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Abstract

A new approach is developed for efficient data assimilation into adaptive mesh mod-
els with the ensemble Kalman filter (EnKF). The EnKF is combined with a wavelet-based
multi-resolution analysis (MRA) scheme to enable robust and efficient assimilation in the
context of reduced-complexity adaptive spatial discretization. The wavelet representation
of the solution enables the use of different meshes that are individually adapted to the
corresponding members of the EnKF ensemble. The analysis step of the EnKF is then
performed by involving coarsening, refinement, and projection operations on its ensemble
members. Depending on the choice of these operations, five variants of the MRA-EnKF are
introduced, and tested on the one dimensional Burgers equation with periodic boundary
condition. The numerical results suggest that, given an appropriate tolerance value for the
coarsening operation, four out of the five proposed schemes significantly reduce the compu-
tational complexity of the assimilation system, with marginal accuracy loss with respect to
the reference, full resolution, EnKF solution. Overall, the proposed framework offers the
possibility of capitalizing on the advantages of adaptive mesh techniques, and the flexibility
of choosing suitable context-oriented criteria for efficient data assimilation.

Keywords— Ensemble Kalman Filter, Multiresolution Analysis, Adaptive Mesh Model

1 Introduction
Numerical simulations of physical problems are always subjected to uncertainty due to limited
knowledge of the systems under consideration [1]. These include the approximation of physics,
boundary and initial conditions, model parameters and imperfect discretization schemes [37].
The sensitivity of the model solution to such errors must (generally) be identified, quantified and
reduced to improve the model prediction.

Uncertainty propagation/reduction methods based on Bayesian inference are now widely ap-
plied to enhance the predictive capability of the geophysical fluid dynamics and hydrological
models e.g. [20, 41, 42, 43, 44]. Within the Bayesian framework, uncertainty in model in-
put is represented using random variables with known probability laws. Once data becomes
available, this prior knowledge is updated via Bayes rule, which yields a generally correlated
posterior with reduced uncertainty. Two popular approaches in Bayesian inversion have been
extensively applied by the modeling community. The first approach uses a Markov Chain Monte
Carlo (MCMC) method to sample the posterior distribution. MCMC techniques require a large
number of model runs in order to generate a large enough sample representing the posterior
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distribution [18, 24, 39]; this often renders the direct application of MCMC to sample large-
scale models a computationally prohibitive exercise. Another popular approach for tackling the
Bayesian estimation problem is the filtering method, in which the distribution is updated se-
quentially as the data become available [46]. Among many Bayesian filters, the most popular
filtering approach in the field of geophysical fluid dynamics is the so-called Ensemble Kalman
Filter (EnKF) and its variants e.g. [3, 8, 9, 29, 25, 47]. Motivated by a Monte Carlo formula-
tion, EnKFs represent the Bayesian filter statistics through an ensemble of system states. These
ensemble members, which represent realizations of the random state, are integrated using the
dynamical model to estimate the forecast. Once data become available, a linear Kalman update
is applied in the so-called analysis step to update the forecast with the new information. Despite
its Gaussian underpinning, one of the main advantages of EnKF methods over MCMC tech-
niques is the ability of the former to accommodate large dimensional state vectors at reasonable
computational requirements [2, 12, 27, 28, 26, 33, 40].

In fluid dynamics simulations, the loss of solution accuracy due to limited spatial resolution
can constitute a major source of uncertainties. Traditionally, a spatial mesh is used that is
a priori sufficiently fine to capture underlying large- and small-scale dynamics, at the cost of
a heavy computational burden. This motivated the development of adaptive mesh refinement
(AMR) methods that allow the mesh to adapt its resolution locally according to the features
of the solution [4, 6, 7, 13, 32]. AMR enables the simulated mesh to adapt both in space and
time, assigning high spatial resolution to the areas in which the solution varies rapidly, and
coarsening the mesh in regions of weaker variability. This makes AMR particularly useful for
capturing sharp fronts and shock formations [5, 21]. By limiting the fine resolution to regions
where it is required, AMR-based simulations significantly reduce the computational complexity
and accordingly enhance the computational performance. AMR approaches can be separated
into two main classes. The first AMR class splits computational cells into finer cells on the
same grid [10], whereas the second one constructs the adaptive grid over a multi-level mesh
structure [7].

Recently, the possibility of performing data assimilation using adaptively discretized models
grasped the attention of the ocean and hydrodynamics modeling community [6, 14, 30, 35, 36].
However, the literature dealing with the problem of implementing AMR and data assimilation
techniques remains scarce. Variational data assimilation methods such as 3D-VAR and 4D-VAR
were applied to adaptive mesh ocean and meteorological models in [16] and [38], respectively.
The first attempt to combine a sequential data assimilation method, e.g. the EnKF, with an
adaptive ocean model was proposed in [14]. The recent contribution by [30] is the first attempt
to investigate the implementation of EnKF with multi-level AMR for data assimilation into
large-scale coastal ocean models. To address the difficulties in computing the mean and error
covariance required in the analysis step of the EnKF, the updates in [30] were performed by pro-
jecting each ensemble member from their own mesh to a “supermesh”, which is the union of all
the meshes associated with the ensemble members. The combination of Multiresolution Analysis
(MRA) [23] with EnKF has also been attempted by [19] and [17] in different a context, specif-
ically focusing on history matching problems. [19] introduces an MRA-based DA framework,
based on first performing coarse-scale DA to estimate large-scale features of the field properties,
followed by DA at smaller scales to refine initial estimates. [17] explores a similar coarse-scale
DA methodology, based on combining MRA with ensemble smoother, and show that it leads to
more robust estimates than with standard localization approaches. In [19, 17] MRA is applied
to solutions obtained on the same fine grid, and the DA aims at inferring parameter fields. In
this contribution, MRA is used as part of discretization, and individual ensemble members live
of different grids.

