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Abstract. The elastic and geometric properties of arteries have been long recognized

as important predictors of cardiovascular disease. This work presents a robust

technique for the noninvasive characterization of anisotropic elastic properties as well

as thickness and diameter in arterial vessels. In our approach, guided waves are excited

along arteries using the radiation force of ultrasound. Group velocity is used as the

quantity of interest to reconstruct elastic and geometric features of the vessels. One

of the main contributions of this work is a systematic approach based on sparse-grid

collocation interpolation to construct surrogate models of arteries. These surrogate

models are in turn used with direct-search optimization techniques to produce fast and

accurate estimates of elastic properties, diameter, and thickness. One of the attractive

features of the proposed approach is that once a surrogate model is built, it can be used

for near real-time identification across many different types of arteries. We demonstrate

the feasibility of the method using simulated and in vitro laboratory experiments on

a silicon rubber tube and a porcine carotid artery. Our results show that using our

proposed method, we can reliably identify the longitudinal modulus, thickness, and

diameter of arteries. The circumferential modulus was found to have little influence in

the group velocity, which renders the former quantity unidentifiable using the current

experimental setting. Future work will consider the measurement of circumferential

waves with the objective of improving the identifiability of the circumferential modulus.
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1. Introduction

The elastic properties of arteries have received significant attention in recent years as

they have been identified as independent predictors of cardiovascular health (Blacher

et al. 1998). Moreover, in recent years, geometric quantities such as the intima-media

thickness have been also identified as early indicators of cardiovascular disease (Davis

et al. 1999, Polak et al. 2011). In this regard, noninvasive methods for estimating

material and geometric properties in arteries are of great current interest.

Several methods have been proposed recently for the non-invasive characterization

of elastic modulus in arteries such as measurement of the speed of propagation

of pressure waves (Cockcroft et al. 2005), direct analysis of propagating modes

(Bernal et al. 2011, Zhang et al. 2005, Luo et al. 2012, Konofagou et al. 2011, Luo

et al. 2009, Couade et al. 2010), and inverse problem strategies based on the finite

element method (Rosario et al. 2008), among others. On the other hand, the thickness

of arteries is usually estimated through angiography, which is an invasive procedure,

or from direct measurements in ultrasound images. The latter approach is subject to

operator error and may yield significant variability of results. To the best knowledge

of the authors, methodologies for the simultaneous estimation of elastic properties and

thickness in arteries have yet to be developed.

The main goal of this work is to devise a fast and accurate methodology for the

noninvasive characterization of anisotropic elastic properties, thickness, and diameter

of arteries. To this end, in our approach, arteries are excited with ultrasound radiation

(US) force and the normal particle velocity is measured along the length of the artery.

The material properties and geometry (i.e. thickness and diameter) of the artery are

estimated using an inverse problem solved in a constrained optimization framework. One

of the main theoretical contributions of this work is the construction of surrogate models

of the acoustic-structure interaction system using a sparse grid collocation approach to

accelerate the inversion process. The notion is that once a surrogate is created, it can be

used for the expedient reconstruction of material and geometric properties across many

different arteries.

Numerical optimization approaches are becoming more frequently used for

estimating material properties in biomedical applications (Aguilo et al. 2010, Oberai

et al. 2003, Arridge & Hebden 1997). The main drawback of these approaches is the

computational expense and complexity of implementation. For instance, finite elements

are commonly used to discretize the forward problem, which has to be solved repeatedly

during the optimization process. For medical diagnosis problems, such as the ones

pursued in this work, minimization of computational time is highly desirable.

Different alternatives exist to decrease computational time, while maintaining

accuracy in the solution of the inverse problem. For instance, model reduction

approaches have been proposed and successfully used for inverse materials identification

(Deng & Edwards 2007). Some approaches reduce the dimension of the approximation

spaces such as those based on the Proper Orthogonal Decomposition (POD) (Brigham
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et al. 2007). Although POD has been successfully used to solve many important

problems, one key aspect for success with POD is coming up with adequate data (i.e.

snapshots) for obtaining a suitable basis for a given problem. To this end, a general and

effective strategy is still needed.

