εU (o,K, l) for the case of K = 15 and PC
order o = 10. As mentioned previously, the local error combines the effects of approximating M by M̂K ,
which has been reported in the right plot of Figure 3, and the PC truncation error. Focusing first on the
cases where C(qr) is used as reference covariance, we observe a more complex behavior of the local error
with l, depending on the selected reference length-scale lr. Specifically, the local error at some l is always
the lowest for the reference length-scale lr the closest to l. This is expected, as using lr is the optimal choice,
given K and o, to achieve the lower error at l = lr. For Cr = C, which ensures by construction the best
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Figure 5: Global error EU (o,K) of the PC approximation Ũ of the diffusion model problem solution. (Left) The plot shows the
dependence of the error with K using a PC order o = 10. (Right) The plot is for different o and K = 15. The curves correspond
to different definitions of the reference covariance function Cr = C(lr) with lr as indicated or the q-averaged covariance function
C.

compromise over the q-range, the local error remains below 2% over the whole range of hyper-parameters.
Further, using lr > 0.2, the local error first monotonically decreases with l and then stagnates (except for
lr = 1 where stagnation is not achieved).

Contrary to the local approximation error on M , the stagnation with l → 1 occurs at an error level
that strongly depends on lr. This seems surprising as we have seen (right plot of Figure 3) that for lr >
0.2 the approximation error on the process goes to zero as l → 1, such that we could have expected an
essentially constant local error εU for 0.2 < lr . l, depending only on the PC expansion order o. But
one has to take into account the mapping from η to ξ to understand the behavior of the local error.
Specifically, the PC approximation is constructed to minimize the approximation error for the reference
model problem based on M̂PC

K (or KPC(κ)) in Eq. (37), where the ξk’s are independent standard random
variables. Therefore, the PC approximation aims at minimizing the error with respect to the standard K-
variates Gaussian measure. When querying the PC approximation for some specific hyper-parameters value
q 6= qr, ξ follows a conditional Gaussian distribution pξ(ξ|q), induced by the transformation ξ = B̂(q)η.
In general, this conditional distribution differs from the standard Gaussian one, affecting the quality of the
approximation depending on q. To get better insight into this effect, we remark that the conditional density
pξ(ξ|q) is centered and Gaussian with covariance structure Σ2

ξ(q) = B̂t(q)B̂(q).
To measure the departure from the standard Gaussian multi-variates case, we present in the right plot

of Figure 6 the largest eigen-value βmax(q) of Σ2
ξ(q), as a function of q = {l} and for the different reference

covariance functions.
√
βmax measures of highest stretching rate induced by B̂. For the results reported

in Figure 6, we used a thresholding parameter κ = 10−12 in the definition of B̂(q). It is seen that when
using C(lr) for reference,

√
βmax(l) increases exponentially fast with lr − l > 0, denoting a more and more

stretched distribution for ξ(η, l), along some direction, as l decreases. Interestingly, although the maximal
stretching rate can reach values as high as 106, its impact on the PC approximation error is clearly much less
important. The reason for the moderate sensitivity to coordinates stretching of the PC approximation error
is that most of the stretching occurs along the directions associated with the lowest eigen-values λrk, which
have low to insignificant impacts on the model problem solution. In fact, our numerical experiments have
demonstrated that the PC approximation error is essentially insensitive to κ, provided it is small enough.
Indeed, a fast (exponential) decay of the successive KL modes’ contributions to U is expected for elliptic and
parabolic model problems, as the effects of short-scale fluctuations in the diffusivity field are filtered-out.
However, coordinates stretching may yield robustness issues for other model types. Finally, it is seen that
choosing lr equal to the minimal length-scale (l = 0.1) yields a maximum stretching

√
βmax < 3 which is

controlled over the whole range of l, while the case of C yields a significant stretching (picking to ≈ 10)
around the minimal length-scale, but quickly decays with l and remains close to 1 (see left plot of Figure 6).
These findings confirm the appropriateness of the reference covariance function for the construction of the
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PC surrogate.
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Figure 6: (Left) Local approximation error εU (o,K, l), for o = 10 and K = 15. (Right) (log-scale) and inset (linear-scale):

dependence on l of the maximal stretching rate
√
βmax(l) induced by the coordinate transformation B̂(q). The curves correspond

to different definitions of the reference covariance function Cr = C(lr) with lr as indicated or the q-averaged covariance function
C.