In this paper, new approaches combining an EnKF and adaptive mesh models are proposed
and analyzed. We rely on a MRA approach to decompose the model solution into Haar wavelets.
A convenient tree structure representation is used for this purpose [49]. Depending on the
criterion specified by the user, the leaf nodes of the tree are removed or added to adapt the
mesh. We design our combined MRA-EnKF schemes in such a way that the adaptive mesh
refinement is integrated with the forecast steps of the EnKF in a straightforward fashion, similar
to the multi-level AMR proposed in [30]. By defining different projection spaces in the Kalman
update step, several MRA-EnKF variants are derived. To analyze the performance of these
alternative schemes, we design a simplified system, namely the one-dimensional Burger’s equation
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in a periodic domain. This setting enables us to efficiently analyze the behavior of all proposed
schemes, and to contrast their performances, both in terms accuracy and computational cost,
and consequently assess their relative merit. The gained experiences would enable us to infer the
significance of these new schemes in the context of more generalized multi-dimensional settings,
as recently performed in [14, 30].

The study is organized as follows. The background of the EnKF and MRA are outlined
in Section 2. Section 3 presents in detail the derivation of several MRA-EnKF schemes. The
test problem and the numerical scheme of our experimental system are presented in Section 4.
The results of the numerical experiments are presented and discussed in Section 5. The main
conclusions are summarized in Section 6.

2 Background

2.1 Multiresolution analysis
We consider the following transient hyperbolic partial differential equation on the one-dimensional
domain Ω “ p0, Lq,

Btu` Bxfpuq “ 0, (1)
upx, 0q “ u0, (2)
up0, tq “ upL, tq, (3)

where u is a scalar field, u0 is the initial condition, and f : R Ñ R is the flux function. We
consider a regular discretization of the domain into N cells of fixed size h. The boundaries of
the cells are denoted pxiqNi“0, where xi “ ih. The equation is spatially discretized using a finite
volume scheme, and advanced in time using an explicit time integration scheme with an adaptive
time step, λ, that is restricted by the Courant-Friedrichs-Lewy condition. The resulting discrete
system of equations is denoted by

us`1 “ us ´ λs
`

f `,s ´ f ´,s
˘

, (4)

where us P RN is the solution vector, f `,s and f ´,s are the numerical fluxes at time t “ ts. The
solution is represented using the piecewise constant expansion

upx, tsq « Upx, tsq “
N
ÿ

i“1

usiχipxq,

where χi is the characteristic function of the cell pxi´1, xiq. To simplify the notation, the variable
ts is omitted in the rest of the section.

In order to compress the approximation of u, we introduce a multiresolution analysis method
based on the Haar transform. To this end, we consider the mother wavelet function ψ0pxq and
the associated scaling function φ0pxq defined by

ψ0pxq “

$

’

&

’

%

1 for 0 ď x ă 1
2 ,

´1 for 1
2 ď x ă 1,

0 otherwise,
and φ0pxq “

#

1 for 0 ď x ă 1,

0 otherwise.

We define a rescaled version of the Haar functions according to:

φpxq “
1

L
1
2

φ0
´ x

L

¯

and ψn,jpxq “
2

n
2

L
1
2

ψ0
´

2n
x

L
´ j

¯

,

where the two integer subscripts n and j indicate the resolution level and the position index of
the rescaled Haar functions, respectively. This above family constitutes an orthonormal system
with the inner product defined by xv, wyL2 “

şL

0
vpxqwpxqdx, where v and w are square-integrable

function. An expansion of U can be computed by direct projection, i.e.

Upxq “ xU, φyL2 φpxq `
ÿ

n

ÿ

j

xU, ψn,jyL2 ψn,jpxq.
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In this work, we restrict ourself to the case N “ 2n0 , where n0 is the maximum resolution level.
Given the piecewise constant structure of u at each time step, the same wavelet transform of
the discrete solution can be efficiently computed using a fast Haar transform [22]. The exact
resulting expansion is

Upxq “ v0φpxq `
n0´1
ÿ

n“0

2n
´1
ÿ

j“0

vn,jψn,jpxq, (5)

where v0 is the so-called average coefficient and vn P R2n

is the vector of detail coefficients at
level n. It is convenient to index the details using a binary tree structure TP such that:

• the root of the tree is the pair p0, 0q,

• a node has two children or none,

• a node without a child is a leaf,

• for each non leaf node pn, jq, the left (resp. right) son is pn` 1, 2jq (resp. pn` 1, 2j ` 1q),

• the maximum height of the tree is n0.

The subscript P indicates that we are considering the perfect binary tree satisfying the above
constraints. We denote by IpTP q the set of interior nodes of the tree and LpTP q the set of leaves.
(Note that the basis functions, ψn,j , are indexed in the same fashion as their support). For a
node α “ pn, jq, the support of ψα denoted by Ωα “ r

L
2n j,

L
2n pj ` 1qq, and the support of the

function associated to its left and right sons denoted by α` and αr, respectively, form a partition
of the support of the parent, i.e.

Ωα`
Y Ωαr “ Ωα and Ωα`

X Ωαr “ H.

The wavelet expansion of U is then written as

Upxq “ v0φpxq `
ÿ

αPIpTP q

vαψαpxq,

with the sum taken over the interior nodes of the tree.
We introduce a thresholding operator Πε that satisfies

}U´ΠεpUq}L2 ď ε.

The operator is defined such that the basis function associated to a node α “ pn, jq is discarded
if the following three conditions are satisfied:

• the coefficient vα satisfies
|vα| ď 2´

n
2 n
´ 1

2
0 ε, (6)

• all the nodes of the left and right subtrees of α satisfy condition (6),

• the subtree T of TP associated to ΠεpUq is graded.

The graded condition means that the ratio of the sizes between two neighboring leaves does not
exceed two. A graded tree is such that, for two leaves α1 “ pn1, j1q and α2 “ pn2, j2q with
adjacent associated support Ωα1

, Ωα2
, the difference of depth is smaller than or equal to one.

Formally, if there exists x P Ω such that Ωα1 X Ωα2 “ txu, then |n1 ´ n2| ď 1, where Ωα is the
closure of Ωα. This condition is naturally extended to the boundary (i.e. in the case x “ 0 or
x “ L). As a consequence, the function ΠεpUq can be written as

ΠεpUqpxq “ v0φpxq `
ÿ

αPIpT q

vαψαpxq. (7)

We also introduce the refinement operator R such that, for any function w P UT , Rpwq “ w
and the leaf node α P IpT q is split once if the depth of α is strictly smaller than n0 ´ 1, and the
resulting tree remains graded. An adaptive version of the scheme in Eq (4) can be defined as:

us`1 “ Πε

´

Rpusq ´ rλsprf
`,s
´ rf

´,s
q

¯

,
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where rλs, rf
`,s

and rf
´,s

are extended versions of λs, f `,s and f ´,s accounting for the anisotropic
discretization. In the following, we denote by UT the subspace of L2p0, Lq defined by

UT “ spantφu ` spantψα; α P T u.