Other model reduction approaches adopt a non-intrusive approach in which

maps between parameter spaces (e.g. material and geometric features) and state

variable spaces (e.g. displacements, velocities, etc.) are constructed (Brigham &

Aquino 2007, Aguilo et al. 2010). These maps have been developed using different

techniques such as neural networks, support vector machines, radial basis functions,

wavelets, and polynomials, among many others (Bishop 2006). The main advantage of

using this type of surrogate model is the non-intrusive nature as they can be constructed

off-line. In this work, surrogate models are constructed using polynomial interpolation

along with a Smolyak’s sparse grid collocation strategy (Smolyak 1963, Nobile

et al. 2008, Ganapathysubramanian & Zabaras 2007, Xiu & Hesthaven 2005, Klimke

et al. 2004). The main advantages of polynomial interpolation on sparse grids are

readily available error estimates and ease of training. In this work, arteries will be

represented as cylindrical geometries with transversely isotropic materials, allowing for

low-dimensional parametric representations of both geometry and material properties.

This paper is organized as follows: Section 2 describes the forward problem, a

method for calculating group velocity, the sparse grid collocation technique, and the

algorithm proposed for inverse identification. In Section 3, we present numerical

examples that demonstrate the performance of the method using simulated experiments.

In Section 4, we present experimental results for an in vitro artery and a rubber tube.

Finally Section 5 states the conclusions and future work.

2. Background

2.1. Forward Model

In this work, we model an artery and the surrounding fluid as a coupled acoustic-

structure interaction (ASI) dynamical system. The governing equations for an artery

undergoing time-harmonic motion are given as

ρsü−∇ · σ = 0, in Ωs (1a)

u|t=0 = 0, u̇|t=0 = 0 in Ωs (1b)

ε[u] =
1

2
(∇u +∇u>), in Ωs, (1c)

σ = C : ε, in Ωs (1d)

σns = −pns, on Γfs (1e)

σns = τ , on Γt (1f)

Bu = 0, on ΓR (1g)
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where u is displacement, σ is the stress tensor, ρs is the solid mass density. The

variable Ωs represents the solid medium, which in the present case is the artery, ε is the

linearized strain tensor and C is the elasticity tensor. The boundary at the interface of

the artery and fluid is represented as Γfs, while Γt is the part of the boundary where

tractions are applied, and ns is a unit vector normal to the surface of the solid. The

operator B is used to represent absorbing conditions on the boundary ΓR. In this work,

we used a Perfectly Matched Layer (PML) formulation to approximate non-absorbing

conditions in the solid domain. Details of PML formulations and implementation are

not given here for the sake of brevity and can be found in (Chew & Liu 1996).

The governing equations of the acoustic medium inside and outside the artery are

given as

p̈−∇2p = 0, in Ωf (2a)

p|t=0 = 0, ṗ|t=0 = 0 in Ωf (2b)

∂p

∂nf
= ρf ü · ns, on Γfs (2c)

∂p

∂nrf
= − ṗ

cf
, on ΨRF (2d)

where p is the fluid pressure, ρf is the density of the fluid surrounding the artery.

Equation (2c) represents the boundary condition at the interface of the artery and the

surrounding fluid and Eqn. (2d) describes the Sommerfeld radiation boundary condition

on the truncated semi-infinite fluid medium. The variable Ωf represents the fluid

domain, ΨRF refers to the boundary where the radiation condition is applied, nf is

a unit vector normal to the fluid surface, and nrf is the unit normal pointing outward of

ΨRF . A schematic of the truncated artery and the surrounding fluid with the boundaries

described in equations 1 and 2 is depicted in Fig. 1.
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Figure 1. Figure describing the domains and boundaries for the artery problem. The

blue region is the acoustic medium and the white region is the artery.

We used the Finite Element Method (FEM) to obtain approximate solutions to
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the coupled boundary value problems described herein. Details of the FEM for ASI

problems are omitted for brevity and can be found in (Everstine & Henderson 1990).