Concerning the PC approximation of the model-problem solution, we would like to stress the following
points. First the approach can be readily extended to alternative and more elaborated PC constructions
methods, including non-intrusive ones; in particular considering adaptive techniques where the set of polyno-
mials used in the PC expansion is determined as to minimize the approximation error, instead of proceeding
from PC basis with uniform truncation order o, would clearly be beneficial, especially for problems involving
high numbers of KL modes K and requiring high polynomial order along certain ξk’s and not others. Sec-
ond, the numerical tests have focused on length-scale uncertainty only, which is indeed the hardest source
of uncertainty as it affects both the magnitude and shape of the KL modes. In contrast, uncertainty in the
process variance σ2

f in the Gaussian covariance family only manifests itself in the magnitude of the eigen-

values. Therefore, uncertainty in the pre-exponential factor σ2
f of the Gaussian covariance can be handled

through either an additional dimension to the PC expansion, as performed in [12, 14], or directly through
our proposed change of coordinates approach based on the reference C, which amounts to take the averaged
variance as the reference one. Similar to the problem for uncertain length-scale l, numerical tests (not shown)
have demonstrated that the q-averaged definition of C leads to globally lower errors in presence of variance
uncertainty, compared to a definition of the reference based on some qr. This has motivated the use of the
q-averaged definition of the reference covariance function in the remainder of the paper.

Finally, the PC expansion of the full model-problem solution has been considered here; there may be other
situations were expansion of the full model-problem solution is not necessary. For instance, if the nature
of the observations are known prior to constructing the PC expansion, the direct expansion of the model
predictions u(ξ) could be considered. If in addition the measurements have been performed, considering the

direct PC expansion of the measurements to model-predictions discrepancy, ∆d(ξ) =
∑No
i=1 |di − ui(ξ)|2 (in

the case of identically distributed additive noise) could be advantageous.

5 Application examples

In this section, we illustrate the benefit of considering prior Gaussian fields with parametrized covariance
function in the inference of the diffusivity field in the transient diffusion problem introduced in Section 4.3.
We first present in Section 5.1 the inference problem, and introduce 3 cases that will serve to investigate the
proposed method. We also provide details on the exploitation the PC surrogate constructed in Section 4,
and on the PC accelerated formulation of the inference problem. For comparison purposes, we first solve
in Section 5.2 the Bayesian inference problem for a fixed covariance prior, that is without inferring the
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covariance hyper-parameters, using instead preassigned values. Then, in Section 5.3, we considered the
inference with hyper-parameters covariance and illustrate its advantage and behavior with respect to noise
level, number of observations and surrogate polynomial order.

5.1 Set-up of the inference problem

The proposed method will be illustrated for the inference of a log-diffusivity field, using the transient
diffusion model problem corresponding to Eq. (40). To test the proposed method we consider three different
log-diffusivity fields m(x) = log(ν − ν0), to be inferred:

• Sinusoidal profile: msin(x) = sin(2πx),

• Step function: mstep(x) =

{
−1/2, x < 0.5

1/2, x ≥ 0.5
,

• Random profile: mran(x) drawn at random from GP(0, C) where C is the Gaussian covariance with
length-scale l = 0.25 and variance σ2

f = 0.65.