Hence, if T0 is a subtree of T1, we have UT0 Ă UT1 .
This work focuses on classical MRA approach, because we are dealing with a simple 1D prob-

lem that enables us to systematically assess different combined MRA and EnKF approaches.
In more complex settings, second-generation wavelets [45] can be applied, which avoid dyadic
constructions and can be adapted to irregular subdomains. Generic adaptive methods, in par-
ticular those based on hierarchical meshes, may also be considered. Using such discretization
methods would, however, require definition of more elaborate MRA-EnKF operators than those
introduced in the next section.

2.2 Ensemble Kalman filter
The Kalman filter is a recursive technique to sequentially estimate the state of a linear dynamical
system using available measurements. It provides the best unbiased estimates under the assump-
tion that the underlying distributions are Gaussian [31]. We consider here the ensemble Kalman
filter that is designed for large scale nonlinear filtering problems and in which the moments of
the Gaussian distributions are estimated using a discrete sample. Given a state-space models
defined as

vk “Mpvk´1q ` ηk,

yk “ Hkvk ` εk,

where M is the dynamical operator describing the time evolution of the state from time step
k ´ 1 to k, and Hk a linear observation operator.

The term vk is a R#T -valued random vector representing the state defined by the expansion
coefficients pvαqαPIpT q as in Eq. (7), where #T denotes the number of internal nodes in T . yk

is a Rm-valued random observation vector, ηk is the model error and εk is the observation error.
We assume that ηk and εk are Gaussian with zero mean and covariance matrices Qk, and Rk,
respectively, i.e., ηk » N p0, Qkq and εk » N p0, Rkq. v0, ηk and εk are further assumed to be
mutually independent. For the sake of simplification, we omit the superscript k in the rest of
the section.

Given an ensemble of Ne forecasts defining a matrix V f “ rvfq s
Ne
q“1 P R#TˆNe and the

realization of the data y, the (stochastic) EnKF [2, 15, 47] updates the forecasts according to:

vaq “ vfq ` CH
T pHCHT `Rq´1pyq ´Hvfq q, (8)

where yq “ y`εq, q “ 1, ..., Ne is a perturbed observation vector, and C is the sample covariance

C “
1

Ne ´ 1

Ne
ÿ

q“1

`

vfq ´ v̄f
˘ `

vfq ´ v̄f
˘T
, with v̄f “

1

Ne

Ne
ÿ

q“1

vfq .

We denote by hq, h̄, CH and M the quantities defined by

hq “ Hvfq , h̄ “
1

Ne

Ne
ÿ

q“1

hq, and CH “
1

Ne ´ 1

Ne
ÿ

q“1

phq ´ h̄qphq ´ h̄qT . (9)

Equation (8) can thus be recast as

vaq “ vfq `
1

Ne ´ 1

Ne
ÿ

r“1

pvfr ´ v̄f qphr ´ h̄qT pCH `Rq
´1py ` εq ´ hqq.

Let Gqr, Ḡq and Fqr be defined by

Gqr “
1

Ne ´ 1
phr ´ h̄qT pCH `Rq

´1py ` ηq ´ hqq, Ḡq “
1

Ne

Ne
ÿ

r“1

Gqr, and Fqr “ Gqr ´ Ḡq.
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One can then show that

vaq “ vfq `
Ne
ÿ

r“1

Fqrv
f
r , (10)

where the matrix F only depends on the ensemble members through the predicted observations
ensemble phqqNe

q“1. Moreover, given the linear nature of the update of the members, the functional
representation of the members is also updated as

Ua
q pxq “ Uf

q pxq `
Ne
ÿ

r“1

FqrU
f
r pxq. (11)

Hereafter, we refer to the term
řNe

r“1 FqrU
f
r pxq in Eq. (11) as the ‘correction’ term. The analyzed

ensemble members are then integrated with the model, M, in the forecast step until the next
observation become available, a new EnKF update-forecast cycle then begins.

3 MRA-EnKF methods
This section will present the derivation of the EnKF update step for ensemble members defined
on different grids. Five MRA-EnKF schemes employing different projection strategies on the
grid on which the EnKF update is performed are proposed, namely, union grid (MRAEnKF),
mean grid (MSPEnKF), and members grid (CrPEnKF and CnSPEnKF).

3.1 EnKF update in the MRA settings
For a given time t, we denote by Uqpxq the qth ensemble member, 1 ď q ď Ne, and by Tq the tree
associated with Uq. Let U be the mean of the ensemble pUqq

Ne , i.e. the best unbiased estimate
of the ensemble which are subjected to the Gaussian assumption, and T be the tree associated
with U. Then U can be written as

Upxq “ v0φpxq `
ÿ

αPIpT q

vαϕαpxq, (12)

where the function spaces of Uq, U and U are related by

UT Ď Y
Ne
q“1UTq

Ď UTP
.

To compute the mean U, all ensemble members are projected onto the union subspace YNe
q“1UTq ,

on which the average is calculate.
Based on Eq. (11), one can modify the EnKF update step to accommodate the change in the

subspace of the ensemble caused by adaptive mesh refinement during the forecast. The general
form of the EnKF update with AMR is then written

Ua
q pxq “PUT1

«

Uf
q pxq `PUT2

˜

Ne
ÿ

r“1

FqrU
f
r pxq

¸ff

, (13)

where PUTi
, i “ 1, 2 is the L2 projection of a function onto a subspace UTi defined as

PUT2
u “ arg min

vPUT2

}u´ v}L2.

