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Abstract

This work is devoted to the numerical simulation of liquid-gas flows. The liquid
phase is considered as incompressible, while the gas phase is treated as compress-
ible in the low Mach number approximation. A single fluid two pressure model is
developed and the front tracking method is used to track the interface. Navier-Stokes
equations coupled with that of temperature are solved in the whole computational
domain. Velocity, pressure and temperature fields are computed yielding a complete
description of the dynamics for both phases. We show that our method is much more
efficient than the so-called all Mach methods involving a single pressure, since large
time steps can be used while retaining time accuracy. The model is first validated
on a reference test problem solved using an accurate ALE technique to track the
interface. Numerical examples in two space dimensions are next presented. They
consist of air bubbles immersed in a closed cavity filled up with liquid water. The
forced oscillations of the system consisting of the air bubbles and the liquid water
are investigated. They are driven by a heat supply or a thermodynamic pressure
difference between the bubbles.

Key words: Two-phase flow; front tracking; low Mach number flow;
compressibility

1 Introduction

The numerical simulation of two-phase flow and related phenomena raises
many different and difficult issues, from both modeling and computational
standpoints. Several of these difficulties, such as dealing with the interface
between two phases, tracking of the interface, implementing surface tension,
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coalescence, etc. are common to the simulation of flows of isothermal and
incompressible multiphase fluids. Early attempts have made use of boundary
fitted coordinates to simulate the flow around isolated bubbles of stationary or
unsteady shapes [26]. These techniques allow one to impose very precisely the
full interface conditions, but are limited to weak deformations and can hardly
be extended to configurations involving many bubbles. These limitations have
led to the development of Eulerian approaches, which have received much
attention in the recent past and are still the subject of intensive ongoing
research. Many types of numerical techniques have been developed to follow
the interfaces, amongst which the VOF method [23, 37], the Level Set method
[42, 38, 43], the Front Tracking method [44, 40], interface capturing methods
[1], and mixed methods [29]. A unified perspective of most of these methods
can be found in [35].

One of the promising field of application of these techniques is the simulation of
two-phase boiling flows that occur in confined environments. These simulations
can be used to study various local dynamics processes and related heat transfer
such as bubble growth or collapse, interaction between several bubbles, in the
aim of deriving macroscopic interaction laws between phases used in more
conventional modeling techniques, in which each of the two phases is defined
as a local volume or mass fraction. One specific issue in the simulation of
these boiling phenomena is the coexistence of a liquid and a gas phase in a
non-isothermal environment, the gas being made up totally or partially of the
liquid vapor. An additional difficulty arises in the case of confined flows, for
which the variations of the thermodynamic pressure in the gaseous phase play
an important role and must be taken into account. For instance, in situations
like in a pressure cooker, it is the fact that the mean pressure in the vessel
can rise above the atmospheric pressure that allows the liquid-vapor phase
change to take place at temperatures well above 100oC, improving the Carnot
efficiency or reducing the cooking time. The present work is devoted to the
design of such a model and its numerical implementation providing a way to
give access to some value of the thermodynamic pressure.

One way to give access to the thermodynamic pressure is to treat all fluid
phases as fully compressible. For high speed flows, this has promoted the de-
velopment of explicit algorithms in which both the liquid and the gas phases
are modeled with the fully compressible Navier-Stokes equations [20, 41, 36].
Let us also cite the work of Caiden et al [5], considering two-phase flow consist-
ing of separate incompressible and high speed compressible regions. However,
in many applications like those mentioned above, the velocities in the gas are
very small, and the fully compressible approach raises different difficulties or
issues of modeling or numerical nature. For low speed flows, one of these diffi-
culties is linked to numerical representation of the pressure. Dynamic pressure
variations corresponding to flow speeds of velocity V are of order ρV 2 which
can be very small for flows of light low speed fluids and this raises the is-
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sue of finite precision arithmetic used in digital computers. For instance air
flow velocities of 10−2 ms−1 correspond to differences in pressure of 10−4 Pa,
which cannot be represented in single precision arithmetic within a pressure
field whose mean value is equal to the atmospheric pressure ' 105 Pa, inde-
pendently of the poor conditioning of the Jacobian matrix.
For fully compressible explicit methods, another major difficulty is linked to
the severe limitation of the time step induced by the large value of sound
velocity in the liquid. The speed of sound in a liquid can be more than 104

