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Abstract

We present a method that seeks to combine the properties of optimal control with the robust character of
closed-loop control. The method relies on the availability of a reduced model of the system to be controlled,
in order to express the control problem in a low dimensional space where the system-state dependent optimal
control law is subsequently approximated in a pre-processing stage. A polynomial expansion is used for the
approximation, enabling fast update of the optimal control law each time a new observation of the system-
state is made available. It results in a real-time compatible, efficient (optimal-like) and robust control
strategy. A compressed-sensing approach is proposed to efficiently construct the approximate control law,
exploiting the compressible character of the optimal control law in the retained approximation basis. The
method is demonstrated for the control of the flow around a cylinder and is shown to perform as well as
the much more costly receding-horizon optimal control approach, where the exact optimal control problem
is actually recomputed, even in presence of large aleatoric perturbations.

Potential and remaining issues toward application to larger dimensional reduced systems are also dis-
cussed and some directions for improvement are suggested.
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1. Introduction

With the ever more stringent search for efficiency and optimized performances in almost all aspects
of everyday life, control techniques are more of interest than ever. In particular, controlling a physical
system has become a widely adopted road-map towards more efficient devices. This trend does not spare
the fluid mechanics community, in particular owing to strong incitations from the aeronautical industry.
However, fluid systems often involve complex behaviors and dynamics, typically highly sensitive to external
perturbations, and exhibiting a wide spectrum of temporal- and spatial-scales. This characteristic usually
makes the control of such systems a formidable task and, despite the continuous increase in the available
computational power, numerical optimization procedures based on a detailed model of the systems -including
all scales- remain often out of reach. Another approach is then necessary and several techniques have been
proposed to reduce the complexity of the numerical model used for the determination of the control. All
these techniques aim at constructing a low dimensional numerical model (from a few tens to a few thousands
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of degrees of freedom), yet able to reproduce the essential feature of the actual physical system. When an
appropriate reduced model has been derived, it can be controlled by a variety of methods.

To achieve a good performance in controlling the low dimensional model, high order control methods, as
opposed to low order methods such as Proportional-Integral-Derivative (PID) controllers, are often necessary.
Among those, an appealing one is the optimal control approach, [19], which relies on an optimality principle
and a model prediction over a prescribed time-horizon to derive the control command. While optimal by
definition, this open-loop control is sometimes suffers a lack of robustness when applied to the actual physical
system. In such a situation, the optimal control derived from the reduced model exhibits a sharp decrease
in the resulting performances in case of mild drift from the assumed conditions affecting the system and in
presence of perturbations. Even though perturbations may be somehow described by a probabilistic model,
leading to a robust H2- or H∞-control command, such probabilistic or worst case approaches do not account
for actual perturbations and the resulting control is usually too conservative. Further, the optimal control
law determined from the reduced order model is certainly non-optimal when applied to the true system,
with possible performance loss calling for more robust strategies. To account for non-modeled external
perturbations, a receding-horizon implementation may be used where the control command is determined
over an horizon but is updated (recomputed) after only a fraction of it has elapsed. This implementation
allows to improve the robustness by adapting the control to fluctuating conditions and by reseting potential
drifts in the predicted dynamics of the system. It has been successfully applied to numerous problems but
the method can require prohibitive computational resources, even when relying on a reduced order model,
and is not suitable in particular for the real-time control of complex fluid flows involving fast time-scales
has in aerodynamical problems.

Gain-scheduling is a popular alternative to achieve high performance control without heavy computations,
see [30] for a review. The idea is to pre-set “envelopes” in the state-space of the system and to derive a control
specific to each envelop. Several distinct controllers are then set and the state of the system determines which
envelop is “active” and which, possibly closed-loop, controller is to be used. At the expense of determining
as many controllers as envelopes, this approach allows for simple, yet effective, (closed-loop) global control.
Numerous aeronautical applications rely on such a control scheme. While appealing, this requires several
controllers to be determined, and transitions from one controller to another, when the system state drifts
from one envelope to another, is a difficulty.

For linear systems, a popular approach for closed-loop, real-time, control relies on an explicit expression
relating the current state of the system to the control to be applied. The control command is then simply
expressed as a gain matrix applied to the current system state vector. The gain matrix is determined as
the solution of a, possibly time-dependent, Riccati equation. When the control command is derived over an
infinite horizon, the Differential Riccati Equation (DRE) degenerates into a time-independent gain matrix
and the control then simply expresses as a matrix-vector product at each time step. In that case, an efficient
closed-loop optimal control is possible, usually coupled with a state estimator (for instance, Kalman filter-
based) to provide the controller with an estimate of the actual current state of the system. This approach
has become very popular. However, current algorithms for solving the Algebraic Riccati Equation, [16],
practically limit the size of the system state to a few thousands before the problem becomes ill-conditioned.
Efforts are made in order to approximate the Riccati equation solution and allow to consider reduced order
systems of hundred of thousands of state variables, see [24, 4]. Typical studies involving a Riccati equation-
based approach deal with control of small perturbations affecting a linearized model such as boundary
layer transition control or instability development control, see for instance [2]. One may refer to [15] for a
review on the control of linear systems. While appealing, this Riccati-based approach is restricted to linear
models and it precludes its use in many situations. It is obviously desirable to take advantage of the real-
time feature of the Riccati-based approach without the restriction to a linear model. Unless a remarkable
theoretical result, similar to that leading to the Riccati equation, is found in the non-linear context, one
has little choice but to shift as much calculation as possible in a pre-processing step to be left with the
very minimal amount of operations to be carried-out while on-line when the control is actually activated.
This requirement is particularly crucial in the turbulent fluid mechanics context where the required control
command frequencies are routinely above a kilohertz.

In the present paper, we build-up on our previous works on robust model reduction [18] and control of
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reduced model [23] to propose a control strategy that combines the closed-loop character of the Riccati-
based-type control allowing for performance and robustness with computational efficiency. We specifically
consider complex fluid flows, for which we assume the availability of a reduced model, and requiring a
sophisticated control synthesis that can not be computed in real time, even using the reduced model.
The latter aspect prevents the receding time approaches used in [23] and an alternative is thus proposed
to construct a cheap approximate closed-loop optimal controller of the flow. The proposed approach is
two-fold. In a first, off-line, step, the optimal control law to be applied is determined for some carefully
chosen initial states of the reduced model. This collection of pre-computed control laws is then used to
construct an approximation of the reduced state system dependent optimal control law. When on-line, i.e.
in the actual control situation, the current (reduced) state of the system is evaluated and the corresponding
control command is reconstructed at virtually no cost, using the approximation. The sole computationally
costly step is then associated to the off-line derivation of the set of pre-computed optimal laws and is
directly related to the size of the necessary set to obtain the approximation. Specifically, we shall consider
polynomial expansions to express the dependence of the control law with regard to the reduced system
state, so the number of pre-computed control laws needed to estimate the expansion coefficients is related
to the polynomial order of the approximation and the dimensionality of the reduced system state. In
practice however, the approximation exhibits some degree of compressibility in the retained polynomial
basis, i.e. many of the expansion coefficients are negligible with respect to the dominant ones. Such sparsity
is exploited here making use of the compressed-sensing methodology, [5, 9]. Compressed-sensing enables to
limit the number of necessary control law computations to a minimum, by focusing on the determination of
the dominant coefficients in the expansion. Compressed-sensing methodology will be seen to achieve a very
significant savings in the computational cost while providing a very effective approximation of the control
law.

