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a b s t r a c t 

We discuss algorithm-based resilience to silent data corruptions (SDCs) in a task-based 

domain-decomposition preconditioner for partial differential equations (PDEs). The algo- 

rithm exploits a reformulation of the PDE as a sampling problem, followed by a solution 

update through data manipulation that is resilient to SDCs. The implementation is based 

on a server-client model where all state information is held by the servers, while clients 

are designed solely as computational units. Scalability tests run up to ∼51 K cores show 

a parallel efficiency greater than 90%. We use a 2D elliptic PDE and a fault model based 

on random single and double bit-flip to demonstrate the resilience of the application to 

synthetically injected SDC. We discuss two fault scenarios: one based on the corruption 

of all data of a target task, and the other involving the corruption of a single data point. 

We show that for our application, given the test problem considered, a four-fold increase 

in the number of faults only yields a 2% change in the overhead to overcome their pres- 

ence, from 7% to 9%. We then discuss potential savings in energy consumption via dynamic 

voltage/frequency scaling, and its interplay with fault-rates, and application overhead. 

© 2017 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

1. Introduction 

The evolution of computing platforms towards exascale presents key challenges related to resiliency, power, memory

access, concurrency and heterogeneous hardware [1–5] . There is no consensus on what a “typical” exascale architecture

might look like [2] . One of the main concerns is understanding how hardware will affect future computing systems in terms

of reliability, energy consumption, communication and computational models. 

The main constraint to making exascale computing a reality is energy consumption [4] . The current target is to build

an exascale machine consuming ∼20 MW by 2020. Significant technological advances are required to make this objective

feasible, since current systems cannot be simply scaled up to reach this goal. These advancements need to span different

hardware aspects, ranging from underlying circuits, to power delivery as well as cooling technologies. Hardware-oriented

research should be complemented by cross-cutting effort s t ackling energy efficiency at the algorithm and programming
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model level. There is consensus that a coordination of efforts is required between advances in programming systems and

the development of hardware to enable applications to run efficiently and correctly on exascale machines [1,3] . 

Exascale simulations are expected to rely not only on thousands of CPU cores running up to a billion threads, but also

on extensive use of accelerators, e.g. Graphics Processing Units (GPUs) [1,3,5] . This framework will necessarily lead to sys-

tems with a large number of components. The presence of many components, the variable operational modes (e.g. lower

voltage to address energy requirements) and the increasing complexity of these systems (e.g. more and smaller transis-

tors) can become a liability in terms of system faults. Exascale systems are expected to suffer from errors and faults more

frequently than the current petascale systems [5,6] . Current parallel programming models and applications will require a

resilient infrastructure to be suitable for fault-free simulations across many cores for reasonable amounts of time. It will

become increasingly more important to develop resilient-aware applications for exascale, where fault-tolerance is explored 

and quantified to assess whether or not they can tolerate expected failure rates. 

Energy and resilience are tightly linked challenges. For instance, high resilience could be achieved through extensive

hardware redundancy, but this approach would yield a large power overhead, e.g. three times more expensive for triple-

redundancy. Checkpointing is currently the approach most widely used to recover from faults, but it is expected to become

unfeasible for exascale applications given the higher failure rates [3,5] . To address resilience without an excess power and/or

performance costs will require innovations and coordinated efforts across all system levels. At the application level, one

approach would be to design applications such that they are structured into stages having different resilience requirements.

This would allow one to isolate those data and computational units requiring resilience from other data and work units

where resilience is less needed. 

This work presents a new task-based resilient domain-decomposition partial differential equation (PDE) preconditioner 

implemented with a server-client programing model. The problem is reformulated such that the PDE solver is reduced to a

number of independent tasks to benefit concurrency and parallelism. The algorithm enables the application to be resilient to

silent data corruption (SDC), while the server-client model (SCM) enables resiliency to hard faults. Our implementation uses

the User Level Fault Mitigation MPI (MPI-ULFM) [7] , a fault tolerance capability proposed for the MPI standard that enables

a fault-tolerant MPI framework. In this work, however, we don’t focus on hard faults, whose analysis will be the subject of

a separate study, but limit our attention to SDCs. Our application can be seen as a preconditioner that will enable today’s

solvers to be used effectively on future architectures by operating on subdomain levels. Scalability tests run up to ∼51 K

cores show a parallel efficiency greater than 90%. 

The server-client programming model provides a task-based application with an infrastructure that can potentially ad-

dress some of the concerns related to energy consumption and resiliency. The work we present here assumes a SCM running

on a machine with different capacity cores assigned to servers and clients. The idea pushed forward is that high-end high-

capacity/voltage/reliability nodes are reserved for the servers which hold all the state information of the application, while

lower-voltage higher-fault-rate components are used for clients which are in charge of the computation. This separation

of data and computation enables the overall reduction of energy consumption for large scale machines, provided that the

number of nodes hosting the servers is negligible compared to that hosting the clients, and the overhead associated with

clients with higher fault rates is sufficiently small. 

