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Abstract

This work tackles the problem of calibrating the unknown parameters of a debris flow model with the drawback that
the information regarding the experimental data treatment and processing is not available. In particular, we focus
on the the evolution over time of the flow thickness of the debris with dam-break initial conditions. The proposed
methodology consists of establishing an approximation of the numerical model using a polynomial chaos expansion
that is used in place of the original model, saving computational burden. The values of the parameters are then
inferred through a Bayesian approach with a particular focus on inference discrepancies that some of the important
features predicted by the model exhibit. We build the model approximation using a preconditioned non-intrusive
method and show that a suitable prior parameter distribution is critical to the construction of an accurate surrogate
model. The results of the Bayesian inference suggest that utilizing directly the available experimental data could lead
to incorrect conclusions, including the over-determination of parameters. To avoid such drawbacks, we propose to
base the inference on few significant features extracted from the original data. Our experiments confirm the validity
of this approach, and shown that it does not lead to significant loss of information. It is further computationally more
efficient than the direct approach, and can avoid the construction of an elaborate error model.

Keywords: Bayesian inference, Polynomial chaos expansion, debris flow, Uncertainty quantification

1. Introduction

The present work explores the possibility of exploiting experimental data resulting from measurements in [44] for
the purpose of inferring selected parameters in the D-CLAW debris flow model [13, 23]. The inference focuses on
a Bayesian approach that has the advantage of providing a complete characterization of the parameters’ uncertainty
through their resulting posterior distribution. While conceptually simple, performing a Bayesian inference raises
several computational and practical difficulties at every one of its constitutive steps. One objective of the present work
is to highlight these difficulties and underline issues and risk of applying the Bayesian procedure naively using the
available measurements.

The key issue is related to the use of complex, non-linear models such as the one used here. In the context
of this study, the use of D-CLAW makes the derivation of closed form expressions for the prediction of physical
measurements difficult at best while also being computationally complex and costly; tackling this problem is highly
non-trivial. In this context we (1) constructed a polynomial chaos expansion [30, 15] with the intention of using
this expansion as a surrogate model for sampling the Bayesian posterior distribution [39, 40, 53]. Unfortunately,
constructing this surrogate itself is not straightforward due to the complexity of the physical debris-flow model. This
complexity calls for the use of advanced approximation methods, including preconditioned projections [1, 2, 37]
coupled with regularized projection methods [27, 18]. This objective is further complicated due to the considered a
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priori parameter range and the multiple parameter regimes that can exist mathematically but inspection can rule out.
Complicating even this problem the experimental data from [44] consists of multiple experiments with only derived
quantities available. This leads to difficultly in constructing fair error models that adhere to classical assumptions
(such as independent measurement noise) with the consequence that conclusions from the analysis can be misleading.
Here we examine and demonstrate that alternative observables, while still physically relevant, can lead to significant
improvements in surrogate model performance as well as Bayesian analysis results. In this particular case, integrated
quantities, temporal points of interest, and particular features of the data can lead to an inference problem that is both
more robust and more computationally tractable.

This paper is organized to follow both a description of the constructions used but also following the logical pro-
gression of the authors’ realization that standard techniques would be insufficient at particular junctures. Section 2
describes the computational model and its uncertain parameters to be inferred, the available experimental measure-
ments, together with a brief outline of the Bayesian inference framework. In Section 3.1, we present a brief discussion
on the selection of the parameter priors distributions and simplifications of the physical model. In Section 3.2, we
detail the preconditioned polynomial chaos (PC) expansion approach used for constructing surrogates of the observ-
ables to be compared with the measurements. In Section 3.3, we validate and analyze the accuracy of the surrogate
model and perform an a priori global sensitivity analysis (GSA) of the observables. Section 4 discusses results of the
Bayesian inference, comparing the use of different likelihood functions, involving the raw measurements or selected
features of the model dynamics. We finally summarize our findings in Section 5.

2. Debris flows

Debris flows are highly mobile, fluidized mass-flows, composed of mixtures of saturated sediment with variably
sized solid grains. Debris flows may evolve from a slope failure of a static mass of sediment, which may alternatively
restabilize after an initial period of slumping. Therefore, the general class of landslide-type flows to which debris flows
belong may behave like a slowly deforming solid, a surging fluid-like flow, and a range of intermediate behaviors.
The initial bulk density and sediment properties of a landsliding mass that ultimately slumps and stabilizes, versus one
that evolves into a fluidized debris flow, can be nearly undetectable from field measurements. Therefore, the physical
mechanisms underlying these contrasting behaviors are subtle yet powerful. While these mechanisms are now widely
understood, they are difficult to predict due to sensitivities and uncertainties regarding initial conditions and properties
of a static mass of sediment.

Debris flows owe their exceptional mobility to the presence of high pore-fluid pressures which greatly exceed hy-
drostatic pressures and reduce the effective Coulomb frictional stresses of solid grains. These elevated pore pressures
are due primarily to the contraction of the solid grain concentration upon shearing. Conversely, granular materials
that tend to dilate upon shearing yield reduced pore-fluid pressures, which can encumber mobility or lead to resta-
bilization (e.g., [21]). In a real debris flow, the prevalence of these contrasting behaviors may evolve both spatially
and temporally. Therefore, debris-flow models, or models developed to simulate more general forms of landslides,
must contend with this evolution and variation of rheological-type attributes. Models that adopt a single fluid-like
or solid-like rheological rule cannot generally reproduce this range of possible flow fates by simply varying initial
conditions or model parameters [22].

For our inference problem, we focus on the debris flow model, D-Claw, ([24, 14]) briefly summarized in the
following section. The parameters of the inference problem are subsequently introduced as well as the Bayesian
framework adopted for their calibration.