or 105 times larger than the convection velocity. For natural convection con-
figurations where one has to integrate the equations on the order of a viscous
or diffusion time scales, this limitation makes virtually impossible to attain
the asymptotic flow regime. Alleviating this limitation leads one to promote
an approach where the liquid is treated as completely incompressible. How-
ever, in many applications like those mentioned above, the velocities in the
gas are very small, and the limitation of the time step based on the speed
of sound (acoustic time step) in the gas remains severe. The so-called all-
Mach or Mach-uniform methods that have received much attention in recent
years are aimed at remedying this problem. These algorithms fall into two
classes: density-based methods which we do not consider here as time accu-
racy is difficult to recover, and pressure based methods. The latter are derived
from projection methods that are classically used for incompressible flows.
They use an implicit algorithm for the calculation of pressure, which inte-
grate the acoustic wave related part in the governing equations. Thereby the
stability limitation of the time step due to acoustic propagation is avoided.
Pressure-based methods also have the interesting property of being capable
of handling both incompressible and compressible flows, as the pressure equa-
tion reduces to the usual Poisson equation when the Mach number tends to
zero. This class of methods has been developed in several articles. Yabe et
al. [47] utilize a Cubic Interpolated Polynomial (CIP) based time splitting
predictor-corrector technique, separating advection and non-advection parts
in the governing equations. Xiao [45],[46] brings several improvements to the
method and proposes a conservative algorithm. Ida [16] incorporates into the
CIP algorithm a multi-time step integration involving sub-iterations for solv-
ing the components of different time scales of the Navier-Stokes equations. In
[18] a fully conservative method that uses a second order ENO method for
the non oscillatory treatment of discontinuities is developed. The work in [22]
presents a method quite similar but that rather uses a staggered MAC grid
discretization.
Although this kind of methods may be thought of as a good candidate for
our problem, the analysis in the literature shows that for unsteady calcula-
tions time steps of the order of the acoustic time step are generally used for
accuracy reasons. In [16] is treated a case of bubble dynamics in an acoustic
field, where it is shown that acoustics must be solved accurately for the entire
flow accuracy, thus limiting the time step in the acoustic part of the solver to
values close to the explicit value. The unsteady Oscillating Water Column test
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case is treated in [18] using an acoustic CFL number of 3 at most. In [22] a low
Mach unsteady flow case is reported using again an acoustic CFL number of 3
for time accuracy of the solution. The conclusion that seems to emerge is that
although the time step is not limited by a stability condition, it is still limited
to values close to the explicit one for time accuracy reasons. This is also our
finding, as we demonstrate below treating the Oscillating Water Column test
case.

Although not subject to stability restrictions owing to their implicit nature,
all Mach pressure based methods still consider the fully compressible model
involving acoustics. However, for applications where the velocities in the gas
are very small, a low Mach number model seems well adapted. In such an
approach, acoustics is removed beforehand from the equations. The use of
this approach was already proposed by [9] in the context of multicomponent
gaseous flows, in the case of a potential approximation. Those methods were
initially designed to handle low speed gas flows which can experience large
variations of the mean pressure such as discharging flows from pressurized
vessels [13] or natural convection flows due to very large temperature differ-
ences for which the Boussinesq approximation is no longer valid [33, 24]. In
these methods the pressure is split into a mean pressure that can evolve in
time and an additional component which is responsible for satisfying the con-
tinuity equation. This pressure splitting inhibits the local coupling between
pressure and density, thus avoiding the simulation of acoustic waves and al-
leviating the corresponding stability criteria. Indeed, low Mach number ap-
proaches have been shown to be much more efficient and reliable than fully
compressible models for the computation of natural convection flows in closed
cavities [25, 32].

Another question to be addressed concerns the appropriate description of the
dynamics of the flow within the gas phase. One strategy is to neglect the flow
within each gaseous inclusion, which is then just described by its shape, mean
pressure and temperature. Such an approach was followed by Caboussat et
al [4, 3] in the isothermal case to handle mould filling. The case of bubbles
with uniform but time dependent temperatures was largely investigated by
Prosperetti’s group, considering a gas bubble in a small tube [14] or a vapour
bubble in a micro-channel [48]. The physical description considers uniform
properties in the bubble (pressure, temperature, density). The liquid descrip-
tion is performed using an approximate potential flow [30] or the complete
Navier-Stokes equations [31]. At the interface, the connection with bubble
properties is achieved through standard jump equations while the numerical
description performed in [31] makes use of free surface techniques.

Neglecting the gas dynamics may result in the impossibility to describe phys-
ical phenomena such as thermal convection effects for instance. In the mi-
crofluidic context, some operations like pumping or mixing rely on the gas
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dilatability to impose the liquid motion. We have shown that in such config-
urations the complete description of the flow in the gas is indeed necessary
[7, 10].

In this work we report the development and numerical implementation of a
physical model dedicated to the simulation of low speed non isothermal two-
phase flows in closed vessels. To be specific, amongst the type of configurations
we have in mind we can list a steam engine or a pressure cooker, or microfluidic
devices like thermopneumatic actuators. To this aim, we propose a numerical
algorithm in which both the liquid and gaseous phases are governed by their
corresponding momentum and energy equations, the liquid phase being truly
incompressible while the gaseous phase follows a low Mach number approxi-
mation. A single field formulation is derived that can describe the whole flow
field. The two phases are separated by a dynamic interface across which the
physical properties of both phases are discontinuous, and on which surface
tension forces are taken into account. Phase change however is not considered
in the present article, and is the object of ongoing work. The numerical in-
tegration of the single field model is based on front tracking techniques that
have been developed for purely incompressible flows in [44, 17, 40].