The paper is organized as follows. In Section 2 , we describe the mathematical formulation; in Section 3 , we present the

implementation details; in Section 4 , we discuss the results, focusing on the scalability Section 4.1 , and resilience Section 4.2 ;

in Section 5 , we analyze the interplay between energy and resilience. Finally, Section 6 presents the conclusions. 

2. Mathematical formulation 

We present the formulation for a generic 2D elliptic PDE of the form 

L y ( x ) = g(x ) , (1) 

where L is an elliptic differential operator, g ( x ) is a given source term, and x = { x 1 , x 2 } ∈ � ⊂ R 

2 , with � being the target

domain region. We focus on Dirichlet boundary condition y (x ) | x ∈ � = y � along the boundary � of domain �. A formulation

of the algorithm focusing on 1D elliptic PDEs can be found in [8] . Elliptic equations are chosen as test case because they are

a fundamental problem in physics. 

Fig. 1 shows a high-level schematic of the algorithm’s workflow. The starting point is the discretization of the computa-

tional domain. In general, the choice of the discretization method is arbitrary, potentially heterogeneous across the domain,

e.g. uniform, or non-uniform rectangular grid, or a finite-element triangulation, etc. 

The second step is the partitioning stage. The target 2D domain, �, is partitioned into a grid of n 1 × n 2 overlapping

regions (or subdomains), with n k being the number of subdomains along the x k th axis. The size of the overlap does not

need to be equal and uniform among all partitions, and can vary across the domain. The partitioning stage yields a set

of n 1 × n 2 subdomains �ij , and their corresponding boundaries �s i j 
, for i = 0 , . . . , n 1 − 1 , and j = 0 , . . . , n 2 − 1 , where �s i j 

represents the boundary set of the ij th subdomain �ij . 

We define as our object of interest the set of solution fields along the boundaries, which we denote y (x ) | x ∈ �s i j 
for i =

0 , . . . , n 1 − 1 , and j = 0 , . . . , n 2 − 1 . Due to the overlapping, each subdomain �ij includes inner boundaries, �in 
s i j 

, i.e. the parts

of the boundaries contained within �ij that belong to the intersecting (neighboring) subdomains. The core of the algorithm
Please cite this article as: F. Rizzi et al., Exploring the interplay of resilience and energy consumption for a task-based 

partial differential equations preconditioner, Parallel Computing (2017), http://dx.doi.org/10.1016/j.parco.2017.05.005 

http://dx.doi.org/10.1016/j.parco.2017.05.005


F. Rizzi et al. / Parallel Computing 0 0 0 (2017) 1–12 3 

ARTICLE IN PRESS 

JID: PARCO [m3Gsc; May 27, 2017;22:53 ] 

Fig. 1. Schematic of the workflow of the algorithm. For clarity, starting with stage 2 we only show the steps for �01 but the same “operations” are applied 

to all subdomains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relies on exploiting within each subdomain �ij the map relating the solution at the subdomain boundaries, y (x ) | x ∈ �s i j 
, to

the solution along the inner boundaries, y (x ) | 
x ∈ �in 

s i j 

. These maps can be written compactly as 

y (x ) | x ∈ �in 
s i j 

= f (i j) 
(

y (x ) | x ∈ �s i j 

)
, (2)

for i = 0 , . . . , n 1 − 1 , and j = 0 , . . . , n 2 − 1 . The system of equations assembled from these boundary-to-boundary maps col-

lected from all subdomains, combined with the boundary conditions on the full domain y ( x )| x ∈ � , yields a fixed-point prob-

lem of the form 

y (x ) = Fy (x ) , (3)

where y represents the vector of the solution values at all subdomains boundaries. This problem is only satisfied by the

true solution. We remark that these boundary maps f ( ij ) relate the y -values, since they are built from the restrictions of the

subdomain solutions at the corresponding boundaries. 

In this work, rather than solving Eq. 3 directly, we construct approximations (or surrogates) of the boundary-to-boundary

maps, which we call ˜ f (i j) . One of the main features of the algorithm is that the construction of these maps can be done for

each subdomain independently from all the others. This allows us to satisfy data locality which is key to achieve scalability on

extreme scale machines. To build these surrogate maps, given a current “state” of the solution at the subdomains boundaries,

we use a sampling strategy that involves solving the target PDE equation locally within each subdomain for sampled values

of the boundary conditions on that subdomain, see stage 3 in Fig. 1 . These samples are used within a regression approach

to “infer” the approximate boundary-to-boundary maps. In general, for non-linear problems the maps are non-linear, while

for linear PDEs the boundary maps are linear [8] . Following the construction of the surrogate boundary-to-boundary maps,

we can then solve the approximate version of the fixed point system in Eq. (2) , which provides us with the new solution

state at all the subdomains boundaries and represents an approximation of the true solution. An important measure of the

accuracy of the current solution y (x ) | x ∈ �s i j 
is the residual vector, defined as 

z = Fy − y , (4)

which can be computed by extra subdomain solves using boundary conditions defined by the current solution y , and sub-

tracting the corresponding current solutions y from the resulting values at all boundaries. Given the fixed-point problem

in Eq. (3) , the residual (4) vanishes if the current solution y is the exact solution. In the case of linear PDEs, because the

boundary-to-boundary maps are linear, and assuming that all the regressions complete successfully, the algorithm converges

in one iteration. 