Since u and v can be expressed with Haar wavelets, which constitute an orthogonal basis in L2
space, if upxq is such that

upxq “ v0φpxq `
ÿ

αPIpT1q

vαϕαpxq,

and vpxq is such that

vpxq “ v0φpxq `
ÿ

αPIpT2q

vαϕαpxq,
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then the projection of u on UT1 is

PUT1
u “ v0φpxq `

ÿ

αPIpT1qXIpT2q

vαϕαpxq `
ÿ

αPIpT2qzIpT1q

0 ¨ ϕαpxq,

which is amount to assigning the correct detail coefficients to the correct nodes that are both in
UT1 and UT2 , and assigning 0 as the coefficients for the nodes that are in UT2 but not in UT1 .

An EnKF update performed on the finest grid containing all ensemble members corresponds
to using the subspaces UT1

“ UT2
“ UTP

in Eq. (13), and is equivalent to Eq. (11). By introducing
a thresholding operator Πε and assigning a different function spaces to the UTi

s, we introduce in
the following subsections several variants of adaptive mesh refinement EnKF algorithms based
on the definition of the ensemble mean in Eq. (12) and the EnKF update in Eq. (13).

3.2 MRAEnKF
In the standard (non-adaptive mesh) EnKF, the updates are performed on a fixed space because
the ensemble members and the filter estimate are defined on the same mesh; the update is
thus straightforward. This is not the case for adaptive mesh where each ensemble member
independently adapts its own grid, which prevents the computation of the first- and second-
order statistical moments required for the EnKF algorithm. It is then natural to seek a common
space of all members to apply the EnKF updates.

In the MRAEnKF method, the ensemble members and the members correction terms of the
EnKF are projected onto the subspace spaning the union of the grids of all ensemble members.
The updates are then performed according to Eq. (11). This corresponds to UT1 “ UT2 “ Y

Ne
q“1UTq

in Eq. (13). Accordingly, Ua
q pxq is written as

Ua
q pxq “P

Y
Ne
q“1UTq

«

Uf
q pxq `P

Y
Ne
q“1UTq

˜

Ne
ÿ

r“1

FqrU
f
r pxq

¸ff

.

We will hereafter refer to the proposed combined multiresolution analysis with EnKF tech-
niques as the “MRA-EnKFs”, namely to avoid any confusion with the specific MRAEnKF method
described above.

3.3 Forecast Mean Space Projection (FMSP) EnKF
In the limit of large ensemble, the EnKF converges to the Kalman filter (KF) given the Gaussian
noise assumptions on the forecast and observation models [11, 34]. The mean estimate of the
EnKF also converges to a maximum a posteriori (MAP) estimate of the KF. Even for the case of
nonlinear models, it is a common practice to take the ensemble mean as the filter state estimate.
Therefore, it is intuitive to consider performing the ensemble projection on the space of the mean
UT . As a consequence, we modify the MRAEnKF by carrying out the update of all members in
the mean space, using Haar wavelets function representation.

In FMSP, all the members and correction terms are projected on the subspace of the mean
forecast before the analysis step. Let U

f
be the mean forecast and UT f the subspace associated

with U
f
. FMSP is initialized by coarsening the mean of the forecast,

U
f
“ Πε

˜

1

Ne

Ne
ÿ

q“1

Uf
q

¸

. (14)

Uf
q and the correction term

řNe

q“1 FqrU
f
r pxq are projected onto UT f before applying the EnKF

update. This corresponds to setting UT1
“ UT2

“ UT f in Eq. (13), which leads to

Ua
q pxq “PUT f

«

Uf
q pxq `PUT f

˜

Ne
ÿ

r“1

FqrU
f
r pxq

¸ff

.

Note that the update in FMSP is performed in UT f , which is a subset of YNe
q“1UTq . For

certain tolerance, ε, the FMSP solution is expected to be less accurate than that of MRAEnKF,
as the latter performs the update in the union space of all members. However, less computational
complexity is anticipated for FMSP as it involves a smaller number of grid points.
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3.4 Analysis Mean Space Projection (AMSP) EnKF
The order in which one applies the projection and the analysis may affect the performance of
the MRA-EnKFs. To explore this, we introduce the Analysis Space Projection (AMSP) EnKF,
which consists in another variant of mean space projection EnKF derived by rearranging the
order of implementing the projection and analysis.

In contrast with the FMSP, the AMSP projects all the members on the subspace of the mean
after the analysis step. Let prUa

q pxqq
Ne be the intermediate analysis ensemble, the filter starts by

computing rUa
q pxq with MRAEnKF:

rUa
q pxq “P

Y
Ne
q“1UTq

«

Uf
q pxq `P

Y
Ne
q“1UTq

˜

Ne
ÿ

r“1

FqrU
f
r pxq

¸ff

.

Here rUa
q pxq is defined on the union subspace YNe

q“1UTq
. Then the coarsened mean of prUa

q pxqq
Ne

is calculated as

rUa “ Πε

˜

1

Ne

Ne
ÿ

q“1

rUa
q

¸

.

The final analysis pUa
q pxqq

Ne is obtained by projecting prUa
q pxqq

Ne onto UT a , namely according
to:

Ua
q pxq “ PUT a

”

rUa
q pxq

ı

,

where UT a is the subspace associated with rUa.

3.5 Correction Projection (CrP) EnKF
FMSP and AMSP updates result in all members belonging to the space of the mean. All
members are then integrated with the model in the forecast step starting from the same mesh.
This may result in each member losing some of its details as possessed prior to the EnKF update.
Projecting each member onto its own space before forecasting with the model may enhance the
filter performance. Therefore, we also consider projecting each member back to its original space
after the EnKF update.

In Correction Projection (CrP) EnKF, all the member corrections are projected on the mean
before the analysis step. Each member is then updated in the mean space UfT as computed in
FMSP (i.e. Eq. (14)), and the members are finally projected back to each member’s original
subspace UTq . Each member is then propagated forward to the next assimilation step. This
corresponds to setting UT1 “ UTq and UT2 “ UT f in Eq. (13). Since the CrP update is performed
on the coarse mean subspace, considerable reduction in computational cost can be achieved with
respect to EnKF.