The paper is organized as follows. In section 2, we briefly describe two main ingredients of the control
strategy proposed here, namely the model reduction step and the optimal control formulation. In section 3,
the technique for efficiently approximate the state-dependent control law (off-line step) is introduced. In
particular, the choice of the approximation basis and the compressed sensing technique are discussed. The
method is demonstrated with the control of the flow around a circular cylinder in section 4. Its efficiency
with respect to the receding-horizon optimal control is shown and several aspects are investigated, such as
the robustness with respect to exogeneous perturbations and the impact of the approximation accuracy.
Final conclusions are drawn in section 5.

2. Model Reduction and Optimal Control

We consider a complex physical system described by the time-dependent vector-valued field u(x, t) ∈ R
m

defined on a spatial domain Ωx. The system may be a fluid-flow where u(x, t) is the vector containing the
components of the fluid velocity, the pressure and the temperature at point x ∈ Ωx and time t. The dynamics
of u is prescribed by the governing equations, for instance the Navier-Stokes equations, consisting of a set
of partial differential equations. We wish to efficiently control the dynamics of the system with respect to
some objectives yet to be defined, through some control actions such as modification of boundary conditions
or introduction of some forcing terms. We denote µ the control and call “control law” the time-evolution of
the control: µ(t).

The determination of the control law yielding the control objective or, more likely, approaching it, is
a very computationally demanding task that can hardly be achieved directly from the system governing
equations in practice. In fact, in most situations one needs first to derive a reduced order model (ROM) of
the system. The purpose of the model reduction is to derive a low order (or low dimensional) system whose
dynamics mimic to some extent the essential features of the original one. Owing to its low dimensionality,
one expects the determination of the control law for the reduced system to be computationally much less
complex, while remaining relevant when applied to the original system.

In this section, the reduced order modeling of the system is first introduced, followed by a brief description
of the determination of its optimal control law.
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2.1. Model reduction

We assume the system can be expanded in the separated form

u(x, t) =

∞∑

i=1

U i(x)ai(t), (1)

where U i(x) and ai(t) are respectively the spatial modes and temporal coefficients of the reduced model.
It is assumed that the infinite family of spatial modes U = {U i, i = 1, 2, . . . } is linearly independent (w.r.t.
some spatial inner product 〈·, ·〉Ωx

), such that any vector field u has a unique decomposition on U with
coefficients (a1, a2, . . .). For reduction purpose, the expansion is truncated, retaining a finite number N of
modes in the representation, leading to the N -order representation U N of u:

u(x, t) ≈ UN (x, t) =

N∑

i=1

U i(x)ai(t). (2)

Clearly, the convergence property of UN to u as N →∞ depends on the family U considered. In fact, the
basis U should be such that it minimizes the truncature error u−UN in some sense. It also should contain
essential features of the dynamics in view of constructing the reduced model of the control flow (see discussion
below). Different methods are available for the determination of the set of modes U i. In the present work, we
used the Proper Orthogonal Decomposition (POD) originally proposed in [20, 21] in the context of turbulent
flows. The basis is constructed from a set of observations {ui := u(x, ti), i = 1, . . . , m > N} of the flow field
at distinct times ti (the so-called snapshots [31]). From this set, the "correlation" matrix Mi,j := 〈ui, uj〉Ωx

is formed. The Singular Value Decomposition of M yields the singular values σi, ordered as σ1 ≥ σ2 ≥ . . . ,
and associated normalized vectors mi ∈ R

m. Assuming rank (M) ≥ N , we define the spatial modes as

U i(x) :=
1√
σi

m∑

l=1

mi
l ul(x), i = 1, . . . , N. (3)

This definition of the spatial modes has several attractive characteristics. First, the modes are orthonormal,
a handy feature for computational manipulation, because (observing that M is symmetric)

〈U i, U j〉Ωx
=

1
√

σiσj

m∑

l=1

m∑

l′=1

mi
l 〈ul, ul′〉Ωx

m
j
l′ =

σj√
σiσj

mi ·mj = δi,j . (4)

As a consequence, the temporal coefficients can be simply retrieved by

ai(t) = 〈u(x, t), U i(x)〉Ωx
. (5)

Second, it can be shown that the decomposition (2) with the definition of the modes in (3) minimizes the
mean square representation error, for given order N , with regard to the set of snapshots. In other words,
the singular values provides an immediate way to select the relevant modes among the family.

The time-dependent spatial solution u(x, t) is now described by the N temporal coefficients an(t) asso-
ciated with their corresponding spatial modes U i(x). A crucial issue is to ensure the reduced order model
remains a good approximation of the flow when the control is activated, that is, the reduction must be
robust. This critical point must be accounted for when deriving a reduced order model and the basis used
in the present work includes some robustness constraints. The interested reader may refer to [23] where the
derivation of the robust order reduced model used in the present work was investigated. In the rest of the
paper, the ROM will then be assumed not to bring a significant source of error.

We assume that the resulting ROM is a causal autonomous dynamical system and that its dimensionality
N is large enough so that the reduced order model attractor is fully developed, i.e., the trajectory of the
system state never crosses itself in the state space. This may be verified with the Takens procedure [33]. We
further rely on the hypothesis of scale separation between modes included in the ROM (U i≤N ) and discarded
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ones (U i>N ). This hypothesis means that the truncated modes are somehow slaved to the dominant ones
in that their dynamics is constrained by that of the modes included in the ROM. Under this hypothesis, the
control command controlling the system may be assumed to be function of the first N modes solely.

To integrate the reduced order model in time, a popular choice is the Galerkin approach, see for in-
stance [13]. Approximation (2) is introduced in the governing equations of the system and the residual is
requested to be orthogonal to the space spanned by the approximation functions U i, resulting in a set of
ODEs. This procedure has long been recognized as unstable, [13], and an alternative, equation-free, strategy
proposed in [18] was employed instead and allows a robust and stable prediction of the system state, even
over long time horizons.

2.2. Optimal control

We now focus on the derivation of the optimal control strategy. Given an initial state of the system at
time t, expressed in its reduced coordinates a(t), we seek for the control law µ(t) that drives the system
toward some desirable state, or maximize some prescribed performance measure, by modifying the system
dynamics. To remain as general as possible, we assume in the following that µ(t) is a real-valued vector
having Nµ components: µ(t) ≡

(
µ1(t) . . . µNµ

(t)
)
∈ R

Nµ . To account for the effect of the control onto the
system dynamics we shall write

ȧ(t) = Fµ(a(t), µ(t)), (6)

the dynamics of the controlled ROM. We assume a numerical procedure is available for the integration of (6)
from a given control law and initial state. It is observed that (6) implicitly assumes that the effect of the
control applied in the past (t′ < t) only impacts the future dynamics (at time ≥ t) through the resulting
current state a(t).