The paper is organized as follows: section 2 is devoted to the physical model-
ing equations, considering the case of multiple gaseous inclusions in an incom-
pressible liquid. A single field formulation of such multiphase flows is derived.
In this section we also discuss some specific details concerning the link be-
tween the thermodynamic pressure in the bubbles and the pressure in the
liquid phase. Numerical methods are presented in Section 3. A comparison
with a single pressure method on an isentropic classical test case is provided
in section 4, illustrating the high efficiency of our low Mach method. Section 5
presents numerical results for several non isothermal cases. A validation study
performed on a reference 1D case is first presented. Next are investigated 2D
cases consisting of air bubbles embedded in a closed cavity filled with liquid
water. Conclusions and perspectives will finally be drawn in Section 6.

2 Physical modeling and governing equations

2.1 Specific models for each phase

In this section we develop a single field formulation of a multiphase flow involv-
ing a strictly incompressible liquid phase and a compressible gaseous phase,
the latter being considered under the low Mach number assumption. We con-

5



sider a volume region of interest, <, containing a liquid phase (volume Ωl) and
N gaseous inclusions. The volume of each bubble is Ωk(t) (k = 1, 2, . . . , N).
No mass transfer occurs at the gas-liquid interfaces noted Σk(t). Neglecting
viscous loss in the energy balance, the following Navier-Stokes equations allow
the description of the flow in the liquid and in the gas bubbles:





∂ρ

∂t
+∇ · (ρv) = 0

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · τ + ρg

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T )− T

ρ

(
∂ρ

∂T

)

p

Dp

Dt

p = f(ρ, T )

(1)

where p(x, t) is the pressure, ρ the density, v the velocity, T the temperature,
cp the specific heat, k the thermal conductivity and g the gravitational accel-
eration. The viscous tensor τ is equal to λ∇·vI+ 2µD with Lamé coefficients
λ and µ, D being the strain rate tensor and I the identity tensor. The material
derivative is denoted by D

Dt
= ∂

∂t
+ v · ∇.

The interfaces between the liquid and the gas inclusions act as surfaces of
discontinuity and jump conditions have to be used [8, 12]. As no mass transfer
is considered in the present case, these conditions read:





vl · n = vg · n (a)

(pg − pl)I · n = (τ g − τ l) · n + σκn (b)

(qg − ql) · n = 0 (c)

(2)

where σ is the surface tension coefficient, κ is twice the mean interface cur-
vature which is positive when the center of curvature lies in the gas, n is the
unit normal to the interface, defined to point outside the gaseous phase and q
is the heat flux. In (2) the subscripts l and g denote the values on the liquid
and gaseous sides of the interface.
We will consider in the present paper two-phase systems where an incompress-
ible liquid is in contact with various gas bubbles, each one of them having its
own pressure. For the liquid phase of constant density ρl, the Navier Stokes
equations (1) reduce to:





∇ · v = 0 (a)

ρl

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · τ + ρlg (b)

ρlcp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ) (c)

(3)

Now considering that bubbles are made of the same perfect gas, the Navier
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Stokes equations (1) read in the gaseous phase:





∂ρ

∂t
+∇ · (ρv) = 0

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · τ + ρg

∂T

∂t
+ v · ∇T =

1

ρcp
∇ · (k∇T ) +

γ − 1

γ

T

p

Dp

Dt

p = ρrT

(4)

where r is the ideal gas constant r = cp − cv and γ = cp/cv is the ratio of
specific heats.
The jump equations given by (2) are unchanged. The linear momentum jump
condition notably shows that pressure is continuous through the interface pro-
vided that viscous and surface tension effects be negligible. Velocity should also
be continuous at the interfaces by virtue of the continuity equation.
In this paper are solely considered gas liquid two phase flows and small ve-
locities. In this particular case, the Mach number in the compressible gaseous
phase is small. The flow in the bubbles may then be described using a low
Mach model [33, 6, 24]. Such a model is derived from the fully compressible
Navier Stokes equations (1) expanding each variable into a power series of
the Mach number M0, and taking the asymptotic limit for M0 going to zero.
For each variable, the lowest order term remains in the equations, except for
the pressure p(x, t) which is split in two components, a thermodynamic pres-
sure, uniform in space P (t) and a hydrodynamic pressure p2(x, t). One has
p(x, t) ' P (t) + p2(x, t). As the ratio p2(x, t)/P (t) ∼ M2

0 , the hydrodynamic
pressure p2(x, t) is much smaller than the thermodynamic pressure P (t). For
a single-phase compressible flow of a perfect gas, the low Mach model can be
written, expressing the conservation of mass, momentum and energy (viscous
loss is neglected in the energy balance):





