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Abstract

We present an extension of the Generalized Spectral Decomposition method for the resolu-
tion of non-linear stochastic problems. The method consists in the construction of a reduced
basis approximation of the Galerkin solution and is independent of the stochastic discretiza-
tion selected (polynomial chaos, stochastic multi-element or multiwavelets). Two algorithms are
proposed for the sequential construction of the successive generalized spectral modes. They in-
volve decoupled resolutions of a series of deterministic and low dimensional stochastic problems.
Compared to the classical Galerkin method, the algorithms allow for significant computational
savings and require minor adaptations of the deterministic codes. The methodology is detailed
and tested on two model problems, the one-dimensional steady viscous Burgers equation and a
two-dimensional non-linear diffusion problem. These examples demonstrate the effectiveness of
the proposed algorithms which exhibit convergence rates with the number of modes essentially
dependent on the spectrum of the stochastic solution but independent of the dimension of the
stochastic approximation space.

1 Introduction

The increasing availability of computational resources and complexity of numerical models has
stressed the need for efficient techniques to account for uncertainties in model data and incomplete
knowledge of the simulated system. Uncertainty quantification (UQ) methods are designed to
address this need by providing a characterization of the uncertainty in the model output. The
uncertainty characterization and level of information provided depend on the UQ method selected
and range from the construction of simple confidence intervals to the determination of complete
probability laws. Among the different UQ methods available, the polynomial chaos (PC) methods
[40, 5, 13] are receiving a growing interest as they provide a rich uncertainty characterization thanks
to their probabilistic character. In fact, PC methods for UQ have been constantly improved and
applied to problems with increasing complexity (e.g. non-linear ones) since the early works of
Ghanem and Spanos [13].
The fundamental concept of PC methods is to treat the UQ problem in a probabilistic framework,
where the uncertain model data are parameterized using a finite set of random variables which
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are subsequently regarded as the generator of new dimensions along which the model solution is
dependent. A convergent expansion along the uncertainty dimensions is then sought in terms of
orthogonal basis functions spanning an appropriate stochastic space. The expansion coefficients
provide a complete characterization of the uncertain solution in a convenient format allowing for
straightforward post-treatment and uncertainty analysis such as the assessment of the impact of
specific uncertain data source on specific observables.

There are two distinct classes of techniques for the determination of the expansion coefficients.
The non-intrusive techniques, such as quadrature-based projections [34, 20] and regressions [4], offer
the advantage of requiring the availability of a deterministic code only, but are limited by the need
of computing the solution for a large number of realizations of the uncertain data. Many works
are currently focusing on numerical strategies for the minimization of the number of solutions to
be computed, essentially through the use of coarse or adaptive quadrature formulas [16, 11]. The
second class of techniques relies on the model equations to derive a problem for the expansion
coefficients through Galerkin-type procedures. It yields accurate solutions but usually requires the
resolution of a large set of equations calling for ad hoc numerical strategies, such as Krylov type
iterations [12, 32, 15] and preconditioning techniques [33, 21], as well as an adaptation of the
deterministic codes. The method presented in this paper focuses on the minimization of the com-
putational cost in Galerkin methods for non-linear models.

The essential motivation behind PC methods is the promise of obtaining accurate estimates
of the uncertain solution with a limited number of terms in the expansion. However, as appli-
cations and uncertainty settings gain in complexity, the dimension of the expansion basis needed
to yield accurate estimates quickly increases with significant increase in the computational cost
and memory requirements. These limitations have been partially addressed by using better suited
stochastic bases both in terms of probability distribution of the random variables [41] and approx-
imation properties of the basis functions using so-called finite element, multi-element or multi-
wavelet bases [7, 2, 10, 17, 18, 38]. An interesting feature of finite-element, multi-element and
multi-wavelet bases is the possibility to enrich adaptively the stochastic approximation basis to the
sought solution (see for instance [18, 38, 39, 19, 22]).

Another way to minimize the size and numerical cost of Galerkin computations is to seek the
approximate solution on a reduced space. It is remarked that such reduction approach should
not be opposed or understood as an alternative to the adaptive methods mentioned above, but
would actually further improve their efficiency since adaptive techniques require the resolution of
large Galerkin problems, though local ones. The main idea of reduced approximations is to take
advantage of the structure of the full approximation space, which results from the tensor product
of the deterministic and stochastic approximation spaces: if one is able to appropriately reduce
the deterministic or stochastic approximation space, to a low dimensional sub-space, the size of
the Galerkin problem to be solved drastically reduces too. Of course, the determination of a low
dimensional sub-space that still accurately captures the essential features of the solution is not
immediate since the solution is unknown. In [9], the Galerkin problem is first solved on a coarse
deterministic mesh to provide a coarse estimate of the solution which is then decomposed into its
principal components through Karhunen-Loeve (KL) expansion. The first random coefficients of
the KL expansion are then used as a reduced stochastic basis in the Galerkin problem considered
now on a fine deterministic mesh. Alternatively, in [23], a Neumann expansion of the operator is
used to obtain an estimate of the covariance operator of the solution. The dominant eigenspace
of the approximate covariance operator is then considered as the reduced deterministic (spatial)
sub-space to be used subsequently in the Galerkin procedure. In fact, as for the first approach,
this can be interpreted as a coarse a priori KL expansion of the solution. These two approaches
have demonstrated their effectiveness in reducing the size of the Galerkin problem solved in fine.
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However, the second approach, based on Neumann expansion, is dedicated to linear problems, and
the extension of the first approach to highly non-linear problems, such as for instance the Navier-
Stokes equations, seems critical due to limitations in the possible deterministic coarsening: the
reduced basis may simply miss important features of the non-linear solution. Another alternative,
called the Stochastic Reduced Basis Method [25, 35], has been proposed for the a priori construction
of reduced basis. In this method, dedicated to linear problems, the reduced basis is a basis of a
low-dimensional Krylov sub-space of the random operator associated with the right hand side. It
captures approximatively the active upper spectrum of the random operator. The main difference
with the above techniques is that the reduced basis is random. The method does not take part of
the tensor product structure of the function space and then does not circumvent the problem of
memory requirements. Moreover, the components of the solution on this basis, obtained through a
Galerkin projection, leads to a system of equations which has not a conventional form.

We thus investigate in this paper the extension of the so-called Generalized Spectral Decompo-
sition (GSD) method which does not require one to provide a reduced basis (a priori or determined
by alternative means) but that instead yields by itself the “optimal” reduced basis.

The Generalized Spectral Decomposition (GSD) method consists in searching an optimal de-
composition of the solution u to a stochastic problem under the form

∑M
i=1 Uiλi, where the Ui are

deterministic functions while λi are random variables. In this context, the set of λi (resp. of Ui)
are understood as a reduced basis of random variables (resp. of deterministic functions). Optimal
decompositions could be easily defined if the solution u were known. Such a decomposition can
for example be obtained by a KL expansion (or classical spectral decomposition) of u, which is
the optimal decomposition with respect to a classical inner product. The GSD method consists in
defining an optimality criterion for the decomposition which is based on the equation(s) solved by
the solution but not on the solution itself. The construction of the decomposition therefore does not
require to know the solution a priori or to provide a surrogate (approximation on coarser mesh or
low order Neumann expansion) as pointed previously. The GSD method was first proposed in [27]
in the context of linear stochastic problems. In the case of linear symmetric elliptic coercive prob-
lems, by defining an optimal decomposition with respect to the underlying optimization problem,
the functions Ui (resp. λi) were shown to be solutions of an eigen-like problem. Ad-hoc algorithms,
inspired by power method for classical eigenproblems, have been proposed in [27] for the resolution
of this eigen-like problem, while improved algorithms and in-depth analysis of the GSD method
for a wider class of linear problems (in particular time-dependent problems) can be found in [28].
The main advantage of these algorithms is to separate the resolution of a few deterministic prob-
lems and a few reduced stochastic problems (i.e. using a reduced basis of deterministic functions).
These algorithms lead to significant computational savings when compared to classical resolution
techniques of stochastic Galerkin equations. A first attempt for extending the GSD method to non-
linear problems has been investigated in [26]: algorithms derived for the linear case were simply
applied to subsequent linear stochastic problems arising from a classical non-linear iterative solver.
Reduced basis generated at each iteration were stored, sorted and re-used for subsequent iterations.
In this paper, we propose a “true” extension of the GSD to non-linear problems, where we directly
construct an optimal decomposition of the solution with regard to the initial non-linear problem.

The outline of the paper is as follows. In section 2, we introduce a general formulation of non-
linear stochastic problems and the associated stochastic Galerkin schemes. In section 3, we present
the extension of GSD for non-linear problems. In particular, we provide some basic mathematical
considerations which motivate this extension. The GSD is interpreted as the solution of an eigen-like
problem and two ad-hoc algorithms are proposed for building the decomposition. These algorithms
are inspired from the ones proposed in [27] in the context of linear stochastic problems. Then, the
GSD method is applied to two non-linear models: the steady viscous Burgers equation (sections 4
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and 5) and a stationary diffusion equation (sections 6 and 7). Computational aspects of the GSD
are detailed for each of these model problems. Finally, in section 8, we summarize the main findings
of this work and we discuss future improvements and extensions of the method.

2 Non-linear stochastic problems

2.1 Variational formulation

We adopt a probabilistic modeling of uncertainties and introduce an abstract probability space
(Θ,B, P ). Θ is the space of elementary events, B a σ-algebra on Θ and P a probability measure.
We consider non linear problems having the following semi-variational form:
Given an elementary event θ, find u(θ) ∈ V such that we have almost surely

b(u(θ), v; θ) = l(v; θ) ∀v ∈ V , (1)

where V is a given vector space, eventually of finite dimension, b and l are semi-linear and linear
forms respectively. The forms b and l may depend on the elementary event θ. In this paper, we
consider that V does not depend on the elementary event. It could be the case when considering
partial differential equations defined on random domains [30, 29]. On the stochastic level, we
introduce a suitable function space S for random variables taking values in R. The full variational
formulation of the problem writes:
Find u ∈ V ⊗S such that

B(u, v) = L(v) ∀v ∈ V ⊗S , (2)

where the semi-linear and linear forms B and L have for respective expressions:

B(u, v) =

∫

Θ
b(u(θ), v(θ); θ) dP (θ) := E(b(u, v; ·)), (3)

L(v) =

∫

Θ
l(v(θ); θ) dP (θ) := E(l(v; ·)). (4)

where E(·) denotes the mathematical expectation.