3.6 Constant Space Projection (CnSP) EnKF
In Constant Space Projection (CnSP) EnKF, the forecast and the update of each member are
performed entirely on its own mesh. No coarsening is involved in the scheme. This requires
projecting the correction term onto subspace UTq

, not UfT or UaT . The update step of CnSP
therefore corresponds to setting UT1

“ UT2
“ UTq

in Eq. (13). Because each member is updated
independently in its own space without gaining any extra mesh details from other members, we
expect the CnSP to produce less accurate estimates compared to the other methods as time
evolves.

Table 1 summarizes the update algorithms of the EnKF and its multiresolution variants.
The differences between these schemes arise from the order of application of the update and the
coarsening steps. They also depend on the spaces of ensemble members projection.
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Method Algorithm

EnKF UT1 “ UT2 “ UTP
.

MRAEnKF UT1 “ UT2 “ Y
Ne
q“1UTq .

FMSP 1. U
f
“ Πεp

1

Ne

řNe

q“1 Uf
q q.

2. Obtain UT f .
3. UT1 “ UT f and UT2 “ UT f .

AMSP 1. Compute prUa
q q
Ne with MRAEnKF

2. rUa “ Πεp
1

Ne

řQ
q“1

rUa
q q.

3. Obtain UT a .
4. UT1 “ UT a and UT2 “ Y

Ne
q“1UTq .

CrP 1. Compute UT f (See FMSP).
2. UT1

“ UTq
and UT2

“ UT f .

CnSP UT1 “ UT2 “ UTq .

Table 1: Summary of EnKF and its multiresolution variants.

4 Computational test problem

4.1 Model
We focus on the one-dimensional Burger’s equation with periodic boundary conditions, i.e. Eq. (1)
with the flux defined as

fpuq “ u2{2.

In the numerical experiments, the uncertain initial condition corresponds to the shifted Gaussian:

upx, t0q “ b` a ¨ e´px´µq
2
{ρ2 , (15)

where b „ U p0.5, 1q, a „ U p1, 3q, µ „ U p1, 4q and ρ „ U p0.1, 0.5q. The size of the domain
is equal to 4π. Observe that for deterministic a, µ and ρ, the solution upx, t ą t0q can be
recast as b ` u1px ´ b ˆ t, tq where u1 is deterministic and solves Eq. (1) with the initial data
u1px, t0q “ a ¨ e´px´µq

2
{ρ2 . In this case, all realizations of u ´ b are equal up to a translation of

b ˆ t (which has the same distribution as b). However, because of additional uncertainties in
the definition of the initial condition, the non-linearity of the Burgers equation prevents us from
deriving a simple expression of the solution, in particular for the dynamics after the shock has
formed.

4.2 Roe flux calculation
According to Eq. (4), the solution at the ith cell is advanced as:

us`1
i “ usi ´ λ

s
`

f`,si ´ f´,si

˘

, (16)

where f`,si and f´,si are the corresponding right and left numerical fluxes, respectively. In the
case of a fine mesh, the domain is discretized into 2n0 elements of equal size, where n0 represents
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the maximum depth of the multiresolution representation. In the experiments, the maximum
depth is 10; therefore the fine mesh has 1024 cells.

As mentioned earlier, the solution is advanced using an adaptive explicit time integration
scheme. Specifically, the time step, λs, is adjusted according to λs “ CFLˆ h{Λ, where Λ is the
maximum absolute value of us and CFL is a user-defined positive value ď 1.

The Burgers equation can develop shocks, and it is essential to use an appropriate definition of
the numerical fluxes in Eq.(16) such that it does not create spurious waves. This point is crucial
here as we want to make sure that the EnKF algorithms governing the evolution of the ensemble
are not plagued by features artificially introduced by the solver used to advance the members
in time. Many different approaches are available for the resolution of the Burger equation (e.g.
ENO, WENO, TVD schemes, flux limiters,. . . ) mostly differing by the defining of the numerical
fluxes. In the present work, we decided to rely on one of the simplest definition, the Roe flux [48].

Let us denote û .
“ pul ` urq{2 the Roe state, and 4u .

“ ur ´ ul the state jump. The classical
Roe flux is

F pul, urq “
rfpulq ` fpurqs

2
´
|û|

2
4 u.

To prevent the Roe flux from violating the entropy condition, the entropy fix is applied, which
consists in insuring sufficient diffusion in rarefaction problem with ul ă 0 ă ur. Let

δ “ maxt0, û´ ul, ur ´ ûu,

and define

q̂ “

$

&

%

û, |û| ě δ
û2

2δ
` δ{2, |û| ă δ.

The fixed Roe flux is
F pul, urq “

rfpulq ` fpurqs

2
´
|q̂|

2
4 u,

and the right and left fluxes in Eq. (16) are defined through f`,si “ F pusi , u
s
i`1q and f´,si “

F pusi´1, u
s
i q, respectively. Note that, here, ul “ usi and ur “ usi`1 for f`,si , and ul “ usi´1 and

ur “ usi for f´,si . Furthermore, because periodic boundary conditions are used, f`,sN “ f´,s1 “

F pusN , u
s
1q, where N is the number of cells in the domain.

4.3 Multiresolution Roe solver
Given a sequence of N values on the fine grid u “ tujuNi“1, [23] showed that there is a one-to-one
transformation between u and its multiresolution representation, U. The transformation can be
expressed as:

U “Mu , (17)

where M depends on the interpolation method implemented by the multiresolution analysis
scheme. In this work, the central interpolation is used, and therefore M is a linear operator
expressed by an N ˆN matrix.

We can symbolically recast Eq. (4) in the form of cell-wise update on the finest grid according
to

us`1
i “ usi ´ λ

s
`

f`,si ´ f´,si

˘

” pE ¨ usqi, 1 ď i ď N, (18)

where E is a nonlinear operator representing the action of the explicit update. The multiresolu-
tion scheme is obtained by applying M to Eq. (18), resulting in:

Us`1 “ Us ´ λsM
`

f `,s ´ f ´,s
˘

“ME ¨ pM´1Usq ” EM ¨Us. (19)

Here EM is a multiresolution version of the nonlinear operator E. The thresholding operator can
be introduced at the beginning of each time step to incorporate the compression of the numerical
solution, which leads to:

ME ¨ pM´1ΠεpU
sqq ” EεM ¨Us. (20)
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It can be shown that [23], given an appropriate tolerance value and a monotone scheme E,
the error between the compressed and the full model solution is of the same order of magnitude
as the tolerance, which can be written as

‖ EεM ¨Us ´EM ¨Us ‖1ď ε, (21)

where ‖ x ‖1 is the L1 norm of the vector x.
Given the thresholding parameter ε and the resolution level n0, the algorithm starts by

constructing a tree T 0 and the subspace U0, which are used to represent the cell average initial
condition. After the discrete solution is initialized, it is evolved in time following an iterative
process. This consists of five main steps: a refinement of the tree T at the beginning of every time
step, the evaluation of U at the centers of the cells, the computation of the time step satisfying
the CFL condition, a time advance of the solution, and finally projection and coarsening. We
summarize the multiresolution-based Roe solver as follows.