2.1.1. Group velocity We use group velocity measured along a path in the artery as

the quantity of interest from which we identify geometric and material properties. This

quantity of interest is commonly used in elasticity imaging due to its simplicity and

ease of use (Bernal et al. 2011). In this section, we provide details for the calculation

of group velocity from measured particle velocities along a path in an artery. Group

velocity refers to the velocity with which a wave envelope propagates. In the current

problem, we are interested in the group velocity of waves propagating on a path along

the length of the artery. Traveling waves along such paths are easily measured with

ultrasound transducers and hence are the focus of this work.

We will define a path along the length of the artery of as a set of coordinates given

as (See Fig. 1)

T (x, y, z) := {ro, 0, z}, (3)

where x, y are coordinates on the cross section of the artery and coordinate z is aligned

along the length of the artery. ro is the outer radius of the artery. We will next derive

a approach to compute the group velocity along this path using the cross covariance of

particle velocities.

Let vn(T , t) := u̇(T , t) ·ns be the normal particle velocity at time t and along path

T . The cross-correlation between two locations Ti := {ro, 0, zi} and Tj := {ro, 0, zj} for

a given time difference τ is obtained as

Cij(τ) :=

∫ T

0

[vn(Ti, t)− v̂n(Ti)] [(vn(Tj, t+ τ)− v̂n(Tj))] dt

K
(4)

where T is the total time of wave propagation, K is a normalizing constant such that

Cii(0) = 1, and v̂n(Ti) :=
∫ T
0
vn(Ti, t)dt/T is the mean velocity. The time delay tdij is

defined as the value of τ that maximizes the cross-correlation between positions Ti and

Tj (Viola & Walker 2005), i.e.,

tdij := argmax
τ

Cij(τ). (5)

The group velocity cg is then found by solving the following least squares optimization

problem.

cg := argmin
v

∥∥∥∥∥v − ∆zij
tdij

∥∥∥∥∥
2

, ∆zij := zi − zj (6)

where ‖ · ‖ refers to the Euclidean norm.

2.1.2. Parameters of interest and sensitivity In this work, we assume arteries to

be simple transversely isotropic cylindrical vessels. Hence, the main parameters of
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interest consist, in general, of six independent material moduli, diameter, and thickness.

The material parameters of interest are two Young’s moduli; EL, EC ; two Poisson

ratios, νLC , νRL; and two shear moduli, GLC , GRL, where L, C and R represent

longitudinal, circumferential, and radial directions, respectively. The geometry is

described completely by its diameter (d) and thickness (h). Assuming incompressibility

of the material, the Poisson ratios can be readily identified from the Young’s moduli as

(Bernal et al. 2011)

νLC =
1

2
(7)

νRL = 1− EL
2EC

(8)

Thus, we are left with a total of four (4) material parameters (i.e. EL, EC , GLC , GRL)

plus the diameter and thickness to be identified.

We investigated the sensitivity of the group velocity to changes in the parameters

of interest to determine the identifiability of the latter through an inverse problem

approach. To this end, we carried out transient finite element simulations varying each

parameter over a predetermined range, while fixing all others, and computed the group

velocity. For the present case, EC and EL were sampled in the interval [50 kPa, 500 kPa],

while GLC and GRL were sampled in the interval [20 kPa, 100 kPa]. The ranges were

decided based on previously reported experimental results on artery moduli (Bernal

et al. 2011). The diameter and thickness were varied within the ranges [2 mm, 9 mm]

and [0.5 mm, 1mm], respectively.

Our sensitivity studies showed that group velocity was significantly sensitive to

changes in the longitudinal modulus (EL), thickness (h), and diameter (D). Although,

we observed sensitivity of the group velocity to changes in circumferential modulus EC ,

this sensitivity was less pronounced than that observed for the former three variables.

On the other hand, group velocity was not sensitive to any significant extent to changes

in the shear moduli GRL, GLC . Based on these observations, EC , EL, D and h were

selected as the parameters of interest. Notice that since no sensitivity was observed to

shear moduli, the group velocity is considered uninformative about these quantities and

hence will be excluded from the inverse identification.