2.1. The D-Claw numerical model
D-Claw is a depth-averaged two-phase flow model developed to simulate landslides and debris flows from ini-

tiation to deposition. In this model, there is a coupled coevolution of volume fractions, or porosity, and pore-fluid
pressure. This coevolution is mediated by granular dilantancy, a principle developed in granular mechanics theory
(e.g., [46, 49, 22, 24, 14]). The dilantancy angle of a granular composition describes whether shearing will induce
solid contraction or dilation, and hence fluid pressure elevation or reduction. For simple compositions, such as uni-
form spheres, the dilantancy angle can be precisely calculated. For poorly sorted geological debris, the angle must be
based on phenomenological empiricisms. In the D-Claw model, the dilatancy is related to the difference of the ambi-
ent solid-volume fraction and an evolving equilibrium solid-volume fraction, which is a function of the ambient stress
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state of the material and a fixed critical-state volume fraction (the quasi-static equilibrium solid-volume fraction of the
sediment grain-size distribution). Therefore, an important fixed parameter of the model is the difference between the
initial porosity and the critical-state porosity. Relatively loose materials will tend to initially contract and mobilize,
and relatively dense materials will tend to initially dilate and stabilize. The feedback between contraction/dilation and
the pore-fluid pressure ultimately determines mobility in the model. Important parameters regulating the timescale of
pore-pressure evolution are the hydraulic permeability, related to the pore-pressure diffusivity of the mixture, and the
pore-fluid viscosity (which includes the concentration of suspended silts and clays). These latter physical quantities
are in theory measurable, but can be difficult to determine in practice and must be estimated for model runs.

For the experimental debris flows addressed in this work, the D-Claw equations can be written in a simplified form
for flow on an inclined basal surface, with a bed-normal coordinate system, where x is tangent to the surface pointing
in the highest slope direction and y in the transverse direction (see [23] for a detailed derivation). The model equations
involve five independent variables: the debris height h(x,y,t) (in the normal direction), the vector of depth- averaged
velocities u with components u(x,y,t) and v(x,y,t) in the x and y directions, the depth-averaged solid volume fraction
m(x,y,t), and the pore-fluid pressure at the bed pb(x,y,t). The governing equations are then
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In these equations gz is the gravitational acceleration in the bed-normal direction, κ the lateral pressure coefficient (see
[24]) and ρ the depth-averaged bulk density. The latter is given by ρ = ρsm + (1 − m)ρ f where the intrinsic material
densities of the solid and fluid components are fixed to ρs = 2700 and ρ f = 1100, respectively. Finally, the coefficient
χ = ρgz

ρ f +3ρ
4ρ is introduced for notational convenience. The source terms appearing in governing equations are given

by:
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The definition of the elastic compressibility of the debris, α, involves the compressibility constant a > 0 and the initial
normal stress σ0 = 1000. The hydraulic permeability, k, follows the empirical formula, k = k0 exp( 0.6−m

0.04 ), where k0
is the initial permeability. The basal shear tractions exerted on the solid and fluid phases, τs and τ f respectively, are
expressed according to:

τ f =
2µ(1 − m)

h
u and τs = (ρgzh − pb) tan(φ + ψ)

u
‖u‖

,
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where µ is the viscosity of the pore fluid, φ is the basal friction angle for dry sediment and ψ the granular dilatancy
angle. Following [23], the dependence of ψ on m is expressed as

tan(ψ) = m −
mcrit

1 +
√

µγ̇
ρsγ̇2δ2+(ρgzh−pb)

with γ̇ = 2‖u‖/h, (12)

where δ = 0.001 is the length scale associated with the grain collisions and mcrit > 0 is the static critical-state solid
volume fraction. The hyperbolic character of the governing equations was proved in [13].

We rely on D-CLAW to compute numerical solutions of Eqs. (1)-(5). D-CLAW is an extension of the open source
software package CLAWPACK (Conservation Laws Package [38]) dedicated to the simulation of hyperbolic systems
of Partial Differential Equations (PDEs) using finite-volume, wave-propagation methods [34, 28, 32, 33].

The primary goal of this work is to estimate the five parameters of the model that is used in the flume example
detailed in [12, 13]. These include the static critical- state solid volume fraction mcrit, the initial debris hydraulic per-
meability k0, the pure-fluid viscosity µ, the steady-state friction angle in contact with the bed φ and the compressibility
constant a as uncertain parameters. We shall rely on different Bayesian formulations to perform this inference, based
on the a priori ranges provided in [12, 13] and using the experimental data described below.

2.2. Experimental data

For the purpose of calibrating the model, we consider the data reported by [44]. The data aggregates the results of
11 large-scale debris-flow flume experiments conducted by the United States Geological Survey (USGS) from 1994
to 2004. We focus on the experiments for a smooth basal bed (1 mm roughness) and debris formed with gravels
without a significant fraction of mud grains. For each individual experiment, the static debris, saturated with water,
are placed in a hopper behind a 2 m high vertical gate near the top of the flume and are released by suddenly opening
the gate. After releasing the gate, the saturated mixture quickly liquefies and forms a debris flow that descends in the
flume before emerging onto a nearly planar run-out pad to form deposits. The flume is a straight rectangular channel,
95 m long by 2 m wide and 1.2 m deep, with a slope of 31 degrees in the section of interest. At x = 74 m the flume
bed begins to fatten, and beyond this point, it follows a catenary curve that drops 2.2 m vertically before reaching the
flume mouth at x = 82.5 m. The run-out surface extends to x = 107.5 m.

In each repetition of the experiment the flow thickness (h) is measured in time at three cross sections located at
x = 2 m, x = 32 m and x = 66 m. Data available in [44] consists of averages and variances of the time series data
(depicted in Figure 6). The full data sets were truncated to provide equal length time series removing intervals that
occurred before or after the primary debris flow with a resulting temporal resolution of 0.01 seconds.

2.3. Bayesian inference

To infer the value of the model parameters we apply a Bayesian approach. Let q be the generic vector of
parameters, having for components the parameters of the analysis, and d the vector of the measured data used for the
analysis. In the present Bayesian setting, d and q are real-valued random vectors. In the following, we denote π(q)
the prior probability distribution of the parameters that reflects the belief on values of q before the measurements are
made available. From the measurements d, Bayesian inference updates the prior distribution π(q) to the posterior
probability distribution, π(q|d), following Bayes’ rule [11]:

π(q|d) =
L(d|q)π(q)∫
L(d|q)π(q)dq

, (13)

where L(d|q) is the likelihood function, i.e. the probability of observing measurements d given q. Typically, the
likelihood compares the measurements with model predictions (functions of q), and relies on a noise model to account
for the measurement error; a model error contribution can also be included [26]. Specifically, the comparison can be
made on the raw measurements (d) or more generally on some derived quantities, say m(d). We shall denote M(q)
the vector of model predictions using the forward model, i.e. the debris flow model in our case, such that

m(d) = M(q) + εm,
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where εm is a random vector accounting for measurement noise and model errors, whose statistical properties must be
provided. In Section 4, the effect on the inferred parameters of selecting different error models and derived quantities
is investigated.