Steps I. and II. The approximation space is refined in anticipation of additional steepening
that may develop in the solution. For this purpose, the grid is refined to add one more level of
resolution. Specifically, the tree leaves are refined according to the enrichment strategy presented
in [49]. After the fine grid is obtained, the solution is evaluated at the centers of the cells.

Step III. The optimal time step for solution update is computed based on the prescribed CFL
limit.

Step IV. In this step, the model integration from time ts to ts`1 is performed. The solution
in an individual cell is updated by integration of the Roe fluxes through the cell’s boundary as
in Eq. (16).

Step V. After the time integration, the Haar transform is used to recover the multiresolution
representation of the solution. Then the coarsening operator Πε described in Section 2.1 is
applied. This step defines the details of the tree and provides a compressed solution for the next
iteration.

5 Numerical experiments
In this Section, we assess the performance of the proposed MRA-EnKF schemes in term of
estimation error and complexity with respect to both a reference solution and the EnKF solution.

5.1 Twin experiments
A twin experiment is designed to assess the performance of the proposed assimilation schemes
against the EnKF, based on their efficiency to estimate the reference solution. The reference
solution is computed by solving the Burgers equation with an initial condition generated by
sampling the parameters in Eq. (15). From the reference solution, we extract the data at locations
x = 4, 5.5, 7, 8.5, 10 and 11.5, respectively. The data are collected at regular time intervals
corresponding to the assimilation frequency of the EnKF schemes, i.e. every second. These data
are perturbed with measurement noise εk » N p0, R “ σ2Iq, with σ2 = 0.09 and I the identity
matrix. The initial ensembles of the EnKF and MRA-EnKFs are generated by sampling the
parameters in Eq. (15) from the same set of priors used to generate the initial condition of the
reference solution. In each set of assimilation experiments, all filters are initialized from the same
ensemble, and assimilate the same observations. We also perform the experiments with varying
ensemble size and tolerance to holistically examine the behavior of the proposed MRA-EnKFs
framework.

11



0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #1

ensembles

Estimate

Reference
±3σ

0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #8

ensembles

Estimate

Reference
±3σ

0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #16

ensembles

Estimate

Reference
±3σ

0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #24

ensembles

Estimate

Reference
±3σ

0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #32

ensembles

Estimate

Reference
±3σ

0 1
2
π π 3

2
π 2π 5

2
π 3π 7

2
π 4π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Assimilation step #40

ensembles

Estimate

Reference
±3σ

Figure 1: Reference solution vs EnKF solution.

5.2 MRA-EnKFs vs. Reference
In the first experiment, the settings for the multiresolution Roe solver are ε “ 10´3, N0 “ 1024,
and CFL “ 0.9. We run the simulation for 1 unit of time with 40 assimilation steps (one
assimilation every 0.025 unit of time). Figure 1 illustrates the result of a fine grid approximation
of the Burger’s equation solution. Both the reference solution and the EnKF estimate with
similar find grid resolution are shown. The initial condition of the reference solution and of the
ensemble members are illustrated in the first subplot of Figure 1. The following subplots depict
the evolution of the system at different times. The black solid line is the reference solution at
a fixed time step and the red solid line is its EnKF estimate. A total of 48 ensemble members
are used for the EnKF. The evolution of the ensemble members is plotted along with the 3
standard deviation bounds to represent the ensemble spread. The ensemble members are marked
with the blue lines and the 3 standard deviation bounds around the mean are highlighted in
transparent blue. As time evolves, the solution develops a shock between x “ 3

2π and x “ 2π
at t “ 0.2 (8th assimilation iteration). This discontinuity in the form of a shock is the result of
the compressibility due to different wave speed at different points when the hyperbolic PDEs are

12



solved [23]. This shock formation is well captured by the Roe scheme. It is also clear from the
figures that, as the assimilation cycle advances, the ensembles spread around the mean decreases
and all members move closer to the reference solution. The filter well maintains the spread
around the shock formation.

Initially, the estimate is far from the reference solution. As time evolves, the members start
to converge toward the truth. The shock pattern is also well recovered by the EnKF. However, at
the 16th assimilation step, we observe the phase shift of the shock: the shock pattern estimated
by the EnKF has slightly preceded the reference solution. This is because, at the initial time step,
some ensemble members are shifted to the front with respect to the reference initial function.
EnKF hardly recovers the head and the tail of the shock due to large ensemble variance at these
locations.
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Figure 2: Reference vs. MRA-EnKFs (ensemble mean estimates).

The time evolution of MRA-EnKFs estimates are plotted together with the EnKF and the
reference solutions in Figure 2. With a sufficiently large maximum level of the tree, n0, and
ensemble size (48 members), all MRA-EnKFs solutions converge to the reference as the assimi-
lation advances. Most MRA schemes appear to perform as good as EnKF in term of accuracy of
the estimates, except CnSP which slightly deviates away from the rest, depicted by the dashed
red plot around the tail of the shock formation in the 8th assimilation step of Figure 2. This is
because whereas other MRA-EnKFs rely on the union space for the updates, CnSP performs the
model integration and the update purely in the space of the members, which may result in loss
of solution details.
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5.3 Assessment of MRA-EnKFs performances
Two main criteria are used to evaluate the efficiency of a MRA-EnKF; estimation accuracy and
computational complexity. The MRA-EnKFs results are evaluated against that of the EnKF,
which is taken as the reference. This is justified because the EnKF is always performed on
the fine mesh, and thus is considered to be the most accurate filter. An MRA-EnKF scheme
is considered efficient if its estimation error is close to that of EnKF and its computational
complexity is significantly less than that of the EnKF. A number of factors, such as the ensemble
size and the value of thresholding parameter (the tolerance) play an important role in evaluating
the overall performance of the MRA-EnKF schemes.