In practice, the control is determined for a finite time interval [t, t + T ] as the solution of a constrained
optimization problem. This problem can be conveniently reformulated as an unconstrained optimization
one and reduces to the minimization of a Lagrangian L ,

L (a, µ, λ) ≡
∫ T

0

[
D2(a(t + τ), µ(t + τ)) + wµ µT (t + τ) µ(t + τ)

]
dτ

+

∫ T

0

λ
T (τ) [ȧ(t + τ) − Fµ(a(t + τ), µ(t + τ))] dτ , (7)

with λ(τ) ∈ R
N the time-dependent vector of Lagrange multipliers, D2(a, µ) ∈ R

+ the convex objective
function to minimize and wµ a user-set parameter weighting the regularization term with respect to the cost
term. Upon minimization, the Lagrangian is stationary, hence satisfying a set of optimality equations,

dL

dλ
= ȧ(t + τ)− Fµ(a(t + τ), µ(t + τ)) = 0 (State equation), (8a)

dL

da
= 2 D(a(t + τ), µ(t + τ)) ∇aD(a(t + τ), µ(t + τ)) − λ̇(τ)

− λT (τ) ∇aFµ(a(t + τ), µ(t + τ)) = 0 (Adjoint equation), (8b)

dL

dµ
= 2 µ(t + τ)− λT (τ) ∇µFµ(a(t + τ), µ(t + τ)) = 0 (Optimality equation), (8c)

where the derivatives are understood in the Gâteaux sense. This system is complemented with appropriate
initial and terminal conditions. Specifically, the terminal condition for λ is λ(T ) = 0. Solving this set of
equations yields the optimal control law µ(t + τ) and the corresponding state trajectory a(t + τ) over the
entire time-span [t, t + T ].

5



3. Approximation of the Parameterized Optimal Control

3.1. Parameterized optimal control problem

As discussed previously, one would like to recompute the control law each time a state a(t) (or its
estimation) of the system is made available. In the following, we assume that updates of the system
state are provided with a frequency greater that 1/T , so that a new optimal control command µ can be
computed, using the optimal control machinery introduced above, before reaching the end of the current
control time-span. However, the resolution of the optimal control problem is too costly to be performed
on-line. Fortunately, inspection of the control problem shows that it can be seen as an optimization problem
parameterized by the initial state a(t), specifically

µ(t + τ) = MT (τ ; a(t)) , τ ∈ [0, T ] . (9)

What is proposed here is to construct in a pre-processing step (off-line) an approximation of MT , with
a low evaluation cost, and to rely on this approximation for the on-line control when one can not afford
sophisticated computational operations. To this end, we assume that the state vectors a of the controlled
system remains in a bounded domain Ωa ⊂ R

N at all time. For simplicity, we shall restrict ourselves to
domains Ωa having product form,

Ωa ≡ [a−1 , a+
1 ]× [a−2 , a+

2 ]× . . .× [a−N , a+
N ], (10)

where a−n and a+
n are the lower and upper bounds of the n-th coefficient an(t) of the system. These bounds

can be estimated from observations of the actual system or from theoretical considerations. Since the
dependence of the control law MT (τ ; a) with regard to the initial condition a ∈ Ωa is not known explicitly,
one should rely on an approximation of it. It is chosen to approximate MT (τ ; a) by a finite series of the
form

MT (τ ; a) ≈
∑

l∈S

Ql(τ)Ψl(a), (11)

where S is an index set.
In this work, the control laws will be discretized in time with a fixed time-step ∆t = T/(nT − 1), such

that one actually seeks for a set of nT approximations

MT (τi; a) ≈
∑

l∈S

Ql,iΨl(a), τi = (i− 1)∆t, i = 1, . . . , nT . (12)

However, to avoid the introduction of an additional time-index and unnecessary complex notation, the
description of the procedures to construct the approximation of MT will be presented in continuous time,
but one should keep in mind that they apply for each τi ∈ [0, T ].

Remark.
Under formulation (9), the control takes the form of a classic closed-loop where the control command directly
depends on the current state of the system. As for all closed-loop configurations, one faces here the issue
of knowing the state of the system and should consider the use of a state estimator. While this is a critical
point and the subject of many efforts in the literature, this is not the primary focus of the present work and
we will make the assumption that the state a of the system may be estimated at any time.

3.2. Polynomial approximation

To construct a representation as given in Eq. (11), a classical approach consists in selecting the Ψl to
be polynomial functions in a, and then to define the respective coefficients Ql such that the approximation
error is minimized in some prescribed sense. It is convenient to work on polynomial functions {Ψl} forming
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an orthogonal set. This calls for the definition of an inner product on Ωa, which will be denoted by 〈·, ·〉Ωa

.

Specifically, let W : R
N → R

+ be a given weight function on Ωa, such that

W (a) =

{
0 if a /∈ Ωa,

> 0 if a ∈ Ωa.
(13)

We denote ‖ · ‖W the induced norm and we further assume that MT (·; a) ∈ L2(Ωa, W ), that is

‖MT (τ ; ·)‖2W = 〈MT (τ ; ·), MT (τ ; ·)〉Ωa

=

∫

Ωa

MT (τ ; a) MT (τ ; a) W (a) da < +∞, ∀τ ∈ [0, T ]. (14)

The orthonormality of the functions {Ψl} then writes

∀(l, l′) ∈ S, 〈Ψl, Ψl′〉Ωa

= δl,l′ =

{
1 if l = l′,

0 if l 6= l′.
(15)

With the previous assumptions, the set {Ψl, l ∈ S} forms an orthogonal basis which spans the approxi-
mation space AS :

AS := span{Ψl, l ∈ S} ⊆ L2(Ωa, W ). (16)

Clearly, the approximation space AS depends both on the selected weight W and the index set S. In
this work, a constant weight W (a ∈ Ωa) = c is used, allowing for great simplifications in the construction
of the functions Ψl. Indeed, in the case of a constant weight and domains having the product form (10), the
Ψl can be defined as the product of rescaled and translated one-dimensional Legendre polynomials, that is

Ψl(a) =

N∏

i=1

Λαi(l),[a
−

i
,a+

i
](ai), (17)

where Λα,[a−,a+](a) is the Legendre polynomial of degree α [1], rescaled and translated to the interval [a−, a+].
The approximation basis is then fully defined by prescribing the set of multi-indexes α(l) = (α1(l), . . . , αN (l))
for each l ∈ S. Classically, the index set S is constructed retaining all multi-indices α(l) corresponding to
polynomials Ψl of total degree less or equal to p:

S =

{
l, |α(l)| =

N∑

i=1

αi(l) ≤ p

}
. (18)

The degree p is called the truncation order of the polynomial approximation and the cardinality P of S is
function of p and N through

card(S) =

(
N + p

N

)
=: P. (19)

The approximation basis being set, we now focus on the definition of the approximation and introduce
a methodology for the computation of the coefficients Ql in (11). Different strategies can be thought of
depending on the definition of the approximation error. A sound approach is obtained by defining the
approximation as the L2-projection of MT (·; a) onto AS . Owing to the orthonormality of the basis of AS ,
this definition leads to the following expression for the coefficients Ql(·):

Ql(τ) = 〈MT (τ ; ·), Ψl〉Ωa

=

∫

Ωa

MT (τ ; a) Ψl(a)W (a) da, ∀l ∈ S. (20)

This definition yields the best approximation of MT in AS in the L2-sense in that it minimizes the norm
‖MT −

∑
l QlΨl‖W .
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Two difficulties arise for the computation of Ql from (20). First, no closed-form is available for MT (τ ; a(t))
preventing an exact computation of the right-hand-side of (20). Second, one has to compute a high-
dimensional integral when N is large. Therefore, one needs to rely on an efficient numerical strategy where
the integral is approximated by a finite sum of the form

Ql(τ) '
Nq∑

q=1

MT

(
τ ; a(q)

)
Ψl(a

(q)) ω(q), ∀l ∈ S, (21)

with a(q) ∈ Ωa and ω(q) the integration points and weights of the numerical integration. Different methods
can be used for the selection of the integration points. These range from random sampling of Ωa (Monte-
Carlo integration) to the use of deterministic cubature formulas. In this work, we take advantage of the
particular structure of the integration domain Ωa, see (10), and of the constant weight function W to
construct cubature formulas from the Smolyak’s scheme, see [32, 26, 27, 29]. The construction of the
cubature formulas proceeds from a sparse tensorization of a series of nested one-dimensional quadrature
formulas (Konrod-Patterson delayed formulae [28] are used in this work). The procedure aims at minimizing
the number Nq of integration points, and hence the number of optimal control problems to be solved, while
maintaining the highest order of polynomial exactness for the resulting numerical integration.

Remark 1. More advanced sparse grid integration methods can be used for the construction of the inte-
gration points and weights in (21), with further reduction of Nq. In particular, we mention the dimension-
adaptive sparse grid technique [25] and fully adaptive sparse grid [11] techniques which rely on adaptive
strategies for the definition of the set of integration points. Instead of improving our numerical integration
method along these directions, we focus in the following section on the compressed-sensing approach, which
is expected to yield a substantial reduction in the number of optimal control law evaluations, as well as a
coarser approximation (lower dimensionality of the approximation basis), and assess its efficiency compared
to the original (isotropic, non-adapted) Smolyak’s cubature.

Remark 2. An alternative to the L2-projection is the regression approach, where one minimizes the distance
between the approximation and the actual control law over a set of specific initial conditions {a(q)}. A
common formulation is obtained by minimizing the sum d2 of the squares of the residuals,

d2 =

Nq∑

q=1

(
MT

(
τ ; a(q)

)
−
∑

l∈S

Ql(τ)Ψl

(
a(q)

))2

. (22)

The regression and L2-projection are equivalent in the limit Nq → ∞ and when the regression points are
sampled in Ωa with the density proportional to W . Although the asymptotic convergence rate toward the
exact projection coefficients of the regression coefficients is generally slow with Nq compared to the sparse-
grid integration approach, the regression approach is interesting when one can only afford a number of
computations which is not large enough to perform a sufficiently accurate integration: the regression is
generally more robust than the integration for a low Nq, which however need be at least greater than P . We
shall see in the next section that the compressed-sensing approach takes advantage of this property, while also
improving the quality of the coefficients through a reduction of the effective dimension of the approximation
space.

3.3. A Compressed-Sensing approach

3.3.1. Basics

In this section, we focus on the approximation of the parameterized control law MT (τ ; a) at a fixed time
τ , so that the explicit dependence with τ will be omitted to alleviate notations. We introduce an alternative
approach to the sparse grid integration discussed above that aims at further reducing the number Nq of
optimal problems to solve. For sufficient regularity of the optimal law (with regard to the initial condition)
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and large enough basis {Ψl}, one can assume that the coefficients Ql exhibit -upon appropriate indexation-
a decay rate bounded from above as

|Ql| . l−1/r, ∀l ∈ S, 0 < r ≤ 1. (23)

If the above condition is fulfilled, MT is said compressible in the approximation basis {Ψl} and a significant
number of coefficients Ql are then negligible, w.r.t. the dominant ones, and can be disregarded. It suggests
that one should not treat identically all the coefficients but focus the available information onto the evaluation
of the relevant ones, and only them. This would relax the constraints mentioned in remark 2 on the number
of sampling points and allow for significant computational savings. Considering the problem with such
objective in mind, the so-called Compressed Sensing (CS) approach is the method of choice. For a more
complete introduction to the CS theory, we refer to [5, 6, 9], and restrict ourselves to the presentation of its
essential steps.

The objective of CS is to construct a sparse representation minimizing in some sense the approximation
error

RQ(a) = MT (a)−
∑

l∈S

QlΨl(a) = MT (a)−Ψ(a)Q. (24)

To this end, a measurement basis {φq(a), 1 ≤ q ≤ Nq} is selected together with an inner product 〈·, ·〉 on
Ωa. We set for 1 ≤ q ≤ Nq

yq ≡ 〈φq , MT 〉 , ŷq ≡ 〈φq ,ΨQ〉 = [S]Q, (25)

where the matrix [S] ∈ R
Nq×P has for entries [S]q,l = 〈φq , Ψl〉. The CS solution Q? ∈ R

P is defined as

Q? = arg minQ∈RP ‖Q‖0 , s.t. Y = [S] Q, (26)

where Y ≡
(
y1 . . . yNq

)T
. In words, the CS solution is the sparsest vector, that is having the minimal

L0-norm, that represents the Nq observations.
The constrained optimization problem (26) involves a non-convex cost functional and is combinatorial

in nature. It results in a NP-hard problem which solution is not computable in practice for most cases.
Fortunately, it was shown that the L0-norm may be substituted with the L1-norm, which is convex, while
the solution Q? remains the same. Further, since the set of approximating functions {Ψl, l ∈ S} is not a
complete basis, the observations can not be exactly retrieved in general. An approximation error ε then exists
which value depends on the truncation order p. The optimization problem (26) then has to be reformulated
into the following inequality-constrained optimization problem:

Q? = arg minQ∈RP ‖Q‖1 , s.t. ‖Y − [S] Q‖2 ≤ ε. (27)

In this form, the problem is called basis pursuit and may be efficiently solved by reformulating it as a
linear program. The solution method relies on an optimized choice of measurement functions set {φq}. In
this work, the sensing elements φq are simply taken as Dirac distributions φq(a) = δ(a − a(q)), where the
measurement points a(q) are sampled at random in Ωa. For this choice, the entries of the matrix [S] are
Sq,l = Ψl

(
a(q)

)
, 1 ≤ q ≤ Nq, 1 ≤ l ≤ P .