The inferences are performed on sets of data, {di, i = 1, . . . , No}, consisting of noisy measurements of
the solution to the diffusion equation for the three profiles. The measurements are taken at a set of nx
spatial locations xi uniformly distributed inside D = (0, 1), and for nt times ti uniformly distributed in
(0, T ). The total number of observations is then No = nx×nt. The observations are synthetically generated
by perturbing the respective model solutions for the 3 fields tested with a measurement noise εi randomly
and independently drawn from the Gaussian distribution N (0, σ2

ε ). To avoid the so-called inverse crime [41],
the solutions used to generate the observations are computed with a significantly finer spatial and temporal
discretization than for the construction of the PC approximation. Unless otherwise specified, we use nx = 19,
nt = 13 (so No = 247), with T = 0.05 and a Gaussian noise with σ2

ε = 0.01. Figure 7 depicts the location of
the observation points and the solution of the diffusion equation for msin at the different observation times.
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Figure 7: Illustration of inference problem for msin. Plotted are the nx = 19 observation points and the solution of the diffusion
equation with profile msin at the nt observation times.

For the inference, we consider in all cases the Gaussian prior M ∼ GP(0, C(q)), where the covariance
function C(q) has hyper-parameter q = {l, σ2

f}. The prior is then fully characterized once we have selected
the prior of the hyper-parameters. We choose a uniform prior for l over the range [lmin, lmax], with as
previously lmin = 0.1 and lmax = 1, and an inverse Gamma prior [42, 43, 44] for σ2

f with parameters α = 3

and β = 1. The prior of σ2
f thus has a long-tailed distribution with mean value β/(α− 1) = 0.5 and variance

β2/(α − 1)2(α − 2) = 0.25. Note that the existence of the first moment of σ2
f is enough to ensure the

existence of the average covariance function, and that M(η, q) ∈ L2(D, pη, pq) (because the modes in its KL

decomposition scales with
√
σ2
f ). In contrast, expanding the diffusion equation solution with respect to both
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the KL coordinates η and hyper-parameter q (as proposed in [12, 14]) could be problematic since, to our
knowledge, there is no standard orthogonal polynomial family for the inverse Gamma distribution function
and the solution U may not have second moment (exp(

√
(y)) with y ∼ InvΓ(3, 1) has unbounded second

moment). Using the notation of Section 2, the prior of q is then

pq(q) = pq(l, σ
2
f ) =





1

|lmin − lmax|Γ(3)
(σ2
f )−4 exp

(
− 1

σ2
f

)
, l ∈ [lmin, lmax], σ2

f > 0

0, otherwise.

(45)

As for the noise hyper-parameter, we use the uninformative, improper, Jeffrey’s prior

po(σ
2
o) ∝ 1

σ2
o

. (46)

Having specified all priors, the determination of the Bayesian posterior p(η, q, σ2
o |d) requires the eval-

uation of the likelihood of the data d given (η, q, σ2
o). Instead of following the computational flow-chart

presented in Figure 1, which would require the solution of a deterministic model problem for each new
sample of (η, q), we rely on coordinate transformation and PC approximation as introduced in the previ-
ous sections. Following the findings of the previous section, the reference model problem is based on the
stochastic process M̂PC

K corresponding to the q-averaged covariance function C, whose KL decomposition is
truncated to the first K = 15 dominant modes. Solving this reference problem, we obtain the approximation
Ũ(ξ) =

∑P
α=0 UαΨα(ξ) of the reference model problem solution U(ξ). Unless stated otherwise we use in

the following results a PC order o = 10 with a spatial discretization involving 56 finite elements. From
the approximate solution Ũ , we can extract the PC approximations of the model predictions, ũ(ξ), whose
components are

ũi(ξ) = Ũ(xi, ti, ξ) =

P∑

α=0

Uα(xi, ti)Ψα(ξ), i = 1, . . . , No. (47)

This constitutes the offline step of the proposed PC-accelerated sampler. Once the PC approximation has
been determined, one can use ũ(ξ(η, q)) as a surrogate of the model predictions u(η, q) in the (online)
computation of the likelihood:

p(d|η, q, σ2
o) ≈ p̃(d|η, q, σ2

o)
.
=

No∏

i=1

pε(di − ũi(ξ(η, q)), σ2
o), (48)

where ξ(η, q) is given by Eq. (38) and pε is defined in Eq. (3). For the actual definition of the coordinate
transformation B̂(q) in Eq. (39), we set κ = 0 since λrk≤15/λ

r
1 remains large enough for the present settings.