The posterior distribution in Eq. (13) is usually not known in a closed form due to the complexity of the mapping
q 7→ M(q) in addition to the noise and error models. Therefore sampling strategies, such as Markov Chain Monte
Carlo (MCMC) methods [36], are needed to estimate the statistics of the posterior distribution of q (e.g. mean,
moments, median and mode). In this work we use the Adaptive Metropolis (AM) algorithm [17], an extension of
the Random-Walk Metropolis (RWM) algorithm, which adapts the proposal covariance matrix using the previously
sampled points. We shall also consider the maximum a posteriori (MAP) point, qMAP, defined by

qMAP = argmax
q

π(q|d). (14)

The MAP can be estimated by the optimum point over the MCMC chain, or by solving Eq. (14) with a dedicated
optimization procedure, such as gradient-based methods [43], simulated annealing (SA) [19], etc. To calculate the
MAP we rely the MATLAB Optimization Toolbox [41] and use a genetic algorithm [9, 16]. The main drawback of
both the MCMC and optimization approaches is that they require a large number of evaluations of the forward model
M(q). In our case, this means solving the system of PDE in two dimensions thousands of times and as a result the
approach would be computationally intractable. Instead we derive a surrogate model M̂(q), with low evaluation cost,
that can be used in place of the original model M(q) in the likelihood, as proposed in [39]. If the surrogate model is
accurate enough and can be constructed at a reasonable computational cost, the sampling of the posterior distribution
can be orders of magnitude faster and cheaper than the “direct” sampling using the full forward problem. In the
following section we detail the construction of this surrogate model.

3. Surrogate model

In this section we detail the construction of the model surrogate. To remain as general as possible the surrogate
approximates the model predictions of the experimental data discussed in Section 2.2, which consists of measurements
of the debris flow depth h at three spatial locations and for different times. We start by discussing the prior distribution
of the parameters and some simplifications of the physical model. We then explain in detail the construction of the
surrogate and its validation.

3.1. A priori parameter distributions

As a starting point, uniform or log-uniform distributions were used as priors, with ranges based on [12, 13] and
assuming independent parameters. Specifically we use

mcrit ∼ U [0.62,0.66], φ ∼ U [38,43], a ∼ U [0.01,0.05],

and
k0 ∼ Ulog[10−12,10−8], µ ∼ Ulog[0.005,0.05],

as the prior distributions, where U and Ulog denote the uniform and log-uniform distributions respectively.
We start by checking that the debris flow dynamics is sufficiently smooth when the parameters q change in the

prior range, as smoothness is important to obtain an accurate polynomial surrogate model at a reasonable cost [30,
8]. Sampling the parameters according to their probability distribution and recording the corresponding change in
flow thickness h can reveal the smoothness of the forward model dependence on the input parameters. Figure 1(a)
demonstrates the complexity of the dynamics that can be expected as the parameters are varied. This includes long-
time behaviors and “surge” like behavior (spikes) in the time signals.

Several self convergence studies for the spatial and time discretizations were carried out in order to confirm that
the solutions were accurately computed, and to dismiss the possibility of complex dynamics induced by numerical
errors. Further investigations of the numerical solutions revealed that the complex dynamics were inherent to the
physical model, due to the emergence of fragmentation of the debris plume and development of transverse waves for
some values of the parameters.
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Figure 1: Flow thickness versus time for selected values of the parameters and location x = 32 m; (a) corresponds to the original parameters range
and 2-D model, whereas (b) corresponds to the reduced range for k0 and 1D model.

To investigate the fragmentation process, we performed a “one at a time” variation of the parameters around their
nominal values given in [13, 12], corresponding to the median values of the distributions above. From these numerical
experiments it was concluded that the initial debris hydraulic permeability, k0, was predominantly responsible for the
emergence of the fragmentation and associated peaks in the time signals (something supported by the physics). It was
further found that the fragmentation is associated with the lowest values of k0 in its prior range. In addition, observing
that such peaks do not appear in the averaged experimental measurements of the debris elevation (see Figure 6), it
was decided to rule out a priori lowest values of k0 below 10−9, responsible for the fragmentation-induced peaks and
to only consider the following prior distributions of the parameters:

mcrit ∼ U [0.62,0.66], k0 ∼ Ulog[10−9,10−8], (15)
µ ∼ Ulog[0.005,0.05], φ ∼ U [38, 43], a ∼ U [0.01,0.05]. (16)

The transverse waves mentioned previously also lead to issues due to loss of uniqueness in the solution. This is
due to the fact that transverse waves can propagate asymmetrically along the y direction. As the propagation direction
is highly variable, the meaning or representativity of a particular numerical prediction is questionable. Furthermore,
the construction of the surrogate model raises questions regarding the definition of the model prediction and its use in
the likelihood function. To avoid these issues, the spatial discretization of the model was reduced to a single cell in the
cross-wise y direction, effectively removing the y-dependence of the solution while retaining all other characteristics
of the flow. With this dimension reduction we not only recover uniqueness of the solution, but also rely on simulations
that are faster and cheaper to produce. The effect of the dimension reduction on the model predictions were carefully
analyzed and it was found that the reduction has no impact on the long-time solution. Differences between the
1D and 2D predictions are observed at early times, particularly when the debris height is close to its maximum, as
reported in Figure 2, showing the “one at a time” sampling for parameters k0 and a. The plots shows that the trends
and dependencies are correctly captured, but in contrast with the 2D case the dependence of the 1D model solution
with respect to the parameter is smooth. Finally, the differences between the 1D and 2D models are smaller than or
comparable to the standard deviation of the experimental data (Figure 6) and should not have a significant impact on
the inference.

Finally, Figure 1(b) shows the time evolution of the predicted debris elevation at x = 32 m for a random sample
set of parameters, drawn from their reduced range in Eq. (15) and (16), using the 1D model. One can see that the time
signals are much smoother than those of the original setting shown in Figure 1(a). In fact, except for few remaining
low-amplitude secondary peaks at later times (t ≈ 15), associated to extreme parameters values and corresponding to
a fragmentation of the debris mass in the wake of the flow, the dependencies with the parameters can now be well
approximated by a surrogate model, as discussed below.
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Figure 2: Comparison of the 1-D and 2-D model predictions. One at a time variation of parameters k0 (left) and a (right) for the predicted debris
height h at t = 5.04 and x = 32 m.

