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A B S T R A C T

Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs
can also be used for state-parameter estimation, using the so-called “Joint-EnKF” approach. The idea is simply to
augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evo-
lution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating
spatially-varying Manning’s n coefficients used to define the bottom roughness in the Shallow Water Equations
(SWEs) of a coastal ocean model.

Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation
(ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the
Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning’s n coefficients
defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable
ensemble size O( (10)), the filter’s estimate converges to the reference Manning’s field. To enhance performance,
we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion.
We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation
problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL
modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy
suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed
roughness parameters in the context of coastal ocean modeling.

1. Introduction

Simulation of ocean waves, tides, and estuarine and coastal flood-
plain inundation is crucial for various maritime-related activities,
coastal resources management, planning, and sustenance (Yanagi,
1999). In particular, accurate storm-surge forecasting during extreme
events may considerably improve the chance of protecting lives and
coastal infrastructures, which ultimately benefit the global community,
both economically and ecologically (e.g. Jelesnianski, 1966; Bunya
et al., 2010; Dietrich et al., 2010; Dietrich et al., 2011).

The shallow water equations (SWEs), derived from depth-in-
tegrating the Navier-Stokes equations, have been widely used in coastal
ocean modeling. They assume that the horizontal length scale of the
problem domain is much larger than the vertical length scale under

hydrostatic pressure (Luettich et al., 1992; Vreugdenhil, 1994). In real
world applications, the numerical solution of the SWEs is subject to
various sources of uncertainty, such as modeling errors, numerical
discretization, inputs uncertainty, etc. In particular, the uncertainty
associated with the poor characterization of the model parameters is
considered a major source of error (Brummelhuis and Heemink, 1990;
Yanagi, 1999; Sorensen and Madsen, 2006). A number of recent studies
have therefore focused on quantifying and reducing the uncertainties
associated with input parameters, aiming to achieve more reliable
forecasts in fluid flow modeling (e.g. Ghanem and Red-Horse, 1999;
Gharamti et al., 2014; Sraj et al., 2014; Giraldi et al., 2017). In coastal
ocean modeling, the specification of a parameter called “the Manning’s
n coefficient of roughnes”, used to define the bottom stress components
in the SWEs, is particularly important (Ishii and Kawahara, 2006; Mayo
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et al., 2014; Siripatana et al., 2017).
The Manning’s n coefficient is an empirically derived parameter,

defined as the resistance to water flow due to bottom surface char-
acteristics (e.g., sands, rocks and reefs etc.). It is used to describe
multiple types of resistance, e.g. friction resistance, form resistance,
wave resistance, and resistance of flow instability (Arcement and
Schneider, 1989; Ding et al., 2004). It enters the SWEs via the mo-
mentum equations, and the amplitude of the water column at a given
point in the model domain can be highly sensitive to its value (Mayo
et al., 2014). The Manning’s n coefficient cannot be measured directly
(Budgell, 1987) and often exhibits spatially heterogeneous variability.
It also depends on the ocean bottom surface characteristics; changes in
the ocean floor during extreme events (such as storm surges and tsu-
namis) may further alter the near-shore Manning’s n field. In such ha-
zardous scenarios, it is critical that changes in ocean bottom stress be
detected and updated to accurately predict water height. Unfortunately,
the acquisition of the complete knowledge of Manning’s n coefficients
in realistic settings is not feasible. Parameter identification by trial-and-
error, e.g. comparing the SWEs solution produced by different Man-
ning’s fields to observations, is tedious and impractical (Khatibi et al.,
1997). As a consequence, parameter specification methods, based on
established look-up tables for each land cover type and roughness, have
been commonly used to parameterize Manning’s n fields in large scale
coastal ocean models (Luettich et al., 1992; Luettich and Westerink,
2005; Bunya et al., 2010). A more advanced specification method based
on a random forest model was also proposed in Medeiros et al. (2015).
In this paper, we resort to a well-established inverse modeling approach
(Mayo et al., 2014) to infer spatially-varying Manning’s n coefficients.

A number of approaches have been developed to solve parameter
estimation problems in the context of meteorology and oceanography
(e.g. Navon, 1998; Posselt and Bishop, 2012; Gharamti et al., 2013;
Altaf et al., 2014). Many are originally motivated by optimal control
theory (Lions, 1971), and are based on the minimization of a cost
function penalizing discrepancies between model outputs and ob-
servations (Buckley, 1978; Gilbert and Lemaréchal, 1989; Nash, 2000;
Altaf et al., 2016). However, this approach can be computationally
demanding and typically requires the development of an adjoint model
(Evensen, 2013; Altaf et al., 2013; Hoteit et al., 2013). Another popular
approach for parameter inference is through the Bayesian framework
(Ho and Lee, 1964; Besag et al., 1995), where the parameters are re-
presented with probability density functions (pdfs) conditioned on
available data. The parameter inference problem is then viewed as the
transformation of a prior pdf to a posterior pdf by incorporating the
likelihood of the observations (Tarantola, 2004). The posterior is rarely
explicit and often needs to be sampled as a collection of realizations
that are consistent with data and prior information (Hoteit, 2008). The
most popular implementation of this method is the Markov Chain
Monte Carlo (MCMC) method (e.g., Hastings, 1970; Gamerman and
Lopes, 2006), which has become more practical in recent years with
increases in computational power. The primary advantage of MCMC is
the ability to produce a full approximation of the posterior distribution.
As a result, MCMC is often treated as the benchmark to evaluate the
performance of other parameter inference methods (Law and Stuart,
2012; Posselt and Bishop, 2012; Siripatana et al., 2017).

In order to obtain good resolution of the posterior distribution, a
large number of samples are required (Sraj et al., 2014; Giraldi et al.,
2017). This makes MCMC very computationally demanding, as each
MCMC iteration requires a model evaluation in order to compute the
likelihood. As a result, using MCMC for parameter estimation is often
too costly for a realistic large scale inference problem. Even with model
reduction techniques, e.g., Polynomial chaos, KL expansions, etc.,
parameter estimation in MCMC may still be quite computationally
prohibitive.