The construction of the boundary-to-boundary maps plays a key role for ensuring resilience against potential silent data

corruption (SDC) affecting the PDE samples. As shown in [8] , when inferring linear maps, using a � 1 -noise model one can

seamlessly filter out the effects of few corrupted data. The � 1 noise model yields the solution with as few non-zero residuals

as possible. Under the assumption that faults are rare, the inferred maps will fit the non-corrupted data exactly while effec-

tively ignoring the corrupted data. In the present work, we employ an iteratively re-weighted least squares (IRLS) method,

which is effectively equivalent to a � 1 minimization [9] . Fig. 2 shows a test proving the resilience of the regression stage. The

PDE used to generate these results is described later in the results section. Panel (a) shows sample PDE solutions generated
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Fig. 2. Simple test proving the resilience of the � 1 regression using the PDE described later in the results section. Panel (a) shows sample PDE solutions 

generated over a target subdomain for sampled boundary conditions. Panel (b) shows the distance of the approximate map obtained through � 1 and � 2 
regressions, to the “true” map for the target blue point in (a). The “true” map is obtained using regression with uncorrupted samples, while the approximate 

map uses the data presented in (a), where two samples are corrupted. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

over a target subdomain for sampled boundary conditions. We synthetically corrupt two samples using a random bit flip: in

one case, shown by the green surface, we corrupt one boundary condition point before the task execution; for the second

corrupted sample, shown by the red surface, we corrupt a single point in the inner grid after the task execution. These two

types of corruptions can both be categorized as SDC, because they do not cause the termination of the application. 

From the PDE samples above, we collect the subset obtained at a test inner location x ∗ = (0 . 3 , 0 . 6) (shown as a blue

circle in the figure), and infer the approximate linear map y ∗(x ) = c 0 + 

∑ N 
i =1 c i y i (x ) , where i enumerates the points along

the subdomain perimeter. For this test, we generated a total of 30 PDE samples: 25 is the minimum number to have a well-

posed linear regression given the size of the subdomain ( N = 24 for this specific case), while 5 additional samples are added

to guard against possible faulty data. We perform the regression using both the � 1 and � 2 models, and report in panel (b)

the error between the approximate map and the one obtained using the uncorrupted samples. The results show that the

� 1 -based regression matches exactly the uncorrupted result, being completely unaffected by the corrupted data points. On

the contrary, using � 2 yields the wrong answer since the corrupted data have substantial effect. The key underlying point

demonstrated is that even in the presence of corrupted PDE samples, provided we have enough samples, we do not need

to waste resources and energy to identify them in order to have a successful regression. The correctness of the result is

ensured by the mathematical properties of the regression model. 

3. Implementation details 

We have developed a parallel, C ++ implementation of the algorithm using a server-client model (SCM). This section

describes the SCM, its resilience properties, and how we implement each stage of the algorithm to exploit the SCM model. 

3.1. Server-Client model 

Fig. 3 shows a schematic of our SCM structure. We adopt a cluster-based model where the MPI ranks are grouped into

separate clusters, with each cluster containing a server and, for resource balancing purposes, the same number of clients.

All servers can communicate between each other, while the clients within a cluster are only visible to the server within

that cluster. Moreover, within any given cluster, clients are independent, i.e. at a given time instant, each client is handling a

different work unit and they cannot communicate with each other. This design choice allows a client to fail without affecting

other clients. Only the work being executed by the failed client is affected. 

The data is distributed among the servers, and these are assumed to be highly resilient (safe or under a “sandbox”

model implementation). The sandbox model assumed for the servers can be supported by either software or hardware. In

the case of software support, this can be accomplished by a programming model relying on data redundancy and strategic

synchronization [10–12] . The latter assumption is supported by hardware specifications on the variable levels of resilience

that can be allowed within large computer systems. 

Since the servers hold the data, they are responsible for generating work in the form of tasks, dispatching them to their

pool of available clients, as well as receiving and processing tasks. A client is defined as a set of MPI processes, and is

designed solely to accept and perform work without any assumption on its reliability. To optimize communication, the root

rank of a client is in charge of receiving work from the server, and then distributing it among the children ranks within that

client. This paradigm can be exploited in certain hardware configurations because leveraging local communication within a
Please cite this article as: F. Rizzi et al., Exploring the interplay of resilience and energy consumption for a task-based 
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Fig. 3. Schematic of the server-client structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

client is more efficient than having the server communicate a task to all the MPI ranks in a client. One example is the case

where all ranks of a client live in the same node, so that one can exploit in-node parallelism and faster memory access. 

A key property of the SCM structure is the inherent resiliency to hard faults in the sense that clients crashing do not af-

fect the state safely owned by the servers. This is because clients crashing (partial or complete node failures) only translates

into missing tasks. In order to take advantage of the SCM model, an application should be designed to handle missing data.

Our SCM is implemented using the User Level Fault Mitigation MPI (MPI-ULFM) [7] , a fault tolerance capability proposed for

the MPI standard that enables a fault-tolerant MPI framework. 