∂ρ

∂t
+∇ · (ρv) = 0 (a)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p2 +∇ · τ + ρg (b)

∂T

∂t
+ v · ∇T =

1

ρcp
∇ · (k∇T ) +

γ − 1

γ

T

P

dP

dt
(c)

P = ρrT (d)

(5)

Using the ideal gas law P (t) = ρ(x, t)rT (x, t), the continuity equation in (5)
may also be written :

∇ · v = −1

ρ

Dρ

Dt
=

1

T

DT

Dt
− 1

P

dP

dt
(6)
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2.2 Derivation of a single field formulation

We now have to build a single set of governing equations that can represent
both phases. As our aim is to model the liquid phase as incompressible and
the gas phase as compressible under the low Mach approximation, this set of
equations must be consistent with equations (2), (3) and (5). In order to de-
velop a generalized single field model, let us classically introduce a Heaviside
function H(x, t), which is the characteristic function of the gaseous phase (H
is equal to 1 in the gas, and equal to 0 in the liquid phase). If N bubbles of
volume Ωj, j = 1, 2, ...N are present in <, each one is marked by its own char-
acteristic function Hj(x, t) and its own thermodynamic pressure Pj(t). The
gas characteristic function H(x, t) is given by H =

∑N
j=1Hj since Ωj

⋂
Ωi = ∅

for i 6= j.

As no phase change is considered in the present paper, H is simply advected
by the flow, and thus obeys to the following transport equation (although this
equation is not directly solved in the front tracking method that we use for
interface treatment):

∂H

∂t
+ v · ∇H = 0 (7)

2.2.1 Continuity and energy equations

We also must define a generalized equation of state valid for the two phases.
The liquid assumed to be incompressible has a constant density ρl. Using the
perfect gas law, a two-phase generalized equation of state can be written as:

ρ(x, t) =
N∑

j=1

Hj(x, t)
Pj(t)

rT (x, t)
+ (1−H(x, t))ρl (8)

Using (6), (7) and (8), it is now possible to establish a generalized continuity
equation valid in both liquid (H = 0) and gas (H = 1) phases :

∇ · v = H(x, t)
1

T

DT

Dt
−

N∑

j=1

Hj(x, t)
1

Pj

dPj
dt

(9)

Similarly is established a generalized energy equation:

(
∂T

∂t
+ v · ∇T

)
=

1

ρcp
∇ · (k∇T ) +

γ − 1

γ
T

N∑

j=1

Hj(x, t)
1

Pj

dPj
dt

(10)
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The thermodynamic pressure may be calculated using an integral relation
that is now derived. Let us suppose that the gaseous phase Ωj(t) is enclosed
by walls or by the liquid phase (case of a bubble for example), and let us denote
by n the unit outward normal to the bounding surface Σj(t). We integrate the
mass equation (9) over Ωj(t) to obtain:

1

Pj

dPj
dt

=
1∫

Ωj(t)
dx

(∫

Ωj(t)

1

T

DT

Dt
dx−

∫

Ωj(t)
∇ · vdx

)
(11)

or equivalently:

1

Pj

dPj
dt

=
1∫

<Hjdx

(∫

<
Hj

1

T

DT

Dt
dx−

∫

Σj(t)
v · nds

)
(12)

This formulation allows for the calculation of the source term 1
Pj

dPj
dt

in the

energy equation (10). Once 1
Pj

dPj
dt

is known, the pressure Pj(t) can be obtained

directly from a time integration, i.e.:

Pj(t) = Pj(t0) · exp
∫ t

t0

(
1

Pj

dPj
dt′

)
dt′ (13)

Let us note for further usage that, owing to incompressibility, the surface term
integration in (12) can be done over any closed contour in the liquid enclosing
the gaseous zone Ωj(t).
An important point to emphasize concerning the above model is that, in addi-
tion to the increased accuracy that can be expected from the splitting of the
pressure into two components of different magnitudes, the calculation of the
thermodynamic pressure using the integral relation (11) constitutes a means
of imposing mass conservation of the gaseous phase separately. This is a very
important advantage over other methods based on the use of a single pressure
field, as will be illustrated on 1D numerical results (section 4).

2.2.2 Momentum equation and pressure issues

We now have to consider the momentum equation issue. Its treatment cannot
be as straightforward as for continuity and energy equations and deserves a
few preliminary comments. Even though the momentum equations as written
in (3-b) and (5-b) appear to be very similar, an essential difference arises due
to the pressure gradient term. Let us recall that the problems of interest in
the present paper concern a liquid volume with several gaseous inclusions,
each one having its own (thermodynamic) pressure. The linear momentum
jump equation (2-b) shows that for any interface, the local pressure is the
same on both gaseous and liquid sides (viscous and surface tension effects
are disregarded here for the sake of comprehension). The difference in the
bubbles’ pressure therefore generates a pressure gradient in the liquid volume
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which induces in turn an acceleration of the liquid. This pressure gradient, ∇p
in Eq. (3-b), is expected to scale as P0/L0 where L0 and P0 are respectively
the characteristic values for the liquid dimension and for the thermodynamic
pressure in the bubbles. On the other hand, the pressure p2 defined in the low
Mach model (5) scales as M2