Bayesian inference can also be cast as a filtering problem in which
the posterior distribution is updated sequentially as data becomes
available (Evensen, 2009), an approach known as data assimilation. A

Bayesian filter operates as a succession of forecast steps to propagate
the pdf of the unknowns forward in time, and update steps to in-
corporate data every time new observations become available. For
parameter estimation, filtering schemes usually apply the standard
augmented state-parameter technique (Derber and Rosati, 1989;
Anderson, 2001; Ait-El-Fquih et al., 2016), that allow the state and
parameters of the system to be estimated concurrently. Currently, the
most popular approach for data assimilation into ocean models is the
Ensemble Kalman Filter (EnKF) (Burgers et al., 1998; Evensen, 2009)
and its deterministic versions (Bishop et al., 2001; Anderson, 2001;
Hoteit et al., 2002; Tippett et al., 2003; Hoteit et al., 2015, to cite but a
few). An EnKF follows a Monte Carlo framework to integrate an en-
semble of model realizations in the forecast step and then applies a
linear Kalman correction in the update step (Hoteit et al., 2008). The
stochastic EnKF assimilates perturbed observations and this was shown
to induce noise in the final solution when the filter is implemented with
small ensembles (Altaf et al., 2014; Hoteit et al., 2015). Deterministic
EnKFs, which avoid observations perturbations, mainly differ in the
way they sample the new analysis ensemble after the filter update step.
Various deterministic EnKFs were compared with a realistic setting of
ADvanced CIRCulation (ADCIRC) model in the Gulf of Mexico (Altaf
et al., 2014), showing that, with enough tuning, these filters performed
closely well, all outperforming the stochastic EnKF.

The primary advantage of EnKF-type techniques over MCMC is the
algorithmic ability to directly accommodate the estimation of large
dimensional state-parameter vectors (Evensen, 1994; Naevdal et al.,
2005; Hendricks Franssen and Kinzelbach, 2008; Tong et al., 2010;
DeChant and Moradkhani, 2012; ElSheikh et al., 2013). Furthermore,
these methods are non-intrusive, i.e. they require no modifications to
the model code. Despite their empirical Gaussian framework (Hoteit
et al., 2012; Liu et al., 2016), EnKF methods have been found to be
efficient in terms of performance, computational cost, and robustness in
handling ocean state estimation problems (e.g., Serafy and Mynett,
2008; Butler et al., 2012; Korres et al., 2012; Tamura et al., 2014; Altaf
et al., 2014). There is now increasing interest in the coastal ocean
community to apply EnKF methods to parameter estimation problems.
Mayo et al. (2014) and Siripatana et al. (2017) have demonstrated that
the EnKFs are able to provide very good estimates of low-dimensional
parameterizations of Manning’s n coefficients in the SWEs.

In this study, we are interested in the inference problem of a 2D
spatially varying Manning’s n coefficient. The approach we follow re-
sembles that of ElSheikh et al. (2013), which consists of a sequence of
methods to formulate the inference of parameters, including a statis-
tical parameterization of the parameter search space, the construction
of a synthetic parameter field, the generation of an initial (prior) en-
semble, the implementation of a model reduction technique, and finally
the application of a parameter inference method. We generate reali-
zations of 2D spatial maps of Manning’s n coefficients subjected to a few
synthetic observations based on the sequential simulation algorithm of
multi-Gaussian fields (Gómez-Hernández and Journel, 1993). A re-
ference field and an initial ensemble are then selected from these rea-
lizations. Next, we apply the Singular Evolutive Interpolated Kalman
(SEIK) filter, a deterministic EnKF (Pham, 2001; Hoteit et al., 2002;
Butler et al., 2012), to estimate the reference Manning’s n field using
the Joint-EnKF. Localization (Houtekamer and Mitchell, 2001;
Anderson, 2003) is also applied to enable efficient implementation of
the SEIK with reasonable ensemble sizes and to remove any spurious
correlations between distant points. To limit the parameter search
space, and impose some regularization on the inferred model, a trun-
cated Karhunen-Loéve (KL) series is constructed by applying a singular
value decomposition on the covariance matrix of various realizations of
Manning’s n coefficients. The parameters are then updated through
their coordinates in the reduced KL basis, instead of the large nodally
defined parameter vector. The representation of the ensemble members
in the KL basis is expected to better preserve the geostatistical char-
acteristics of the parameter field in the filter update steps (Hoteit and
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Köhl, 2006; Chang and Zhang, 2014). Finally, to enhance the filter’s
performance and better deal with the nonlinear parameter estimation
problem, we introduce iterations to the SEIK update steps as in Luo and
Hoteit (2014) and Gharamti et al. (2015). Numerical experiments are
conducted to evaluate the performance of the iterative SEIK against the
EnKF in a realistic coastal configuration using the ADCIRC model.

The rest of this paper is organized as follows. The problem for-
mulation is described in Section 2. Section 3 summarizes the techniques
used in our inference framework, including the sampling of multi-
Gaussian realizations of the parameter field, the KL expansion, and the
SEIK filter. Section 4 describes the details of the experimental setup.
The experimental results, its significance, and implications are pre-
sented and discussed in Section 5. A summary of the work and con-
clusions are given in Section 6.

2. Problem formulation

2.1. ADvanced CIRCulation (ADCIRC) model

We use the ADvanced CIRCulation (ADCIRC) model, which solves
the SWEs derived from the depth integration of the incompressible
Navier-Stokes equations:
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Here, ζ is the free-surface elevation relative to the geoid, h is the
bathymetric depth relative to geoid, = +H ζ h is the water depth, U
and V are the depth-averaged horizontal velocity components, =Q UHx
and =Q VHy are the flux per unit width in the x and y directions, f is
the Coriolis parameter, g is acceleration due to gravity, Ps is the atmo-
spheric pressure at the free surface, ρ0 is the reference density of water,
α is the Earth elasticity factor, η in the Newtonian equilibrium tide
potential, τsx and τsy are the applied free surface stresses, τbx and τby are
the bottom friction components, Mx and My are the vertically-integrated
lateral stress gradients, Dx and Dy are the momentum dispersion, and Bx
and By are the vertically-integrated baroclinic pressure gradients. In
ADCIRC, the continuity equation is replaced by the second-order, hy-
perbolic generalized wave continuity equation (GWCE) to reduce
spurious oscillations that occur in the original form. Manning’s n
coefficients arise in the bottom friction terms of (2). The explicit ex-
pression of the bottom friction components are =τ

ρ
K Q

H
bx slip x

0
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=τ
ρ

K Q
H
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. The coefficient =K c u| |slip f , where =cf

gn
H
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1/3 , represents a
quadratic drag law. The scalar value, n, is the Manning’s n coefficient.
Since the Manning’s n coefficients spatially vary, they are defined node-
wise within the discretized physical domain, and are a piece-wise linear
representation of the continuous bottom friction field.