Usually, the determination of the P coefficients {Ql, l ∈ S} calls for Nq ≥ P measurement points. How-
ever, if the signal MT (·; a) is compressible enough in the orthonormal trial basis {Ψl, l ∈ S}, the exact signal
can be recovered with far fewer evaluation points, Nq < P , hence the term “compressed sensing” to refer to
this technique. This remarkable result has received considerable attention in the past years.

3.3.2. Solution method

As seen above, the problem takes the form of an inequality constrained optimization problem (27), to
be solved for Q ∈ R

P . A great deal of work has been devoted to this class of problems and its alternative
formulations, such as the convex constrained version

Q? ≡ arg minQ‖Y − [S] Q‖2, s.t. ‖Q‖1 ≤ εQ where εQ > 0, (28)
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and the (convex) unconstrained optimization version

Q? ≡ arg minQ‖Q‖1 + η ‖Y − [S] Q‖2 where η > 0. (29)

Upon an appropriate choice of εQ and η, problems (27), (28) and (29) have the same solution.
Algorithms vary depending on the formulation of the problem used. For instance, ideas from the Least

Angle Regression (LARS) procedure [10] may be used to solve formulation (28), while formulation (27)
may be recast as a second order cone program for which efficient algorithms exist, see for instance [3].
In the present work, the formulation (29) is used together with a memory-limited second-order quasi-
Newton approach [12]. Note that this choice is in no way unique and one may consider projected gradient
techniques [34], Interior Points methods (IP) [35], or iterative-shrinkage techniques [36]. For the examples
shown in the next section, the memory-limited second-order quasi-Newton approach was found very efficient
so that alternatives have not been investigated in the present work.

The solution to (29) depends on the value of η which is unknown. It balances the reconstructed signal
norm ‖Q‖1 and the approximation error ‖Y − [S] Q‖2. A weakly penalized observation constraints (low η)
results in an approximation lying on a too low-dimensional subspace; a contrario, a large η may result in
over-fitting on the available observations. A cross-validation technique is employed to estimate the optimal η,
denoted η∗, along the Pareto front. Specifically, η? is estimated through a K-fold cross-validation technique
as the value of η which minimizes the mean reconstruction error over the K folds,

η? = argminη

K∑

k=1

∥∥∥M(k)
T −Ψ

(k) Q?(η)
∥∥∥

2
, (30)

where M
(k)
T and Ψ

(k) are evaluated on the k-th set of points
{
a(q,k), q = 1, . . . , Nq/K, k = 1, . . . , K

}
, in-

dependent of the set of measurement points used to construct Y . The procedure is repeated K times so
that each set of Nq/K points alternatively serves for the approximation and the residual norm estimation.
K = 3 is used in this work. More sophisticated cross-validation techniques such as the Leave-One-Out or
the .632+ bootstrap method may lead to lower variance error estimation but are deemed too costly.

Remark 3. As mentioned at the beginning of the section, the compressed sensing approach is used to ap-
proximate MT (τ ; a) at fixed times τi, i = 1, . . . , nT . Therefore, the complete approximation of the control
law involves the solution of nT independent problems of type (27). Provided the time-extend between two
successive discrete times τi is low compared to the control law intrinsic time-scale, it is expected that Q?

does not drastically change from τi to τi+1 so that the solution Q?(τi) may be efficiently used as an initial
condition for the optimization problem at τi+1.

Alternatively, a global optimization problem involving an extended solution vector Q̃
T

=
(
QT (τ1) . . . QT (τnT

)
)
∈

R
nT×P may be considered. The approximation is then described over the whole discretized time domain by

the components of Q̃. This approach involves a high-dimensional (nT × P ) optimization problem and an
accordingly large matrix [S]. When the time horizon requires a significant number of time steps, the size of
the optimization problem grows to intractable level and this later approach is not thought to be a tractable
route.

3.4. Algorithm

To complete the exposition of the method, and before showing example results, we provide a sketch of
the overall control procedure, distinguishing particularly the off- and in-line components. We assume that
a reduced basis {U i, i = 1, . . . , N} has been provided, together with a relevant control domain Ωa and
associated reduced model Fµ. The procedure is described for the case of the Compressed-Sensing approach
only, as it is similar in structure for the integration approach.

• Off-line step.

– 1 Define the set of Compressed -Sensing points {a(q), q = 1, . . . , Nq}.
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– 2 For each point a(q), q = 1, . . . , Nq do

Compute and record MT (τ ; a(q)), τ ∈ [0, T ], the solution to the optimal control problem (8) with
the initial condition a(t = 0) = a(q).

– End

– 3 For each time τi, i = 1, . . . , nT do

Solve the Compressed-Sensing problem (27) for the set of data {MT (τi, a
(q)), q = 1, . . . , Nq} and

record solution Ql(τi), l = 1, . . . , P .

– End

• On-line step.

– 4 Get/estimate the current reduced state a of the system and set τ = 0.

– 5 Repeat

∗ Find i such that τi−1 < τ ≤ τi.

∗ For l = 1, . . . , P , interpolate Ql(τ) between Ql(τi−1) and Ql(τi).

∗ Reconstruct µ(τ) =
∑P

l=1 Ql(τ)Ψl(a).

∗ Apply the optimal control and integrate the system state a over a time step δτ using the
reduced model equations (6).

∗ τ ← τ + δτ .

– Until a new estimate of the state is made available.

– 6 Reset a to the new state, reset τ ← 0, and continue from step 4.

For the off-line component, we observe that both steps 2 and 3 are computationally demanding. We
remark however that if they need be treated sequentially, step 2 first, the two can be parallelized in a
straightforward manner: over the set of CS points for step 2, and over the set of recorded times for step
3. In addition, although Nq may be large, we recall that the optimal problems are based on the reduced
model which dimensionality is not that large. In fact, the detailed model is not used at any step. We
further stress that the overall cost of the off-line component primarily scales with Nq, which is the number
of control problems and the dimension of the CS problem that has to be solved, and, to a lower extend, on
the control time-range T since it only impacts step 2 (provided nT remains constant, see discussion below).
Note that, in view of optimal control efficiency, one can consider a long time-range T , and record/construct
approximations of the control law only for some early times τi. This is particularly sensible as one expects
new state observations at a sufficient high rate, compared to 1/T , as to avoid the emergence of significant
errors in the time-integration of the controlled ROM, due to unmodeled effects and external perturbations.