The proposed SCM has the potential to be extremely compatible with hardware designs targeting energy efficiency

through approaches like dynamic voltage/frequency scaling (DVFS) or heterogeneous micro-architectures (HMs) [13,14] . One

can envision an architecture with servers operating at the maximum allowed voltage/energy requirements for best resilience,

while the clients (in charge of doing all the computations) are adaptively operated at various levels of voltage/frequency to

decrease the overall energy consumption. This settings provides a suitable avenue for energy reduction given that the servers

are expected to occupy a minimal part of the machine (e.g. less than 10%), while the clients occupy most of the machine

(e.g. more than 90%). 

3.2. Algorithm implementation 

The algorithm described in Section 2 involves four main stages: sampling, regression, fixed-point solve, and updating. As

mentioned before, sampling and regression can be performed independently and concurrently across all subdomains. This

feature reveals their task-based nature, and are therefore implemented in the form of tasks executed by the clients. As such,

they are vulnerable to the failures occurring on the clients. On the other hand, the fixed-point solve of the boundary-to-

boundary maps system and the updating of the subdomains are safely executed by the servers, since they fully own the

state information. The system of equations built from the boundary maps is much smaller than original discretized PDE

system over the full domain grid, and so it fits on a small number of servers. Moreover, the servers are assumed to be

“sandboxed”, allowing us to circumvent any potential data corruption during these operations. This design choice follows

the concept of target reliability [15] , where some parts of the algorithm are assumed to be handled in a reliable manner.

This can be accomplished either by making the hardware more reliable or by incorporating it within the algorithm itself. 

4. Results 

The results presented below are based on the following 2D linear elliptic PDE 

∂ 

∂x 1 

(
k (x ) 

∂y (x ) 

∂x 1 

)
+ 

∂ 

∂x 2 

(
k (x ) 

∂y (x ) 

∂x 2 

)
= g(x ) , (5)

where x = { x 1 , x 2 } , the field variable is y ( x 1 , x 2 ), k ( x 1 , x 2 ) is the diffusivity, and g ( x 1 , x 2 ) is the source term, over the unit

square (0, 1) 2 with homogeneous Dirichlet boundary conditions. The diffusivity and source fields are defined as 

k (x 1 , x 2 ) = 8 . 0 ∗ exp (−d(x 1 , x 2 ) / 0 . 025) + 2 . 0 , (6)
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Table 1 

Scalability parameters. 

Weak Scaling Parameters 

Subdomains 12 2 , 18 2 , 24 2 , 30 2 , 36 2 , 42 2 

Subdomain grid size 180 2 

Num. of Servers 16, 36, 64, 100, 144, 196 

Num. of clients/server 64 

Size of client 4 MPI ranks 

Total Cores 4112, 9252, 16448, 25700, 37008, 50,372 

Fig. 4. Nominal weak scaling results: the mean efficiency is defined as t ref / t 
∗100, where t ref is the execution time for the smallest case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(x 1 , x 2 ) = 2 . 0 ∗ exp (−d(x 1 , x 2 ) / 0 . 050) − 1 . 0 , (7) 

where d(x 1 , x 2 ) = (x 1 − 0 . 35) 2 + (x 2 − 0 . 35) 2 . To solve the above PDE within each subdomain, we employ a structured grid

and second-order finite differences to discretize Eq. (5) . The resulting linear system stemming from the finite-difference

discretization is solved using the parallel solver AztecOO in Trilinos [16] . 

4.1. Nominal scalability 

We tested the scalability of our application on Edison at NERSC 

1 , a Cray XC30, with Peak performance of 2.57 Petaflops,

Cray Aries high-speed interconnect with Dragonfly topology with approximately ∼ 8GB/sec MPI bandwidth. Table 1 lists the

parameters used for the scalability runs. These runs use the Edison’s native Cray–MPICH. 

The weak scaling is setup by fixing the number of clients per server and the amount of data owned by each server, and

increasing the problem size by adding increasingly more clusters, as shown in Table 1 . This design imposes no constraint

on the problem size, since larger problems can be tackled by simply adding more clusters. Fig. 4 presents the results up to

∼51 K cores, specifically highlighting the scaling of the most important stages of the algorithm, as well as the scaling of the

full application. The results show an excellent behavior for each individual stage and for the full application, with efficiency

above 90%. 

4.2. Resiliency 

Thissection describes and demonstrates the resilience properties of our PDE solver, specifically focusing on resilience to

SDC. We evaluate the resilience against SDC affecting numerical data used in the algorithm, i.e. we exclude other types of

faults e.g., in data structures or control flow, since these issues represent a different problem [17] . We model SDC as bit-flips,

and the results below are based on a random bit-flip model to inject the faults. Specifically, we explore the case where a

SDC is caused by a single random bit-flip, as well as two random bits being flipped. The latter is more rare than the former,

but also more dangerous because current technology like ECC can only handle single bit-flips [18] . Contrary to the work by

[17,19] , we do not characterize only the effect of the worst case scenario, or very outrageous faults. We believe, in fact, that

in many scientific applications, the biggest problems might not come from the occurrence of an outrageous fault, but from

a small corruption in the data at some point during the simulation. One example is scientific simulations that tie to chaos
1 http://www.nersc.gov 
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theory, like climate models and/or turbulence: in such cases, the simulations are very sensitive to, e.g., initial conditions,

where even small variations of the initial data can yield large deviations in the model predictions. As will be shown below,

in fact, this is the case for the present algorithm. When an outrageous fault occurs, it is easily filtered out. However, when

a more subtle corruption occurs, the solver takes more effort to converge towards the right solution. The variability of

corruptions possible by using a bit flip model is a useful resource allowing us to test and assess our applications under all

these various scenarios. 