The SWEs in ADCIRC are discretized spatially using a first-order
continuous Galerkin finite element method with unstructured trian-
gular elements. The time derivatives in the GWCE are approximated
with centered finite differences, and forward differences are used for
the time derivatives in the momentum equations. ADCIRC has been
successfully implemented in many coastal ocean studies (e.g. Westerink
et al., 2008; Bunya et al., 2010; Dietrich et al., 2010; Dietrich et al.,
2011; Kennedy et al., 2011; Butler et al., 2012).

To simulate tides in an estuarine system, we adopted the same do-
main as that of Mayo et al. (2014) and Siripatana et al. (2017). This
selected domain is an idealized coastal inlet with an ebb shoal, with an
open ocean boundary on the left and a reflective boundary (re-
presenting the wall along the coastline) on the right as shown in Fig. 1.
The domain is discretized into 1518 grid nodes and 2828 elements. Its

dimension is 4500m in the x-direction and 3000m in the y-direction.
Bathymetry is measured downward from the geoid to the ocean floor.
The bathymetric depth increases linearly from 3.8m at the open ocean
boundary to 1m at the mouth of the inlet on the west side of the do-
main. The shallowest area of the domain is on the mound in front of the
west entrance of the inlet with a depth of 0.5m below the geoid. The
landlocked area has a constant bathymetry of 1m. The diameter of the
ebb shoal is 750m. This configuration is considered to be a simplified
version of a real-world ebb shoal system, which is a natural feature of
many coastal ocean regions. We force ADCIRC by the M2 tidal con-
stituent with an amplitude of 0.25m (relative to the geoid) and a 2 s
time step.

3. Parameter estimation framework

This section describes the techniques that are used in our para-
meters inference framework. These include: (3.1) a sampling scheme
and a search space representation (sequential simulation algorithm),
(3.2) reduction of the search space (Karhunen-Loève (KL) expansion),
(3.3) an ensemble filtering inference scheme (Joint-SEIK for parameter
inference), and (3.4) an iterative technique in the filter update step
(iterative SEIK).

3.1. Sequential simulation algorithm

The generation of spatially-dependent fields of various variables is
useful for the numerical simulation of many problems in geophysical
fluid dynamics (Gómez-Hernández and Journel, 1993). Since the col-
lected data is often limited, one must resort to algorithms capable of
generating realizations of a full variable field, subject to available data
and a suitable covariance model. One of the well-established techniques
to generate spatially variant maps is the so-called ‘sequential simulation
algorithm’ (Johnson, 2011). This method recursively draws realizations
of variables from a multivariate pdf modeled from series of univariate
conditional pdfs that are constrained by available data. For variables
following joint Gaussian distributions, the prescribed covariance model,
mean, and variance of the field are needed in order to solve for a set of
coefficients in a simple kriging system (Anderson, 1984). These are then
used to calculate the mean and variance that characterize the condi-
tional density function of each variable, given the set of conditioning
data. The covariance model is given by = −Cov h c g h( ) ( ) where h is the
variable, g h( ) is the corresponding semi-variogram model and c is its
sill. In this study, the Manning’s field is assumed Gaussian and aniso-
tropic, which can be sampled from Gaussian semi-variogram of the
form

= − −g h c exp h( ) ·(1 ( )).2 (3)

Here = +h h a h a( / ) ( / )x x y y
2 2 , where =h i x y, ,i , is the lag distance be-

tween two locations in the i direction and =a i x y, ,i , is an appropriate
range in the i direction.

3.2. Karhunen-Loève (KL) expansion

The KL expansion (Loevè, 1947; Karhunen, 1947), is a classical
method for expressing stochastic processes as an orthonormal set of
deterministic functions. It follows the result of Mercer’s theorem (Xiu,
2010), which states that a symmetric positive definite matrix C x x( , )1 2

admits the spectral decomposition

∑=
=

∞

C λ ψ ψx x x x( , ) ( ) ( ),
k

k k k1 2 1 2
1 (4)

where >λ 0k are the eigenvalues of C and ψk are the corresponding
eigenvectors, i.e. the terms in (4) must satisfy

∫ = = …C ψ d λ ψ kx x x x x( , ) ( ) ( ), 1,2,k k k1 2 2 2 1Ω (5)
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The sequential simulation algorithm described in Subsection 3.1. pro-
duces realizations of a variable field with mean μ x( ) and a discretiza-
tion C x x( , )1 2 of the covariance function Cov h( ), where ∈x d is a
vector of length d of the nodes of a discretized domain. The covariance
function is then decomposed according to Mercer’s theorem. Let K ξx( , )
be a stochastic function of a coordinate vector x and a random variable
ξ . Every realization of K can then be expressed as

∑= +
=

∞

K ξ μ λ ξ ψx x x( , ) ( ) ( ).
k

k k k
1 (6)

In the case of a multi-Gaussian field generated by the sequential si-
mulation algorithm, ξk is a Gaussian independent identically distributed
random variable with zero mean and unit variance. The function K is
fully characterized by a set of ξk when the basis ψk is known. Given a
realization of K , together with a known covariance matrix, the ξk can be
obtained by evaluating the integral

∫= −Kξ ξ μ ψ dx x x x( ( , ) ( )) ( ) .k k (7)

KL expansions represent highly spatially variant parameters as reali-
zations of a stochastic process with only a few dominant modes by
truncating the infinite series in (6) with a finite number of N terms. The
size N essentially depends on the desired energy percentage to be re-
tained by the KL modes ∑ ∑= =

∞λ λ/k
N

k k k1 1 . This notion of “optimal”
truncation is particularly useful for large scale parameter inference
problems in order to alleviate computational burdens while retaining
the essential features of the inference space (ElSheikh et al., 2013).

3.3. Joint-SEIK for parameter Inference

The Joint EnKF approach is widely used for parameter estimation by
the subsurface modeling community (e.g. Naevdal et al., 2005; Tong
et al., 2010; Gharamti et al., 2013; Katterbauer et al., 2015; Ait-El-
Fquih et al., 2016). In the most general form, a vector of model para-
meters to be estimated, w, is appended to the system state vector xk, to
form the joint state-parameter vector

= ⎡
⎣

⎤
⎦

z x
w .k

k
(8)

Assuming stationary dynamics for the parameters, the augmented state-
space model is then written as

= ⎡
⎣
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η
z

x
w

x
w 0
( ) ,k

k
k

k
k

k1
1

M

(9)

whereM is the dynamical operator describing the time evolution of the
state vector from time −k 1 to time k, and ηk is the model error with
Gaussian of mean zero and covariance matrix Qk. The observation yk is
then related to the augmented state vector as

= + = +ε εy H z x( ) ( ) ,k k k k k k k
z z H (10)

where Hk is the linearized observation operator and εk the measurement
noise.