2.1.3. Model reduction In this section, we describe our approach for constructing

surrogate models for arterial vessels immersed in a fluid. To this end, we employ sparse

grid polynomial interpolation in order to construct maps that relate input parameters

(e.g. geometric features and material parameters) to our main quantity of interest (i.e.

group velocity).

We define a parameter vector ξ := {EL EC h D}T for notational convenience. Let

vn(T , t, ξ) be the normal particle velocity along path T corresponding to a given set of

parameters ξ. We can represent the group velocity abstractly as

cg(ξ) = G(vn(T , t, ξ)), (9)
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where G is a linear functional representing the operations described in Section 2.1.1.

Our main task herein is to devise a way to construct efficient and accurate

approximations to cg(ξ). In this work, we will use polynomial interpolation to produce

approximations ĉhg(ξ). A straightforward approach to this problem is to use tensor

product representation of univariate polynomials along each parameter dimension.

Using tensor products, Eqn. (9) is represented as

ĉhg(ξ) = Φ1(EL)⊗ Φ2(EC)⊗ Φ3(h)⊗ Φ4(D) (10)

where Φ1(EL), Φ2(EC), Φ3(h) and Φ4(D) are univariate polynomials. To create a

polynomial interpolant using a conventional tensor product representation, the total

number of points needed is NQ = Π4
i=1Ni, where Nl is the number of points for a

particular parameter. We can observe that the total number of points NQ increases

exponentially with the size of the parameter vector. This result is known as the curse

of dimensionality as the computational cost of creating the polynomial interpolant also

increases exponentially with the size of the parameter vector (Le Mâıtre & Knio 2010).

To circumvent (at least in part) the curse of dimensionality, sparse tensorization

is commonly used to create polynomial interpolants. Sparse interpolation grids use far

fewer collocation points than those used by a conventional tensor product representation.

In fact, sparse grids can reduce the number of collocation points needed for accurate

interpolation by several orders of magnitude. This reduction in the number of

interpolation or collocation points translates directly into computational savings as each

point requires a finite element simulation.

A common approach to construct sparse interpolants is to use the Smolyak’s

interpolation algorithm (Smolyak 1963). The Smolyak’s algorithm provides a

methodology to create interpolation functions based on a coarse grid of points in

a multidimensional space. The collection of this minimum number of points is

called a sparse grid. For example a typical sparse grid in two dimensions is given

in Fig. 2(a). Smolyak’s algorithm interpolates using the sparse grid by extending

univariate interpolation formulas to a multivariate case in a special way. For example,

Fig. 2(b) shows interpolation of the function exp(−x2 − y2) using sparse grid and

Smolyak’s algorithm. Details of the Smolyak’s algorithm have been omitted here for

the sake of brevity and focus. The reader is referred to references (Le Mâıtre &

Knio 2010, Klimke 2006) for more information on general sparse grid interpolation.

We use the Smolyak’s algorithm to create sparse grid interpolants of the group

velocity with respect to the material moduli and geometric parameters. We describe

this sparse interpolant (abstractly) as an operator A : R4 7→ R. That is, mathematically

we define the group velocity as

ĉhg := A(ξ), (11)

where ĉhg is the interpolated group velocity obtained via Smolyak’s algorithm. Our goal

is to use ĉhg in lieu of full finite element simulations in our inverse problem.
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Figure 2. Figure showing (a) example of sparse grid points in two dimension and (b)

interpolant created using the Smolyak’s algorithm on the sparse grid in two dimensions

for the example function exp(−x2 − y2),

An error estimate is used for assessing the accuracy of the interpolant. This error

estimate is defined with respect to the level of interpolation, which in turn is a function

of the number of points in the sparse grid (Chapter 3 in (Klimke 2006)). Let the

interpolant created at kth and k+1th levels of interpolation be given by ĉh,kg and ĉh,k+1
g ,

respectively. We determine a sufficiently accurate interpolant in ĉh,kg if the following

condition is met.

‖ĉh,k+1
g − ĉh,kg ‖∞ < ε, (12)

where ‖ · ‖∞ refers to the maximum-norm. The parameter ε is a user-defined tolerance.