0P0 leading the pressure gradient in Eq. (5-b) to
scale as M2

0P0/L0. At that point, it is obvious that a proper description of the
incompressible liquid flow cannot be achieved through momentum equation (5-
b). It is clear however that the problem does not arise if the thermodynamic
pressure, although being constant, is retained in the momentum equation of
the low Mach model (5-b), that can equivalently be written:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇(p2 + P ) +∇ · τ + ρg (14)

When using equation (14) to derive the momentum jump equation at the
interfaces, which now reads:

((p2 + P )g − pl)I · n = (τ g − τ l) · n + σκn, (15)

then the total pressure at the gas side has the proper magnitude.

The splitting of pressure in the gas suggests a corresponding splitting of pres-
sure in the liquid, aimed at providing a single momentum equation valid for
both phases. We thus propose to split the liquid pressure field into two com-
ponents Pl and πl that is:

p(x, t) = πl(x, t) + Pl(x, t) (16)

in the liquid.
We choose to define the respective components of the pressure in such a way
that the momentum jump relations split like:





(p2g − πl)I · n = (τ g − τ l) · n + σκn (a)

(Pg − Pl)I · n = 0 (b)
(17)

i.e. the jump relations due to surface tension and viscous tensor are ascribed
to p2g and πl whereas Pg and Pl are equal at the liquid gas interface.
In addition, in the same way as p2 is the Lagrangian multiplier of the conti-
nuity equation in the gas, we ascribe to πl its respective role of Lagrangian
multiplier of the divergence free continuity equation in the liquid. This will
later be used to solve simultaneously for p2 and πl in the framework of a single
field equation in the projection step of the time stepping algorithm. This is
achieved by requiring that Pl be harmonic in the liquid since the divergence
of its gradient is then identically zero.
Finally let us call Pe(x, t) (extended thermodynamic pressure field) the pres-
sure field that is equal to Pj(t) in each bubble and to Pl(x, t) in the liquid.
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Pe is continuous at the interfaces from (17-b). Similarly we call π the hydro-
dynamic pressure field that is equal to p2 in the gas, and to πl in the liquid.
We thus have built two pressure fields defined in the whole domain, their sum
giving the correct jump relations at the interfaces. Using these two pressure
fields a single field momentum equation capable of treating both phases can
be written as:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇π −∇Pe +∇ · τ + ρg (18)

Let us now construct the equation for this auxiliary field Pe(x, t). As said
above, Pe satisfies:




∇2Pe(x, t) = 0, in the liquid

Pe(x, t) = Pj(t), in each gas bubble
(19)

Moreover, since this auxiliary pressure field should not modify the velocity at
the domain boundaries, Pe(x, t) satisfies an homogeneous Neumann bound-
ary condition on the walls of any closed domain. The above constraints are
summarized in the following equation for Pe:

1

η2
Pe(x, t) ·H(x, t) + (1−H(x, t)) · ∇2Pe(x, t) =

N∑

j=1

Hj(x, t) · 1

η2
Pj(t) (20)

supplemented with homogeneous Neumann boundary conditions on the walls.
The quantity η, which is homogeneous to a length, is introduced in the com-
posite equation (20) for dimensional consistency. If the Heaviside function H
was strictly a characteristic function equal to either 0 or 1, the value of η would
have no influence on the solution. However, in the numerical implementation
of the model, H is smoothed over a few mesh cells, leading to the existence
of a transition zone (of fixed width) between the two pure phases where H
can take values between 0 and 1 (see section 3.1). The influence of η on the
numerical solution is analyzed in section 3.2.

As a summary, the governing equations of the single field model are now:





∇ · v = H(x, t)
1

T

DT

Dt
−

N∑

j=1

Hj(x, t)
1

Pj

dPj
dt

(a)

Dv

Dt
= −1

ρ
∇π − 1

ρ
∇Pe +

1

ρ
∇ · τ + g (b)

DT

Dt
=

1

ρcp
∇ · (k∇T ) +

γ − 1

γ
T

N∑

j=1

Hj(x, t)
1

Pj

dPj
dt

(c)

(21)
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Surface tension was not included so far. It can be taken into account by adding
in the right hand side of the momentum equation (21-b) the following integral
source term acting on the interface:

−1

ρ

∫

Σ(t)
σκnδ(x− xs)ds (22)

where xs = x(s, t) is a parametrization of Σ(t). The function δ(x − xs) is a
three-dimensional delta function that is non-zero only where x = xs. We also
use H to construct the material property fields of the fluid for both the liquid
and gaseous phases. For example, one way to construct the viscosity field is
given by:

µ(x, t) = µl + (µg − µl)H(x, t) (23)

where the subscripts g and l refer to the gas and liquid phases respectively.
Similar equations can be written for the thermal conductivity, k, constant
volume, cv, or constant pressure, cp, specific heats.
The jump conditions associated to system (21) are given by Eqs. (2-a), (2-c),
(17). These conditions are not explicitly needed for our formulation, and are
not used in the numerical method. However we will check that they are indeed
satisfied by the numerical solution.