Focusing now on the on-line component, we see that it essentially amounts to the time-integration of
the controlled reduced model using time-interpolation of the optimal law reconstructed for the current state
estimate. In this work, we used the simple piecewise constant time interpolation for the approximation
coefficients Ql(τ), namely

Ql(τ) = Ql(τi), τi−1 < τ ≤ τi. (31)

Once the coefficients Ql(τ) have been obtained, the reconstruction of µ(τ) only involves the evaluation of
P N -variate polynomials at an effectively low computational cost. It thus remains to integrate the reduced
model equation ȧ = Fµ(a, µ) to obtain the new state estimate at time τ + δτ . The sequence of time-
interpolation, polynomial reconstruction, time-integration is then repeated until a new observation of the
state is made available. In fact, re-initialization of the optimal control strategy at a high frequency rate is
here possible: in the examples shown in the next section, the simulations use a new state estimate available
at a frequency (T/nT )−1 so we actually only have to record and construct the approximation of the control
law at τ = τ1.
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4. An Application Example

In this Section we illustrate the effectiveness of the proposed methods on a simple flow control problem
introduced in section 4.1. We then assess and compare the efficiency and numerical complexity of the two
procedures (compressed sensing and integration approaches) for the approximation of the parameterized
optimal control law, in section 4.2. The impact on the resulting control performance of both the polynomial
order in the control law approximation and model reduction errors are subsequently studied in section 4.3.
Finally, the control robustness induced by the capability of restarting the control strategy on the fly is
demonstrated in section 4.4.

4.1. Description of the configuration

The methodology presented in the previous section is now demonstrated on a simple example. The con-
sidered the control of the two-dimensional cross-flow around a circular cylinder in laminar incompressible
regime corresponding to a moderate Reynolds number Re = 180 (based on the cylinder radius). The control
aims at minimizing the total drag of the cylinder in cross-flow. While rather academic, this simple config-
uration is thought to involve many essential features to demonstrate the proposed methodology efficiency.
In particular, the flow involves a spectrum of spatial and temporal scales requiring a fine spatial and time
discretization for its simulation, thus calling for a reduced order model approximation to derive optimal
control strategies in a suitable low dimensional space. Further, the control needs be time-dependent, due to
the vortex-shedding dynamics, and should be updated with the phase of the flow. Finally, the control has
be robust as the drag is sensitive to external perturbations which may contaminate the incident flow. The
general system configuration is sketched in Fig. 1.

u (x,t)

µ (t)Control law

Inflow

Figure 1: Sketch of the control configuration. The control is achieved by uniformly imposing the normal velocity at the cylinder
surface.

The control consists in imposing of a normal flow at the surface of the cylinder, which may then be
thought of as porous. Without loss of generality, the normal flow is considered uniform over the surface,
leading to a unique time-dependent control parameter, Nµ = 1.

The flow is numerically simulated with a Ψ–ω formulation (stream-function – vorticity). Details about
the numerical flow solver are provided in [17, 18]. We rely on a O-type 180×180-mesh having 32400 nodes in
space. This detailed discrete flow field is both too fine to be compatible with the real-time control constraint
and not observable in practice, preventing a state estimator to be available. An observable reduced model is
then to be derived and choice is made here to employ a classic Proper Orthogonal Decomposition. Details
on the construction of the reduced model basis can be found in [18]. In the following we use a reduced model
of order 9.

As said above, the objective of the control is to decrease the total drag of the cylinder. This objective
is supplemented with an upper bound constraint on the control intensity (normal flow velocity) which
is justified by several reasons. First, for sake of realism, the control intensity has to be bounded since
it is physically achieved by actuators with technologically limited capabilities. Second, the unconstrained
optimization problem has unbounded solutions resulting in a physically non-realistic configurations. Finally,
and somehow related to the second point, the reduced order model, while robust, can not remain accurate
if the flow is too distorted from its non-controlled counter-part.
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4.2. Compressed-sensing approximation

The relevance of a compressed-sensing technique for identifying the polynomial coefficients approximating
the parameterized control law, as described in Section 3, is first investigated. The accuracy of the CS
approximation is assessed and the complexity of its determination, in terms of number of measurement
points, is also contrasted with that of the sparse grid integration approach based on Smolyak cubature. Let
ε? be the relative L2-norm of the approximation residual:

ε? =
1

‖MT (τ ; a)‖W

∥∥∥∥∥MT (τ ; a)−
∑

l∈S

Ql (τ) Ψl (a)

∥∥∥∥∥
W

, (32)

where coefficients Ql are evaluated either using (29) (CS approach) or Eq. (21) (Smolyak cubature approach).
Since the exact control law MT is unknown, the ε? has to be estimated, and we again rely on a Smolyak
cubature formula with high order of accuracy to obtain well converged error estimates.

Residual norms are plotted in Fig. 2 for approximations involving a variable number Nq of sampling
points and different polynomial total orders p. For the L2-projection approximation, the Smolyak scheme
level is varied from 2 (Nq

(2) = 163) to 7 (Nq
(7) = 87823). For the CS-based approach, different sizes of the

set of samples were considered, from Nq = 20 to Nq = 3000. The samples used in the CS-flavor are selected
at random within Ωa.

 0.01

 0.1

 1

 10  100  1000  10000  100000

ε

Nq

CS p=  3
CS p=  5
CS p=  7
CS p=10

Smol p=3
Smol p=4
Smol p=5
Smol p=6

Figure 2: L2-norm of the residual of the approximation at different polynomial orders p for the Smolyak cubature-based
projection (labeled ‘Smol’) and the compressed-sensing approach (labeled ‘CS’).

Figure 2 shows that for every approximation order p, the CS approximation achieved an error comparable
to the Smolyak approach but with a much lower number of sampling points. For instance, to reach an error
ε? ' 7 10−2 using a p = 5 approximation, the L2-projection using a Smolyak cubature requires about
Nq ' 105 sample points while the CS-based approach only necessitates Nq ' 100 measurement points. The
directly impact the overall cost of obtaining the approximation as it is directly related to the number of
sample points: CS approach allows to reduce by about three orders of magnitude the construction cost
of the parameterized optimal law as compared to the Smolyak integration approach in that case. Similar
observations hold for other polynomial orders and strongly support the CS approach proposed in this work.

Further, for a fixed polynomial order p, the L2-error decays as we increase the number of measurement
and integration points, although after a certain value of Nq the errors level-off, reflecting the limited ap-
proximation properties of the truncated basis. Note also that as the dimension of the polynomial basis
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increases, larger Nq are needed to achieved similar accuracy in the approximation, while the CS approach
is systematically doing a much better job than the Smolyak integration.