2.2 Stochastic discretization

In this article, we consider a parametric modeling of uncertainties. Semilinear form b and linear
form l are parametrized using a finite set of N real continuous random variables ξ with known
probability law Pξ. Then, by the Doob-Dynkin’s lemma [31], we have that the solution of problem
(1) can be written in terms of ξ, i.e. u(θ) ≡ u(ξ). The stochastic problem can then be reformulated
in the N -dimensional image probability space (Ξ,BΞ, Pξ), where Ξ ⊂ R

N denotes the range of ξ.
The expectation operator has the following expression in the image probability space:

E(f(·)) =

∫

Θ
f(ξ(θ)) dP (θ) =

∫

Ξ
f(y)dPξ(y). (5)

Since we are interested in finding an approximate stochastic solution of equation (1), function
space S is considered as a finite dimensional subspace of L2(Ξ, dPξ), the space of real second order
random variables defined on Ξ. Different types of approximation are available at the stochastic level:
continuous polynomial expansion [13, 41, 36], piecewise polynomial expansion [7], multiwavelets
[17, 18]. At this point, it is stressed that the method proposed in this paper is independent of the
type of stochastic approximation used.
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Remark 1 The choice of a suitable function space S is a non trivial question in the infinite
dimensional case. Several interpretations of stochastic partial differential equations (SPDE) are
generally possible, e.g. by introducing the concept of Wick product between random fields, leading
to well posed problems and then to different possible solutions [14, 3, 37]. These mathematical
considerations are beyond the scope of this article. For non-linear problems dealt with in this
article, where a classical interpretation of products between random fields is used [2, 23], a possible
choice could consist in classical Banach spaces Lp(Ξ, dPξ) ⊂ L2(Ξ, dPξ), 2 6 p < ∞. Usual
approximation spaces being contained and dense in these Banach spaces, it ensures the consistency
of the approximation.

In what follows, we will mainly use the initial probability space (Θ,B, P ). The reader must
keep in mind that at each moment, the elementary event θ ∈ Θ can be replaced by ξ ∈ Ξ in any
expression.

3 General Spectral Decomposition for non linear problems

3.1 Principle

The Generalized Spectral Decomposition (GSD) method consists in searching an approximate low-
order decomposition of the solution to problem (2):

uM (θ) =

M∑

i=1

Uiλi(θ), (6)

where Ui ∈ V are deterministic functions while λi ∈ S are random variables (i.e. real-valued
functions of the elementary random event). In this context, the set of λi (resp. of Ui) can be
understood as a reduced basis of random variables (resp. of deterministic functions). In this
section, we will see in which sense optimal reduced basis can be thought as solutions of eigen-like
problems. Starting from this interpretation, we will propose two simple and efficient algorithms for
building the generalized spectral decomposition.

3.2 Definition of an optimal couple (U, λ)

First, let us explain how to define an optimal couple (U, λ) ∈ V ×S . The proposed definition is a
direct extension to the non-linear case of the definition introduced in [28].
It is remarked that if U was known and fixed, the following Galerkin orthogonality criterium would
lead to a suitable definition for λ:

B(λU, βU) = L(βU) ∀β ∈ S . (7)

In other words, it consists in defining λU as the Galerkin approximation of problem (2) in the
sub-space U ⊗S ⊂ V ⊗S .
Alternatively, if λ was known and fixed, the following Galerkin orthogonality criterium would lead
to a suitable definition for U :

B(λU, λV ) = L(λV ) ∀V ∈ V . (8)

In other words, it consists in defining λU as the Galerkin approximation of problem (2) in the
sub-space V ⊗ λ ⊂ V ⊗S .
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As a shorthand notation, we write λ = f(U) the solution of equation (7) and U = F (λ) the solution
of equation (8). It should be clear that a natural definition of an optimal couple (U, λ) consists
in satisfying simultaneously equations (7) and (8). The problem can then write: find λ ∈ S and
U ∈ V such that

U = F (λ) and λ = f(U). (9)

The problem can be formulated on U as follows: find U ∈ V such that

U = F ◦ f(U) := T (U), (10)

where mapping T is a homogeneous mapping of degree 1:

T (αU) = αT (U) ∀α ∈ R
∗. (11)

This property comes from properties of f and F , which are both homogeneous mappings of degree
(−1):

∀α ∈ R
∗, f(αU) = α−1f(U), F (αλ) = α−1F (λ). (12)

The homogeneity property of T allows to interpret equation (10) as an eigen-like problem where
the solution U is interpreted as a generalized eigenfunction.

By analogy with classical eigenproblems, each eigenfunction is associated with a unitary eigen-
value. The question is then: how to define the best generalized eigenfunction among all possible
generalized eigenfunctions ? A natural answer is: the best U is the one which maximizes the norm
‖Uf(U)‖ of the approximate solution Uf(U), i.e. such that it gives the highest contribution to
the generalized spectral decomposition. In order to provide a more classical writing of an eigen-
problem, we now rewrite the approximation as αUf(U)/‖Uf(U)‖, with α ∈ R

+. The problem is
then to find a couple (U,α) ∈ V ×R

+ such that α is maximum and such that the following Galerkin
orthogonality criterium is still satisfied:

αU = F (f(U)/‖Uf(U)‖) = ‖Uf(U)‖T (U) := T̃ (U). (13)

The mapping σ : U ∈ V 7→ ‖Uf(U)‖ ∈ R
+ is a homogeneous mapping of degree 0. Then, mapping

T̃ , which is a simple rescaling of T , is still homogeneous of degree 1, so that equation (13) can be
interpreted as an eigen-like problem on T̃ : find (U,α) ∈ V × R

+ such that

T̃ (U) = αU (14)

U is a generalized eigenfunction of T̃ if and only if it is a generalized eigenfunction of T . A
generalized eigenfunction is associated with a generalized eigenvalue α = σ(U) of mapping T̃ .
The best U ∈ V then appears to be the generalized eigenfunction associated with the dominant
generalized eigenvalue of T̃ .

Remark 2 In the case where B is a bounded elliptic coercive bilinear form, it is proved in [27]
that the dominant generalized eigenfunction U is such that it minimizes the error (u−Uf(U)) with
respect to the norm induced by B.

Remark 3 Let us note that the previous reasoning can be made on a problem formulated on λ,
writing: find (λ, α) ∈ S × R

+ such that

T̃ ∗(λ) = αλ, (15)

where T̃ ∗(λ) = σ∗(λ)f ◦F (λ), with σ∗(λ) = ‖F (λ)λ‖. We can easily show that if U is a generalized
eigenfunction of T̃ , then λ = f(U) is a generalized eigenfunction of T̃ ∗, associated with the gener-
alized eigenvalue σ∗(λ) = σ(f(U)). Problems on U and λ are completely equivalent. In this article,
we arbitrarily focus on the problem on U .
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3.3 A progressive definition of the decomposition

Following the previous observations, we now propose to build progressively the generalized spectral
decomposition defined in equation (6). The couples (Ui, λi) are defined one after the others. To this
end, let us assume that uM is known. We denote (U, λ) ∈ V ⊗S the next couple to be defined. A
natural definition of this couple still consists in satisfying the two following Galerkin orthogonality
criteria:

B(uM + λU, βU) = L(βU) ∀β ∈ S , (16)

B(uM + λU, λV ) = L(λV ) ∀V ∈ V . (17)

As a shorthand notation, we write λ = fM(U) the solution of equation (16) and U = FM (λ) the
solution of equation (17). This problem can still be formulated on U as follows: find U ∈ V such
that

U = FM ◦ fM(U) := TM (U). (18)

where mapping TM is an homogeneous mapping of degree 1. Problem (18) can still be interpreted
as an eigen-like problem. In fact, by analogy with classical eigenproblems, operator TM can be
interpreted as a “deflation” of the initial operator T (see [28] for details).
Introducing σM (U) = ‖UfM (U)‖ allows to reformulate problem (18) as an eigen-like problem on
mapping T̃M = σM (U)TM (U): find the dominant generalized eigenpair (U,α) ∈ V ×R

+, satisfying:

T̃M (U) = αU, (19)

where α = σM (U) appears to be the generalized eigenvalue of T̃M associated with the generalized
eigenfunction U .

Finally, denoting by (Ui, σi−1(Ui)) the dominant eigenpair of operator T̃i−1, the generalized
decomposition of order M is then defined as

uM =

M∑

i=1

Uifi−1(Ui) =

M∑

i=1

σi−1(Ui)Uifi−1(Ui)/‖Uifi−1(Ui)‖, (20)

where for consistency, we let u0 = 0.

3.4 Algorithms for building the decomposition

With the previous definition, optimal couples (Ui, λi) appears to be dominant eigenfunctions of
successive eigen-like problems. The following algorithms, initially proposed in [27] for linear
stochastic problems, are here extended to the non-linear framework. In the following, we denote
WM = (U1, . . . , UM ) ∈ (V )M , ΛM = (λ1, . . . , λM ) ∈ (S )M and

uM (θ) := WM · ΛM (θ). (21)

3.4.1 Basic power-type method: algorithm 4

In order to find the dominant eigenpair (U, σM (U)) of eigen-like problem (19), we suggest to use
a power-type algorithm. It consists in building the series U (k+1) = T̃M (U (k)), or equivalenty
U (k+1) = γ(k)T̃M (U (k)), where γ(k) ∈ R is a rescaling factor. We emphasize that the rescaling
factor has no influence on the convergence of this series, due to homogeneity property of mapping
T̃M (inherited from those of fM and FM ). This strategy leads to algorithm 4, which can be
interpreted as a power-type algorithm with deflation for building the whole decomposition.
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Algorithm 4 Power-type algorithm

1: for i = 1 . . . M do

2: Initialize λ ∈ S

3: for k = 1 . . . kmax do

4: U := Fi−1(λ)
5: U := U/‖U‖V (normalization)
6: λ = fi−1(U)
7: Check convergence on σi−1(U) (tolerance εs)
8: end for

9: Wi := (Wi−1, U)
10: Λi := (Λi−1, λ)
11: Check convergence
12: end for

The main advantage of this algorithm is that it only requires the resolution of problems λ = f(U)
and U = F (λ) which are respectively a simple nonlinear equation on λ and a nonlinear deterministic
problem.

It is well known for classical eigenproblems that the power method does not necessarily con-
verge or can exhibit a very slow convergence rate. This is the case when the dominant eigenvalue
is of multiplicity greater than one or when dominant eigenvalues are very close. However, a con-
vergence criterium based on eigenfunction U is not adapted to our problem. In fact, a pertinent
evaluation of convergence should be based on the eigenvalue, which in our case corresponds to the
contribution σi−1(U) of a couple (U, fi−1(U)) to the generalized spectral decomposition. In the
case of multiplicity greater than one, a convergence of the eigenvalue indicates that the current
iterate U should be a good candidate for maximizing the contribution to the generalized decom-
position. When dominant eigenvalues are very close, a slow convergence rate can be observed on
the eigenvalue when approaching the upper spectrum. However, close eigenvalues are associated
to eigenfunctions which have similar contributions to the decomposition. Therefore, any of these
eigenfunctions seems to be a rather good choice, the rest of the upper spectrum being explored
by subsequent “deflations” of the operator. The above remarks indicate that a relatively coarse
convergence criterium (tolerance εs) can be used for the power iterates:

|σi−1(U
(k))− σi−1(U

(k−1))| 6 εsσi−1(U
(k)) (22)

This will be illustrated in numerical examples.