Finally, multiplying by the hyper-parameter priors and prior of η, one obtains (up to a constant normalization
factor) the approximation p̃(η, q, σ2

o |d) of the posterior distribution. The computational structure for the
change of coordinates method and PC acceleration is schematically illustrated in Figure 8, distinguishing
between offline and online steps. The online step is imbedded in an adaptive Metropolis-Hasting algorithm
to generate samples of (η, q, σ2

o) following the posterior density.

5.2 Inference with fixed covariance parameters

For comparison purposes, the Bayesian inference problems are first solved for the case of Gaussian prior
covariance function having pre-assigned parameters l = 0.5 and σ2

f = 0.5. The problem therefore consists

in inferring only the 15 coordinates η and the noise hyper-parameter σ2
o . Note that in this case B̂ is the

identity, as the PC approximation is based on the prior process with pre-assigned covariance function.
A total number of 2.5× 105 MCMC steps were deemed necessary for the pre-assigned hyper-parameters

case to properly explore the posterior. The resulting chain of the KL coordinates were observed to be
well-mixed (not shown). The marginal posteriors, estimated using a standard Kernel Density Estimation
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Figure 8: O✏ine step (surrogate construction) of the accelerated MCMC sampler and Online step of the PC
surrogate based evaluation of the posterior.

5.2 Inference with fixed covariance parameters

For comparison purposes, the Bayesian inference problems are first solved for the case

of Gaussian prior covariance function having pre-assigned parameters l = 0.5 and �2
f = 0.5.

The problem therefore consists in inferring only the 15 coordinates ⌘ and the noise hyper-

parameter �2
o . Note that in this case B̂ is the identity, as the PC approximation is based on

the prior process with pre-assigned covariance function.

A total number of 2.5 ⇥ 105 MCMC steps were deemed necessary for the pre-assigned

hyper-parameters case to properly explore the posterior. The resulting chain of the KL co-

ordinates were observed to be well-mixed (not shown). The marginal posteriors, estimated

using a standard Kernel Density Estimation (KDE) method [45, 46], of the first 8 KL coor-

dinates for the inference of msin are shown in Figure 9. These posteriors are compared with

their respective priors (standard Gaussian distributions). We notice that only the first 4

30

Figure 8: Offline step (surrogate construction) of the accelerated MCMC sampler and Online step of the PC surrogate based
evaluation of the posterior.

(KDE) method [45, 46], of the first 8 KL coordinates for the inference of msin are shown in Figure 9. These
posteriors are compared with their respective priors (standard Gaussian distributions). We notice that only
the first 4 coordinates ηk show significant improvement in their posterior distributions. This improvement
can be quantified using the Kullback-Leibler Divergence (KLD) which is a statistical measure that quantifies
the distance between two probability distributions p and q [47], defined according to:

KLD(p, q) =

ˆ ∞
−∞

p(x) ln
p(x)

q(x)
dx (49)

Here we calculate the KLD between the prior and the (marginal) posterior of each KL coefficient ηk. The
KLD is indicated on top of each plot and quantifies the information gain from the observations, which is
found significant only for the first 4 KL coordinates. Figure 9 also shows the posterior of the noise variance
hyper-parameter (bottom right plot), σ2

o , which exhibits a Maximum A Posteriori (MAP) value close to the
value used to generate the data, σ2

ε = 0.01. The similar findings are reported for the inferences of mstep and
mran (results not shown for brevity).