The behavior of the CS approach with varying number of measurement points and expansion orders can
be better appreciated in Figure 3 where plotted are the L2-errors ε? corresponding to different polynomial
orders p obtained using two sets of measurement points with respective dimensions Nq = 100 and Nq = 609.
In the Nq = 100 case, the approximation accuracy improves when the polynomial order increases from p = 0
to p = 4 but deteriorates as p grows beyond. A p = 10-approximation then achieves a resulting error about
four times larger than using p = 4. When Nq = 609, while the number of measurements points is sufficiently
large to reasonably estimate the approximation coefficients even for the most detailed basis (p = 10), the
accuracy of the approximation hardly improves when p is larger than 5, again as a symptom of the p / Nq

compromise, then letting p ' 5 appear as a reasonable choice. The impact of the polynomial order onto the
controller performance will be specifically investigated in section 4.3.1.

 0.01

 0.1

 0  2  4  6  8  10

ε

p

Nq = 100
Nq = 609

Figure 3: L2-norm of the approximation residual for different polynomial orders p and two measurement points having size
Nq = 100 and Nq = 609. CS-approach.

The ability of the CS-based approach to accurately approximate the control law can be appreciated from
Fig. 4 where the exact parameterized control law (MT (τ1)) is plotted together with its polynomial approx-
imation obtained with the CS approach using Nq = 3000 points (left) and from the Smolyak integration
approach using Nq = 87823 points (right). To ease the visualization, the control law is only shown in the
{a1 − a4}-plane (other coefficients being set to value ai = 0.5, their mid-value).

The approximations are seen to be fairly close to the exact control law over the prescribed state vector
coefficients domain. The plateau near the edge (a1 = 0, a4 = 1) is due to the bounds on the control intensity.
While both approaches lead to a reasonable approximation, the CS-approximation relying on Nq = 3000
and a p = 10 polynomial order achieves a better fit. It was seen above in Fig. 2 that this small set of
observations is sufficiently large for the polynomials coefficients to be accurately estimated. Conversely, the
Smolyak integration approach does not achieve that level of performance as it relies on a p = 4 polynomial
order, the best achievable with the present Nq = 87823 observations set. To highlight the better and much
less computationally intensive approximation achieved by the CS approach, the difference between the exact
{a1 − a4} control law and the two approximations are plotted in Fig. 5. Again, the CS technique is clearly
seen to achieve a much better approximation while needing roughly 30 times less control law computations.
As it clearly outperforms the integration approach, the compressed sensing methodology will be used in all
of the computations shown in the remainder of the paper. While not critical for the particular problem
treated here, the dimension N of the ROM space being moderate, but in the perspective of dealing with
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Figure 4: Comparison of the exact control law and its approximations using CS (left) and Smolyak integration (right). Only
the plane {a1 − a4} is shown for clarity. The CS approximation is constructed using Nq = 3000 measurements for p = 10,
while the Smolyak approach uses Nq = 87823 integration points for p = 4.

more complex systems, a coarse measurement set having only Nq = 300 points is used in the following to
limit the number of off-line optimal control law resolutions.
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Figure 5: Local error in the control command approximation using CS (left) and Smolyak integration (right). Only the plane
{a1 − a4} is shown for clarity. The CS approximation (left) is constructed using Nq = 3000 measurements for p = 10, while
the Smolyak approach (right) uses Nq = 87823 integration points for p = 4.

4.3. Approximate controller

4.3.1. Impact of the polynomial order

Having analyzed above the errors in the polynomial approximates of the parametrized optimal law, we
now focus on the impact of these approximation errors on the resulting control efficiency. To this end, we
perform simulations of the reduced model, without control up to time t = 500, when the closed-loop control
is eventually turned on. The simulations are performed using approximations with p = 3, 4 and 5 in order to
assess the impact of the polynomial order. Taking advantage of the moderate dimensionality of the reduced
model, we also provide, for comparison, the case of the simulation using a receding-horizon optimal control
where the control problem is recomputed at each time step. The later approach, while obviously much more
involved from the computational point of view, should be considered as the exact optimal control solution
of the reduced system. The simulation results are presented in Figure 6 as the time histories of the control
intensities (µ(t)) and the resulting drag coefficients (CD(t)).

Before discussing the convergence of the approximation with increasing polynomial order p, we com-
ment briefly the control on the control law and its performance. The control intensity plots show that
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after switching the control on, its intensity oscillates at roughly twice the natural flow frequency (Strouhal
number) and remains negative at all times. In fact, a negative intensity corresponds to a suction flow at the
cylinder surface. While increasing the viscous dissipation, suction tends to re-attach the boundary layers
and postpones flow separation from the surface, with lower pressure drag as a result. The net result of these
two trends is a decrease of the total drag. On the contrary, a positive intensity would correspond to a surface
blowing, promoting boundary layer separations and widening the near wake albeit with a slight decrease of
the viscous drag. The computed intensities are then physically consistent. For the drag coefficient signals,
which without control oscillate in the range 1 ≤ CD ≤ 1.75 at twice the Strouhal frequency, we observe that,
owing to the control, both the mean drag and its amplitude of fluctuation are reduced. Note however, that
the absolute performance of the control, in terms of drag reduction, obviously depends on the compromise
one makes between decrease of the drag and control intensity through the choice of the weighting parameter
ωµ. This aspect will not be investigated, as the focus of the paper is on the construction of approximate
parameterized optimal control commands for closed-loop type strategy, and not on control performance.

Returning to the analysis of the plots at different orders, the agreement with the exact receding-horizon
optimal control is seen to improve from p = 3 to p = 5, as one might have already anticipated from the result
of the previous section. In particular, for p = 5, the agreement is excellent, and both the control intensity
and drag coefficients are virtually the same as for the receding-horizon optimal strategy. This observation
supports the choice of using p = 5 in the remainder of the paper.
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Figure 6: Time evolutions of the control intensities (left) and drag coefficients (right), for the closed-loop control based on the
polynomial approximation (CL-Polynomial) with p = 3− 5 and the time receding open-loop optimal control (Reference).

Remark.
While a 5-th order polynomial appears good enough in the present problem, this value can not be general-
ized. In fact, depending on the reduced model, its dynamics and the optimal control problem formulation
(e.g., the constraints considered), there is no guarantee that the optimal control law remains smooth with
regard to the initial state of the system. In case where poor regularity is expected, more general approxima-
tion bases should be considered and the compressed-sensing approach appears again better suited from this
perspective, as it can even handle and work with redundant dictionaries. More specifically, it is no prob-
lem adding-up various approximation bases while still being able to retrieve the components which most
efficiently approximate the actual “signal”. For instance, in addition to the present polynomial basis, it
may be beneficial to include compactly supported elements, such as wavelets, and/or enrichment functions.
Investigations along these lines are the subject of on-going efforts.