Remark 5 A natural choice for the norm ‖Uλ‖ on V ⊗S consists in taking a tensorization of
norms defined on V and S . The contribution of Uf(U) can then be simply written ‖Uf(U)‖ =
‖U‖V ‖f(U)‖S . In algorithm 4, U being normalized, the evaluation of σi−1(U) (step (7)) then only
requires the evaluation of ‖λ‖S .

Remark 6 For computational and analysis purposes, one may want to perform an orthonormal-
ization of the decomposition. This orthonormalization can concern the deterministic basis WM or
the stochastic basis ΛM . In both cases, it involves a non singular M ×M matrix R such that the
linear transformation writes WM ← WM · R (resp. ΛM ← ΛM · R) for the orthonormalization of
WM (resp. ΛM). To maintain the validity of the decomposition, the inverse transformation R−1

has also to be applied to the complementary basis, i.e. ΛM ← ΛM ·R−1 (resp. WM ←WM · R−1).
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3.4.2 Improved power-type method: algorithm 7

A possible improvement of algorithm 4 consists in updating the reduced random basis ΛM every
time a new couple is computed, while keeping unchanged the deterministic basis WM . We denote
VM = span{Ui, i = 1 . . . M} ⊂ V the subspace spanned by WM ; on this subspace, Equation (2)
becomes: find uM ∈ VM ⊗S such that

B(uM , vM ) = L(vM ) ∀vM ∈ VM ⊗S . (23)

This problem is equivalent to find ΛM ∈ (S )M such that

B(WM · ΛM ,WM · Λ∗
M ) = L(WM · Λ∗

M ) ∀Λ∗
M ∈ (S )M . (24)

We write ΛM = f0(WM ) the solution to equation (24), which is a set of M coupled non-linear
stochastic equations. The improved algorithm including stochastic basis updates is:

Algorithm 7 Power-type algorithm with updating of the random basis

1: for M = 1 . . . Mmax do

2: Do steps 2 to 10 of algorithm 4
3: Orthonormalize WM (optional)
4: Update ΛM = f0(WM )
5: Check convergence
6: end for

In the very particular case where b(·, ·) is bilinear and deterministic, it can be proved that
the updating does not modify the decomposition [28]. This can be explained by the fact that
dominant eigenfunctions of successive operators T̃M are optimal regarding the initial problem, i.e.
are dominant eigenfunctions of the initial operator T̃ = T̃0. In the general case, this property is
not verified and makes that this updating can lead to a significant improvement of the accuracy of
the decomposition. This will be illustrated in numerical examples.

Remark 8 The orthonormalization step (3) of algorithm 7 is actually optional, as it does not
affect the reduced spaces generated. Still, for numerical and analysis purposes, it is often preferred
to work with orthonormal functions.

3.5 Extension to affine spaces

In many situations, e.g. when dealing with non homogeneous boundary conditions, the solution u
is to be sought in an affine space, with an associated vector space denoted V ⊗S . In order to apply
the GSD method, the problem is classically reformulated in vector space V ⊗S by introducing a
particular function u0 of the affine space. The variational problem (2) becomes:
Find u = u0 + ũ, with ũ ∈ V ⊗S , such that

B(u0 + ũ, v) = L(v) ∀V ⊗S . (25)

Then, now denoting ũM = WM · ΛM and extending the definition of uM to

uM = u0 + ũM = u0 + WM · ΛM , (26)

it is seen that the algorithms 4 and 7 apply immediately for the construction of the generalized
spectral decomposition ũM of ũ. This procedure is used in the next section, which details the
application of the proposed iterative methods to the Burgers equation.
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Remark 9 The definition of a particular function u0 is usual in the context of Galerkin approxi-
mation methods. For example, when dealing with non-homogeneous Dirichlet boundary conditions
and when using finite element approximation at the spatial level, it simply consists in defining a
finite element function with ad-hoc nodal values at the boundary nodes. The problem on ũ ∈ V ⊗S

is then associated with homogeneous Dirichlet boundary conditions.
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4 Application to Burgers equation

4.1 Burgers equation

We consider the stochastic steady Burgers equation on the spatial domain Ω = (−1, 1), with random
(but uniform) viscosity µ ∈ L2(Θ, dP ). The stochastic solution,

u : (x, θ) ∈ Ω×Θ 7→ u(x, θ) ∈ R, (27)

satisfies almost surely

u
∂u

∂x
− µ

∂2u

∂x2
= 0, ∀x ∈ Ω. (28)

This equation has to be complemented with boundary conditions. We assume deterministic bound-
ary conditions:

u(−1, θ) = 1, u(1, θ) = −1 (a.s.). (29)

We further assume that µ(θ) > α > 0 almost surely to ensure a physically meaningful problem.
Thanks to the mathematical properties of the Burgers equation (the solution is bounded by its
boundary values), we have almost surely u(x, θ) ∈ [−1, 1] and u(x, ·) ∈ L2(Θ, dP ) for all x ∈ [−1, 1].

4.2 Variational formulation

We introduce the following function space:

U = {v ∈ H1(Ω); v(−1) = 1, v(1) = −1}. (30)

The space U is affine, and we denote V the corresponding vector space:

V = {v ∈ H1(Ω); v(−1) = 0, v(1) = 0}. (31)

The stochastic solution u(x, θ) is sought in the tensor product function space U ⊗S . It is solution
of the variational problem (25) with

b(u, v; θ) =

∫

Ω

(
µ(θ)

∂u

∂x

∂v

∂x
+ u

∂u

∂x
v

)
dx, (32)

l(v; θ) = 0. (33)

Remark 10 The previous variational formulation implicitly assumes that S ⊂ L2(Θ, dP ) is finite
dimensional.

To detail the methodology, we write

b(u, v; θ) = µ(θ)a(u, v) + n(u, u, v), (34)

where a and n are bilinear and trilinear forms respectively, defined as:

a(u, v) =

∫

Ω

∂u

∂x

∂v

∂x
dx, (35)

n(u, v, w) =

∫

Ω
u

∂v

∂x
w dx. (36)

11



Remark 11 It is seen that the forms a and n have no explicit dependence with regards to the
elementary event θ. Generalization of the methodology to situations where forms depend on the
event is however immediate.

The boundary conditions being deterministic, an obvious choice for u0 ∈ U is u0(x, θ) = −x. Then,
to simplify the notations, we define λ0 = 1 and U0 = u0 such that the approximate solution uM

writes:

uM = u0 +

M∑

i=1

λiUi =

M∑

i=0

λiUi (37)

4.3 Application of GSD algorithm to the Burgers equation

Algorithms 4 and 7 can now be applied to perform the generalized spectral decomposition of the
solution. We now detail the main ingredients of the algorithms, namely steps (4) and (6) of
algorithm 4, and the update step of algorithm 7.

4.3.1 Resolution of U = FM (λ)

To compute U = FM (λ), one has to solve for U the equation (17). This is equivalent to solve for
U the following deterministic problem (remember that λ is given):

BM (λU, λV ) = LM(λV ) ∀V ∈ V . (38)

where ∀u, v ∈ V ⊗S ,

BM (u, v)≡B(uM + u, v)−B(uM , v), (39)

LM (v)≡L(v)−B(uM , v). (40)

Substracting B(uM , v) on both sides of (17) to yield (38) ensures that the right-hand side LM

vanishes whenever uM solves the weak form of the stochastic Burgers equation. This manipulation
is however purely formal. With some elementary manipulations, it is easy to show that

BM (λU, λV ) =E(λλµ)a(U, V ) + E(λλλ)n(U,U, V ) (41)

+

M∑

i=0

E(λiλλ) [n(Ui, U, V ) + n(U,Ui, V )] ,

LM (λV ) =−
M∑

i=0

E(µλiλ)a(Ui, V )−
M∑

i,j=0

E(λλiλj)n(Ui, Uj , V ). (42)

Therefore, one can recast the equation on U in the formal way:

µ̃a(U, V ) + n(U,U, V ) + n(Ũ , U, V ) + n(U, Ũ , V ) =

−a(Ŭ , V )− n(1, Ẑ , V ), ∀V ∈ V , (43)

where

µ̃ =
E(λλµ)

E(λ3)
, Ũ =

M∑

i=0

E(λiλλ)

E(λλλ)
Ui, (44)

Ŭ =

M∑

i=0

E(µλiλ)

E(λλλ)
Ui, Ẑ =

1

2

M∑

i,j=0

E(λiλjλ)

E(λλλ)
UiUj , (45)
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Equation (43) shows that U is the solution of a non linear deterministic problem, with homo-
geneous boundary conditions, involving a quadratic non linearity term (n(U,U, V )) which reflects
the non linearity of the original Burgers equation. In fact, the resulting problem for U has the
same structure as the weak form of the deterministic Burgers equations, with some additional (lin-
ear) terms expressing the coupling of U with uM (due to the non linearity) and a right-hand side
accounting for the equation residual for u = uM . As a result, a standard non linear solver can be
used to solve this equation, e.g. one can re-use a deterministic steady Burgers solver with minor
adaptations.

Remark 12 At first thought, equation (43) suggests that a robust non linear solver is needed for
its resolution, since a priori the effective viscosity µ̃ may become negative and experience changes
by orders of magnitudes in the course of the iterative process. However, one can always make use
of the homogeneity property

U

α
= FM (αλ), ∀α ∈ R

∗, (46)

to rescale the problem and fit solver requirements if any. Note that equation (46) together with
equation (43) also indicate that the nature of the non-linear deterministic problems to be solved is
preserved along the course of the iterations. For instance, the effective viscosity goes to zero as
|λ| → ∞ but the problem does not degenerate to an hyperbolic one since the right-hand-side also
goes to zero and U satisfies homogeneous boundary conditions.

4.3.2 Resolution of λ = fM(U)

The random variable λ ∈ S is solution of the variational problem:

BM (λU, βU) = LM (βU) ∀β ∈ S . (47)

After some manipulations, this equation is found to be equivalent to:

E(βλλ)n(U,U,U) + E(βµλ)a(U,U) +

M∑

i=0

E(βλiλ) [n(U,Ui, U) + n(Ui, U, U)]

= −
M∑

i=0

E(βµλi)a(Ui, U)−
M∑

i,j=0

E(βλiλj)n(Ui, Uj , U). (48)

This is a simple stochastic quadratic equation on λ: a standard non linear solver can be used for
its resolution.

4.3.3 Resolution of ΛM = f0(WM )

To update ΛM = (λ1, . . . , λM ) ∈ (S )M , one has to solve:

B(u0 + WM · ΛM ,WM · Λ∗
M ) = L(WM · Λ∗

M ) ∀Λ∗
M ∈ (S )M . (49)

This equation can be split into a system of M equations:

∀k ∈ {1, . . . ,M}, B(u0 + WM · ΛM , Ukβk) = L(Ukβk) ∀βk ∈ S . (50)

13



Introducing the previously defined forms, it comes:

M∑

i=0

µ(θ)λi(θ)a(Ui, Uk) +
M∑

i,j=0

λiλjn(Ui, Uj , Uk) = 0, ∀k ∈ {1, . . . ,M}. (51)

Again, it is seen that the updating step consists in solving a system of quadratic non linear equations
for the {λi}Mi=1. A standard non linear solver can be used for this purpose.