Test Problem and Execution 

As a test problem for resilience, we adopt the PDE introduced in Eq. (5) , solved over a structured uniform grid with 201 2

grid points over the unit square domain. We partition the domain using n 1 = n 2 = 4 subdomains, with an overlapping of 4

grid cells between neighboring subdomains. This setting yields a total of 16 subdomains, each with a local grid of 54 2 grid

points. Nominally, this problem involves N 

s 
nom 

= 3408 sampling tasks, and N 

r 
nom 

= 2496 regression tasks. The SCM structure

involves a single server holding the data, i.e. subdomains, and uses 14 clients each with size 2. 

Fault Injection 

Our goal is to evaluate how the application behaves as we increase the number of faults. We leverage the task-based

nature of our algorithm by choosing the number of faults to inject as a percentage of the nominal number of tasks to

execute. Since we know in advance how many tasks are needed by our test problem, we randomly select off-line the set of

task IDs that will be hit by a fault during the execution. One advantage of this method is that the number of faults hitting

the system is well-known, and it eliminates any dependency between faults occurrence and the execution time, since the

latter is machine-dependent. Moreover, if needed, this setting still allows us to extract an average fault rate, given a total

execution time and the known number of faults. We explore various levels of corruption, namely 0.25%, 0.5%, 0.75%, and

1.0% of the nominal number of tasks. For each percentage of corruption, we run 150 runs to have a statistically meaningful

result. 

Exploiting a selective reliability approach [15,17,19,20] , which lets algorithm developers isolate faults to certain parts of

the algorithm, in this paper we focus on the results obtained by injecting the faults during the sampling stage only. The

results obtained for the other scenarios, e.g. involving faults hitting the regression are left for future extensions. Faults are

only injected in the clients, consistently with the SCM described previously, where servers are assumed to be reliable, while

no assumption is made on the reliability of the clients. 

Fault Model 

In this work, we analyze two cases: one involves corrupting all elements in the array holding boundary conditions con-

tained in the task, while the other involves corrupting only a single array element. The reason behind this distinction is that

when the whole data-set is corrupted, provided the amount of data is sufficiently large, it is likely that at least one large

bit (e.g. exponent) is flipped, causing the value to become “outrageous”. One the contrary, when a single data variable is

corrupted, the likelihood of flipping a bit in the exponent is lower. We believe that both scenarios are important to examine,

since they provide information on the algorithm’s sensitivity to different levels of data corruption. 

When a fault needs to be injected, we adopt the following procedure: we draw a value, u , from a standard uniform

distribution, and if u ≤ 0.5, the task data is corrupted before the execution; if u > 0.5, the task data is corrupted after its

execution. This allows us to mimic corruptions that occur when tasks are being transmitted to and from a client, as well as

those happening during execution. If a task is corrupted before the execution, this translates into corrupting all or a single

point in the boundary conditions owned by that sampling task, since the boundary conditions are the only information

needed to run a solve of the elliptic PDE. If a task is corrupted after execution, this translates into corrupting all or a single

point in the solution, which means that even the inner points of a subdomain can be affected. 

Handling Faults 

Given the fault model described above, several fault scenarios unfold. The mechanisms that we incorporate in the al-

gorithm to make it resilient are kept to a minimum in order to reduce the overhead. To guarantee the resilience of the

algorithm towards faults in the sampling, the key condition to be satisfied is that out of the samples used in the regression,

the number of uncorrupted samples has to be greater than the minimum set needed to have a mathematically well-posed

regression problem. To this end, we mitigate the impact of faults in the sampling by generating, within each subdomain,

more samples than the minimum set. This is accomplished by defining an oversampling factor, ρ > 1, such that the target

number of samples to generate is N = ρN 

s 
nom 

. Moreover, during the sampling stage, we apply a filter on the task data re-

turned to the server to check that it is within the interval (−100 , 100) before the data is stored within the corresponding

subdomain. Based on physical insight into the problem, solutions outside this range are clearly the result of corrupted data.