To better analyze the quality of the inferred fields, we report in Figure 10, for the 3 test cases, the median,
5% and 95% quantiles values of the posteriors of the inferred field m(x). These statistical characterizations
of m are also compared with the true profiles. For the inference of msin we notice that the 5% to 95%
quantiles range does not contain the true profile for a large set of x. This mismatch can be attributed to the
pre-assigned hyper-parameter values that are not suitable. The same observation can be made for the case
of mran. In contrast, mstep is nearly everywhere within the 5%-95% quantiles range of the inferred profile
m.
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Figure 9: Comparison of the priors and (marginal) posteriors of the first 8 KL coordinates ηk and noise hyper-parameter σ2
o

(posterior only) for the inference of msin without using covariance hyper-parameters (a Gaussian covariance with l = 0.5 and
σ2
f = 0.5 is assumed). The corresponding Kullback-Leibler Divergences (KLD) for the KL coordinates are also indicated on top

of each plot.

5.3 Inference with covariance hyper-parameters

Next, we repeat the previous inference problems but considering now the covariance hyper-parameters l
and σ2

f in addition to the 15 KL modes and observation noise σ2
o . For the sampling of the posterior, a total

of 2.5 × 105 MCMC steps was found also necessary to satisfactorily estimate the posterior statistics, same
as for the case with pre-assigned parameters. The chains of all KL coordinates and hyper-parameters were
observed to be well-mixed as illustrated in Figure 11.

The marginal posteriors of the first 8 KL coordinates ηk for msin are shown in Figure 12 together with
their respective priors. The KLD values are also indicated on top of the plots. The results show a significant
information gain for the first 7 KL coordinates, in contrast to only the first 4 KL coordinates when using
pre-assigned parameters. In the same figure we show the marginal of the observation noise. The latter
posterior has a MAP close to σ2

o = 0.01, corresponding to the value used to generate the observations.
Similar conclusions can be made for the cases of mstep,ran (results not shown for brevity).

The pdfs of the posterior of the hyper-parameters are shown in Figures 13 and compared with their priors
for msin. The results show a significant difference between the prior and posterior of the covariance length
scales l, with a MAP around l = 0.2, while the posterior probability of l > 0.4 is essentially zero. On the
contrary, the posterior of the covariance variance σ2

f has a similar structure to that of its prior, with a shift
of the expected (and MAP) value toward higher values.

5.3.1 Comparison with the inferences with and without hyper-parameters

To better appreciate the improvement resulting from the introduction of the covariance hyper-parameters,
we first provide a comparison of the inferred median profiles, obtained by inferring covariance hyper-
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right). The inferences use a fixed Gaussian covariance function with l = 0.5 and σ2
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Figure 11: Illustration of the chain generated by MCMC using PC surrogate and coordinate transformation: successive samples
of (Left) few KL coordinates and (Right) hyper-parameters q. Case of the inference of msin.

parameters or by using pre-assigned values. The median profiles for all three cases are plotted in Figure 14,
which also depicts the true profiles. It is seen that introducing the covariance hyper-parameter significantly
reduces the distance between the median and true profiles in the smooth cases (msin and mran), while having
no significant impact on the inference of the piecewise constant profile mstep. This behavior can be explained
by the family of Gaussian processes considered, which is not well-suited for the inference of mstep, and so
the introduction of hyper-parameters does not help improving the inference.

Second, the median, mean, MAP, 5% and 95% quantiles of the inferred log-diffusivity profiles are plotted
in Figure 15 and compared with the respective true profiles msin,step,ran. These plots should be contrasted
with the results shown in Figure 10, obtained with pre-assigned covariance. Consistent with the previous
observations on the medians, we observe that in the case of the discontinuous profile, mstep, the inference
of the hyper-parameters only affects slightly the 5% and 95% quantiles. On the contrary, for the smooth
profiles msin,ran the 5% and 95% quantiles bounds now contain the true profiles for nearly every x. This
significant improvement is due partly to the better agreement between the true and median profiles, but
also to a generally higher variability in the posterior when considering the hyper-parameters in the inference
process. In other words, the inference of the covariance hyper-parameters appears to yield a more flexible
approach than when using a fixed covariance assumption.