4.4 Spatial discretization

Let us denote PNx+1(Ω) the space of polynomials of degree less or equal to Nx + 1 on Ω. We define
the approximation vector space V h as:

V
h = {v ∈ PNx+1(Ω); v(−1) = 0, v(1) = 0} ⊂ V . (52)

Let xi={0,...,Nx+1} be the Nx + 2 Gauss-Lobatto points [1] of the interval [−1, 1], such that

x0 = −1 < x1 < . . . < xNx
< xNx+1 = 1. (53)

We denote Li∈{1,...,Nx}(x) ∈ PNx+1, the Lagrange polynomials constructed on the Gauss-Lobatto
grid:

Li(x) =

Nx+1∏

j=0
j 6=i

x− xj

xi − xj

. (54)

These polynomials satisfy

Li(xj) =

{
0 if i 6= j
1 if i = j

∀j = 0, . . . ,Nx + 1, (55)

and form a basis of V h:

V
h = span{Li, i = 1, . . . ,Nx}. (56)

For any v ∈ V h, we have

v(x) =

Nx∑

i=1

viLi(x), vi = v(xi). (57)

The derivative of v ∈ V h has for expression:

∂v

∂x
=

Nx∑

i=1

viL′
i(x), L′

i ≡
∂Li

∂x
. (58)

The bilinear and trilinear forms a and n are evaluated using the quadrature formula over the
Gauss-Lobatto points [6]. Specifically, for u, v ∈ V h, we have

a(u, v) =

∫

Ω

∂u

∂x

∂v

∂x
dx =

∫

Ω

(
Nx∑

i=1

uiL′
i

)(
Nx∑

i=1

viL′
i

)
dx

=

Nx∑

i,j=1

uivj

∫

Ω
L′

i(x)L′
j(x)dx =

Nx∑

i,j=1

uivjai,j, (59)
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where

ai,j ≡
(

Nx+1∑

k=0

L′
i(xk)L

′
j(xk)ωk

)
, (60)

with ωk∈{0,...,Nx+1} the Gauss-Lobatto quadrature weights [1]. Similarly, for u, v, w ∈ V h, we have

n(u, v, w) =

∫

Ω
u

∂v

∂x
w dx ≈

Nx+1∑

k=0

(
u(xk)

Nx+1∑

i=0

viL′
i(xk)w(xk)

)
ωk

≈
Nx∑

k=1

Nx+1∑

i=0

ni,ku
kviwk, (61)

where ni,k ≡ L′
i(xk)ωk. The same expression holds for u0 /∈ V h.

4.5 Stochastic discretization

In the results presented hereafter, the random viscosity µ is parametrized using a set of N inde-
pendent real continuous second order random variables, ξ = {ξ1, . . . , ξN},

µ(θ) = µ(ξ(θ)). (62)

We denote Ξ the range of ξ and Pξ the known probability law of ξ. Since random variables ξi are
independent, we have for y = (y1, . . . , yN) ∈ R

N

dPξ(y) =
N∏

i=1

pξi
(yi)dyi, (63)

Let (Ξ,BΞ, Pξ) be the associated probability space. The stochastic solution is then sought in the
image probability space (Ξ,BΞ, Pξ) instead of (Θ,B, P ), i.e. we compute u(ξ). Furthermore, the
expectation operator has the following expression in the image probability space:

E(f(·)) =

∫

Θ
f(ξ(θ)) dP (θ) =

∫

Ξ
f(y)dPξ(y). (64)

It is clear from this relation that if f ∈ L2(Θ, dP ) then f ∈ L2(Ξ, dPξ), the space of second order
random variables spanned by ξ. To proceed with the determination of the numerical solution, one
has to construct a finite dimensional approximation space S ⊂ L2(Ξ, dPΞ). Different discretiza-
tions are available at the stochastic level (continuous polynomial expansion, piecewise polynomial
expansions, multiwavelets, . . . ). At this point, it is stressed that the proposed GSD algorithms
are independent of the type of stochastic discretization used. In the following, we rely on classical
Generalized Polynomial Chaos expansions, which consist in defining the stochastic space as

S = span{Ψ0, . . . ,ΨP}, (65)

where the Ψi are mutually orthogonal random polynomials in ξ, with total degree less or equal to
No. The orthogonality of the random polynomials writes

E(ΨiΨj) = E(Ψ2
i )δij . (66)
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The dimension of the stochastic subspace is therefore given by

dim(S ) = P + 1 =
(N + No)!

N!No!
, (67)

and a random variable β ∈ S has for expansion

β(ξ) =
P∑

i=0

βiΨi(ξ). (68)

Specifically, the λi ∈ S of the GSD of the solution will have expansions of the form:

λi =

P∑

k=0

λk
i Ψk(ξ).

4.6 Solvers

4.6.1 U = FM (λ)

With the spatial discretization introduced previously, one has to solve for U ∈ V h the following set
of Nx non linear equations (corresponding to (43)):

Gk(U
1, . . . , UNx ;λ) = 0, k = 1, . . . ,Nx, (69)

where

Gk(U
1, . . . , UNx ;λ) = µ̃

Nx∑

i=1

ai,kU
i +

Nx∑

i=1

ni,k

(
UkU i + ŨkU i + UkŨ i

)

+

Nx∑

i=1

ai,kŬ
i +

Nx∑

i=1

ni,kẐ
i, (70)

with

µ̃ =
E(λλµ)

E(λλλ)
, Ũk =

M∑

i=0

E(λiλλ)

E(λλλ)
Uk

i , (71)

Ŭk =

M∑

i=0

E(µλiλ)

E(λλλ)
Uk

i , Ẑk =
1

2

M∑

i,j=0

E(λiλjλ)

E(λλλ)
Uk

i Uk
j , (72)

and the coefficients ai,k and ni,k defined in paragraph 4.4. Also, since the stochastic expansion
coefficients of λ and the λi are given, the expectations are classically evaluated analytically. For
instance,

E (λiλjλ) =

P∑

l=0

P∑

m=0

P∑

n=0

Tlmnλl
iλ

m
j λn, Tlmn = E (ΨlΨmΨn) .

In this work, we have used a classical Newton method to solve (69).
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4.6.2 λ = fM(U)

Introducing the stochastic expansions of µ and of the λi, the expansion coefficients of λ satisfy the
following set of P + 1 non linear equations:

gk(λ
0, . . . , λP;U) =

P∑

i,j=0

cijkλ
iλj +

P∑

i=0

dikλ
i + ek = 0, k = 0, . . . ,P, (73)

where

cijk = E(ΨiΨjΨk)n(U,U,U),

dik =
P∑

j=0

E(ΨiΨjΨk)

[
µja(U,U) +

M∑

l=0

λj
l (n(U,Ul, U) + n(Ul, U, U))

]
,

ek =

P∑

i,j=0

E(ΨiΨjΨk)


µi

M∑

l=0

λj
l a(Ul, U) +

M∑

l,m=0

λi
lλ

j
mn(Ul, Um, U)


 .

This set of equations can be solved using efficient standard techniques involving exact Jacobian
computation. In this work, we have used the minpack subroutines [24] to solve (73).

4.6.3 ΛM = f0(WM )

The stochastic expansion of ΛM is

ΛM =

P∑

i=0

Λi
MΨi. (74)

Introducing this expansion in (51), one obtains a set of M × (P + 1) non-linear equations, which
are:

gk,q(Λ
0
M , . . . ,ΛP

M ;WM ) =
P∑

l,m=0

E(ΨlΨmΨq)

[
M∑

i=0

µlλm
i a(Ui, Uk)

+
M∑

i,j=0

λl
iλ

m
j n(Ui, Uj , Uk)


 = 0,

k = 1, . . . ,M, q = 0, . . . ,P. (75)

Again, we rely on the minpack library to solve this set of non linear equations.

Remark 13 It is seen that on the contrary of the determination of U and λ, the size of the non
linear system of equations for the updating of ΛM increases with M .

5 Results

5.1 Error estimation

For the purpose of convergence analysis, we define the stochastic residual of the equation as

RM (x, θ) = uM

∂uM

∂x
− µ

∂2uM

∂x2
(76)
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and the corresponding L2-norm

‖RM‖2 =

∫

Ω
‖RM (x, ·)‖2L2(Ξ,dPξ) dx =

∫

Ω
E(RM (x, ·)2) dx. (77)

It is observed that this norm measures the errors due to both stochastic and spatial discretizations.
As a results, when (M,dim(S ))→∞, this error is not expected to go to zero but to level off to a
finite value corresponding to the spatial discretization error. However, thanks to the spectral finite
element approximation in space, the errors in the following numerical tests are dominated by the
stochastic error due to dim(S ) <∞. In fact, in this work, we are more interested by the analysis of
the convergence with M of uM toward the discrete exact solution on V h⊗S , and the comparison
of the convergence rates of the two algorithms, than in the absolute error. For this purpose, we
define the stochastic residual RM (x, θ) as the orthogonal projection of RM(x, θ) on S :

RM (x, θ) = RM (x, θ) + R⊥
M (x, θ), (78)

such that

RM (x, ·) ∈ S , E
(
R⊥

M (x, ·)β
)

= 0, ∀β ∈ S . (79)

In other words, RM (x, ·) is the classical Galerkin residual on S ,

RM (x, θ) =
P∑

k=0

Rk
M (x)Ψk(θ),

where

E (ΨkΨk) Rk
M (x) = E (RM (x, ·)Ψk(·))

=

M∑

i,j=0

E(λiλjΨk)Ui

∂Uj

∂x
−

M∑

i=0

E (µλiΨk)
∂2Ui

∂x2
.

Its L2-norm is

‖RM‖2 =

∫

Ω

[
P∑

k=0

(
Rk

M (x)
)2

E(ΨkΨk)

]
dx. (80)

It is seen that ‖RM‖, though containing a contribution of the spatial discretization error deemed
negligible, essentially measures the reduced basis approximation error (i.e. by substituting the
“exact” discrete solution uh ∈ V h ⊗S by uM = WM · ΛM in the equations). Consequently, we
shall refer to RM as the equation residual and to RM as the reduction residual.

5.2 Convergence analysis

To analyze the convergence of the GSD algorithms, we consider the following random viscosity
setting:

µ(ξ) = µ0 +
N∑

i=1

µ′ξi, (81)
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with all ξi being uniformly distributed on (−1, 1), leading to Ξ = (−1, 1)N. To ensure the positivity
of the viscosity, we must have µ0 > N|µ′|. We set µ′ = cµ0/N, with |c| < 1. For this parametrization,
the variance of the viscosity is

E((µ− µ0)2) =
N

3
(µ′)2 =

c2

3N
(µ0)2. (82)

It is remarked that for this parametrization, the density of µ depends on N and experience less and
less variability as N increases. For the discretization of the stochastic space S , we use multidimen-
sional Legendre polynomials. The mean viscosity is set to µ0 = 0.2 and c = 0.85.