3.2. PC surrogate

For the surrogate model construction we rely on Polynomial Chaos (PC) expansion methods [30, 54] using a
preconditioned, non-intrusive approach [1]. A non-intrusive approach is preferred in this work because of the com-
plexity of the forward model that prevents using other alternatives, such as a stochastic Galerkin projection method
for conservation laws [15, 31]. The non-intrusive approach also allows us to precondition the construction, exploiting
the self-similarities between the dynamics for different values of the parameters (see Figure 1(b)), and improve the
accuracy of the surrogate model as shown below. For convenience, we build the surrogate in terms of canonical inde-
pendent random variables ξ having uniform distributions in the unit interval [0,1]. Here, five random variables ξi are
used to parametrize the physical parameters in q through a simple transformation. Abusing notation, we shall write
q(ξ) to stress the parametrization of the random parameter vector with the canonical variables, and use the short-hand
notation h(x,t,ξ) in lieu of h(x,t,q(ξ)).

3.2.1. Preconditioning
The objective of preconditioning is to reduce the variance of the quantity being represented and is typically

achieved by introducing an invertible transformation Φ of the model prediction [1]. As an example, consider the
case of approximating h(t,ξ) for some fixed spatial location x. We seek a transformation of the form

h(t,ξ) 7→ Φ[h(t,ξ)] = g(τ(t,ξ),ξ),

where g(τ(t,ξ),ξ) ∈ L2([0,1]5) (i.e. a second-order stochastic process). Following [1], the variance of g(τ,ξ) is mini-
mized by transforming h using scaling factors designed to synchronize the realizations when the parameters change.
In light of the results in Figure 1, we propose to consider of the following scaling factors: the arrival time of the debris
tarr, the time tmax and value hmax at the signal maximum, and the time tdec when the signal has decayed to 40% of its
maximum. The scaling factors are summarized in Table 1.

Scaling factor Symbol Definition
Arrival time tarr(ξ) First time h(t, ξ) exceeds ε � 1
Height at maximum hmax(ξ) hmax(ξ) = maxt h(t, ξ)
Time at maximum tmax(ξ) tmax(ξ) = arg maxt h(t, ξ)
Decay time tdec(ξ) tdec(ξ) > tmax(ξ) such that h(tdec, ξ) = 0.4hmax(ξ)

Table 1: Definition of the scaling factors for the preconditioning.
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We define, for t ∈ [0,20], the transformation of h(t,ξ) to its preconditioned version g(τ,ξ) according to

Φ
[
h(t,ξ)

]
= g(τ(t,ξ),ξ) .=

h(t,ξ)
hmax(ξ)

,

where τ(t,ξ) ∈ [0,5] is the scaled time defined by

τ(t, ξ) =



t
tarr(ξ)

0 ≤ t < tarr(ξ),

1 +
t − tarr(ξ)

tmax(ξ) − tarr(ξ)
tarr(ξ) ≤ t < tmax(ξ),

2 +
t − tmax(ξ)

tdec(ξ) − tmax(ξ)
tmax(ξ) ≤ t < tdec(ξ),

3 + 2
(t − tdec(ξ))
20 − tdec(ξ)

tdec(ξ) ≤ t ≤ 20.

(17)

It is observed that the mapping t 7→ τ is invertible for given ξ. Figure 3 depicts the effect of the preconditioning on a
random sample set of h(t,ξ) at x = 32 m. It is seen that g(τ,ξ) indeed shows a reduced level of variability compared
to its untransformed version, and by construction a vanishing variability for τ = 1,2 and 3. Except for the remaining
small peaks for τ ≈ 4, the approximation of the preconditioned signal will be easier to represent than the original one,
due to the reduced variability [1].
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(a) Unscaled realizations
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(b) Scaled realizations

Figure 3: Selected realizations of the original h(t,ξ) and preconditioned version g(τ,ξ) at location x = 32 m.

3.2.2. Preconditioned surrogate
We now return to the construction of the surrogate model. We assume that a sample set of m observations of h(·,ξ)

has been computed for a sample set of realizations ξi. Different strategies can be used in the selection of the set of
sampling points [3, 6]. Here we use a Latin hypercube sampling [35] to generate the set of the random parameters
with m =1,471 points. Based on this sample set, we derive corresponding sample sets for the scaling parameters and
denote t(i)

arr = tarr(ξi) the i-th realization of the arrival time.
We first build PC approximations of the scaling factors. To this end, we consider a PC basis {Ψα(ξ),α ∈ A },

where Ψα(ξ) denotes the tensorized orthonormal Legendre polynomial basis. Let P = card(A ) be the basis dimension
resulting from a truncation based on the total order p. Provided the scaling factors are second-order random variables,
they have the convergent PC approximation [7]:

ĥmax(ξ) =

P∑
k=1

hk
maxΨk(ξ) t̂arr(ξ) =

P∑
k=1

tk
arrΨk(ξ) (18)

t̂max(ξ) =

P∑
k=1

tk
maxΨk(ξ) t̂dec(ξ) =

P∑
k=1

tk
decΨk(ξ).
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The convergence is in the mean-squared sense as the polynomial degree p→ ∞. The expansion coefficients of the PC
expansion are computed using regression methods [52, 20, 4], which are more robust to discontinuous dependencies
and noisy observations compared to alternative non-intrusive methods [10, 45]. In these methods, the expansion
coefficients are the solution of an optimization problem which aims at minimizing the prediction error, in some
prescribed norm, while possibly considering some regularization terms. In the present work, the basis dimension P is
small enough compared to the number of observations, such that a regularization was not necessary. To construct the
PC approximations, we tested both L2 and L1 norms corresponding to a least squared (LS) residual and a least absolute
deviation (LAD) optimization problem. For example, the optimization problem for arrival time aims at minimizing
for its PC coefficients t1

arr, . . . ,t
P
arr the distance function

R`(t1
arr, . . . ,t

P
arr) =

m∑
i=1

∣∣∣∣∣∣∣tarr(ξi) −
P∑

k=1

tk
arrΨk(ξi)

∣∣∣∣∣∣∣
`

, (19)

with ` = 1 (resp. 2) for the LAD (resp. LS) method. As shown below, the LAD method is more robust than LS [48]
in presence of non-smooth dependences. In practice we use the Iterative Re-weighted Least Squares Algorithm
(IRLS) [29] to minimize the residuals in the LAD case.