5.3.2 Effects of measurement noise and number of observations

To investigate the impact of the observations on the inference processes, with or without covariance hyper-
parameters, we repeat the previous inference problems for different noise level σ2

ε in the observations and
different number of spatial locations nx. The results are reported in Figure 16 in terms of median profiles, for
the three test profiles msin,step,ran (from left to right) and the inference without (top row) and with covariance
hyper-parameters (bottom row). As expected, the plots indicate an improvement of the inferred (median)

20



−6 −4 −2 0 2 4 6
0

0.5

1

1.5

η
1

p
d
f

KLD = 12.14

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

η
2

p
d
f

KLD = 53.62

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

η
3

p
d
f

KLD = 21.82

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

η
4

p
d
f

KLD = 36.91

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

η
5

p
d
f

KLD = 15.81

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

η
6

p
d
f

KLD = 3.82

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

η
7

p
d
f

KLD = 3.46

 

 

Prior
Posterior

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

η
8

p
d
f

KLD = 0.24

 

 

Prior
Posterior

0.006 0.008 0.01 0.012 0.014
0

100

200

300

400

500

σ
o

2

p
d
f

 

 

Posterior

Figure 12: Comparison of the priors and (marginal) posteriors of the first 8 KL coordinates ηk and noise hyper-parameter σ2
o

(posterior only) for the inference of msin with covariance hyper-parameters. The corresponding Kullback-Leibler Divergences
(KLD) for the KL coordinates are also indicated on top of each plot.

profiles when the noise level is lowered, and when the number of observation increases. The improvements
are more significant in the cases of the smooth profiles (msin,ran) than for the discontinuous one (mstep), a
result consistent with the previous observations. In addition, for the smooth cases, the improvements carried
by the introduction of the covariance hyper-parameters in the inference problem is seen to not only yield
median profiles closer to the true ones, but also to significantly accelerate the convergence to the truth.
The improvement of the convergence rate would require additional numerical experiments to be precisely
measured, but it can already be safely asserted that more information is gained from the observations when
considering the covariance hyper-parameters in the inference.

5.3.3 Convergence with the PC surrogate order

Finally, we illustrate in Figure 17 the dependence of the inferred median profiles on the selected order o
for the PC surrogate model. The figure shows that, irrespective to the smoothness of the true profile, the
inferred medians quickly converge as o increases, demonstrating that the L2 convergence of the PC surrogate
with coordinate transformation reported in Section 4.3 transfers to the inference problem. In fact, in view
of the convergence curves shown in Figure 5, the differences in the inferred median profiles for o = 8 and
o = 10 are more likely to come from sampling errors than from differences in the PC surrogates.

6 Discussion and Conclusion

This paper presented a Bayesian approach to infer a parameter field from prior GP having a covariance
function involving some hyper-parameters q. The main contribution of the present work is the introduction
of a coordinate transformation in order to represent the prior GP using a unique reference basis of spatial

21



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

l

p
d

f

KLD = 780.77

 

 

Prior
Posterior

0 1 2 3
0

0.5

1

1.5

2

2.5
KLD = 21.02

σ
2

f

p
d

f

 

 

Prior
Posterior
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Figure 14: Comparison of the true log-diffusivity profiles with corresponding posterior medians for the inference with covariance
hyper-parameters and preassigned covariance. Cases of msin, mstep and mran from left to right.

modes, while the effects of the covariance hyper-parameters is reflected by the (joint) prior probability
density function of the random coordinates of the GP that becomes conditioned on q. The coordinate
transformation naturally leads to the construction of a unique polynomial surrogate for the forward model
predictions; this surrogate model accounts for the dependence of the model predictions on the coordinates
of the GP in the reference basis. For a Polynomial Chaos approximation, as considered in this paper, the
construction of the surrogate amounts to solving a unique (stochastic) reference problem, assuming the
independence of the GP coordinates. The stochastic dimensionality of the surrogate model is therefore
equal to the dimensionality of the (truncated) GP representation, and is not augmented by the number of
hyper-parameters intervening in the covariance function parametrization. This fact has to be contrasted
with the alternative approaches proposed in [12, 14] where the PC expansion explicitly incorporates the
dependencies on q. Another advantage of selecting a reference problem for the construction of the PC
surrogate, compared to the direct expansion with respect to the covariance hyper-parameters, is that it can
overcome issues related to hyper-parameters with complex distributions, e.g. improper, no second-order
moments, . . . for which classical PC bases may not exist.