4.3.2. Phase-portraits

To gain further insight into the impact of the control law approximation, we provide in Figure 7 a
comparison between the time evolution of the controlled system reduced state for both the approximate
control law and the receding-horizon optimal control strategy. Plotted are the projection of the phase
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portraits in the plane of dominant modes {a1 − a2} (left plot) and in the plane of highest order modes
{a8 − a9}. Also shown are the corresponding trajectory of the uncontrolled system to appreciate the effect
of the control on the dynamics. For the dominant modes, it is remarkable that the approximate and reference
controllers lead to indistinguishable phase-portraits, again providing a clear indication of the effectiveness
of the approximation strategy. May be even more remarkable is the close agreement between the controlled
trajectories for the higher order modes a8 and a9: although some differences are visible at the plot scale,
the reference and approximate control laws yield trajectories in close agreement considering the significant
changes in dynamics, with or without control.
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Figure 7: Projection of phase portraits in planes {a1 − a2} (left) and {a8 − a9} (left), using approximate closed-loop (CL -
p = 5) and time receding optimal laws (Reference). Also shown are the phase portraits without control.

4.4. Robustness of the control

4.4.1. Stability analysis

A crucial issue is to ensure that the control strategy is stable, in the sense that a small deviation from the
trajectory of the controlled system in the phase space will not result in a diverging regime where the system
would divert in time from its nominal trajectory. Instead, the control must be such that any small deviation
of the system state induced by some perturbation is damped and that the system eventually returns to
the nominal trajectory. Different strategies can be followed to study the stability of a periodic non-linear
dynamical system as considered in this work. Here, the stability is investigated in terms of the Floquet
matrix [14] which represents the Jacobian, with respect to perturbation, of the trajectory deviation after a
period of the system. The deviation of the system trajectory is considered in a Poincaré section. If the largest
module of the Floquet matrix eigenvalues is larger than unity, some perturbations to the system will not be
damped and the system may destabilize. Several Poincaré sections were considered along the trajectory of
the controlled system and the corresponding Floquet matrices were determined. The resulting eigenvalues
were found to remain the same along all the Poincaré sections considered, with eigenvalues modules in the
range 0 to 0.76, thus providing strong arguments that the controlled periodic system is linearly stable around
its optimally controlled trajectory. The upper spectrum of the Floquet matrix at a point of the trajectory
is plotted in Figure 8.

4.4.2. Real-life control

The performance of the controller has so far been evaluated in ideal conditions where the future-predicting
model accounts exactly for the operating conditions. To validate the whole control approach, it is necessary to
consider more realistic situations, where limitations or flaws exist in the model and exogenous perturbations
occur. This solicits the robust character of the controller. Without loss of generality, random perturbations
were added to the 1st reduced order model mode a1(t) solely (recall that the first mode is the dominant one
so its perturbation is likely to have strong impact on the system future). Specifically, a random noise is added
to the first component of each new system state. The noise is Gaussian, with zero mean, and time-correlated
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Figure 8: Upper spectrum of the Floquet matrix determined at a point along the controlled system trajectory.

with a characteristic time scale equal to one period of the natural frequency of the flow. The noise level
is selected so as to significantly impact the system dynamics while ensuring a trajectory remaining in the
domain of the control law approximation. The impact of the perturbation can be appreciated in Figure 9
where the resulting applied control and cylinder drag are plotted as a function of time. These plots have to
be compared with their unperturbed counterparts shown in Figure 6. We observe that the control intensity
(left plot) has now a wide spectrum of time-scales, contrary to the unperturbed case where, asymptotically,
a periodic control was obtained. The drag coefficient (right plot) exhibits similar shaky time-evolution and
is now fluctuating over a much broader range than for the unperturbed and uncontrolled problem. These
large fluctuations underline the large perturbation introduced for the purpose of robustness assessment. The
robustness can in turn be appreciated from Figure 9 where the two cases of approximate closed-loop control
and reference receding-horizon optimal control are reported. It is seen that despite a weakly predictable
environment, the approximate closed-loop control is able to almost exactly reproduce the optimal control
command determined from a receding-horizon optimal procedure. Recalling that this latter open-loop
procedure recomputes the control to be applied in the future whenever new information about the state of
the system is available (here, at each time-step) and thus constitutes the optimum which can be achieved
in a causal framework, the efficiency of the proposed closed-loop approach is impressive: it achieves nearly
the same control performance for an in-line cost amounting to a fraction (few orders of magnitude less in
the present case) of the receding-horizon approach.

5. Concluding remarks

In this work, an efficient real-time control method was presented. The efficiency comes from the un-
derlying optimality criteria the control command synthesis relies on, while the real-time character is made
possible thanks to the very low necessary number of computational operations to reconstruct and update
the optimal control when plugged-in. The essence of the proposed method is that most computations are
carried-out off-line in a preprocessing step, under mild hypotheses about the behavior of the system to be
controlled. In particular, the system is assumed a) to be amenable to an accurate enough reduced order
approximation and b) that its state vector representation remains in a given compact domain. The optimal
control over a given time-horizon, for a given initial state and control objective, is approximated using an
ad-hoc basis (orthogonal polynomials were used but other choices are possible as discussed below). This
approximation allows to reconstruct the control command achieving optimally a prescribed objective to
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Figure 9: Time-histories of the control intensity (left) and drag coefficient (right) for random perturbations of the dynamics
added to dominant reduced mode a1.Compared are the simulations with the proposed approximate closed-loop strategy (CL -
p = 5) and the receding-horizon optimal control strategy (Reference).

be applied to the system knowing its current state. Further, since the control is determined based on the
current system state, it is updated whenever a new state of the system is made available. Thus, the method
accounts for the external / unmodeled perturbations affecting the system. While potentially CPU involved,
the preprocessing step, where the parametrized control law approximation is determined, is embarrassingly
straightforward to parallelize since it relies on independent computations. In addition, we have shown that
compressed-sensing is a promising approach to obtain accurate approximations of the parametrized optimal
control law from a limited number calculations. It strongly suggests that compressed-sensing would be a
key ingredient in applying the proposed method to high dimensional problems involving hundreds of modes.

The method was applied to the control of the total drag of the flow around a circular cylinder at a low
Reynolds number. Results have shown that the proposed methodology achieves performance almost as good
as a receding-horizon optimal control approach while necessitating orders of magnitude less computational
power when on-line. The quality of the approximation and some related issues were discussed. In the
example considered, 5th-order Legendre polynomials were found sufficient to provide results virtually as
good as with a receding-horizon optimal control approach. However, other situations may require higher
order polynomial approximations or even the introduction of enrichment functions in the approximation
basis to present steep variations or discontinuity of the optimal law. In that case, enriched approximation
bases would need be considered, and compressed-sensing seems again well-suited for that purpose (contrary
to the integration approach).

In addition, the robust character of the method was demonstrated by considering large aleatory pertur-
bations. The control command was seen to adapt well to fluctuating conditions. This proves the effectiveness
of the proposed method which bridges closed-loop capability (the control depends on the current state of
the system) and non-linear optimal control nature, thus improving upon the linear framework of Riccati
approaches. Supported by its performance, reasonable computational complexity and manageable issues,
the method is thought to be of interest for many areas related to systems control. Investigation of some of
the specific issues discussed above (case of optimal control laws lacking regularity with regard to the system
state, high-dimensional constrained-optimization problem, . . . ) is the subject of on-going efforts.
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