5.3.1 MRA-EnKFs convergence analysis

We first consider the time evolution of the normalized L2 error to examine the convergence of
MRA-EnKFs estimates toward the EnKF estimate defined as

L2-error “
E
`ş

Ω

`

upxq ´ uEnKFpxqq2dx
˘˘

1
2

}u}L2

,

where uEnKF denotes the EnKF solution and }u}L2
denotes the L2 norm of u.

Figure 3 plots the time evolution of the normalized L2 error in log scale for each of the
MRA-EnKF schemes. The x-axis is the assimilation time step and the y-axis is the average L2
error in log scale. The plotted errors are averages over five assimilation runs with different initial
ensembles. The results are consistent with those of Figure 2 with CnSP producing the largest
discrepancy from the EnKF. As time advances, the L2 error produced by CnSP is clearly larger
than that of the other schemes. The overall decreasing L2 error trends over time indicate the
relevance of the MRA-EnKFs for approximating the EnKF solution.
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Figure 3: Normalized L2 error versus assimilation step.

We also examine the differences between the MRA-EnKF estimates and the EnKF estimate as
the root of the square of the differences of MRA-EnKF and EnKF solutions. Figure 4 shows the

14



time evolution of the RMSE for each MRA-EnKF scheme. The x-axis is the assimilation step and
the y-axis is the RMSE in log scale. Clearly, for this particular tolerance (ε “ 10´3), MRAEnKF
leads to the smallest error at every assimilation cycle. This is expected because the updates
are performed in the members union space with high mesh resolution. The RMSE gradually
increases with time for all MRA-EnKF schemes, except CnSP which shows a RMSE decrease
after starting from a large error before it increases again toward the end of the assimilation
window.
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Figure 4: RMSE versus assimilation step.

To investigate the sensitivity of the MRA-EnKFs solutions to a change in the tolerance value,
the twin experiment was repeated with different values of ε. Figure 5 plots the time evolution
of RMSEs with varying tolerance values ranging from 10´3 to 3ˆ 10´1. For all schemes, larger
tolerance results in larger errors, as expected, as these lead to coarser meshes. With the exception
of CnSP, the same RMSE evolution trend is observed for all schemes, with the RMSE gradually
increasing and leveling off at the later timesteps for all tolerances.

5.3.2 Estimation error vs. Computational complexity

The computational complexity of data assimilation with an adaptive mesh model is estimated
based on the number of the Roe flux computations, which depends on the number of cells used to
approximate the solution. Adapting the mesh of each member independently may significantly
reduce the model integration cost in the forecast step. Previously, we demonstrated that, given
a specific tolerance, the first four MRA-EnKF schemes show no significant differences in terms
of estimation error. In this subsection, we simultaneously analyse the estimation error and
computational complexity of the MRA-EnKF schemes.

Figure 6 plots the time-integrated RMSE and computational complexity of each MRA-EnKF
scheme for varying tolerance and ensemble size. Each subplot representing individual scheme
shows normalized complexity on the x-axis against time-integrated RMSE in log scale on the
y-axis. We define time-integrated RMSE as the total sum of the RMSE over all assimilation
steps. The normalized complexity is defined as a ratio between the number of computed fluxes
of the MRA-EnKF scheme and the number of computed fluxes in the EnKF (which runs on the
fine mesh). Each curve of the plots represents a given ensemble size but varying tolerance.
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Figure 5: RMSE versus assimilation step. For each scheme, curves are generated for different
tolerances, as indicated.
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The first observation we make from Figure 6 is that, with the exception of CnSP, as we increase
the computational complexity by decreasing the value of the tolerance, the error decreases for
all schemes and for all ensemble sizes. This is because a smaller tolerance yields higher mesh
resolution, and hence more accurate estimates. The second observation is that for all schemes,
increasing the ensemble size beyond Ne “ 16 does not significantly improve the accuracy of the
estimates. This suggests that for a sufficiently large ensemble, the filtering error is dominated
by mesh resolution (coarsening). The third observation is that, except for CnSP, large drops
in the error occur between the normalized complexity of 0.4 and 0.6. This indicates a range
with in which the trade-off between error and complexity is optimal, which provides the best
performance of MRA-EnKF schemes, in term of both estimation error and computational cost.
Except for CnSP, all MRA-EnKF schemes successfully reduce the computational complexity up
to 40%, with an almost negligible time-integrated RMSE of less than Op10´10q when a small
tolerance (ε “ 10´10) is used.

The above results suggest that, for a specific scheme, increasing the ensemble size beyond
some threshold does not improve the filter’s performance. However, for a specific ensemble
size, the schemes may exhibit different behaviors. We compare the error and complexity of the
MRA-EnKFs in Figure 7. The first four MRA-EnKF schemes produce approximately the same
error-complexity plots with small ensembles (Ne ď 16). This indicates that for small Ne, the
error in the assimilation system is dominated by ensemble sampling errors, and not by grid
coarsening. For larger ensembles (Ne ą 16), the error-complexity plots become more distinct.
First, for Ne “ 24, with the normalized complexity of 0.57, FMSP produces almost two orders
of magnitude larger error than the other schemes, except CnSP. This result suggests that for
a specific ensemble size and tolerance, some schemes may perform better than the others in
reducing the estimation error. Similar conclusions can be made for larger ensembles (Ne ą 24);
with the exception of CnSP, FMSP yields slightly larger error than the other schemes within
the 0.4-0.6 normalized complexity interval. The MRAEnKF provides the lowest error for any
ensemble size and tolerance, which is expected given that MRAEnKF performs the analysis on
the union space that yields very high mesh resolution compared to the other schemes. As we
increase the ensemble size to 96 members, the differences between the different filtering schemes
in term of error become clear. MRAEnKF and CrP yield approximately the same smallest error
for all tolerances. This suggests that by projecting each member back to its original subspace
before proceeding with the forecast step, CrP greatly improves the filter performance compared
to the other schemes. Nevertheless, the results in Figure 7 suggest that, given the same tolerance,
the computational complexity of the first four schemes are quite similar regardless of the ensemble
size.