Moreover, only very few cases return results outside of this range as a result of random bit-flips. This interval is arbitrary,

but can be estimated by either a domain expert or by known physical bounds on the solution. In general, this bound does

not have to be tight. If the problem under consideration has some related experimental data, then those could be easily

used to derive some bounds. Otherwise, one can resort to some theoretical analysis to derive bounds for the PDE solution

under study, see e.g. [21] . This is the only active “filter” that is needed by the application. Any other corruption during the

sampling does not need to be actively detected, since it is seamlessly filtered out thanks to the mathematical model used

in the regression as shown in Fig. 2 . 
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Fig. 5. Statistical results obtained from the ensemble runs performed for the resilience analysis. The radar-plots correspond to the following four cases: 

first row shows results when all data in a sampling task is corrupted, with ρ = 1 . 1 (a) and ρ = 1 . 07 (b); second row shows results for single data point 

corruption in a sampling task, with ρ = 1 . 1 (c) and ρ = 1 . 07 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1. Resilience analysis 

This section focuses on the resilience results obtained for the runs described above. Fig. 5 summarizes the main statistics

from the ensemble runs performed for the single bit-flip scenario. Specifically, we show four radar-plots, corresponding to

the following four different combinations: first row shows the results when all data in a sampling task is corrupted, with ρ =
1 . 1 (a) and ρ = 1 . 07 (b); second row shows results for single data point corruption in a sampling task, with ρ = 1 . 1 (c) and

ρ = 1 . 07 (d). Each radar-plot displays the average value over 150 replicas of six key quantities in the following clock-wise

order: the total overhead of the application runtime compared to the no-fault runs, the regression and sampling overhead,

the boolean value identifying convergence, the number of tasks affected by a fault, and the percentage of tasks corrupted.

In all cases, the runs converge to the correct answer. Convergence is verified by checking that the root-mean-square error

computed for the residual in Eq. (4) is below a specified threshold of 10 −13 . This proves that the application is resilient to

faults occurring during sampling. 

For a fixed value of ρ , the plots show that the overhead with respect to the no-fault case is smaller when all the data

in a sampling task is corrupted. As it was mentioned before, this is explained by the fact that when every data element

is hit by a bit-flip, it is more likely that it is filtered by the server during the task post-processing check. On the contrary,

when a single bit-flip hits a single data point, the � 1 regression has to work harder to obtain the correct boundary-to-

boundary map. For ρ = 1 . 1 , the total overhead is ∼7% when all data is corrupted, only slightly changing as the number of

fault increases, see Fig. 5 a. For the single data point corruption, the total overhead increases from ∼7.5% to 9% when the

number of faults increases from 9 to 35, see Fig. 5 c. A similar trend is observed for ρ = 1 . 07 . In this case, however, there is

a wider discrepancy between the overhead obtained when all the data is corrupted, and that of a single point corruption,

see Fig. 5 b and d. 

As expected, the plots confirm that as the oversampling is reduced from 10% to 7%, the overhead incurred by the appli-

cation decreases. A greater reduction is observed when all data is corrupted, as shown by Fig. 5 a and b. The plots show also

that the largest variability is observed for the regression overhead. This is expected, because of the additional computations

required to compute the correct boundary-to-boundary maps given the presence of faulty samples. 
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Table 2 

Overhead comparison between single bit-flip (SBF) and double bit-flip (DBF) corruption 

for the case where a single data point is corrupted and 7% oversampling. 

Corrupted tasks % 0.25% 0.5% 0.75% 1.0% 

SBF DBF SBF DBF SBF DBF SBF DBF 

Regression Overhead (%) 1.099 1.111 1.088 1.092 1.076 1.085 1.071 1.071 

Total Overhead (%) 1.070 1.075 1.062 1.069 1.061 1.063 1.053 1.054 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We repeated a similar analysis for the case when SDCs are caused by double random bit-flips. For brevity, we discuss

here only the results obtained when a single data element is corrupted and the oversampling is set to 7%. Table 2 shows

a comparison of the overhead incurred when SDCs are caused by single and double bit-flips, for various percentages of

corrupted tasks. The results show that the differences are minimal, demonstrating that the algorithm formulation and the

underlying � 1 regression model used make the application minimally sensitive to the number of bit-flips occurring. 

5. Trade-off between energy and resilience 

In this section, we discuss how the resilience properties of our application allow us to draw conclusions about potential

savings in the energy consumption. Resilience and energy consumption are tightly linked [22,23] . It has been shown that

voltage decrease is linked to higher faults rates, see [22] and references therein. We demonstrate below how lowering

the energy consumption during the sampling stage by means of voltage scaling allows us to save energy and still run the

application successfully despite being affected by more frequent system faults. This framework can be enabled because of

the SCM, which allows us to separate state from computation. Decreasing the energy consumption is possible via variable-

voltage CPUs, which can reduce power consumption quadratically at the expense of linearly reduced speed [22] . The reason

for this is that circuit delay is almost linearly related to 1/ V , where V is the voltage, so for systems to function correctly, the

operating frequency needs to decrease linearly with respect to the decrease of the supply voltage. 

We compare two scenarios: (A) involves running the application assuming that all machine components run at full op-

erational capacity/speed; (B) is based on decreasing the energy consumption of the clients only during the sampling stage

by reducing the operational efficiency of the corresponding processing units. Moreover, to compare the two scenarios, they

tackle the same problem, have the same number of servers and clients, are run on the same machine. The servers always

run at full capacity to keep the state safe. We remark that the only difference between the two cases lies in how the sam-

pling stage is run. The other stages of the algorithm are equivalent. The analysis below is carried out without accounting for

the energy consumed by the network and/or system cooling. We are aware that the energy consumption for these HPC sys-

tems’ components contributes to the total energy budget, but we limit the focus of this work to highlighting the relationship

between system faults, algorithmic resilience and computing energy. 