It can be shown that as the level of interpolation increases, the error in interpolation

decreases (Chapter 3 in (Klimke 2006)). However, the higher the level of interpolation

the more collocation points are needed and, hence, the higher the computational cost

of building the interpolant.

2.2. Algorithm for Creating the Surrogate Model

Now, we describe the algorithm for creating a surrogate model using sparse grid

interpolation. First, we create a sparse grid where the axes are the components of

the parameter vector ξi, where i is the interpolation level. As mentioned before, the

level of interpolation is directly related to number of points in the sparse grid. Let

ξik, k = 1, . . . , Ni represent the collocation points at level i, where Ni is the total

number of points. Each interpolation point, ξik on the sparse grid represents a four-

dimensional vector of moduli and geometric features. Then, for each interpolation point,

we perform a finite element simulation to obtain the particle velocity along path T . The

group velocity is then calculated for each interpolation point using Eqn. (9). The group

velocity for the kth point at the ith level is given by cig,k. Once the group velocity

has been obtained for all interpolation points, we use Smolyak’s algorithm to create an
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interpolant of the group velocity. We terminate the surrogate creation when the error

metric given in Eqn. (12) is met. The steps for the creation of a surrogate model are

given in Algorithm 1.

Algorithm 1 Creation of the group velocity surrogate model.

Require: ξl, ξu ∈ R4 . Upper and lower bounds.

Require: ε . Error threshold.

1: Set E =∞ . Initialize error metric.

2: Set i = 1 . Initialize level.

3: while E > ε do

4: Get points at ith level, ξij ∈ [ξl, ξu], j = 1, . . . , Ni
5: for k = 1→ Ni do

6: cig,k = G(vn(T , t, ξik)) . Group velocity calculation.

7: end for

8: ĉh,ig (ξi) = A(ξi) . Construct interpolant using Smolyak’s algorithm.

9: if i > 1 then

10: Calculate E = ‖ĉh,ig − ĉh,i−1
g ‖∞

11: end if

12: i = i+ 1

13: end while

2.3. Inverse Problem Formulation

Let cmg denote the group velocity measured in an experiment. Then, the elastic moduli

and geometry are reconstructed by solving

ξ̂ = argmin
ξ∈[ξl,ξu]

‖ĉhg(ξ)− cmg ‖2, (13)

where ξl and ξu are the lower and upper bounds of ξ, respectively, and ξ̂ is an optimal

value of ξ.

3. Numerical Results

In this section, we investigate the performance of the proposed sparse grid interpolation

approach using numerical experiments with simulated data. To this end, we first

constructed a 3D finite element model of an artery immersed in water. A Sommerfeld

condition was used to model non-reflecting boundaries in both the artery and

surrounding fluid. The density of both water and artery was taken as 1000 kg/m3. The

artery was excited using a half sine pulse load with a duration of 406 µs. Continuum

8-node hexahedral elements were used in all simulations and convergence studies were

carried out to determine a suitable mesh for our computations. Transient analyses were

carried out using 85 time steps of 40 µs for a total time of 3.4 ms. All finite element

simulations were performed using SIERRA/SDA from Sandia National Laboratories.
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3.1. Construction of the surrogate model

A group velocity surrogate model was created using Algorithm 1. For this purpose, we

used the spinterp toolbox in MATLAB R© as described in (Klimke & Wohlmuth 2005).

The circumferential (EC) and longitudinal (EL) moduli were sampled from the range

[60, 400] kPa, the thickness was sampled from the range [0.3, 1] mm and the diameter

from the range [2, 7] mm. We used ε = 10−5 as the stopping interpolation error as per

Algorithm 1. Using this error tolerance, the total number of interpolation points (i.e.

finite element simulations) used to create the surrogate was 505.

To verify the accuracy of the surrogate model, we generated a test data set

comprised of 25 random parameter vectors ξ sampled from the given moduli and

geometry domains. For each parameter vector in the test set, we obtained a group

velocity c̄g from 3D FE simulations and the group velocity chg from the surrogate model.