Some studies pointed to some difficulties in estimating the model
parameters with the ensemble Kalman filter (Yang and Delsole, 2009;
Koyama and Watanabe, 2010; DelSole and Yang, 2010), but many more
presented quite successful implementations, e.g. Aksoy et al. (2006),
Franssen and Kinzelbach (2008), Gharamti et al. (2013), Mayo (2013);
Siripatana et al., 2017 just to cite a few. Among the most reported issues
were related to strong nonlinear relations between the observations and
the estimated parameters (Kivman, 2003; Chen et al., 2009;
Subramanian et al., 2012), the relevance of the assimilated information
(Anderson, 2001), and the size of the problem (Moradkhani et al.,
2005). These were however not problematic in our particular setting
and the filter performances were deemed quite satisfactory in our nu-
merical experiments presented in Section 5.

Here we follow Mayo et al. (2014) and Butler et al. (2012), and
implement the Singular Evolutive Interpolated Kalman (SEIK) filter,
which was found to be particularly efficient at enhancing the predictive
capabilities of ADCIRC (Butler et al., 2012; Altaf et al., 2014) and also
for parameters estimation (Mayo et al., 2014; Siripatana et al., 2017).
Compared to the other deterministic EnKFs, SEIK involves a stochastic
rotation in the resampling step to randomly spread the error variance in
the ensemble space (Hoteit et al., 2002), which is suitable for strongly
nonlinear dynamics that often arise during storm surges and was later
suggested for the Ensemble Transform Kalman Filter (ETKF) (Wang
et al., 2004; Nerger et al., 2012). SEIK algorithm can be split in three
steps; given an initial ensemble ( = …i Nz , 1, ,a i

0
, ).

Fig. 1. Idealized inlet with ebb shoal domain.
The discretization of the domain is represented.
The first 15 observation stations used in the ex-
periment are marked with red dots, and the ad-
ditional 9 observation stations added later are
marked with white. The color bar represents the
bathymetry of the domain measuring down from
the geoid (m).
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3.3.1. Forecast step
The forecast step integrates the analyzed ensemble members, −zk

a i
1

, ,
with the model (9) to compute the forecast ensemble members, zk

f i, . One
then takes the average of the zk

f i, as the forecast state vector, zk
f , and

their sample covariance as the forecast error covariance, Pk
f . Assuming

a perfect model ( =Q 0k ), one can decompose

= −P L U L ,k
f

k k k
T

1 (11)

with

= − … −+L z z z z T[ ] ,k k
f

k
f

k
f r

k
f,1 , 1 (12)

and

= −−
−rU T T[( 1) ] .k

T
1

1 (13)

Here T is an + ×r r( 1) full rank orthogonal matrix with zero column
sums. When the model error is not neglected, SEIK accommodates the
model error by adding its covariance matrix to the right hand side of
(11). Its algorithm remains mostly unchanged. However in this case, Pk

f

will not remain of low-rank r, and re-approximating the forecast cov-
ariance matrix Pk

f will be required (Hoteit et al., 2007).

3.3.2. Analysis step
When a new observation yk becomes available, The forecast state is

updated to obtain the analysis state

= + −z z K y H z( ),k
a

k
f

k k
o

k k
f

(14)

where Kk is the Kalman gain

= −K L U HL R( ) .k k k k
T

k
1 (15)

HL( )k is computed by applying Hk to the ensemble perturbations
−z zk
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The inflation factor, ρ, is used to inflate the forecast error covariance as
a way to account for various sources of uncertainties in the system, e.g.
model error, small ensembles, Gaussian assumption, etc (Anderson,
2001; Hoteit et al., 2002). The analysis error covariance can be ex-
pressed as =P L U Lk

a
k k k

T , but this is not needed for the filter algorithm.

3.3.3. Resampling step
New ensemble members need to be generated to start the next

forecast cycle. These are sampled from the analysis mean and the
covariance as

= + = …− − − − −
−N i Nz z L Ω C( ) , 1, ,k

a i
k
a

k k k
T

1
,

1 1 1 1
1 (18)

where −Ωk 1 is an + ×r r( 1) matrix with orthonormal columns and zero
column sums generated using Householder matrices (Pham, 2001;
Hoteit et al., 2002). In this study, we are only interested in estimating
the parameters, i.e. wk.

3.4. Iterative SEIK

Parameter estimation with an EnKF can suffer from strong non-
linearities between the observed state and the parameters (Jardak et al.,
2010). Iterating on the parameter update step has been shown to im-
prove the accuracy of the filter estimates (Lorentzen and Naevdal,
2011; Gharamti et al., 2015).

Let xk
a j, be the analyzed state at timestep k and iteration j. The

iterative SEIK (ISEIK) seeks the solution of the nonlinear least squares
problem:
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where J is the Jacobian matrix ofH . The term − −+x J x x( ) ( )k
i

k
a j

k
a j, 1 ,H is

the first-order Taylor approximation of +x( )k
a j, 1H and Ck is a symmetric,

positive semidefinite matrix. The solution +xk
a j, 1 of (19) is derived in

Engl et al. (2000) as

= + −+x x K y x( ( )).k
a j

k
a j

k k
o

k
a j, 1 , ,H (20)

We see that this equation is the iterative form of (14).
As the iterations advance, the inbreeding problem may cause the

filter to increasingly underestimate the ensemble variance, ultimately
degrading the filter’s performance (Song et al., 2013). This problem is
more pronounced when the parameter and the state are strongly non-
linearly related. To this end, we adopt a strategy that limits the size of
the update term in the later iterations via a damping factor ωj, as sug-
gested by Hendricks Franssen and Kinzelbach (2008). The factor ωj
takes values between 0 to 1 and multiplies the update term (increment
to the forecast) in (20). This helps to smooth the perturbation of
Manning’s n coefficients, which alleviates the impact of the state-
parameter nonlinear relation and sampling errors.

The iterative scheme (20) can be directly applied to SEIK with minor
modifications. In particular, if H is linear (as in this study) and Ck is
taken as the covariance matrix Pk, then one only needs to iterate on
HL( )k to derive the iterative SEIK scheme. Moreover, since here we only
update the parameters and not the state, we only need to iterate on the
parameter ensemble mean in (20), while maintaining the ensemble
variance during each assimilation cycle k. In this study, the iterations
are stopped when the updates become small or a maximum iteration
number is reached. For more sophisticated stopping criteria, readers
may refer to Luo and Hoteit (2014).