In a first series of tests, we set N = 4 and No = 6, so dim(S ) = 210, while for the spatial
discretization dim(V h) = Nx = 200 is used. This spatial discretization allows for accurate deter-
ministic solutions for any realization µ(ξ), ξ ∈ Ξ. If the stochastic solution was to be found in
the full approximation space V h ⊗ S , the size of the non-linear problem to be solved would be
dim(V h)× dim(S ) = 42, 000. In contrast, the reduced basis solution WM · ΛM has for dimension
M × (dim(V h) + dim(S )) = 410M .

In Figure 1, we compare the convergence of algorithms 4 and 7, as measured by the two residual
norms ‖RM‖ and ‖RM‖, with the size M of the reduced basis (left plot) and with the total number
of iterations performed on U = FM (λ) and λ = fM(U) (right plot). The stopping criteria is here
εs = 10−3.
Focusing first on the reduction residual RM in the left plot, we can conclude that both algorithms
converge to the discrete solution on V h ⊗ S with exponential rate as the dimension M of the
reduced basis increases. However, the algorithm 7 is more effective in reducing RM , compared to
algorithm 4. Specifically, the exponential convergence rates for ‖RM‖ are ∼ 1.2 and ∼ 0.3 for
algorithms 7 and 4 respectively. Also, the norms ‖RM‖ of the equation residual is seen to decrease
with the same rate as ‖RM‖, though thanks to the higher convergence rate of algorithm 7 it quickly
saturate to a finite value (the discretization error) within just 5 iterations. For algorithm 4, the
norm of RM has not yet reach it asymptotic value for M = 10, reflecting the slowest convergence
of the solution in V h ⊗S .

Moreover, inspection of the right plot of Figure 1 shows that algorithm 7 requires less iterations
on problems U = FM (λ) and λ = fM (U) to yield the next term of the decomposition. Specifically,
algorithm 7 needs 3 to 4 iterations to meet the stopping criteria, while algorithm 4 needs a variable
number of iterations between 3 to 8. This difference is essentially explained by the updating of
ΛM . Indeed, when the orthonormalization of WM in algorithm 7 is disregarded, the convergence of
the resulting decomposition and number of iterations to yield the couples (U, λ) is unchanged (not
shown). This confirm the claim made previously that the orthonormalization of WM is optional.
The lower number of iterations needed to yield the couples and faster convergence of the residuals
for algorithm 7 does not imply a lower computational cost, since the resolution of U = FM (λ)
is inexpensive for the 1-D Burgers equation. In fact, algorithm 7 requires a significantly larger
computational time for this problem, as most of the CPU-time is spent solving the stochastic
update problem ΛM = fM(WM ). This conclusion will not hold in general for larger problems (e.g.
for Navier-Stokes flows) when the resolution of the deterministic problems will dominate the overall
CPU-time. Also, computational times are not the only concern and one may prefer to spent more
time computing the reduced modes, to achieve a better reduced basis approximation in order to
lower memory requirements, especially for problems involving large spatial approximation spaces.

To understand the higher efficiency of algorithm 7, we compare in Figure 2 the 8 first reduced
modes Ui(x) computed using the two algorithms. Only half of the domain is shown as the reduced
modes are odd functions of x, because of the symmetry of the problem. The comparison clearly
shows that algorithm 7 yields a deterministic reduced basis WM=8 with a higher frequency content
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Figure 1: Convergence of the reduction residual RM (close symbols) and equation residuals RM

(open symbols) for algorithms 4 (squares) and 7 (circles). The left plot displays the residual norms
as a function of the reduced basis dimension M , while the right plot displays the residual norms as a
function of the total (cumulated) number of power-type iterations for the computation of successive
couples (U, λ). In the left plot, also reported using solid lines are fits of ‖RM‖ with ∼ exp(−1.2M)
and ∼ exp(−0.3M).

than for this of algorithm 4. This is explained by the improvement of the approximation brought
by the updating of ΛM . In fact, because the updating procedure cancels the equation residual in
the subspace span{WM} ⊗S , the following deterministic mode U constructed will be essentially
orthogonal to WM . On the contrary, algorithm 4 only approximatively solve the equations in the
subspace span{WM} ⊗ S (i.e. ΛM 6= f0(WM )), with a delayed exploration of the deterministic
space V h as a result. This point is further illustrated in Figure 3, where plotted are the second
moment of the equation residual, E(RM (x, ·)2), for different M and the two algorithms. The plot
of E(RM (x, ·)2) for algorithm 7 highlights the efficiency of the GSD in capturing the full discrete
solution on V h⊗S in just few modes and indicates that the stochastic discretization mostly affect
the equation residual in the area where the solution exhibits the steepest gradients, i.e. where the
uncertainty has the most impact on the solution.
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Figure 2: Comparison of the 8 first reduced modes Ui obtained with algorithms 4 (left plot) and 7
(without orthonormalization of WM ).

It is also remarked that even though the equation residual norm provides a measure of how
well the reduced basis approximation satisfies the Burgers equation, it is not a direct measure of
the error on the solution. Specifically, the somehow large magnitude of ‖RM‖ does not imply that
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Figure 3: Evolution of the second moment of the equation residual, E(RM (x, ·)2), for different M
and algorithms 4 (left plot) and 7 (right plot).

the error εM on the solution is as high. The L2−error of the stochastic solution can in turn be
measured using the following norm:

‖εM‖2 =

∫

Ω
‖uM (x, ·) − u(x, ·)‖2L2(Ξ,dPξ)dx, (83)

where uM is the GSD solution and u the exact stochastic solution. The exact solution being
unknown, one has to rely on approximate expression for ‖εM‖. Here, using the fact that the
stochastic error dominates the spatial error, we use a vanilla Monte-Carlo (MC) method to estimate
the solution error. We denote ud(x; ξ) ∈ V h the deterministic solution of the Burgers equation for
the viscosity realization µ(ξ). We then rely on a uniform random sampling of Ξ, with m sampling
points, to construct the stochastic estimator of the local mean square error:

‖uM (x, ·) − u(x, ·)‖2L2(Ξ,dPξ) ≈
1

m

m∑

i=1

(
uM (x, ξ(θi))− ud(x; ξ(θi))

)2
. (84)

Using a sample set with dimension m = 10, 000 we obtained for the solution computed with
algorithm 7 the estimate ‖εM=10‖ = (1.55 ± 0.1) 10−4, showing that the reduced solution uM

is indeed much more accurate than suggested by the norm of the equation residual. As for the
equation residual, we provide in Figure 4 the spatial distribution for the mean square error on the
solution, for the MC estimate given in equation (84) using m = 10, 000 MC samples.

For a better appreciation of the convergence of the solution on the reduced basis, we have
plotted in Figures 5 and 6 the evolutions of the computed solution mean and standard deviation
(E(uM ) and Std − dev(uM )) for different M and for the two algorithms. Again, only half of the
domain is shown, the mean (resp. standard deviation) being an odd (resp. even) function of
x. Figures 5 shows a fast convergence of the mean for the two algorithms: curves are essentially
indistinguishable for M ≥ 3. Analysis of the standard deviation plots in Figure 6 also reveal a fast
convergence, although the faster convergence of algorithm 7 compared to algorithm 4 appears more
clearly than for the mean.

5.3 Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic discretization and
numerical parameters.
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Figure 4: MC estimate of the local mean square error on the solution, E((uM − u)2) for M = 10
and algorithm 7.
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Figure 5: Convergence of the solution mean with the size M of the reduced basis, as indicated, and
algorithms 4 (left plot) and 7 (right plot).

5.3.1 Impact of εs

The two algorithms require a criteria εs to stop the iterations associated with the construction of
a new couple (U, λ) (see Section 3.4.1). Non convergence has not been encountered in our compu-
tation. Still, in order to avoid performing unnecessary iterations, the selection of an appropriate
value for εs in an important issue as slow convergence was reported in some computations. It
also raises questions regarding the accuracy on the computed couples (U, λ) needed to construct
an appropriate reduced basis (see discussion in section 3.4.1). This aspect is numerically investi-
gated by considering less and less stringent stopping criteria εs and monitoring the convergence of
‖RM‖. These experiments are reported in Figure 7, for the previous viscosity settings, discretiza-
tion parameters and for εs = 10−2,−3,−4,−6. It is seen that for both algorithms, the selection of
εs on the range tested has virtually no effect on the convergence of the decomposition, but to be
computationally more demanding as εs decreases. Similar experiences for other viscosity settings
(see below) have demonstrated that one usually has no interest in performing more than 3 to 4
iterations on the computation of couple (U, λ).

5.3.2 Impact of stochastic polynomial order

In a next series of computations, we vary the polynomial order No = 3, . . . , 7 of the stochastic
approximation space S , while holding N = 4 fixed. Other parameters are the same as previously.
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Figure 6: Convergence of the solution standard deviation with the size M of the reduced basis, as
indicated, and algorithms 4 (left plot) and 7 (right plot).
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Figure 7: Convergence with the number of iterations of the reduction residual for different stopping
criteria εs as indicated, and algorithms 4 (left plot) and 7 (right plot).

These experiments can be understood as a refinement of the stochastic discretization, since dim(S )
is directly related to No (see equation (67)). We then monitor the convergence of the two GSD
algorithms with M for the different orders No. Results are reported in Figure 8. The plots show that
the convergence of the algorithms get slower as No increases. This is not surprising since increasing
No allows to capture more variability in the solution so that more modes are needed to achieve the
same level of accuracy in reduction. Still, one can observe that the convergence rates tend to level
off, denoting the convergence of the stochastic approximation as No increases. In fact, these results
essentially highlight the need of a high polynomial order to obtain an accurate solution for the
viscosity settings used. This is consistent with the decrease in the asymptotic value of the equation
residual norm as No increases, as shown in Figure 9. Conversely, these computations demonstrate
the robustness and stability of the power-type algorithms in constructing approximations on under-
resolved stochastic space S .