Once the PC approximation of the scaling factors have been computed, the sample set of model observations
h(t,ξi) can be transformed to obtain the sample set of preconditioned variables g(τ,ξi) = Φ

[
h(t,ξi)

]
. In practice, g(τ,ξi)

is evaluated on a fine grid in the scaled times τ j ∈ [0,5], through simple time interpolations [1]. Then, for every scaled
time τ j, we consider the PC expansion of the preconditioned variable,

ĝ(τ j,ξ) =

P∑
k=1

g j,kΨk(ξ). (20)

Again, the PC coefficients of the preconditioned variable at scaled time τ j can be computed by regression, to complete
the construction of the surrogate model.

Finally, the evaluation of the surrogate model ĥ(t,ξ) for some given ξ is obtained as follows. First, the precon-
ditioned variables ĝ(τ j,ξ) are evaluated using Eq. (20) for all τ j. This is computationally effective as it essentially
amounts to evaluating P polynomials. Using the PC approximation of the scaling variables, one can determine un-
scaled time t j corresponding to the τ j(ξ), by simply inverting the time transformation in (17). Subsequent time
interpolations between the t j and a final scaling by ĥmax(ξ) completes the evaluation of ĥ(t,ξ) for any t ∈ [0,20] given
ξ.

3.3. Surrogate validation and a priori sensitivity analysis
3.3.1. Surrogate error

For the validation of the surrogate model we consider the following estimator of the L2 error norm,

ε2(t) =
∥∥∥ĥ(t, ·) − h(t, ·)

∥∥∥2
2 ≈

1
N

N∑
i=1

(ĥ(t,ξi) − h(t, ξi))
2, (21)

where h and ĥ are the true (D-Claw) and surrogate model predictions respectively. The approximation of the norm uses
a secondary sample set of N random samples, distinct from the Latin hypercube sample set used for the construction
of the surrogate model. In the following tests, we used N =2,500 samples, a value that was found sufficient to obtain
satisfactorily converged error estimates.

Figure 4 reports the evolution with t of the error ε(t) at x = 32 m (similar results are obtained at other locations),
contrasting different surrogate constructions. Specifically, for comparison purposes, the errors are shown for a direct
PC projection of h(t,ξ), that is using g(τ,ξ) = h(t,ξ) with τ(ξ) = t, and the LAD or LS distance in the regression
problems, and for the corresponding preconditioned surrogates labeled P-LAD and P-LS, respectively. These error
curves are obtained for a fixed PC basis, using order p = 3, so the basis dimension is P = 321. The PC order was
selected carefully to ensure sufficient surrogate accuracy. The reported errors show that the preconditioned surrogates,
regardless of the regression method used, are significantly more accurate than their direct PC projection counterparts.
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The errors also show that the two regression approaches perform similarly, in the preconditioned case, in terms of
resulting L2 error norms. However, a throughout inspection of the preconditioned surrogate models reveals that the
LAD regression yields a significantly lower error in L∞ norm (maximum of absolute error); this approach is thus
preferred over the LS regression. Consequently, all results presented in the following sections are based on the
preconditioned surrogate constructed with LAD regression.
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Figure 4: Errors for different surrogate constructions based on a sample of size 2,500.

3.3.2. A priori variability
Before addressing the inference of the parameters, the surrogate model is used to conduct an a priori Global

Sensitivity Analysis (GSA) of the wave thickness h. To this end, we rely on a variance decomposition method, or
Sobol-Hoeffding (SH) decomposition, to derive sensitivity indices [51]. The surrogate model being preconditioned,
explicit expressions of the sensitivity coefficients from the PC expansions [52] can not be used; we then rely on Monte-
Carlo sampling of the surrogate, following the approach proposed in [47] for the first-order partial variances and the
Jansen formula [25] for the estimation of the total order partial variances. Figure 5 summarizes the results of the GSA
at location x = 32 m as, again, similar findings are obtained at the other locations. Figure 5(a) shows the first order
partial variances, measuring the variability due to individual parameters only, whereas Figure 5(b) depicts the total
order partial variances, measuring the variability due to a parameter including its interactions with the others [51]. It
is seen that most of the variability in h is due to the static critical-state solid volume fraction, mcrit, specially during
the initial stages after the arrival of the debris at the considered location. The figures also demonstrate moderate, but
non-negligible, interactions between parameters as the first order and total order partial variances are similar.

To complete the analysis of the surrogate model, we present in Figure 6 the resulting a priori predictive range of h
as a function of time, for the three measurement locations x. The a priori predictive range is defined by the 5th to 95th
percentiles values and is depicted with the red shaded area in the plots. The percentiles were estimated from a random
sampling of the surrogate model with 15,000 points. The experimental data are also reported using the mean values
with their plus and minus one standard deviation bounds, plotted in blue. The plots highlight significant discrepancies
between the model predictions and the measurements. In particular, the arrival times at locations x = 2 m and the
long-term behavior are clearly not well predicted by the model, with a faster decay of h in the model.

10



0 5 10 15 20
0

1

2

3

4
fir

st
 o

rd
er

 p
ar

tia
l v

ar
ia

nc
es

10 -3

(a) first order partial variances
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(b) total order partial variances

Figure 5: Global sensitivity analysis of the wave height at x = 32 m.

(a) x = 2 m (b) x = 32 m (c) x = 66 m

Figure 6: A priori predictive range of the surrogate for the debris flow thickness h (red shaded area) and mean plus and minus one standard
deviation bounds of the experimental measurements (blue shaded area). The a priori predictive range is defined by the 5th percentile to 95th
percentile interval.

4. Inference of debris flow parameters

In this section, we report the results of the Bayesian inference of the model parameters, and contrast the cases of
different likelihood functions. In particular, we contrast the inference results for the case of a likelihood comparing
directly the reported experimental data to the model predictions, in Section 4.1, with the case of an inference based
on quantities derived from the available data, in Sections 4.2 and 4.3.

We recall that the experimental measurements concerned the wave height h at different times and at three different
locations, see Section 2.2. In fact, the available data consist of the debris height h̄i averaged over 11 repetitions of
the experiment and its standard deviations σi, as depicted in Figure 6. We stress that the measurements of individual
experiments are not provided. In addition, we have retained 1,501 data at each location, so a total of md = 1501 × 3
data are available for the inference.

4.1. Direct inference from the experimental data
We begin by performing the inference directly on the available experimental data. Using the notation of Sec-

tion 2.3, this corresponds to using m(d) = d. The posterior distribution of the parameter is fully determined by
the likelihood function L(d|q). Recalling that q is parametrized by the canonical variables ξ we shall also write the
likelihood L(d|ξ) in the following.