We evaluated the error in the group velocity prediction as

ecg =
|c̄g − ĉhg |

c̄g
× 100 (14)

The average ecg using the test data set was 8.47% and the maximum was 18.51%. It is

important to keep in mind that this error does not translate into a commensurate error

in the solution of the inverse problem (13) when a surrogate model is used. In fact, an

effective surrogate model is one that preserves the topology of the objective function in

the optimization problem such that the correct minimum is found despite the presence

of errors in magnitude.

3.2. Inverse problem solution using simulated data

Simulated data was generated using the high fidelity 3D finite element model for different

combinations of moduli and geometry as shown in Table 1. We first performed inversions

for cases in which the data was not corrupted with noise, and then for cases in which

Gaussian noise was added to the computed particle velocity before computing the group

velocity. The corrupted data was generated as

v̂n(Ti, t) = vn(Ti, t)(1 + γη(Ti, t)) (15)

where v̂n(Ti, t) is the corrupted normal particle velocity, γ represents the noise level

and η(Ti, t) ∼ N (0, 1) is a random variable drawn from a standard Normal distribution

(independent for each time and position).

We solved the inverse problem in Eqn. (13) using the Optimization Toolbox in

Matlab. Due to the computationally inexpensive nature of the surrogate model, we

were able to use a global search algorithm (fminbnd in MATLAB). The results of the

inversion without noise are reported in Table 1. It can be seen that the longitudinal

modulus EL, diameter D, and thickness h were identified with reasonable accuracy.

However, the circumferential modulus EC was not identified correctly. This latter
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Table 1. Results of prediction of dimensions and moduli for numerical experiments.

Parameters Measured Predicted % error

Case 1

EL (kPa) 100 90 10

EC (kPa) 120 70 41.2

diameter (mm) 3.2 3.3 3.12

thickness (mm) 0.40 0.48 20

cg (m/s) 5.79 5.75 0.69

Case 2

EL (kPa) 100 93 7

EC (kPa) 120 67 44.2

diameter (mm) 6.0 5.6 6.67

thickness (mm) 0.70 0.74 5.17

cg (m/s) 6.10 5.90 3.27

Case 3

EL (kPa) 100 89 11

EC (kPa) 120 65 45.8

diameter (mm) 8.0 8.3 3.27

thickness (mm) 0.90 0.86 4.44

cg (m/s) 5.72 5.81 1.58

Table 2. Results of prediction of dimensions and moduli for numerical experiments

when noise was added to the group velocity data .

Noise level (pc) Parameters Measured Predicted % error

1% noise

EL (kPa) 100 112 12

EC (kPa) 120 64 46.67

diameter (mm) 3.2 3.5 9.37

thickness (mm) 0.40 0.50 25

cg (m/s) (with noise) 5.88 5.85 0.34

5% noise

EL (kPa) 100 82 18

EC (kPa) 120 62 48.3

diameter (mm) 3.2 3.9 21.87

thickness (mm) 0.40 0.51 27.5

cg (m/s) (with noise) 5.90 5.88 0.33

result is in agreement with the fact that the group velocity displayed little sensitivity

to EC in our numerical studies. Table 1 also shows the group velocity predicted by

the surrogate model at the identified parameters and the corresponding group velocity

(actual) computed from 3D FE simulations. It can be seen that the group velocity

values predicted by the surrogate are very close to those computed from the high fidelity

simulations.

Table 2 shows the results of inversions performed on data polluted with Gaussian

noise. It can be seen that as the noise level increases, the percentage error in prediction

of the materials properties and dimension also increases, as expected. However, the
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errors remain relatively low for all parameters, except for EC as noticed previously.

4. Experimental Results

In this section, we study the performance of the proposed methodology using laboratory

experiments. To this end, we conducted two separate experiments; one using a rubber

tube and another using a porcine carotid artery immersed in saline solution subjected to

different internal pressures. The proposed algorithm was used to reconstruct geometric

and material properties from measured group velocity.

4.1. Description of the Experiments

A schematic of the experimental setup for the porcine carotid artery is shown in Fig.

3. The artery was immersed in a saline solution and its ends were fixed. A linear array

transducer was used to apply an ultrasonic pulse excitation in the middle section of the

artery and to measure the normal particle velocity along the top surface (see Fig. 1).