5.3.3 Impact of the stochastic dimensionality

As in the previous tests, we want to compare the efficiencies of the algorithms when the dimension of
S varies, but now due to different stochastic dimensionality N of the problem. Since the random
viscosity, as previously parameterized, has decreasing variability when N increases, we need a
different parameterization for a fair comparison. The viscosity distribution is now assumed Log-
Normal, with median value µ and coefficient of variation CLN > 1. It means that the probability
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Figure 8: Convergence of the reduction residual RM with M for different dimensions of the stochas-
tic space S (corresponding to No = 3, . . . , 7 and fixed N = 4): algorithms 4 (left plot) and 7 (right
plot).
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Figure 9: Convergence of the equation residual RM with M for different dimensions of the stochastic
space S (corresponding to No = 3, . . . , 7 and fixed N = 4): algorithms 4 (left plot) and 7 (right
plot).

of having µ(θ) ∈]µ/CLN , µCLN [ is equal to 0.99. Consequently, µ can be parameterized using a
normalized normal random variable ζ as:

µ = exp
[
ζ + σζζ

]
, ζ = lnµ, σζ =

lnCLN

2.95
. (85)

The random variable ζ can in turns be decomposed as the sum of N independent normalized random
variables ξi as follows:

ζ =
1√
N

N∑

i=1

ξi, ξi ∼ N(0, 1). (86)

Therefore, the parameterization µ(ξ) with ξ = {ξ1, . . . , ξN} ∈ Ξ = (−∞,∞)N is

µ(ξ) = µ exp

[
lnCLN√

N

N∑

i=1

ξi

]
, ξi ∼ N(0, 1). (87)

It is stressed that for this parameterization the distribution of µ is the same for any N ≥ 1. Indeed,
µ keeps a log-normal distribution with constant median and coefficient of variation for any N.
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However, changing N implies that the stochastic solution is sought in function space L2(Ξ, dPξ) with
variable dimensionality for Ξ, such that even if the initial stochastic problem remains unchanged,
the resulting problem to be solved on S ⊂ L2(Ξ, dPξ) depends on N. In fact, this parametrization
of µ is designed to investigate the efficiency of the GSD for the same problem but considered on
probability spaces with increasing dimensionalities. Specifically, we use the Hermite Polynomial
Chaos system as a basis of S , so for fixed PC order No the dimension of S increases with N as
given by (67). However, the PC solution for N > 1 involves many hidden symmetries, and we
expect the GSD algorithms to “detect” these structures and to construct effective reduced basis.

We set µ = 0.3, CLN = 3 and No = 6. The projection of µ on S can be determined analytically
or numerically computed by solving a stochastic ODE [8]. We compute the GSD of the solutions
for N = 2, . . . , 5 using the two algorithms with εs = 10−2. Results are reported in Figure 10 where
plotted are the norms of residuals RM and RM as a function of the reduced basis dimension M .
The plots show that the convergence of the two algorithms is indeed essentially unaffected by the
dimension of Ξ.
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Figure 10: Convergence of the equation residual RM and reduction residual RM norms with M ,
for different dimensionality N of the stochastic space S , as indicated, using algorithms 4 (left plot)
and 7 (right plot).

5.4 Robustness with regards to input variability

In this paragraph, we investigate the robustness of the power-type algorithms with regards to
the variability in µ. We rely on the previous parameterization of the Log-Normal viscosity, with
N = 3 and No = 6 (dim(S ) = 84). In a first series of computations we fix µ = 0.3 and we
vary the coefficient of variability CLN in the range [1.5, 4]. In a second series of computation, we
fix CLN = 2.5 and we vary the median value µ in the range [0.1, 0.4]. Results are presented for
algorithm 7 only, similar trends being found for algorithm 4.

In Figure 11 we have plotted the reduced basis approximation uM=10(x) for all the compu-
tations, using the classical mean value ± 3 standard deviation bars representation (even so this
representation is not well suited here as the solution is clearly non-Gaussian). The plots of the left
column correspond to µ = 0.3 and increasing coefficient of variability CLN (from top to bottom).
They show the increasing variability of the solution with CLN while the mean of the solution is
roughly unaffected. On the contrary, the plots of the right column corresponding to CLN = 2.5 and
increasing µ (from top to bottom), show a large impact of the median value of the viscosity on the
mean of the solution, together with a non trivial evolution of the solution variability. Specifically,
although the variance of the log-normal viscosity is fixed, the maximum of variance in the solution
increases as µ decreases. This complex dependence of the solution with regards to the viscosity
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distribution underlines the strong non linear character of the Burgers equation.
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Figure 11: Mean and ±3 standard deviation bars representation of the reduced solutions uM=10 for
µ = 0.3 and CLN = 1.5 to 4 (left plots from top to bottom) and CLN = 2.5 and µ = 0.1 to 0.4 (right
plots from top to bottom). Computations with algorithm 7, No = 6 and N = 3 (dim(S ) = 84).

Having shortly described the evolutions of the solution with the Log-Normal viscosity distri-
bution, we can now proceed with the analysis of the convergence of the residuals ‖RM‖ shown in
Figure 12. Focusing first on the convergence curves when µ is fixed (left plot of Figure 12), it is first
observed that the residual magnitude increases with CLN , as one may have expected. Then, for the
two lowest values of CLN the convergence rates are found roughly equal, while slower convergences
are reported for CLN = 3 and 4. This trend can be explained by the increasing level of variability in
the solutions for large COV, that demands more spectral modes to approximate the solution. Note
that we have checked that dim(S ) (i.e. No) was sufficiently large to account for all the variability
in the solution, when CLN = 4, by performing a computation with No = 8, without significant
change in the solution.
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Next, the convergence of the GSD is analyzed for fixed CLN = 2.5 of the viscosity distribution
but increasing median value from 0.1 to 0.4 (right plots of Figure 12, from top to bottom). A degra-
dation of the convergence rate, and an increasing residual magnitude, is observed as µ decreases.
This can be jointly explained by the increasing variability in the solution as seen from Figure 11,
and by the more complex dependence with µ of the spatial structure of the solution as µ decreases.
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Figure 12: Convergence with M of the reduction residual RM for µ = 3 and different CLN (left
plot) and CLN = 2.5 and different µ (right plot). Computations with algorithm 7, No = 6 and
N = 3 (dim(S ) = 84).

5.5 Convergence of probability density functions

To complete this section, we provide in this paragraph an appreciation of the GSD efficiency in
terms of convergence of the resulting probability density function of the solution uM as M increases.
To this end, we set µ = 0.3 and CLN = 3. The parameterization of the random viscosity uses N = 5
with an expansion order No = 5, such that the dimension of the stochastic approximation space
is dim(S ) = 252. The reduced solution uM is computed using algorithm 7 with stopping criteria
εs = 0.01. We estimate the probability density function of uM (x, ξ), from a Monte-Carlo sampling
of Ξ. For each sample ξ(i) we reconstruct the corresponding solution uM (x, ξ(i)) from:

uM (x, ξ(i)) =
M∑

l=0

Ul(x)λl

(
ξ(i)
)

=
M∑

l=0

Ul(x)
P∑

k=0

λk
l Ψk

(
ξ(i)
)

. (88)

These samples are then used to classically estimate the probability density functions (pdfs) of the
solution at some prescribed points. For the analysis, we choose four mesh points which are the
closest to x = −1/8, −1/4, −1/2 and −3/4. Since the reconstruction of the samples has a low
computational cost, we use 106 samples to estimate the pdfs. Note that the samples may also be
used to estimate other statistics of the solution (e.g. its moments).

In Figure 13, we show the computed pdfs at the four mesh points for different dimensions M of
the reduced basis. It is seen that for M = 1, the reduced approximation provides poor estimates
of the pdfs, especially for the points x ≈ −3/4 and x ≈ −1/2 where the probabilities of having
u > 1 are significant. For M = 2, we already obtain better estimates of the pdfs, except for
the closest point to the boundary, where M = 3 is necessary to achieve a smooth pdf. Increasing
further M leads to no significant changes in the pdfs. These results are consistent with the previous
observations on the convergence of the mean and standard deviation.

To gain further confidence in the accuracy of the reduced basis approximation, we provide in
Figure 14 a comparison of the pdfs for uM=10 with the pdfs constructed from the classical Galerkin
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Figure 13: Convergence with M of the probability density function of u at some selected points as
indicated. The problem uses µ = 0.3 and CLN = 3, with a stochastic approximation space N = 5,
No = 5 (dim(S ) = 252). Computations with algorithm 7 with εs = 0.01.

polynomial chaos solution on S and a Monte-Carlo simulation. The Galerkin solution is computed
using an exact Newton solver, yielding a quadratic convergence rate: it can be considered as the
exact Galerkin solution on S . The Monte-Carlo simulation is based on a direct sampling of the log-
normal viscosity distribution (and not of Ξ). Only 104 Monte-Carlo samples are used to estimate
the pdfs, due to its computational cost, while the pdfs for the Galerkin solution uses the same
106 samples as the reduced approximation. It is seen in Figure 14 that the reduced approximation
with only M = 10 modes leads to essentially the same pdfs as the full Galerkin solution which
involves 252 modes. Also, they are in close agreement with the Monte-Carlo solution, with only
small differences caused by the lower sampling used.
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problem corresponds to µ = 0.3 and CLN = 3, with a stochastic approximation space N = 5,
No = 5 (dim(S ) = 252) for the Galerkin and reduced solutions, and direct sampling of the log-
normal distribution of µ in the Monte-Carlo simulation.
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6 Application to a nonlinear stationary diffusion equation

In this section, we apply the GSD method to a nonlinear stationary diffusion equation with a cubic
nonlinearity for which the mathematical framework can be found in [23]. Associated numerical
experiments will be presented in the following section 7.

6.1 Stationary diffusion equation

We consider a stationary diffusion problem defined on a L-shape domain Ω ⊂ R
2 represented on

figure 15: Ω = ((0, 1) × (0, 2)) ∪ ((1, 2) × (1, 2)).

Γ
1

Γ
2

Ω
f

g

Figure 15: Diffusion problem: geometry, boundary conditions and sources (left) and finite element
mesh (right).

Homogeneous Dirichlet boundary conditions are applied on a part Γ1 of the boundary. A normal
flux g is imposed on another part Γ2 of the boundary. The complementary part of the boundary,
denoted by Γ0, is subjected to a zero flux condition. A volumic source f is imposed on a part
Ω1 = (1, 2) × (1, 2) of the domain.

The stochastic solution,
u : (x, θ) ∈ Ω×Θ 7→ u(x, θ) ∈ R, (89)

must satisfy almost surely

−∇ · ((κ0 + κ1u
2)∇u) =

{
0 on Ω\Ω1

f on Ω1
, (90)

− (κ0 + κ1u
2)

∂u

∂n
=

{
0 on Γ0

g on Γ2
, (91)

u = 0 on Γ1, (92)

where κ0 and κ1 are conductivity parameters. We consider that conductivity parameters and
source terms are uniform in space. Then, they are modeled with real-valued random variables. The
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variational formulation writes (2) with:

b(u, v; θ) =

∫

Ω

(κ0(θ) + κ1(θ)u2)∇u · ∇v dx, (93)

l(v; θ) =

∫

Ω1

f(θ) v dx +

∫

Γ2

g(θ) v ds. (94)

Remark 14 Generalization of the methodology to situations where conductivity parameters or
source terms are discretized stochastic fields is immediate.