4. Experimental setup

4.1. Generating synthetic multi-Gaussian Manning’s n fields

Synthetic data of the Manning’s n coefficients are first generated by
taking a small number of samples from the uniform distribution
U (0.005,0.2) to simulate a scenario where a few point-wise Manning’s n
coefficients data are collected (or inferred from point-wise bottom
surface characteristics). These data are assumed collected at 24 loca-
tions representing the observations stations as illustrated in Fig. 1. The
synthetic Manning’s n coefficient data are then integrated with the
public domain ANSI-C code ‘GCOSIM3D’ developed in Gómez-
Hernández and Journel (1993), to generate multi-Gaussian 2D Man-
ning’s fields for our idealized ebb shoal domain, based on the sequential
simulation algorithm (Section 3.1). From this, any number of Manning’s
field realizations can be generated once the properties of the semi-
variogram are set. We first generate 1000 realizations of nodally-de-
fined parameter fields following the Gaussian semi-variogram as in (3),
with a mean of 0.1025, a variance of 0.0002, and a correlation range of
180m in the x-direction and 30m in the y-direction. The variance is
properly scaled so that the realizations of 2D multi-Gaussian fields fall
within an appropriate range of Manning’s n coefficients (0.005–0.2).
The maximum and minimum Manning’s n values of these realizations
are 0.1879 and 0.0177, respectively. Examples of realizations of Man-
ning’s n fields generated by the sequential simulation algorithm are
shown in Fig. 2. These realizations are used to select the initial en-
semble, compute the KL modes, and define the reference field.

4.2. Observation system simulation experiments (OSSEs)

We let the 101st realization generated by GCOSIM3D code in Section
4.1 be the reference Manning’s n field, which we seek to infer (Fig. 2).
Synthetic observations of water elevation are generated by ADCIRC
integrated using the reference Manning’s n field. The dimension of the
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observations is the number of observed locations multiplied by the
number of assimilation time steps. Initially, we use 15 observation
stations as shown in Fig. 1, and 108 assimilation timesteps (4.5 days
with incoming data every 1 h). Later, we also increase the number of
observation stations to 24 and total assimilation time to 20 days in some
experiments to study the impact of the number of observations on
parameter inference. Two-hundred Manning’s n field realizations, ex-
cluding the reference realization, are taken as the initial members. We

first let the simulation ramp-up for 12 days using the mean of the initial
members before the first assimilation cycle starts. The observations are
then assimilated by SEIK to infer the reference Manning’s field. We test
the filter with four different settings: 1) nodally-defined Manning’s n
values, 2) Manning’s n field parameterized by the KL-reduced space, 3)
Manning’s n field inference in the KL space with perturbed variogram
models, and 4) iterative SEIK filter inferring the Manning’s field in both
the full and reduced space.

Fig. 2. A few realizations of Manning’s n fields generated by the sequential simulation algorithm. The 101st realization is taken as the reference field that the inference
results are compared against.
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Fig. 3. The reconstruction of a Manning’s n field using the truncated KL expansion for various retained KL modes. The top six subplots: spatial plots of the
reconstructed Manning’s n field. The bottommost subplot: the accumulative sum of the eigenvalues obtained for the KL decomposition.
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4.3. KL basis construction

The sample covariance of the 1000 realizations generated in
Subsection 4.1 is decomposed as in (4) to obtain the set of eigenpairs
and the KL expansion of the parameter (i.e., the 2D Manning’s n coef-
ficients) as in (6). The cumulative sum of eigenvalues, which indicates
the total variance retained by the KL expansion is plotted at the

bottommost of Fig. 3. It shows that retaining 10 and 20 KL terms re-
spectively preserve more than 83% and 98% of the total variance of the
realizations. By increasing the truncation to 30 KL terms, more than
99% of the total variance is retained.

Fig. 3 also shows an example of the reconstruction of a Manning’s
field using a truncated KL expansion. The top row of the figure shows
the mean of the 1000-realizations of the Manning’s n field and the 101st

Fig. 4. The results of SEIK inference with 10 ensemble members, (a) the true field, (b) the initial ensemble mean, (c) the final analysis after 108 updates, (d) the ratio
between the final error and the initial error, (e) the final analysis when applying localization, and (f) the ratio between the final and the initial error when applying
localization.
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realization, respectively. The remaining subfigures are the reconstruc-
tions of the 101st realization as we increase the number of KL terms in
(6). One can observe that with a small number of KL terms, for example,
3 KL modes, the reconstructed field resembles the mean, as the mean
field dominates the modes. As we increase the number of KL terms, the
reconstruction starts converging toward the target realization (the 101st

realization in this figure).

5. Results and discussion

5.1. SEIK inference of nodally defined Manning’s n values

Fig. 4(a)–(d) present the results of the Manning’s n field SEIK in-
ference using only 10 ensemble members compared to the reference
field. The impact of the SEIK updates is clear from the final analysis, as
the filter solution more accurately represents the reference Manning’s n
field. The 2D plot of the ratio between the final error and the initial
error suggests reasonably small errors in most locations, except those
where the Manning’s n values of the initial ensemble vastly differ from
the true values. With only 10 ensemble members, this set of results is
considered as a preliminary test, upon which we make efforts to im-
prove.

We then applied Local Analysis (LA) in an attempt to improve the
SEIK filter performance (Nerger et al., 2006), later referred to as ‘local
SEIK’. This technique provides a straightforward way to cut the spur-
ious long-range correlations in the covariance matrix of the filter’s
analysis step. In Fig. 5, we show the time-series of Root Mean Square
Errors (RMSEs) of the analysis with respect to the reference field for
various localization distances (in meters). Localization enhances the
filter’s performance in most cases, although the filter’s behavior with 10
members is quite sensitive to the choice of the localization distances
(ld); the smallest RMSE at the end of the assimilation window is at-
tained using ld=1500m.

In Fig. 4(e) and (f), we show the impacts of applying localization to
the SEIK filter. There is a clear improvement compared to those

obtained without localization. The recovery of the Manning’s n coeffi-
cients around the right side of the inlet and the top left corner of the
domain is notably improved. The ratio between the final error and the
initial error are close to zero in most areas, except the areas where the
difference between the Manning’s n values of the initial ensemble and
the reference values were sizable.