The force duration was 406 µs. We report results for four different internal pressures:

20, 40, 60 and 80 mmHg.

Figure 3. Experimental setup for the in vitro artery and rubber tube tests.

For the rubber tube experiment, we used the same setup as was used for the artery.

The rubber tube was subjected to an internal pressure of 10 mmHg. At this pressure,

the thickness of the tube was measured at 0.94 mm and the outer diameter was 6.5

mm. The data for the artery experiment was recorded with a sampling frequency of 7.5

kHz. The spatial sampling was performed with a spacing of 0.154 mm. For the rubber

tubes, the sampling frequency was 5.68 kHz, and the spacing between two consecutive

measurements was also 0.154 mm. The shear moduli of the rubber material in the tube

was measured in a separate shear wave experiment and was estimated to be G = 93 kPa.

Assuming incompressibility, the Young’s modulus for the rubber tube was calculated as

E = 279 kPa (i.e. 3×G).
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4.2. Inverse Identification Results

We processed all the experimental data using the same surrogate model and optimization

procedure presented in Section 3. We first present the results obtained for the rubber

tube. The value of group velocity obtained from the measured particle velocity was

6.98 m/s. Using our inverse problem framework, we estimated the geometric and

material properties of the tube to be EL = 230 kPa, EC = 90 kPa, D = 6.7 mm,

and h = 0.96 mm. Since the tube was isotropic, we expected that the values of EC
and EL would be similar, which was not the case. This is a reflection of the lack

of sensitivity of the group velocity with respect to EC . Using the formula in Eqn.

(14), we estimated the respective errors to be 17%, 67%, 3% and 2%. Furthermore,

we performed a 3D FE simulation (with the estimated parameters) and determined the

group velocity to be 6.54 m/s, which corresponds to a relative error of 6.3% with respect

to the experimentally measured value. We can see that, with the exception of EC , all

parameters were estimated with good accuracy.

We also compared dispersion curves obtained from the 3D FE simulations

corresponding to the identified parameters with the dispersion curves obtained from the

experimental data. To get the dispersion curves, we performed a two-dimensional (2D)

fast Fourier transform (FFT) of the normal particle velocity along the measurement path

on the artery (see Section 2.1.1). We used the procedure described in (Bernal et al. 2011)

to obtain the dispersion curves from the 2D FFT. Figure 4.2 shows a comparison of the

experimental and simulation dispersion curves for the rubber tube. We can observe

that the dominant modes obtained from the experimental data and optimized material

properties are close to each other over a wide frequency range.
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Figure 4. Comparison of dispersion diagrams obtained from the data and from post

processing optimized material properties and geometry for the rubber tube. The solid

lines represent dispersion curves obtained from the experiment and the dashed lines

represent dispersion curves obtained from a 3D FE simulation using the optimized

material properties and dimensions. The cyan line is the dominant dispersion mode

obtained from the experimental data and the magenta line is the dominant mode

obtained from the FE simulation.
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Next we consider the inverse identification of material properties and dimensions

for the excised artery. The results are summarized in Table 3, which shows that the

recovered diameter and thickness closely approximate the measured values. We can

observe from this table that the maximum relative error was 11.59% and occurred for

the diameter estimate in the 80 mmHg case.

Table 3. Results for inverse identification of artery geometry at different hydrostatic

pressures. D and h refer to diameter and thickness respectively.

Pressure
Measured

D (mm)

Predicted

D (mm)
% error

Measured

h (mm)

Predicted

h (mm)
% error

20 mmHg 3.0 3.2 6.67 0.70 0.75 7.14

40 mmHg 3.1 3.5 12.9 0.64 0.70 9.37

60 mmHg 3.3 3.4 3.38 0.59 0.63 5.72

80 mmHg 3.6 3.6 0.73 0.51 0.57 11.59

The recovered material properties and group velocities are presented in Table 4. The

predicted or identified group velocities (ĉg) were obtained from 3D FE simulations using

the identified material and geometric properties. Table 4 shows that the predicted group

velocities are very close to the group velocities (c̄g) obtained from the experimental data.