To lay the ground of the analysis, we define how to estimate the energy consumption following the work in [22,23] . The

power consumption, P , during activity can be modeled as [22] : 

P = 

ˆ P + CV 

2 f (8)

where ˆ P is the non-dynamic contribution, C is the switch capacitance, V is the voltage, and f is the frequency. In general,

this ˆ P includes leakage and shortcircuit power. In current systems, with improved technologies, the dynamic component

dominates. For the purposes of this work, as in [22] , we assume ˆ P to be independent of V and f , and small compared to the

dynamic part. Note that as in [22] , we have neglected the contribution of the sleep power since it does not have any effect

on the energy savings and we assume the system to be always on. The energy consumed by an operation running over the

time interval T = t 2 − t 1 is then 

E = ( ̂  P + CV 

2 f ) T . (9)

We now proceed by estimating the energy consumption of our application in both scenarios. The nominal (or full energy)

scenario involves clients operating at maximum voltage, V m 

, and frequency, f m 

, and includes N 1 sampling tasks, with each

task execution taking a time T 1 . For this reference scenario, the total energy consumed by the clients to execute N 1 samples

is 

E s 1 = N 1 

(
ˆ P T 1 + CV 

2 
m 

f m 

T 1 
)
. (10)

For the reduced energy case, as mentioned above, both voltage and frequency are lowered to V 2 < V m 

, and f 2 < f m 

, such

that f m 

/ f 2 = V m 

/V 2 . This implies that the execution time of a task is T 2 = T 1 
f m 
f 2 

, as it depends linearly on the frequency. This

assumption is, in general, valid for compute-intensive tasks. Due to the interplay between voltage and reliability, we expect

for this low-energy scenario a higher probability of faults occurring during the sampling. We mitigate the effect of these

faults by generating more samples, i.e. we assume N 2 = ρN 1 , where ρ > 1 is the oversampling factor. This oversampling

is needed for the algorithm, as shown in the resilience results from the previous section, to guard against potential data
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Fig. 6. Energy ratio E s 2 /E s 1 between the reduced, E 2 , and full, E 1 , case as a function of the normalized frequency. We show the curves obtained for ˆ P = 

{ 0 . 1 , 0 . 2 , 0 . 4 } , and varying oversampling factor ρ = { 1 . 01 , 1 . 05 , 1 . 1 , 1 . 2 } . (Frequencies below 0.25 are not shown assuming 0.25 to be a reasonable value for 

the lowest operational frequency of a processor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corruption. The total energy consumed by the clients to execute N 2 samples in the reduced energy case is 

E s 2 = N 2 

(
ˆ P T 2 + CV 

2 
2 f 2 T 2 

)
= N 2 

(
ˆ P T 1 

f m 

f 2 
+ CV 

2 
m 

f m 

T 1 
f 2 2 

f 2 m 

)
, (11) 

where Eq. (11) has been obtained by making some substitutions and rearranging terms to explicitly highlight the relationship

with the nominal case. It is easy to see that the energy function has a minimum at f ∗
2 

= (0 . 5 ̂  P /C) 1 / 3 . Below, we assume that

voltages and frequencies are normalized, i.e. we set V m 

= 1 and f m 

= 1 , such that any other voltage or frequency is in the

interval (0, 1). 

Fig. 6 shows the ratio E s 
2 
/E s 

1 
as a function of the frequency f 2 . We show the results obtained for ˆ P = { 0 . 1 , 0 . 2 , 0 . 4 } , and

also vary the oversampling factor ρ = { 1 . 01 , 1 . 05 , 1 . 1 , 1 . 2 } . This figure allows us to make conclusion about how much energy

we are able to save by leveraging the reduced-energy scenario as opposed to the full one. We can draw the following

observations. First, the lower the value of ˆ P , the more energy we are able to save. This is clear from Eq. 11 , since the

contribution from 

ˆ P is proportional to the execution time. Second, the results show that as ˆ P decreases, the minimum of

the energy curves is obtained for smaller and smaller frequencies. For the three cases shown, the optimal frequencies are

f ∗
2 

= { 0 . 369 , 0 . 464 , 0 . 585 } for ˆ P = { 0 . 1 , 0 . 2 , 0 . 4 } . Third, we see that for a given value of ˆ P , the energy curves shift upward

as the oversampling ratio ρ increases. Intuitively, increasing ρ increases the number of tasks to execute, and therefore we

are able to save less and less energy. The results show, e.g., that if we assume ˆ P = 0 . 4 , and run at the optimal frequency

f ∗2 = 0 . 585 , the energy saving ranges from ∼30% when ρ = 1 . 01 , to ∼15% when ρ = 1 . 2 . The frequency range shown in

Fig. 6 was chosen to reveal the full trend of each curve for the selected values of ˆ P and ρ . But we remark that operating

at the optimal (or too small) frequency is not always possible if this frequency is smaller than the minimum operational

frequency, f low 

, allowed by the processor, i.e. f ∗
2 

< f low 

, for a given voltage. To the best of our knowledge 2 , we think that a

reasonable assumption would be 0.2 < f low 

< 0.4. The operational minimum energy efficient frequency that is feasible for a

processor is max { f low 

, f ∗2 } . Hence, the energy saved might be slightly smaller, but the plot shows that it is still considerable.