The surrogate model can then be substituted for the true model predictions in the definition of the
likelihood of the observations appearing in Bayes’ formula for the posterior of the GP coordinates and
covariance hyper-parameters. The resulting approximate likelihood can in turn be imbedded in a MCMC
sampler to greatly accelerate the sampling of the posterior distribution, with significant computational
savings. In its present form, the proposed method however introduces some overhead during the sampling
stage, compared to other approaches relying on PC acceleration with explicit dependence on q: for any
new proposed values of the hyper-parameters the coordinate transformation must be determined. The
determination of the transformation, given q, requiring the computation of the dominant subspace of the
covariance function (given q) may constitute a severe limitation for large scale problems (for the simplified
problems presented in Section 5, the CPU time of the inference with hyper-parameters was found roughly
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Figure 15: Comparison of the posteriors profiles with the true ones, for the cases of msin, mstep and mran (from left to right).
The inferences use covariance function with hyper-parameters. Shown in each plots are the median, mean, MAP, 5% and 95%
quantiles of the posterior and true profiles.

three time as large as for the case without hyper-parameters). To remedy this point in the future, we plan
to approximate the dependence of the coordinate transformation, B̂, on q using, again, a PC expansion.
As for the construction of the PC surrogate of the model predictions, the approximation of the coordinate
transformation will be computed off-line and subsequently used in-line within the sampler.

The numerical experiments presented in the paper, although based on a simple model, have highlighted
the following points:

• Using for reference basis the truncated set of dominant modes of the q-averaged covariance function
is not only optimal (on average) for the representation of the processes with variable q, but it also
appears as the best choice in terms of averaged error for the PC surrogate of the model prediction in
our example.

• The control of the stretching induced by the coordinate mapping B̂(q) is crucial for the error control;
while using the marginalized conditional density pη̄(η̄|q) appears to be an appropriate choice, other al-
ternatives may be conceived. In particular, augmenting the variability of the reference process MPC

K (ξ)
could improve the robustness of the surrogate PC model.

• The introduction of covariance functions with hyper-parameters clearly improved the inference results
in the problems considered, particularly when inferring smooth profiles. In particular, information
gain was observed for a larger set of coordinates. In addition, when covariance hyper-parameters was
accounted for, the convergence rate of the inferred field with increased number of observations and
reduced observation noise also seemed to improve.

• The convergence with the PC surrogate order seems quite fast for the presented problems, suggesting
to possibility of using moderate PC orders, particularly to balance PC error and posterior sampling
errors.

On the basis of the present findings, we plan for future work to develop the coordinate transformation
approach to further exploit the posterior structure involving the conditional prior probability of the trans-
formed coordinates η̂ and derive samplers adapted to this particular structure. Regarding the construction
of the PC surrogate model, consideration of adaptive constructions would be beneficial to reduce the com-
putational cost of the off-line step, to increase accuracy, and further accelerate the sampler. Further, the PC
approximation of the coordinate transformation appears to be a key element to make the whole approach
effective to handle large scale problems. In addition, the proposed method, in particular the construction
of the PC approximation of the model prediction, would certainly benefit from fitting the procedure to
the posterior distributions (of coordinates and hyper-parameters) rather than to the prior ones, especially
when the observations are informative. Since these posterior distributions are not known a priori, iterative
constructions are needed. Pursuit of these avenues is currently considered on a complex problem arising in
subsurface geological models and earthquake model.
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Figure 16: Effect of observations number and noise. Shown are the medians of the inferred profiles for the three test cases
msin,step,ran (from left to right), and inferences for a pre-assigned covariance function (top row) or with hyper-parameters
(bottom row).
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Figure 17: Effect of PC order o on the inferred median of the posterior: cases of (Left) msin, (Center) mstep and (Right) mran.
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