We also directly investigated the effect of the change in the error to the change in the tolerance.
In Figure 8, the errors are plotted against the tolerance used in the MRA-EnKF schemes. Each
curve represents the RMSE for a single ensemble size and varying tolerances. Similar to our
previous observations, these plots suggest that for all tolerances, increasing the ensemble beyond a
certain size does not significantly improve the performances of these schemes in term of estimation
error. Particularly for large tolerances, using large ensembles has a small impact on the filters
results. With the exception of CnSP, the linear trend of the error versus tolerance plots is clear.
For some tolerance interval (10´10 to 10´2), the RMSE is approximately of the same order
of magnitude as the tolerance. This is consistent with the inequality in Eq.(21), which shows
that the error between the numerical solution and its coarsened multiresolution counterpart is
bounded by the tolerance.

Overall, with the exception of CnSP, the results suggest that all schemes are comparatively
efficient at approximating the EnKF solution computed on the fine gird. These effectively capture
the details of the reference solution given appropriate tolerances, and are all competitive in term
of reducing the computational complexity. These schemes demonstrate the ability to significantly
reduce the computational complexity by half while providing a RMSE comparable to that of the
EnKF.
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Figure 6: time-integrated RMSE versus normalized complexity. For each scheme, curves are
generated for different ensemble size, as indicated.
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Figure 7: time-integrated RMSE versus normalized complexity. For each ensemble size, curves
are generated for different MRA-EnKF scheme, as indicated.
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Figure 8: time-integrated RMSE versus tolerance. For each scheme, curves are generated for
different ensemble size, as indicated.
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6 Conclusions
We proposed a new framework combining a sequential data assimilation technique, namely the
Ensemble Kalman Filter (EnKF), with adaptive mesh models. Specifically, a new class of adap-
tive mesh EnKF schemes has been developed, relying on a Multiresolution Analysis (MRA)
approach to decompose the solution into Haar wavelets. A binary tree structure is used to index
wavelet supports, which facilitates the implementation of coarsening and refinement operations.
Based on user defined tolerances, the latter enable effective mesh adaptation of individual solu-
tions represented by the ensemble members in the EnKF. Projections onto the wavelet spaces are
incorporated into the EnKF update equation, which leads to the formulation of different MRA-
EnKF schemes. By following different strategies for projecting and coarsening the ensemble
members, and considering different ordering of projection and update operations, five different
MRA-EnKF schemes were constructed. The first scheme, called “MRAEnKF” projects all mem-
bers to the members union space for the EnKF update. The second scheme, FMSP, updates the
members on the coarsened mean forecast space. The AMSP scheme (the counterpart of FMSP)
updates the members on the coarsened mean analysis space (instead of the mean forecast space).
The fourth proposed scheme, CrP, updates the members using FMSP first, then projects each
member back onto the mesh of the previous forecast step. In the fifth scheme, CnSP, the analysis
of each member is performed on the corresponding mesh, solely relying on the coarsening and
refinement algorithms of the MRA.

These variants were evaluated against a fine-grid EnKF solution in a twin experiments setting
involving the 1D Burger’s equation. The analysis revealed that with an appropriate choice of
tolerance, all MRA-EnKF methods accurately recovered the reference free-run solution except for
CnSP, which poorly performed compared to the other schemes. This was not surprising because
CnSP performs all operations in the space defined by each member. The numerical results also
revealed that the other four methods accurately approximated the EnKF solution and lead to
significant computational savings. Specifically, only marginal differences with the EnKF were
obtained while computational complexity reductions of up to 50% were achieved relative to the
reference fine grid solution.

These preliminary results also provide an insight into potential extensions of the proposed
framework. Particularly, because with the same tolerance all methods led approximately to the
same computational saving, one may select the preferred approach based on ease of implementa-
tion. In this regard, we found that for the same value of tolerance, the performance of MRAEnKF
and CrP are similar for small ensembles. However, CrP requires several more projection steps
to implement the algorithm. One may thus consider MRAEnKF as being a more convenient
scheme.

The present work focused on an adaptive mesh formulation based on MRA and restricted
our application to a one-dimensional setting. While the problem was a simple one, it was suffi-
ciently involved in the sense that individual solution schemes led to substantially different grid
adaptations and complexity to accuracy ratios. We expect our conclusions regarding the respec-
tive merits of the MRA-EnKF methods to be robust and to remain valid when applied to more
elaborated settings in higher spatial dimensions with more complex models. More challenging
problems should emphasize the differences between the methods and exhibit higher computa-
tional gains. Extension of the present constructions to multi-dimensional problems is in principle
straightforward, particularly if one exploits generalizations of the presently used binary tree con-
structions, and coarsening/refinement operators (e.g. [49]). Though this would naturally involve
more elaborate adaptive mesh algorithms, the computational savings achieved in multiple di-
mensions are generally anticipated to be much more substantial than in one space dimension.
We finally note that our selection of the present mesh adaptation formalism was in large part
based on the analytical capabilities of the used MRA approach. However, one should note that
the developed adaptive mesh EnKF methodologies can be readily implemented with different
discretization approaches and adaptation strategies. Again, our conclusions are expected to re-
main qualitatively valid when other adaptive approaches are employed for the advancement of
the ensemble members, although the computational savings achieved may heavily depend on the
selected approach.Besides the extension of general adaptive mesh algorithms, the application to
large scale model may raise additional effects that were not active in our one-dimensional settings.
A particular effect expected to emerge is the need of introducing localization in the ensemble
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covariance, to prevent the emergence of spurious long-range interactions. In our opinion, the
hierarchical nature of the MRA schemes presents new opportunities to develop scale-dependent
localization strategies in the future, starting from the ideas proposed in [19]. In these situations,
adaptive mesh strategies may not only reduce the computational complexity of the EnKF ap-
proaches but also improve their effectiveness by enabling better update procedures distinguishing
the treatment of large and short scales. Such generalizations will be the subject of future studies.
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