5.1.1. Sensitivity to ensemble size
Increasing the ensemble size is generally expected to enhance the

performance of an EnKF (Hoteit et al., 2002; Triantafyllou et al., 2003;
Hoteit et al., 2013). In Siripatana et al. (2017), increasing the ensemble
size from 10 to 100 drastically improved the estimation of a 1D Man-
ning’s n coefficient in ADCIRC. However, this raises the issue of de-
termining a good trade-off between filter performance and computa-
tional costs. Doubling the size of the ensemble means twice as many
model runs are required. In the case of a complex model such as AD-
CIRC, this can result in a tremendous increase in computational time.
Our first aim is to determine the ensemble size that yields satisfying
filter performance with reasonable computational cost.

We thus assess the filter’s performance with increasing numbers of
ensemble members: 10, 50, 100, and 200, respectively, using the same
localization distance (ld= 1500m). The best localization distance in
term of reducing the RMSE can be dependent on the ensemble size,
however, we found that the localization length scale of 1500m provides
the lowest RMSE for most of our experiments (the top panel of Fig. 6).
More in-depth discussions on the choice of the localization length scale
can be found in Nerger et al. (2006). The time-series RMSE results of
these runs, including the runs from Subsection 5.1., are shown in the
bottom panel of Fig. 6. Here we see that increasing the number of en-
semble members to 100 greatly reduces the discrepancy between the
estimates and the reference field. However, increasing the ensemble
size beyond 100 members does not significantly boost the performance
of the filter, although it drastically increases the computational cost.

Fig. 7(c) and (d) summarize the results obtained by implementing
local SEIK with 100 ensemble members. Improvements over the case

Fig. 5. Time series of the RMSEs of the Manning’s n fields after each analysis step with respect to the true Manning’s n field for varying localization distance (ld).
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with 10 ensemble members are clear. The analysis at the end of the
assimilation window accurately recovers the 2D Manning’s n coeffi-
cients at the right side of the inlet. The pattern of small Manning’s n
values around the upper-right corner of the domain is also well

recovered compared to the case with only 10 members. With this im-
provement, the ratios of the final to the initial error are close to zero
and less than one in most areas, indicating that the local SEIK solution
converges toward the reference field at almost every point in the

Fig. 6. Time series of the RMSEs of the Manning’s n field after every analysis step. Top panel: the RMSEs for varying localization distances (ld) with 100 members.
Bottom panel: the RMSEs for various ensemble sizes (N) with the same localization.
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Fig. 7. The results of SEIK inference with 100 ensemble members, (a) the true field, (b) the initial ensemble mean, (c) the final analysis with 15 observation points,
(d) the ratio between the final error and the initial error, (e) the final analysis with 24 observation points and 468 assimilation cycles, and (f) the ratio between the
final error and the initial error, (g) the absolute error between the estimate and the truth for 24 observation points case, and (h) standard deviation of the ensembles
at the final analysis step.
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domain.

5.1.2. Sensitivity to the number of observations and assimilation cycle
In general, it is preferable to assimilate as many observations as

possible to compute reliable estimates. Here we explore the behavior of
the system with an increasing number of observations, both spatially
and temporally. We first introduce 9 additional observation stations
(indicated with white dots in Fig. 1) to the domain, increasing the total
number of observation stations from 15 to 24. The observations loca-
tions are sampled to evenly span the spatial domain. We also increase
the simulation time to 20 days, which equates to 468 total assimilation
cycles.

Fig. 7(e) and (f) outline the results of this experiment, where 100
ensemble members are used. The SEIK filter successfully recovers most
of the features of the Manning’s n coefficients shown in the reference
field. The node-wise ratios between the final error and the initial error
are small and close to zero in most areas. The pattern of low Manning’s
n coefficients in the right land-locked area to the left area near the open
ocean area is almost fully recovered. The only area where there is dif-
ficulty recovering the Manning’s n features is the bottom-right corner of
the domain. This can be attributed to the absence of observations in this
area. In addition, we analyze the misfit between the filter estimate and
the truth in Fig. 7(g) in relation to the predicted variance of the error as
estimated by the ensemble standard deviation (STD) in Fig. 7(h), as
resulting from the filter. Overall, both statistics are of the same order
despite relatively larger STDs along eastern and northern boundaries.
The plots further reveal similar spatial structures, e.g., large error and
STD values at the bottom-right corner of the domain (highlighted in
red) where the observations are scarce, contrasting with small errors
and STD around the center of the open ocean area (highlighted in dark
blue), where the observations are more abundant. Similar consistencies
between the final (misfit between the truth and final estimate) and
predicted (filter error variance) estimation errors were obtained in the
rest of our experiments, indicating that with large enough ensembles
and good tuning of the localization radius, the estimation of Manning’s

n coefficients with the EnKF does not suffer from any divergence pro-
blem in our particular setting.

In Fig. 8 we see the time-evolution of the RMSE of the estimates
with respect to the reference field, based on three different im-
plementations of SEIK with 100 ensemble members: regular SEIK, local
SEIK, and local SEIK with additional observations and assimilation
cycles, respectively. The discrepancy between the estimate and the
truth visibly decreases as more observations are assimilated into the
system, with a decreasing RMSE trend that suggests further improve-
ments might be obtained with more assimilation cycles. Another con-
clusion one can draw from the time-evolution of the RMSE is that the
filter does not really benefit in terms of estimation accuracy from lo-
calization when implemented with 100 ensemble members. Hereafter,
we will consider the regular SEIK solution with 100 members as a re-
ference to evaluate the performance of various tested filtering schemes.

5.2. SEIK inference in KL space

Instead of using SEIK to update the nodally-defined parameter, here
we update the KL coefficients, ξ , that represent a specific realization of
the Manning’s n field in the KL space, using the same filtering procedure
for parameter estimation described in Subsection 3.3. The number of KL
coefficients to be updated by the filter is the number of terms retained
in the KL expansion. Here, we study the sensitivity of the performance
of SEIK for parameter estimation in the KL space, later referred to as
SEIK-KL, to both the number of retained terms and the ensemble size.

In Fig. 9, we plot the time-evolution of the RMSE of the analyzed
Manning’s n field with varying ensemble size and the number of KL
terms. Each individual curve represents the RMSE of a single SEIK run
with a fixed ensemble size and a specific number of preserved KL terms.
The left column of subfigures (Fig. 9(a), (b) and (c)) show the RMSE of
SEIK-KL using different numbers of KL terms for a specified ensemble
size. Conversely, the right column of subfigures (Fig. 9(d), (e) and (f))
show the RMSE for a specified number of KL terms and varying en-
semble sizes. First, we examine the results of SEIK inference with 10

Fig. 8. Time series of the RMSEs of the Manning’s n fields after each analysis step for 100 ensemble members, different localizations (ld) and different number of
observations with respect to the true Manning’s n field.