As for the prediction of material properties, the values obtained for EL were consistent

with those reported in (Bernal et al. 2011). However, the EC values obtained seem to

be inaccurate, which is consistent with the findings reported for the rubber tube and

the numerical experiments presented in Section 3.2.

Table 4. Results for inverse identification of artery moduli and group velocity values.

Pressure
Measured

c̄g

Predicted

ĉg
% error

Predicted

EC (kPa)

Predicted

EL (kPa)

20 mmHg 5.46 5.60 2.6 102 230

40 mmHg 5.77 6.02 4.3 95 240

60 mmHg 6.03 6.15 2.0 90 256

80 mmHg 6.29 6.35 0.95 88 270

Figure 5 compares the dispersion curves obtained from the experimental data and

those obtained from 3D FE simulations using the recovered moduli and geometry. A

close agreement is observed in the dominant modes of the data and optimized material

properties, for arteries at 20, 40 and 60 mmHg hydrostatic pressures. Also, for lower

frequencies and low phase velocity, the non-dominant dispersion curves are in close

agreement. The discrepancy in the phase velocity curves for the 80 mmHg case was

larger than for the other cases. However, the identified diameter and thickness were

accurately estimated and the longitudinal modulus fell the expected trend (i.e. value

increased with pressure).
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(a) Artery at pressure 20 mmHg
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(b) Artery at pressure 40 mmHg
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(c) Artery at pressure 60 mmHg
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(d) Artery at pressure 80 mmHg

Figure 5. Comparison of dispersion diagrams obtained from the experimental data

and 3D FE simulations using the recovered material properties and geometry. The

solid lines represent dispersion curves obtained from the experimental data and the

dashed lines represent dispersion curves obtained from FE simulations. The cyan line

is the dominant mode obtained from the experimental data and the magenta line is

the dominant mode obtained from the FE simulations.
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5. Concluding Remarks and Future Work

The prediction of thickness, diameter, and material properties are of paramount

importance in the characterization of cardiovascular diseases. In this work, we presented

a novel approach for the fast and noninvasive identification of material properties

and geometry of arteries excited by an ultrasonic pulse. The main algorithm used a

Smolyak’s sparse grid collocation technique to create a surrogate model mapping the

moduli and dimensions to the group velocity. Once a surrogate model is created, the

identification process can be carried out in near real time across different specimens and

internal pressures. The main advantage of the proposed approach is that the surrogate

model combines computational speed with knowledge of the fundamental physics of the

underlying wave propagation problem.

We applied the proposed inversion methodology to obtain longitudinal and

circumferential moduli as well as thickness and diameter in an excised artery subjected

to different internal pressures and a silicon tube. It was found that the proposed method

could effectively identify the longitudinal modulus, diameter and thickness. However,

the circumferential modulus could not be identified. The inaccuracy in the identification

of EC can be attributed to the fact that the group velocity measured along a longitudinal

path seems to be relatively insensitive to changes in this parameter. It seems plausible

that devising experiments that capture wave motion in the circumferential direction

would yield more accurate reconstructions of EC ; a direction that would be pursued in

the near future.

To apply the current methodology in vivo, the high fidelity and surrogate models

have to incorporate surrounding tissue and viscoelastic effects (both in the artery and the

surrounding tissue). These features can be naturally incorporated in the proposed sparse

grid collocation framework. However, these model extensions are expected to increase

the dimensionality of the problem, and hence the computational cost of constructing the

surrogate model. Yet, this increase in computational cost can be mitigated by the used

of sparse grids. Furthermore, due to their uncoupled nature in collocation approaches,

high-fidelity simulations can be carried out straightforwardly in parallel. Moreover,

surrogate models are built offline and can be used across many different inversion cases

in near real-time, compensating for the initial high-computational cost.

Finally, another direction that will be pursued in future research is the development

of adaptive strategies for constructing the surrogate model. The basic premise would

be to start with a coarse grid of parameters (e.g. geometry and material) and choose

collocation points according to the sensitivity of a quantity of interest along different

coordinates (i.e. parameters). Similar approaches have been successfully used for un-

certainty quantification (Ganapathysubramanian & Zabaras 2007).
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