6.2 Application of GSD algorithms

We now detail the main ingredients of the GSD algorithms, namely steps (4) and (6) of algorithm 4,
and the update step of algorithm 7. To detail the methodology, we write

b(u, v; θ) = κ0(θ)a(u, v) + κ1(θ)n(u2, u, v), (95)

l(v; θ) = f(θ)l1(v) + g(θ)l2(v), (96)

where a and n are bilinear and trilinear forms respectively, defined as:

a(u, v) =

∫

Ω
∇u · ∇v dx, (97)

n(w, u, v) =

∫

Ω
w∇u · ∇v dx. (98)

6.2.1 Resolution of U = FM (λ)

To compute U = FM (λ), one has to solve for U the following deterministic problem:

BM (λU, λV ) = LM(λV ) ∀V ∈ V . (99)

where ∀u, v ∈ V ⊗S ,

BM (u, v) = B(uM + u, v)−B(uM , v), (100)

LM (v) = L(v)−B(uM , v). (101)

After some manipulations, one obtains for the left-hand side:

BM (λU, λV ) =κ̃0a(U, V ) + κ̃1n(U2, U, V )

+ n(Ũ , U2, V ) + n(U 2, Ũ , V ) + n(Z,U, V ) + n(U,Z, V ), (102)

where

κ̃0 = E(κ0λλ), κ̃1 = E(κ1λλλλ), (103)

Ũ =

M∑

i=1

E(κ1λλλλi)Ui, (104)

Z =

M∑

i,j=1

E(κ1λλλiλj)UiUj. (105)
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We observe that the left hand side contains the classical linear and cubic terms with deterministic
parameters κ̃0 and κ̃1 but also linear and quadratic additional terms.
For the right-hand side, one obtains the following expression:

LM (λV ) = f̃ l1(V ) + g̃l2(V )− a(Ŭ , V )− n(1, Ẑ, V ), (106)

where

f̃ = E(fλ), g̃ = E(gλ), (107)

Ŭ =
M∑

i=1

E(κ0λλi)Ui, (108)

Ẑ =
1

3

M∑

i,j,k=1

E(κ1λλiλjλk)UiUjUk. (109)

In the numerical application, this deterministic problem is solved with a classical Newton-
Raphson algorithm.

Remark 15 Of course, various equivalent notations could have been introduced for writing left and
right-hand sides of the deterministic problem. The above choice, introducing functions Z and Ẑ,
allows obtaining a compact writing, without summation on spectral modes. When introducing an
approximation at the spatial level (e.g. finite element approximation), pre-computing an approx-
imation of functions Z and Ẑ allows reducing the number of operations to be performed. This
leads to an approximation in the evaluation of left and right-hand sides, and then in the obtained
approximate solution, but it can also lead to significant computational savings.

6.2.2 Resolution of λ = fM(U)

The random variable λ ∈ S is solution of the variational problem:

BM (λU, βU) = LM (βU) ∀β ∈ S . (110)

After some manipulations, this equation is found to be equivalent to:

E(β(α(1)λ + α(2)λλ + α(3)λλλ)) = E(βδ), (111)

where

α(1) = κ0a(U,U) +
M∑

i,j=1

κ1λiλj [n(UiUj, U, U) + 2n(UiU,Uj , U)] , (112)

α(2) =

M∑

i=1

κ1λi

[
2n(UiU,U,U) + n(U 2, Ui, U)

]
, (113)

α(3) =

M∑

i,j=1

κ1λiλj [n(UiUj, U, U) + 2n(UiU,Uj , U)] , (114)

δ = fl1(U) + gl2(U)−
M∑

i=1

κ0λia(Ui, U)−
M∑

i,j,k=1

1

3
κ1λiλjλkn(1, UiUjUk, U). (115)

In the numerical application, this non-linear equation is solved with a classical Newton algorithm.
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6.2.3 Resolution of ΛM = f0(WM )

To update the random variables ΛM = (λ1, . . . , λM ) ∈ (S )M , one has to solve:

B(WM · ΛM ,WM · Λ∗
M ) = L(WM · Λ∗

M ) ∀Λ∗
M ∈ (S )M . (116)

This equation can be split into a system of M equations:

∀k ∈ {1, . . . ,M}, B(WM · ΛM , Ukβk) = L(Ukβk) ∀βk ∈ S . (117)

Introducing the previously defined forms, it comes: ∀k ∈ {1, . . . ,M},
M∑

i=1

κ0a(Ui, Uk)λi +

M∑

i,j,l=1

κ1n(Ui, Uj , Ul, Uk)λiλjλl = fl1(Uk) + gl2(Uk). (118)

This is a set of M coupled stochastic equations with a polynomial non-linearity. In the numerical
application, this set of equations is solved with a classical Newton algorithm.

7 Results for the stationary diffusion equation

7.1 Discretization

At the stochastic level, we consider that random variables κ0, κ1, f and g are parametrized as
follows:

κ0 = µκ0
(1 + cκ0

√
3ξ1)

κ1 = µκ1
(1 + cκ1

√
3ξ2)

f = µf (1 + cf

√
3ξ3)

g = µg(1 + cg

√
3ξ4)

where the ξi are 4 independent random variables, uniformly distributed on (−1, 1). Parameters
µ(·) and c(·) respectively correspond to the means and coefficients of variations of the random
variables. We then work in the associated 4-dimensional image probability space (Ξ,BΞ, Pξ), where
Ξ = (−1, 1)4, and use the same methodology as in section 4.5 for defining an approximation
space S ⊂ L2(Ξ, dPξ) based on a generalized polynomial chaos basis (multidimensional Legendre
polynomials). We denote by No the polynomial chaos order.

At the space level, we introduce a classical finite element approximation space V h ⊂ V associ-
ated with a mesh of Ω composed by 3-nodes triangles (see Figure 15).

7.2 Reference solution and error indicator

The reference Galerkin approximate solution uh ∈ V h ⊗S solves:

B(uh, vh) = L(vh), ∀vh ∈ V
h ⊗S . (119)

To obtain this reference solution, the non-linear set of equations associated with (119) is solved
using a classical modified Newton method with a very high precision (see section 7.5 for details on
the reference solver).

In order to analyze the convergence of the GSD method, we introduce an error indicator based
on the residual of the discretized problem (119). This error indicator evaluates an error between
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the truncated GSD and the reference approximate solution uh but not the error due to spatial and
stochastic approximations. A given function v ∈ V h⊗S is associated with a vector v ∈ R

Nx ⊗S .
We denote by RM ∈ V h ⊗ S the reduction residual associated with uM ∈ V h ⊗ S and by
RM ∈ R

Nx ⊗S the associated discrete residual, defined as follows: ∀v ∈ V h ⊗S , associated with
v ∈ R

Nx ⊗S ,
E(vT RM ) = L(v)−B(uM , v). (120)

An error indicator is then simply defined by the natural L2-norm of the discrete residual, defined
by

‖RM‖2 = E(RT
MRM ) ≡ ‖RM‖2. (121)

In the following, we will implicitly use a normalized error criteria ‖RM‖ ← ‖RM‖/‖R0‖, where R0

stands for the right-hand side of the initial non-linear problem.

7.3 Convergence analysis

To analyze the convergence of the GSD algorithms, we choose the following parameters for defining
the basic random variables:

µκ0
= 3, µκ1

= 1.5, µf = 6, µg = 2.25

cκ0
= .2, cκ1

= .2, cf = .2, cg = .2

The basis of function space S is composed by multidimensional Legendre polynomials up to degree
5 (No = 5), so that dim(S ) = (4+No)!

4!No! = 126. For the spatial finite element discretization, we have
dim(V h) = 368. If the stochastic solution was to be found in the full approximation space V h⊗S ,
the size of the non-linear problem to be solved would be dim(V h)×dim(S ) = 46, 368. In contrast,
the reduced basis solution WM · ΛM has for dimension M × (dim(V h) + dim(S )) = 494M .

In Figure 16, we compare the convergence of algorithms 4 and 7 with the size M of the reduced
basis (left plot) and with the total number of power-type iterations performed for the computation
of successive couples (U, λ) (right plot). The stopping criteria for power iterations is here εs = 10−2.
Both algorithms rapidly converge to the discrete solution on V h ⊗S as the dimension M of the
reduced basis increases. Algorithm 7 is more effective in reducing RM , compared to algorithm 4.
Although Figure 16 shows that algorithm 7 requires less power iterations, both algorithms yields
relatively similar computational costs on this particular example. Indeed, the faster convergence
of algorithm 7 is balanced with computational efforts needed for the updating of random variables.
This conclusion will not hold in general for large spatial approximation spaces.

Remark 16 On this example, we observe a quasi-exponential convergence rate for small M and
a decreasing of this rate for larger M . In fact, this is not due to a lack of robustness of the GSD
method. It is related to the spectral content of the solution of this 2-dimensional problem. A classical
spectral decomposition of the reference solution would reveal the same convergence behavior.

We compare in Figure 17 the 12 first deterministic functions Ui computed using the two algo-
rithms. It is seen that algorithm 7 yields a deterministic reduced basis with a higher frequency
content than for this of algorithm 4. In particular, we observe that the last modes obtained by
algorithm 7 are essentially orthogonal to the first ones. This is further illustrated in Figure 18,
where plotted are the second moment of the equation residual, E(R2

M ), for different M and for the
two algorithms. This plot also highlights the efficiency of the GSD in capturing the full discrete
solution on V h⊗S in just few modes and indicates that the stochastic discretization mostly affects
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Figure 16: Convergence of the reduction residual RM for algorithms 4 (squares) and 7 (circles).
The left plot displays the residual norm as a function of the reduced basis dimension M , while the
right plot displays the residual norm as a function of the total (cumulated) number of power-type
iterations for the computation of successive couples (U, λ).
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Figure 17: Comparison of the 12 first reduced modes with algorithms 4 (left plot) and 7 (right
plot).

the equation residual in the area where the solution exhibits the steepest gradients, i.e. where the
uncertainty has the most impact on the solution.

Even though the equation residual norm provides a measure of the quality of the approximate
solution, it is not a direct measure of the error on the solution. On figure 19, we plot the convergence
curves of both algorithms with respect to the residual norm and also with respect to the L2-norm
on the solution. We observe that the error on the solution is significantly lower than the error based
on the residual.

For a better appreciation of the convergence of the GSD, we have plotted in Figure 20 the
distributions of the relative errors in mean εmean and standard deviation εStd for different M and
for the two algorithms:

εmean =
|E(uM )−E(uh)|

sup(|E(uh)|)

εStd =
|Std(uM )− Std(uh)|

sup(Std(uh))
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Figure 18: Evolution of the distribution of the second moment of the residual, E(R2
M ), for different

M and for algorithms 4 (left column) and 7 (right column).

We observe a very fast convergence of the GSD decomposition with both algorithms, with a faster
convergence of algorithm 7. With only M = 4 modes, the relative error on these first two moments is
inferior to 10−3. On Figure 21, we have also plotted the convergence of probability density functions
(pdfs) of the solution at two different points. We observe that approximate pdfs and reference pdf
are essentially indistinguishable for M ≥ 5. We also observe the superiority of algorithm 7, which
yields more accurate pdfs with a lower order M of decomposition.

7.4 Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic discretization and
numerical parameters.