2.3 Illustration on a 1-D Cartesian case

As an illustration, we apply this model on a simple 1-D Cartesian case con-
sisting of a moving liquid zone Ωl = [x1, x2] of constant length L = x2 − x1,
enclosed between two gaseous zones Ω1 and Ω2 of variable length. This case
was investigated in detail in [10], using an ALE approach where liquid and
gaseous domains were considered separately. The thermodynamic pressures in
the gaseous zones are P1(t) and P2(t). We consider here a simplified problem
with no gravity and no viscous effects. Following (3), the formulation of the
dynamic problem in the liquid is:





∂ul
∂x

= 0

∂ul
∂t

+ ul
∂ul
∂x

= − 1

ρl

∂pl
∂x

(24)

The continuity equation shows that ul(x, t) = ul(t). The pressure gradient is
thus uniform in the liquid and may be written :

∂pl
∂x

=
pl(x2, t)− pl(x1, t)

L
(25)

In 1-D Cartesian co-ordinates, the momentum jump equation (2-b) reduces
to:

pg(xk, t) = pl(xk, t) k = 1, 2 (26)
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Using a low Mach model for the gas description, the pressure on the gaseous
side of any interface reads:

pg(xk, t) = Pk(t) + πg(xk, t) k = 1, 2 (27)

Splitting the pressure pl in two components Pe and πl, it comes:

∂pl
∂x

=
∂Pe
∂x

+
∂πl
∂x

(28)

Both terms in the r.h.s. are next identified using Eqs (25-28):

∂Pe
∂x

=
P2(t)− P1(t)

L
∂πl
∂x

=
πl(x2, t)− πl(x1, t)

L

(29)

In this particular 1-D Cartesian case, both pressure fields Pe and π are linear
in the liquid. Using Eqs (24)-(27), the momentum equation in the liquid may
also be written:

ρlL
dul
dt

= [P1(t) + πg(x1, t)]− [P2(t) + πg(x2, t)] (30)

ρlL
dul
dt
∼= P1(t)− P2(t) (31)

One recognizes here the second law of Newton applied to the whole liquid do-
main Ωl. It states that a liquid acceleration arises from the difference between
the (thermodynamic) pressure forces in the two gaseous media.

3 Numerical method

3.1 Interface treatment

The model described above must be coupled to a specific method for tracking
the liquid-gas interface. Among the existing methods, we have chosen here to
use the Lagrangian front tracking method developped in [11], [17], [44] and
subsequent papers. A robust and connectivity free method to reconstruct the
interface for both two and three-dimensional flows is discussed in [40]. This
method uses a Lagrangian discretization and movement of the interface. The
interface is represented by separate, non-stationary computational elements
(straight lines in 2D, triangles in 3D) which are physically connected at their
vertices to form a Lagrangian interface mesh which lies within a stationary
Eulerian finite-difference mesh. The interface elements are used to calculate
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geometric information and their vertices are advected in an explicit Lagrangian
way, by integrating :

dxs
dt

= v (32)

A Heaviside function H(x, t), defined on the Eulerian grid, is found from
the Lagrangian definition of the interface at each time step, by solving the
following Poisson equation:

∇2H = ∇ ·
∫

Σ(t)
n δ (x− xs) ds . (33)

using the definitions introduced in section 2. Once H(x, t) has been deter-
mined from xs we can use it to construct values for the material property
fields of the fluid for both the liquid and gaseous phases, using Eq. (23) and
similar equations for k and cp.
At each time step, information must be passed between the moving Lagrangian
interface and the stationary Eulerian grid since the Lagrangian interface points
do not necessarily coincide with the Eulerian grid points. This is done by a
method that has become known as the Immersed Boundary Technique which
was introduced by Peskin [34] for the analysis of blood flow in the heart. With
this technique, the infinitely thin interface is approximated by a smooth dis-
tribution function that is used to distribute the forces at the interface over
grid points nearest the interface. In a similar manner, this function is used
to interpolate field variables from the stationary grid to the interface. In this
way, the front is given a finite thickness on the order of the mesh size to
provide stability and smoothness. This leads to the existence of a ”mixing”
zone between the two fluids, where the model has no real physical meaning.
Although the interface is smoothed, the method however is free from numer-
ical diffusion since the interface thickness remains constant for all time, as it
is directly controlled through the definition of the smoothed delta function,
which is built on the Lagrangian definition of the interface. The question of
the convergence of the method was considered, for example, in [11], [44].
Surface tension is treated using the method developed in [39], which was shown
to minimize the parasitic currents that are commonly generated by inadequate
numerical representation of surface tension.