Beside increasing the execution time, voltage scaling also causes fault rates in the processors (including logic core and

cache) to increase exponentially [22–24] . Assuming a Poisson process for the faults [22] , the relationship between the fault

rate, λ (# faults/sec), the voltage V and frequency f can be expressed as: 

λ = λ0 10 

(
d 1 − f 

1 −max { f low , f ∗
2 
} 
)
, (12) 

where λ0 is the fault rate corresponding to V m 

and f m 

, d is a constant such that the larger its value, the more sensitive the

fault rate is to scaling, and f is the frequency corresponding to voltage V , such that V m 

/V = f m 

/ f . Also, the dependence on P̂ 

appears through the optimal frequency f ∗
2 
, since f ∗

2 
= (0 . 5 ̂  P /C) 1 / 3 as shown earlier. Similarly to [22] , in this work we assume

λ0 = 10 −6 (# faults/sec), and d = 4 . We remark that the expression above might not be exactly applicable to current systems,

but it is consistent with recent work on this topic, see e.g. [25] . The analysis below discusses the potential workflow that

one would have to follow to calibrate the oversampling for tolerating an expected number of faults. It does not provide an

exact formula for the dependence of the fault rate on the frequency. 

Fig. 7 shows how the fault rate varies as a function of the frequency for the three different values of ˆ P selected before.

For clarity, the y -axis is plotted in log-scale. The first observation is that as the frequency decreases, the fault rate increases.
2 https://www.pugetsystems.com/labs/articles/Is- CPU- Base- Frequency-Still-a-Relevant-Spec-512/ 
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Fig. 7. Fault rate, λ, as a function of the frequency, for three different values of ˆ P , see Eq. (12) . For clarity, the y -axis is plotted in log-scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the figure, we can see that if the operating frequency is f ∗
2 

= { 0 . 369 , 0 . 464 , 0 . 585 } , the corresponding expected fault

rate is λ = 0 . 01 , namely about one fault every 100 seconds. The key question arising is: what is the trade-off between the

energy saved due to voltage scaling and the energy spent to recover from the more frequent faults occurring due to lower

operation power? This is where the resilience plays a key role, especially if the algorithm is inherently resilient to faults. If

an application had a small overhead associated with recovering from faults, then most of the energy saved by running at

reduced speed would be gained. On the other hand, if the overhead of the application to recover from a fault is substantial,

then some of the energy saved by running at reduced speed would be offset, potentially eliminating any energy savings. 

To calibrate a particular run, a user will have to choose a lower frequency f 2 to run the sampling stage, then use Fig. 6 to

determine the energy savings for a corresponding oversampling factor ρ . The expected fault rate can be computed using Eq.

(12) . The user must determine if the oversampling factor chosen is large enough to compensate for the expected number

of faults and adjust the oversampling factor accordingly. If it is allowed by the machine, the target low-energy frequency

f 2 should be chosen as close as possible to the optimal frequency f ∗2 to ensure that the energy saved during the sampling

stage is not offset by the overhead of the regression stage. 

6. Conclusion 

We discussed algorithm-based resilience to silent data corruption (SDC) in a task-based domain-decomposition precon-

ditioner for partial differential equations (PDEs). 

The algorithm involves the following main steps: first, the domain of the PDE is split into overlapping subdomains; sec-

ond, the PDE is solved on each subdomain for sampled values of the local current boundary conditions; third, the resulting

subdomain solution samples are fed into a regression step to build boundary-to-boundary maps; finally, the intersection of

these maps yields the updated state at the subdomain boundaries. 

The implementation is based on a server-client model where all state information is held by the servers, while clients

are designed solely as computational units. We tested weak scaling up to ∼51 K cores, showing an efficiency greater than

90%. 

We used a 2D elliptic PDE, a fault model based on random single bit-flip and target reliability assumption to show that

the application is resilient to SDC injected during the sampling stage. The resilience to SDC was shown to be feasible thanks

to the � 1 model adopted in the regression stage. We discussed how the overhead in the regression due to the presence

of faults is larger when a single data point is corrupted in a sampling task than the case where all data is corrupted. We

explained this result in terms of the likelihood of having an outrageous corruption, which would simply be filtered/discarded

by the server, versus having small corruptions passing the filter test, but causing the regression to work harder to obtain

the � 1 result. We showed that because of the algorithm formulation and the � 1 regression model used in the regression, the

algorithm is nearly insensitive to type of corruption, namely single or double bit-flip. 

Finally, we showed how the inherent resilience to SDC in the sampling and the small associated overhead can be lever-

aged to achieve potential energy savings via dynamics voltage/frequency scaling during the sampling. We anticipate that in

the case of undervolting only, namely reducing voltage while keeping frequency constant, the potential energy-saving gain

would be even higher because there would be no increase in the computational time. We are currently planning further

studies to complement the presented energy estimates with experimental data. 
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