Gaussian models are often considered to model likelihood functions assuming that the discrepancy between the
observed and predicted values is Gaussian. Following this path, we write

h̄i = ĥ(ti,xi,ξ) + εi, i = 1, . . . ,md, (22)
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where ti and xi denote here the time and location of the i-th experimental data. One still has to specify the structure of
the Gaussian vector ε = (ε1 · · · εmd ). Based on the available data, the simplest model for ε is a vector of independent
components having zero mean and a variance given by the estimated experimental variability, that is εi ∼ N(0,σ2

i ). In
this case, the likelihood expression becomes

L(d|ξ) =

md∏
i=1

1√
2πσ2

i

· exp
− (h̄i − ĥi(ξ))2

2σ2
i

 , (23)

where ĥi(ξ)
.
= ĥ(ti,ξ) is the surrogate model prediction of the i-th experimental data.

When expressed in terms of the canonical variables ξ, which are uniformly distributed, the MAP determination
reduces to the maximization of the likelihood because π(ξ) is constant. For convenience, the log-likelihood is maxi-
mized in practice, using a genetic algorithm as discussed before. In addition to the MAP computation, we also sample
the posterior distribution by means of Markov-Chain Monte-Carlo method, to estimate the posterior density of the
parameters (or canonical random variables) as well as the posterior predictive distribution of the debris height. In
all computations presented hereafter, the convergence of the MCMC chains have been carefully checked, through
visual inspection and computation of the empirical auto-correlation at lags [5]. Typically, 60,000 steps after the burn-
in period were used to estimate the statistics. A Standard Kernel Density Estimation (KDE) method [42, 50] was
subsequently applied on the MCMC samples to obtained the posteriori densities.

Figure 7(a) compares the posterior predictive range using the likelihood definition in Eq. 23 (labeled original,
shaded in red) and the experimental data. The posterior predictive range is again defined based on the 5th to 95th
percentiles. It is seen that the posterior predictive range remains tight around the MAP prediction, suggesting a high
confidence in the inferred values for the parameters. This is confirmed by the highly concentrated marginal posteriors
of the canonical variables reported in Figure 8(a).

This impressive reduction of the prior distribution to a highly concentrated posterior should be contrasted with
the actual remaining discrepancies between the model predictions and the assumptions used to derive the likelihood
function. First, it should be noted that the posterior predictive range does not contain the experimental data. In
addition, inspection of the residuals for the MAP solution, εi = h̄i− ĥi(ξMAP) reported in ref in Figure 7(b), reveals that
the εi are clearly not independent, but quite correlated in time, and assume values inconsistent with the experimental
values σi.

Clearly, a poor discrepancy model is responsible for the over determination of the posterior of the parameter vector.
To mitigate this issue, it would be necessary to introduce more elaborate statistical models for the εi, involving bias
and correlations, and possibly using hyper-parameters to be inferred for as well. As provided, the variances σ2

i used
in the definition (23) of the likelihood function are questionable. Indeed, the values σ2

i characterize a variability in the
experimental procedure and apparatus, and not a distance to the model prediction. Also, the available information does
not give access to any correlation structure as individual measurements are not reported. In fact, the large and erratic
changes in the value of σ2

i from one time to the next, seen in Figure 6, suggest at least a poorly converged estimation
of the experimental variability. This observation leads us to smooth the variances σ2

i , discarding the idea that noisy
variances estimates could result in the over-determination of the parameters. To this end, we use a moving average
filter to smooth out short-term fluctuations. The smoothed variances, at a given location x, are defined generically as

σ̄2
i =

1
2s + 1

s∑
j=−s

σ2
i+ j, (24)

where 2s is the window size of the filter, and the time series of σ2
i at the considered location is padded outside of their

original support in time.
We repeated the inference task considering the likelihood function (23) with the smoothed variance instead of the

original σ2
i , and considering time windows with increasing sizes ranging from s = 25 to s = 750. We also perform the

experiments using σ2
i = σ̄2, the average over the three locations. Concerning the sequence of MAP points obtained

for increasing s, it is found to converge to the case of the constant variance σ̄2. Obviously, this case also corresponds
to the optimum in terms of resulting residuals norm at the MAP prediction, as measured by

‖εMAP‖
2
2 =

md∑
i=1

|h̄i − ĥi(ξMAP)|2. (25)
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The improvement of the residuals for the MAP solution using σ̄2 can be appreciated from Figure 7(b), while the effect
of the smoothing on the posterior predictive range can be seen in Figure 7(a). Comparing the original and smoothed
MAP, it is seen that the agreement with the experimental data has improved for the smoothed case, with a better
(though not perfect) fit of the arrival time and during the early decay phase. However, even for the highest smoothing,
it is seen that the posterior predictive range remains extremely tight, with a highly concentrated posterior, as can be
seen in Figure 8(b). Again we claim that a rough and too simplistic discrepancy model is causing an overly narrow
estimation of the model parameters. To overcome this issue we pursue in the following an entirely different definition
of the likelihood function.

(a) Predictive ranges and data
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Figure 7: Directed inference: (a) Comparison between the data and the a posteriori predictive ranges for the original and smoothed variances (σ̄2),
at x = 32 m. (b) Corresponding residuals of the MAP prediction.
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Figure 8: Direct inference: Marginal posterior distributions of the parameters, for the original (a) and the smoothed variances (σ̄2).

4.2. Calibration from the scaling variables

To avoid the complicated task of designing an appropriate discrepancy model and based on the observation that we
mostly focus on the discrepancies in the arrival time, location of the maximum height and decay behavior, we propose
to consider a likelihood function based on the scaling factors involved in the construction of the preconditioned
surrogate model. Specifically, we base the inference approach on the arrival time, time at maximum, debris height
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at maximum and time to decay, as defined in Table 1. By doing so, we aim at focusing the parameter inference on
the important features predicted by the model, thus mitigating the impact of noisy details present in the experimental
data. In addition, defining the likelihood from these few scaling factors alleviates the computational burden of having
to evaluate the preconditioned surrogate for a large number of hi, with greater computational efficiency as a result.