3.2 Fixing the parameter η in the equation for extended pressure

In this section we study the behavior of the function Pe in the transition
zone that is created at the interfaces by the Immersed Boundary technique.
Without loss of generality, we restrict our study to the one-dimensional case for
clarity reasons. Let us consider an isolated transition zone of width l between
gas at the left, at thermodynamic pressure P0(t), and liquid at the right. Let
y = x/l be the non dimensional abscissa describing the zone (0 ≤ y ≤ 1)
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(x = 0 corresponding to the left boundary of the transition zone). Setting
χ(y) = H(x, t) and f(y) = Pe(y, t)− P0(t), equation (20) reads:

χ(y)f(y) + (1− χ(y))
η2

l2
f
′′

= 0 (34)

The boundary conditions associated to (34) are : f(0) = 0, f
′
(1) = lgP , where

gP is the thermodynamic pressure gradient across the liquid imposed by the
existence of another separated gaseous area (the extended pressure profile be-
ing harmonic is linear in the liquid in the 1D case). Although Eq. (34) can
be solved only for simple χ profiles, it is interesting to study its behavior for
extreme values of the parameter ε = η/l. For ε � 1, we get f(y) ≈ 0, that is
Pe(x, t) ≈ P0(t) in the transition zone. For ε� 1 we get f(y) ≈ lgPy, that is
Pe(x, t) ≈ P0(t) + gPx. This leads to conclude that the difference between the
two values of ε results in a shift of the global Pe profile by the length l, the
linear part starting at the gaseous side in the case ε� 1 and at the liquid side
in the case ε� 1. In the case where ε takes intermediate values, for instance
ε = 1, the profile of Pe will result in an intermediate curve, with the same
gradient at the liquid side (see Fig. 1 left).
The question is now to analyze whether what happens in the transition zone
has some influence on the gradient of the calculated field Pe. To this end we
must take into account a second gaseous zone that we suppose at thermody-
namic pressure P1, which will fix the extended pressure gradient inside the
liquid. Considering the previous analysis, we can conclude that, in function of
the value of ε, the linear variation of the calculated Pe takes place between the
two gaseous sides (ε � 1), or between the two liquid sides (ε � 1). This will
change the extended pressure gradient of an amount proportional to the width
of the transition zone (thus on the order of the mesh size) as is illustrated in
Fig. 1 (right). The exact value of the gradient will be obtained if the linear
part of Pe originates at the interface, that is in the middle of the transition
zone. Indeed the error will be reduced with mesh refinement. The error also
decreases when the ratio of the transition zone length to liquid width is small.

From the previous analysis we can conclude that η should be of the same
order than l, although any other value will give the correct result at grid
convergence. In results presented in the following, we fixed η = l = 4δx, δx
being the grid cell size.

3.3 Discretization and Projection method

The spatial discretization of model (21)-(11)-(20) is based on centered finite
differences for both the convection and diffusion terms. A staggered mesh is
used, where density, hydrodynamic pressure and temperature are located at
the center of the cells, while the components of the velocity are located on the
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faces. We have used here a first order explicit temporal discretization, but the
extension to semi-implicit second order should be considered in the future. A
classical prediction-projection algorithm is used to compute the velocities [15].
The predicted velocity v∗ is calculated from:

v∗ − vn

δt
= −vn · ∇vn +

1

ρn+1
∇ · τn − 1

ρn+1
∇πn − 1

ρn+1
∇P n

e + g (35)

Calculating v∗ from equation (35) needs to calculate first the extended ther-
modynamic pressure field Pe. To this end Eq. (20) is solved using a BiCGStab
solver.
Once v∗ is known, the projection step consists in extracting vn+1 from v∗ in
such a way that ∇ · vn+1 is zero in the liquid, and equal to its specified value
in the gas. This amounts to solving the following Poisson equation for the
hydrodynamic pressure:

∇ · ( 1

ρn+1
∇φ) =

1

δt
(∇ · v∗ −∇ · vn+1) (36)

where φ = πn+1 − πn is the pressure increment. In the r.h.s. of equation (36),
∇ · vn+1 is obtained using the mass conservation equation (21-a), after the

temperature field and 1
Pj

dPj
dt

in each gaseous inclusion have been calculated.

The latter are calculated using a more convenient form of Eq. (11):

1

Pj

dPj
dt

=
1∫

<Hjdx

(∫

<
Hj

1

T

DT

Dt
dx−

∫

<
Hj∇ · vdx

)
(37)

The solution of (36) requires a robust matrix solver as the coefficients 1/ρ are
discontinuous, the ratio between the gas and liquid density being generally
very large (around 1000 for air-water, much more for example if the liquid is
molten glass). To this end, we have used a multigrid method that is described
in Appendix A.