7.4.1 Impact of εs

We first evaluate the impact of the criterium εs to stop the power iterations associated with the
construction of a new couple (U, λ) (see Section 3.4.1). For that, we here consider less and less
stringent stopping criteria εs and monitor the convergence of RM . These experiments are reported
in Figures 22 and 23, for the previous probabilistic setting and discretization parameters, and for
εs = {5.10−1, 10−1, 10−2, 10−3}. It is seen that for both algorithms, the selection of εs on the range
tested has virtually no effect on the convergence of the decomposition, but is computationally more
demanding as εs decreases. In practise, it is not necessary to perform more than 3 or 4 power
iterations to build a new couple (U, λ) (same observation as for the Burgers problem).
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Figure 19: Convergence of ‖RM‖ and ‖uM −uh‖/‖uh‖ for algorithm 4 (solid line) and algorithm 7
(dashed line).

7.4.2 Impact of stochastic polynomial order

In a next series of computations, we vary the polynomial order No = 4, 5, 6 of the stochastic
approximation space S , respectively corresponding to dim(S ) = 70, 126, 210. Figure 24, where
plotted are the convergence curves for algorithm 4 (left plot) and algorithm 7 (right plot), shows
that the polynomial order have a very low influence on the convergence. On this example, this
can be explained by the fact that the error induced by the approximation at the stochastic level is
lower that the error induced by the truncation of the GSD.

7.4.3 Impact of the input variability

We now investigate the robustness of GSD algorithms with respect to the input variability. We
first vary the coefficients of variations c(·) of all random variables at the same time. Figure 25
shows the convergence with M for algorithm 4 (left plot) and algorithm 7 (right plot) for different
coefficients of variation: c(·) = 0.1, 0.2, 0.3. It is observed that the convergence rate decreases
with the coefficient of variation, which is a usual property of spectral decompositions. However,
the monotonic convergence illustrates the robustness of GSD algorithms in a wide range of input
variability.

We now investigate the impact of the non-linearity by varying the mean µκ1
of parameter κ1,

letting all the coefficients of variations equal to c(·) = 0.2. Figure 25 shows the convergence with M
for algorithm 4 (left plot) and algorithm 7 (right plot) for different µκ1

= 1.5, 0.5, 0.1, 0.01, 0. We
first observe that the convergence rate decreases as the non-linear term magnitude increases. This
can be explained by the fact that the nonlinearity induces a more complex solution, which requires
more spectral modes to be correctly captured.

For the case µκ1
= 0, corresponding to the limit linear case, we observe that both algorithms

capture the exact discrete solution in only 2 modes (at the computer numerical precision). We could
have expected this property since it is clear on this example that only two modes are required to
exactly represent the solution of the linear problem. Indeed, the two deterministic functions U1

and U2 which solves

a(U1, V ) = l1(V ) and a(U2, V ) = l2(V ),∀V ∈ V
h,

yield an exact decomposition when associated to the ad-hoc random variables. In fact, every
couple of deterministic functions in the span of these functions yields an exact decomposition.
This example shows that in this particular case, GSD algorithms allows capturing these ideal
decompositions automatically.
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εmean εStd

Figure 20: Distribution of the relative error in mean (εmean) and standard deviation (εStd) for
algorithms 4 (first and third columns) and 7 (second and fourth columns) and different M .

7.5 Computation times

In this section, we illustrate the efficiency of the GSD method in terms of computation times.
GSD algorithms are compared with a classical modified Newton algorithm for solving the reference
Galerkin system of equations (119). A classical Newton method consists in the following iterations:
starting from uh,(0) = 0, iterates uh,(i) = 0 are defined by

B′(uh,(i+1), vh;uh,(i)) = L(vh)−B(uh,(i), vh) ∀vh ∈ V
h ⊗S (122)

where B′(·, ·;u) is the Gateaux derivative of semilinear form B evaluated at u:

B′(w, v;u) = lim
ε→0

1

ε
(B(u + εw, v) −B(u, v))

= E
(
κ0a(w, v) + κ1(2n(wu, u, v) + n(u2, w, v))

)
(123)

In order to reduce computation times of this reference solver, we use the following modification of
iteration (122):

B̃′(uh,(i+1), vh;E(uh,(i))) = L(vh)−B(uh,(i), vh) ∀vh ∈ V
h ⊗S

B̃′(w, v;u) := E
(
µκ0

a(w, v) + µκ1
(2n(wu, u, v) + n(u2, w, v))

)
(124)

where B̃′ is a simple approximation of B obtained by replacing random parameters κ0 and κ1 by
their respective mean values. Moreover, B̃′ is evaluated at E(uh,(i)) instead of uh,(i). With these
approximations, iteration (124) corresponds to a stochastic problem with a random right-hand side
and a deterministic operator. The computation cost of this reference solver is then essentially due
to the computation of the residual (right-hand side).

For the present example and moderate input variability, the proposed modified Newton algo-
rithm have good convergence properties.
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Figure 21: Convergence with M of the probability density function of uM at points P1 = (1.5, 1.5)
(top row) and P2 = (0.5, 0.1) (bottom row) and for algorithms 4 and 7.

Remark 17 For large variability of the input data, the efficiency of the proposed modified Newton
method deteriorates. A better approximation of B ′(·, ·;uh,(i)) should be provided in order to keep good
convergence properties of the Newton algorithm. The robustness and efficiency of GSD algorithms
are less affected by this increase in the input variability, as seen in section 7.4.3.

For both GSD algorithms 1 and 2, we take εs = 10−1 for the stopping criteria for power
iterations. Figure 27 shows the evolution of the residual norm with respect to computational time
for the reference solver and for GSD algorithms. We clearly observe a computational gain with GSD
algorithms (factor ≈ 6). We also observe that GSD algorithms 1 and 2 lead to similar computational
times. In fact, the computational time required by the updating step in algorithm 2 is balanced by
the fact that algorithm 2 needs for a lower order of decomposition than algorithm 1 for the same
accuracy.

To go further in the comparison of computational costs, we analyze the influence on convergence
properties of the dimensions P and Nx of stochastic and deterministic approximation spaces. We
consider four finite element meshes corresponding respectively to Nx = 178, 368, 726 and 1431. We
also consider different polynomial chaos degrees No = 3, 4, 5 and 6, respectively corresponding to
P = 34, 69, 125 and 209.

Figures 28 and 29 show the convergence curves (residual norm versus computation time) for
different Nx and No. We observe that when increasing the dimension of approximation spaces, the
efficiency of the reference solver rapidly deteriorates. GSD algorithms are far less affected by this
increase of the dimension of approximation spaces.

Figure 30 shows the gains in terms of computational times with respect to Nx×P (for different
discretizations at stochastic level and deterministic level). The gain is computed by comparing
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Figure 22: Impact of εs. Convergence with M for algorithms 4 (left plot) and 7 (right plot).
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Figure 23: Impact of εs. Convergence with the number of power-type iterations for algorithms 4
(left plot) and 7 (right plot).

computational times for the different algorithms to reach a given relative residual error of 5.10−2.
This accuracy is sufficient to obtain very accurate approximations in terms of moments, pdfs...
This accuracy corresponds to the computation of 4 or 5 GSD modes. We clearly observe that
GSD algorithms lead to computational savings which increase with the dimension of approximation
spaces. GSD algorithms 1 and 2 lead to similar computational savings. For the finest discretizations,
computational times are here divided by a factor up to 100.
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Figure 24: Impact of the polynomial chaos order. Convergence of algorithms 4 (left plot) and 7
(right plot).
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Figure 25: Impact of the input variability: convergence of algorithms 4 (left plot) and 7 (right
plot), for different coefficients of variation (cov) of the four random variables, as indicated.
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Figure 26: Impact of the non-linearity term (variable E(κ1)). Convergence of algorithms 4 (left
plot) and 7 (right plot).
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Figure 27: Residual error versus computation time for reference solver and GSD algorithms (refer-
ence discretization)
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Figure 28: Influence of the dimension of approximation spaces. Residual error versus computation
time for the reference solver and GSD algorithms 1 and 2 for different Nx and for No = 4 (left plot)
or No = 5 (right plot)
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Figure 29: Influence of the dimension of approximation spaces. Residual error versus computation
time for the reference solver and GSD algorithms 1 and 2 for different No and for Nx = 368 (left
plot) or Nx = 1431 (right plot)
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Figure 30: Time gain factor Tg = time(reference solver)
time(GSD algorithm) with respect to Nx × P for a given accuracy

(relative residual error of 5.10−2). GSD algorithm 1 (left) and GSD algorithm 2 (right plot)
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8 Conclusion

In this paper, we have proposed an extension of the Generalized Spectral Decomposition method
and related numerical procedures, initially proposed in [27, 28] for linear problems, to the resolution
of non-linear stochastic problems in the context of Galerkin methods. The main features of the
method is the approximation of the solution on reduced bases, automatically generated by the
algorithms, with significant reduction of the computational requirements compared to the classical
Galerkin projection schemes, and the independence of the methodology with regard to the type of
stochastic discretization used.

Two non-linear test problems have served as examples to detail the methodology and to show
the effectiveness of the proposed algorithms. Specifically, it has been shown that the algorithms
lead to solution methods consisting in the resolution of a series of decoupled deterministic and
low dimensional stochastic problems. An interesting point to be underlined is the structure of
the deterministic problems to be solved which inherit the properties and dimension of the initial
deterministic problem, with the introduction of few additional terms: only slight adaptations of
available deterministic codes are required compared to the classical Galerkin method. Although
being closely related to the polynomial character of the non-linearities in the test problems, this
property already makes the GSD very attractive as a generic solution method for a large class of
models (e.g. the incompressible Navier-Stokes equations).

For the two test problems, the numerical experiments have shown the effectiveness of the pro-
posed algorithms to yield reduced decompositions that approximate the stochastic solution with
a small number of modes compared to the dimension of the complete approximation space. For
the second algorithm, the convergence of the reduced approximation is essentially governed by the
actual spectrum of the stochastic solution, and not by the dimension of the approximation space,
as one may have anticipated from theoretical considerations. Also, algorithm 4 is less efficient than
algorithm 7 in terms of accuracy for an equal number of modes in decomposition, but is computa-
tionally less expensive and simpler. This is however not enough to establish the general superiority
of an algorithm over the other, as different aspects such as relative computational times for the
deterministic and stochastic (update) problems, memory requirement and computational complex-
ity intervene depending on the considered model and available resources. However, a common
character of the two algorithms is their ability to yield the successive modes of the decomposition
in only a few resolutions of the deterministic problem, thus implying large computational savings
compared to the classical stochastic Galerkin method.

A potential improvement of the method, currently under investigation, concerns the implemen-
tation of alternative algorithms for the construction of the decomposition modes using advanced
sub-space techniques (e.g. Arnoldi, see [28]) in order to drastically decrease the number of de-
terministic and reduced stochastic problems to be solved. Ongoing works are also focusing on
applications of GSD to large scale problems (e.g. the Navier-Stokes equations) and extension to
non-linear unsteady problems.
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