For the definition of the likelihood, we again assume the error on the scaling factors to have independent compo-
nents corresponding to normally distributed random variables with zero mean. The log-likelihood at a given location
x is expressed as

ln(L(d|ξ)) ∝ −

(
tarr − t̂arr(ξ)

2σarr

)2

−

(
tmax − t̂max(ξ)

2σtmax

)2

−

−

(
tdec − t̂dec(ξ)

2σdec

)2

−

hmax − ĥmax(ξ)
2σhmax

2

. (26)

In Eq. (26), tarr, tmax, tdec and hmax are experimental estimates of the scaling factors at the considered location, and σ2
tarr

,
σ2

tmax
, σ2

tdec
and σ2

hmax
are their associated variances. These quantities must be estimated from the data at each spatial

location, and the log-likelihoods of the different locations are summed-up to form the full log-likelihood.
The experimental scaling factors are graphically estimated from the data at each location, as illustrated in Figure 9.

The experimental values are selected as the best graphical estimates, with associated standard deviations reflecting
their probable ranges, adjusted to account for the experimental noise and fluctuations. In the plots, the shaded areas
are centered on the best estimates, with extents corresponding to the ±1 standard deviation uncertainty ranges on the
experimental estimates. It is seen that the experimental arrival times are all well determined (with low variances),
while the experimental decay times exhibit higher standard deviations, especially at the largest downstream location,
where it cumulates significant uncertainty in the value of the maximum hmax and large fluctuations in the experimental
data during the decay phase. The estimates of the scaling factors used for the inference problem and corresponding to
the graphical representation in Figure 9 are listed in Table 2.

(a) x = 2 m (b) x = 32 m (c) x = 66 m

Figure 9: Estimation of the experimental scaling factors. The shaded areas are centered on the best estimates, while they extend over ±1 standard
deviation range, horizontally for the scaling times and vertically for hmax.

x = 2m x = 32m x = 66m
tarr = 0.9 σtarr = 0.05 tarr = 3.5 σtarr = 0.05 tarr = 6 σtarr = 0.05
tmax = 1.85 σtmax = 0.05 tmax = 4.5 σtmax = 0.1 tmax = 8 σtmax = 1
tdec = 3 σtdec = 0.2 tdec = 7.5 σtdec = 0.5 tdec = 12 σtdec = 2
hmax = 0.61 σhmax = 0.1 hmax = 0.17 σhmax = 0.04 hmax = 0.1 σhmax = 0.03

Table 2: Estimates of the experimental scaling factors used for the inference problem using the log-likelihood function (26).

Figure 10(a) shows the posterior predictive range for the proposed likelihood together with the experimental data
at x = 32 m. It is seen that the predictions are very close to the posterior prediction obtained with the smoothed
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variances above, with comparable residuals norms for the two MAPs as measured using Eq. 25. Further, inspecting
the marginal distributions of the canonical variables shows that, in the inference based on the scaling factors, the
posterior distribution is slightly less concentrated around the MAP point but is still very tight, see Figure 10(b).
Obviously, the experimental estimates considered in the present analysis can be questioned, regarding both the best
and standard deviation values. However, further numerical experiments (not shown) with lower and higher variances
have revealed that the outcome of the inference problem is robust with respect to the experimental estimates used.
In particular the MAP point is only weakly affected by the variances affecting the experimental scaling factors, with
mostly an impact on the spread of the posterior distribution.

(a) Posterior predictive range
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Figure 10: Inference based on scaling factors: (a) Posterior predictive range for the inference based on the scaling factors, at location x = 32 m. (b)
Marginal posterior distributions of the canonical random variables.

4.3. Inference using phases durations

The results of the previous section support the idea of extracting a few important features from the original data,
with no significant loss of information and comparable posterior predictions, while being computationally much
cheaper. In addition, the approach avoids requiring the proposal of a complex error model. On the other hand, the
posterior prediction is still poorly fitting the experimental data with a very tight posterior predictive range. This is
not so surprising as the a priori sensitivity analysis shown in Section 3.3.2 had revealed the limitation of the physical
model, in particular when it comes to the arrival time prediction whereas the experimental data show little or no
variability in tarr; the numerical model is not capable of reproducing it for any value of the parameters in the a
priori range. In fact, increasing the a priori range may not necessarily help in improving the model predictions
regarding arrival times. This leads us to wonder whether the individual experimental measurements may have been
synchronized before being averaged, with an arbitrary time shift as a result. In the absence of information regarding
the experimental data treatment and processing, we opted to design a formulation of the inference problem that is
independent to absolute time reference. Instead, we propose to base the inference on the durations of the two main
phases of the debris flow dynamics, and not on their starting and ending times. For instance, we do not attempt to fit
the arrival time and time at maximum, separately, but instead we consider the duration of the growth phase, spanning
from the arrival to the maximum debris height. Similarly, we set the duration of the decay phase as the time span
between the time at maximum and the time to decay, as defined previously. The definitions of these two characteristic
durations are summarized in Table 3.

Having selected these two characteristic durations, we again assume a Gaussian error model with independent
components, which leads to the following log-likelihood function at a spatial location:

ln(L(d|ξ)) ∝ −
Tgrw − T̂grw(ξ)

2σTgrw

2

−

Tdec − T̂dec(ξ)
2σTdec

2

−

hmax − ĥmax(ξ)
2σhmax

2

, (27)
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Phase name Symbol Definition
Growth duration Tgrw Tgrw = tmax − tarr

Decay duration Tdec Tdec = tmax − tdec

Table 3: Definitions of the characteristic durations of the debris flow dynamics.

where T̂grw = t̂max− t̂arr and T̂dec = t̂dec− t̂max are the surrogate models for the growth and decay durations, respectively.
The best experimental estimates of Tgrw and Tdec are computed from the estimates of tarr, tmax and tdec reported
in Table 2, while their standard deviations σTgrw and σTdec are estimated graphically from the experimental data,
proceeding similarly as for the standard deviations of the experimental scaling factors. The estimates of hmax and
σhmax are kept the same as in the previous case. Table 4 summarizes the experimental estimates used for the inference
based on durations.

x = 2 m x = 32m x = 66m
Tgrw = 0.95 σTgrw = 0.1 Tgrw = 1 σTgrw = 0.25 Tgrw = 2 σTgrw = 1
Tdec = 1.15 σTdec = 0.25 Tdec = 3 σTdec = 0.6 Tdec = 4 σTdec = 2
hmax = 0.61 σhmax = 0.1 hmax = 0.17 σhmax = 0.04 hmax = 0.1 σhmax = 0.03

Table 4: Experimental estimates of the characteristic durations of the debris flow.