A. Siripatana et al. Journal of Hydrology 562 (2018) 664–684

675



Fig. 9. Time series of the RMSEs as results from SEIK and SEIK-KL using varying ensemble sizes and numbers of retained KL terms. Left column: each figure represents
a fixed ensemble size but varying number of retained KL terms. Right column: each figure represents a fixed number of retained KL terms but varying ensemble size
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ensemble members (Fig. 9(a)). In all cases, SEIK-KL efficiently reduces
the RMSE over time and leads to better final estimates than the regular
SEIK. This suggests that the ensembles in the KL space exploit the

statistical information retained by the KL modes to better span the
parameter search space as compared to the full space spanned by lim-
ited ensembles.

Fig. 10. Manning’s n field estimates as inferred by different ensemble sizes and number of retained KL modes.
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The convergence rate of SEIK-KL estimates to the truth is sensitive
to the number of retained KL terms. For instance, when using 10 KL
terms, the analysis converges rapidly toward the solution but quickly
levels off after a few assimilation cycles. Increasing the simulation time
does not improve the estimates when the ensemble size and number of
retained KL terms are small. This is because a few KL terms are not
enough to completely describe the variability of the search space. The
filter stops improving after a few assimilation cycles due to the limited
search directions, as also observed in Hoteit and Köhl (2006). In-
creasing the ensemble size in this case does not help much as a rela-
tively small ensemble (often suggested to be of rank equal to the search
space (Pham, 2001)) should be enough for efficient filtering. When the
number of KL terms is increased (e.g., to 20 and 30 terms), the stagnant
RMSEs pattern in the previous case is less pronounced, and the analysis
starts to converge gradually, but slowly, toward the reference solution.
Including more KL terms enables more search directions in the para-
meter space to be explored. As a result, more assimilation cycles may
help SEIK-KL recover the reference field. Given a sufficiently large as-
similation window, the SEIK-KL with 20 and 30 KL terms outperforms
that of 10 KL terms.

Increasing the ensemble size (Fig. 9(b) and (c)), further reduces the
RMSEs. However, the difference is not significant in the case of 10 KL
terms. SEIK-KL inference with larger numbers of retained KL terms
outperforms the cases with fewer KL terms for larger ensemble sizes.
Fig. 9(b) shows that using 50 ensemble members, SEIK-KL with 30 KL
terms starts to outperform the 10 KL-terms case at the end of the as-
similation window. When 100 members are used (Fig. 9(c)), SEIK-KL
with 20 and 30 KL terms leads to notably better estimates than those
obtained using 10 KL terms. Due to less inherent variability, SEIK-KL
with 20 KL terms performs poorer than the SEIK-KL with 30 KL terms
for all tested ensemble sizes (Fig. 9(a), (b) and (c)). Also, SEIK with the
full, nodally-defined parameter vector outperforms the SEIK-KL with
10-KL terms. Applying regular SEIK using 100 members leads ap-
proximately to the same level of RMSE as that of the best KL case (i.e.,
the 30-KL-terms case).

The sensitivity of the performance of SEIK-KL inference to the

ensemble size is presented in the three plots in the right column of
Fig. 9. In general, we see that as the ensemble size increases, the RMSE
decreases, with an exception of the 10-KL terms case shown in Fig. 9(d);
the RMSE produced by SEIK-KL using 50 members is smaller than that
using 100 members. Again, this is the effect of using a few KL terms,
which insufficiently describe the search space. This observation is
consistent with Hoteit and Köhl (2006) and ElSheikh et al. (2013), who
found that using 40 KL modes, small ensembles initially performed
better, but are eventually outperformed by larger ensembles later in the
simulation, as larger ensembles provide more exhaustive search direc-
tions.

In Fig. 10, we show the spatial plots of the inferred Manning’s n
coefficients using SEIK-KL with varying ensemble sizes and numbers of
KL modes. The top row depicts the spatial structure of the true Man-
ning’s n field (Fig. 10(a)) and the initial guess (Fig. 10(b)), respectively.
From the second row downward, each column represents an ensemble
size and each row represents a number of retained KL modes. We notice
that when using 10 ensemble members, the SEIK filter faces difficulty in
recovering the reference field, even with a large number of KL terms;
the best result is obtained using 10 KL modes (Fig. 10(d)). When using
50 ensemble members, all SEIK-KL inferences are better than the reg-
ular SEIK in recovering the Manning’s n field. This is particularly clear
in the area of low Manning’s n values (cooler colors). When using 100
ensemble members, the filter’s estimate is more accurate in all cases.
The main Manning’s n structures of the true parameter field are clearly
recovered.

5.3. SEIK-KL sensitivity to inaccurate covariance model

The initial ensembles of the SEIK and the SEIK-KL have thus far been
constructed based on the same covariance model from which the re-
ference Manning’s n field was generated. In many real-world applica-
tions, however, the initial covariance model might be poorly known.
Here we examine the sensitivity of the performance of SEIK and SEIK-
KL to perturbations in the covariance model used to generate both the
initial ensembles of Manning’s n coefficients and KL modes and

Fig. 11. Time series of the RMSEs of the Manning’s n fields inferred from initial ensembles generated from various variogram models.
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Fig. 12. Inferred Manning’s n fields when various variogram models are used to generate the initial ensembles in KL space.
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compare the results against those obtained using the true (unperturbed)
covariance model.

We first generate new realizations of Manning’s n coefficients from
different variogram models by perturbing some parameters in
GCOSIM3D. 1) we use a Gaussian variogram with a range of 100m in
the x and y-directions (a perfect circle), 2) a Gaussian variogram with a
range of 250m in the x-direction and 15m in the y-direction (i.e. the

reference variogram is stretched in the x-direction and shrunk in y-di-
rection), 3) a Gaussian variogram with range of 110m in the x-direction
and 45m in the y-direction (i.e. the reference variogram is shrunk in x-
direction and stretched in y-direction), and 4) an Exponential-type
variogram.