Figure 11 plots the posterior predictive ranges at the three locations, as red shaded areas, corresponding to infer-
ence using durations. The solid red line inside the shaded area corresponds to the posterior expected predictions of
h(t). Since the estimation is time-independent, the experimental data have been shifted in time such that the arrival
times of both the predictions and the data match. A striking difference with the inference results presented above is
the much larger posterior predictive range obtained in the present case. Indeed, although the a priori predictive ranges
(see Figure 6) have been noticeably reduced, the posterior predictions of the debris height are now significantly un-
certain. The overlap of the posterior prediction with the experimental data is also significantly improved, compared
to the cases of the previous likelihood considered. Besides the impact on the spread of the posterior distribution, the
inference based on durations is also seen to drastically improve the prediction of the maximum debris height, which
was systematically underestimated for the other likelihoods tested previously (see Figures 7 and Figure 10). Note also
that the MAP prediction (not shown) is not contained within the posterior predictive range as defined by the 5th to
95th percentiles.

(a) x = 2m (b) x = 32m (c) x = 66m

Figure 11: Inference based on durations: Posterior predictive ranges for the inference based on durations. The experimental data (labeled Obs) are
also reported for comparison, and have been shifted in time to match the expected arrival times.

To better appreciate the impact of the proposed formulation of the inference problem on its outcome, we present
in Figure 12 the marginal posterior distributions of the canonical random variables. In contrast to the previous cases,
the marginals are not concentrated anymore and exhibits several local maxima. Note that the canonical random
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variable ξ1 presents a posterior marginal that differs the most from its prior distribution with essentially no posterior
probability for values lower than 0.2. This is consistent with the findings of the a priori sensitivity analysis shown
in Section 3.3.2, since ξ1 parametrizes mcrit that was found to be responsible for most of the variability in the model
output. The other canonical random variable associated to the other model parameters exhibit in contrast much flatter
posterior marginals reflecting that the inference process has not resulted in a significant update of their prior. In our
opinion, this result is much more satisfying than the previous ones and is consistent with the a priori GSA where the
parameter values had little impact on the prediction.
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Figure 12: Marginal posterior distributions of the canonical random variables.

As a final check, we assess the quality of the surrogate model for the posterior expected value of the parameters.
To this end, we compare in Figure 13 the predictions of the surrogate model (PCE) at the three measurement locations
with the predictions of the detailed D-Claw predictions using the one-dimensional approximation (1D) and the original
two-dimensional problem (2D). It is seen that at the three locations all models are in excellent agreement, confirming
the validity of the approach.
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Figure 13: Comparison of the surrogate model (PCE) and one-dimensional (1D) and two-dimensional (2D) D-Claw model prediction for the
posterior expected value of the parameters. Shown are the evolution in time of the debris height at the three measurement locations.

5. Summary and conclusions

We developed a computational approach to propagate uncertainty in the unknown parameters of the D-CLAW
debris-flow model [23, 13] and calibrated these parameters based on experimental data reported in [44]. The method-
ology consisted of establishing an approximation of the quantities of interest (QoIs) involved in the calibration using
polynomial chaos (PC) expansions, and using the resulting representations to accelerate the Bayesian calibration
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process. Due to the lack of sufficient information regarding the treatment and preprocessing of the available measure-
ments, as well as the complexity of the solution for certain ranges of the uncertain parameters, the calibration was
primarily based on relevant features predicted by the model.

To build the model approximation, we considered a preconditioned non-intrusive approach, and relied on regres-
sion methods to compute the expansion coefficients. Due to the appearance of transverse waves and debris fragmen-
tation, a parametric study was first conducted in order to refine the scope of the simulations. This led us to consider
one-dimensional computations and to restrict the prior range of the hydraulic permeability. We analyzed the resulting
simplified model, and we verified that the restrictions resulting in efficient calculations and smoother signals, but did
not otherwise impact the broad features of the solution. This highlighted the importance of defining suitable priors,
and of carefully selecting smooth QoIs. We also analyzed the quality of the surrogate models in terms of L2 met-
rics, and showed that for the present applications, regardless of the regression method used, the preconditioned PC
representation leads to more accurate representation than direct PC representation of the same QoI. The analysis also
showed that the use of LAD regression produces a significant improvement when comparing the errors in terms of the
L∞ norm.

Before performing the inference, we exploited the PC surrogates to quantify the sensitivity of the selected QoIs to
the uncertain parameters. In particular, we estimated the a priori predictive range and performed a Global Sensitivity
Analysis (GSA). Whereas for the present setup the predictive ranges highlighted significant discrepancies between
the model predictions and the measurements, the GSA showed that most of the variability in the flow thickness is due
to the static critical-state solid volume fraction. We have also demonstrated the usefulness of this information, namely
by using it as an indicator of the quality of the parameter calibration.

We first performed the calibration by using the reported experimental data directly in a Bayesian inverse setting.
Both the originally reported and smoothed variances were considered in this initial exercise. Analysis of the results
showed that this approach led to overly confident estimates in the value of the parameters. This was not surprising
in light of the results of the sensitivity analysis, which revealed large discrepancies between the model predictions
and the reported data. The analysis also showed that a poor discrepancy model was responsible for the observed
over-determination of the parameters.

To mitigate this difficulty, we focused on performing the calibration based on the important features predicted
by the model. Specifically, we considered a likelihood based on arrival time, time at maximum, debris height at
maximum and time to decay. For the present setup, the results indicated that the feature-based inference approach is
computationally cheaper than the direct approach, that it does not involve significant loss of information and avoids
the need to define a complex error model. However, we observed that whereas the predictions were consistent with
those obtained using the direct approach, the posterior marginal distributions of the canonical random variables used
to parametrize the uncertain inputs were still very tight.

Further analysis of the predictions led us to postulate the occurrence of time synchronization issues between the
numerical model and the experimental data, which prevents us from correctly capturing the arrival time and its vari-
ability. Consequently, we explored the possibility of performing the inference based only on (“time-independent”)
integral features of the model. Alternatively, this formulation can be interpreted as the introduction of an improved er-
ror model, permitting a constant time-shift between the predictions and the observations, following a non-informative
prior. This methodology resulted in two main differences with respect to previous approaches: a higher posterior
variability was observed, as well as more accurate predictions of the arrival time of the peak wave height. In addition,
the predictions were also consistent with the results of the GSA, indicating a more reliable calibration process.
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