In Fig. 11, we plot the time-series of the RMSE of the analyzed
Manning’s n field as estimated by SEIK and SEIK-KL (with 30 KL modes)

Fig. 13. Inferred Manning’s n fields. 1st row: spatial plots of regular SEIK inference, 2nd row: spatial plots of ISEIK inference with 5 iterations, 3rd row: spatial plots of
ISEIK-KL inference with 5 iterations.
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from the covariance models described above using 100 ensemble
members. The first observation we make is that the performances of
SEIK and SEIK-KL degrade when using any of the perturbed variograms.
However, the degree at which the final RMSEs of the perturbed cov-
ariance cases differ from the reference case depends on the form of the
perturbed covariance. For instance, using an Exponential variogram
instead of Gaussian variogram (with the same mean, variance and
correlation length) does not significantly alter the structure of the
variogram, and as a result, the final RMSEs for the Exponential vario-
gram cases are close to the reference case. The same can be said for the
case in which we stretch or shrink the correlation range in the x- and y-
directions (cases (2) and (3)). For the case where the perturbed vario-
gram vastly differs from the reference case (i.e. case (1)), the resulting
final RMSE is considerably larger than that of the reference case. The
second observation is that in most cases with perturbed covariance
models, the SEIK performs better than SEIK-KL, with the exception of
case 3. The overall better performance obtained by SEIK is consistent
with the results of Section 5.2, where the SEIK-KL was shown to out-
perform SEIK with small ensembles only (N< 50).

In Fig. 12, we show the spatial plots of inferred Manning’s n fields as
estimated by the SEIK and SEIK-KL for different covariance models. The
results suggest that for all tested covariance models, the filter success-
fully recovers the main patterns of the true Manning’s n coefficients
over the studied domain, even for the perfect circle variogram case (1)
where the inferred field exhibits the largest RMSE compared to the
other cases. With sufficiently large ensembles, assimilated observations,
and retained KL terms, SEIK-KL is capable of successfully capturing the
main spatial structures of the reference Manning’s n field, even when its
reduced basis is constructed with imperfect KL-modes.

5.4. Iterative SEIK (ISEIK) in the full and KL spaces

Based on the above results, ISEIK is implemented using 100 mem-
bers, 24 observation stations, and 5 days of simulation. The damping

factor ω is chosen such that =+ω ω /2j j1 , where j is the iteration number,
and =ω 10 . We start by studying the sensitivity of ISEIK to the number
of iterations by performing 3, 5 and 7 iterations. The results of this
experiment in terms of RMSE are presented in Fig. 14. ISEIK outper-
forms SEIK in all cases, notably reducing the RMSE for both the full-
vector and the KL cases. The lowest RMSEs were obtained with 5
iterations.

In Fig. 13, we show the spatial plots of the estimates obtained using
ISEIK. We notice particularly improved parameter recovery in the area
of low Manning’s n values compared to the regular SEIK. ISEIK also
greatly reduces the ratio between the final error and the initial error in
the right land-locked area. ISEIK in the full or KL spaces performs
equally well in terms of reducing RMSE in all cases (Fig. 14). However,
ISEIK-KL seems to better recover the spatial patterns of the reference
Manning’s field. This can be clearly observed in the area of low Man-
ning’s n values, colored in green (Fig. 13(e)): the recovered Manning’s n
structure as estimated by ISEIK in the KL space is more consistent with
the reference than those produced in the full space. The computational
cost of ISEIK is approximately the same as the regular SEIK. Thus, only
modest increases in computational cost, ISEIK with a well-tuned
damping factor performs comparably to the regular SEIK when using a
much larger simulation window; with only 5 days of assimilation time,
the final RMSE produced by ISEIK is as small as that obtained with the
SEIK over 20 days of assimilation window.

6. Conclusions

We proposed a sequential data assimilation framework to estimate a
2D field of spatially varying Manning’s n coefficients in the context of
coastal ocean modeling. The proposed framework combines a de-
terministic ensemble Kalman filter (called SEIK), KL decomposition,
and an iterative update scheme to improve the accuracy of estimation
over an unaltered/baseline SEIK filter. Multi-Gaussian initial realiza-
tions of the Manning’s n coefficients field are generated using a

Fig. 14. Time-evolution of the RMSE of Manning’s n field as inferred by the regular SEIK (in black) and iterative SEIK with various stopping criteria.
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sequential simulation algorithm. An empirical covariance matrix is
computed from a sufficiently large number of realizations of Manning’s
n fields and used to construct KL coordinates representing the para-
meter in a reduced KL space. The KL expansion enhances the parameter
search space and helps preserve the geostatistical characteristics of the
parameter in the filter updates when the filter is implemented with a
small number of ensembles.

Observation System Simulation Experiments (OSSEs) are conducted
to evaluate the performance of the proposed framework. Synthetic
water elevation data are generated by running ADCIRC with a reference
Manning’s n field, considered as the truth. SEIK is then implemented to
estimate the Manning’s n coefficients, both in the full nodally-defined
and KL parameter space cases. We first study SEIK sensitivity to the
ensemble size using the full parameter space and find that 100 en-
semble members provide a reasonable trade-off between the filter
performance and computational burden. Local analysis is also applied
to alleviate the effect of spurious correlations between distant points.
Increasing the number of observation stations from 15 stations to 24
stations further improves the filter performances. SEIK with the full
nodally-defined parameter vector proves to be successful at recovering
the main patterns of the true Manning’s n field in our idealized setting.

We then conduct the SEIK inference in the KL space. For small en-
sembles (e.g., 10 ensembles) and only 10 terms in the KL expansion, a
significant improvement is observed compared to the results obtained
using the regular SEIK filter. We also find that increasing the ensemble
size requires increasing the number of KL terms in order for the KL-SEIK
to outperform the regular SEIK. For the case with 100 ensemble
members, 30 KL modes are required. However, the sensitivity of the
filter performance to the number of KL modes and the ensemble size is
nonlinear. In all cases, the KL-SEIK consistently outperforms the regular
SEIK when the Manning’s n field is represented using 30 KL terms,
which preserves almost 100% of the total variance of the parameter
space.

Finally, iterative SEIK (ISEIK) is implemented at almost no addi-
tional computational cost to enhance the SEIK performances. We apply
ISEIK to both the nodally-defined parameter vector and KL cases. Even
with a small number of iterations (e.g., 3 iterations), improvements are
clearly observed, with the best results obtained using 5 iterations for
both the nodally defined and KL cases were.

Overall, our results demonstrate the relevance of sequential en-
semble data assimilation filtering schemes for estimating spatially
varying parameters in the context of coastal ocean modeling. Future
work will focus on exploring approaches to further improve our in-
ference framework by developing efficient schemes to update and
evolve in the KL basis of the parameter search space based on incoming
data along the method proposed by Sraj et al. (2016).
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