Once the hydrodynamic pressure is obtained, the velocity is calculated from:

vn+1 = v∗ − δt 1

ρn+1
∇φ (38)

and the hydrodynamic pressure field is updated by:

πn+1 = πn + φ (39)

Let us now sum up the complete numerical methodology for the determina-
tion of the solution at time t = (n + 1)δt, assuming the solution known at
time t = nδt. Due to the non linear coupling of the equations, iterations are
necessary within each time step. Indeed, the calculation of ( 1

P
dP
dt

)n+1
j using

Eq.(37) makes use of the velocity vn+1 which is unknown at the first iteration.
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A convenient first guess for vn+1 can be obtained from the discretization of
a simplified momentum equation, where only the external forces (extended
thermodynamic and gravity forces) are taken into account. It is important to
include the extended pressure force in the first guess in order to avoid selecting
the trivial solution consisting of fluid at rest. For this solution, in the absence
of gravity, the hydrodynamic pressure field is obtained as the opposite of the
thermodynamic pressure field.

The whole procedure is then:

(1) using the front-tracking method, calculate Hn+1
j in each gaseous zone,

Hn+1 =
∑N
j=1H

n+1
j and the new values of k, cp

(2) Set guessed estimates P n+1
j = P n

j , ( 1
P
dP
dt

)n+1
j = ( 1

P
dP
dt

)nj , ρn+1 = ρn,
vn+1 = vn − δt 1

ρn
∇P n

e + δtg

(3) • solve Eq. (21-c) for T n+1 using ( 1
P
dP
dt

)n+1
j

• calculate the new value of ( 1
P
dP
dt

)n+1
j and P n+1

j in each gaseous zone
using vn+1, Hn+1 and T n+1 in (37) and (13)
• calculate ρn+1 using (8)
• calculate the extended thermodynamic pressure P n+1

e (x, t) from (20)
using P n+1

j , Hn+1
j

• calculate ∇ · vn+1 for the Poisson equation using the mass equation
(21-a)
• calculate the predicted velocities v∗ from (35)
• solve (36) for the hydrodynamic pressure increment φ (multigrid)
• project the velocity by (38)
• increment the hydrodynamic pressure by (39)

(4) If the computed thermodynamical pressure, density and velocity are dif-
ferent from the ones used at the beginning of step 3, restart from step 3
for a new iteration.

In the computations presented in this study, two to four iterations were needed
for the convergence of the thermodynamical pressure. However the results with
or without internal iterations were indistinguishable. This might not be true
for other types of flows.

For closed gaseous zones, an important point to emphasize is the compatibility
relation that must be satisfied when processing the integration of (37) to
calculate ( 1

P
dP
dt

)n+1 in each gaseous zone. In the case where the fluid domain
is bounded by walls and includes N closed gaseous zones, replacing the N
equations (37) in (21-a) and integrating over the whole domain results in the
following relation:

N∑

j=1

∫

Ωj(t)
∇ · vdx = 0 (40)
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However, in the front-tracking method, as already mentioned, there exists
a mixing zone, a few cells thick, inside which the velocity results from the
blending of the liquid velocity, which is divergence free, and the gas velocity
which is not. Thus there is no chance that the global balances (40) be zero if
the contour of integration for each gaseous zone is located inside this mixing
zone. In fact the contour of integration must include the mixing zone up to the
liquid, or equivalently the volume integral in (40) must take into account all
grid cells for which Hj is not zero. To do this we define an ”enlarged” function
Hext
j , such that:




Hext
j (x, t) = 1, if Hj(x, t) 6= 0

Hext
j (x, t) = 0, if Hj(x, t) = 0

(41)

This enlarged characteristic function is used for the integration of (37) that
becomes :

1

Pj

dPj
dt

=
1∫

<Hjdx

(∫

<
Hj

1

T

DT

Dt
dx−

∫

<
Hext
j ∇ · vdx

)
(42)

4 Comparison of the 1D low Mach method with a single pressure
method on the Oscillating Water Column test case

In this section we highlight the capability of our low Mach method to produce
accurate results, even when the time step is of the order of the convective
time step, i.e. large compared to an explicit acoustic stability criteria. On the
opposite, we show that a method involving a single pressure (falling in the class
of all Mach methods) needs to be used with small time steps, as it produces
very large numerical diffusion when too large time steps are used. It is likely
that other single pressure methods, which use more or less the same equation
for the pressure, will lead to similar conclusions. This demonstrates that a very
significant gain in efficiency is obtained using our low Mach method. Moreover
the gain is expected to be inversely proportional to the Mach number.
We consider the oscillating water column, a 1D isentropic problem that is
treated in [19] and [18]. The problem is as follows: a closed 1D tube is filled
with a column of water in between of two columns of air. We use the same
physical settings as in [19],[18] (see Fig. 2). At initial state, xfs = 0.1 and all
three columns flow to the right at constant speed u0 = 1 and constant pressure
p0 = 1. Starting from initial state, the air to the right is compressed by the
water while the air to the left expands, generating a pressure difference across
the water column. The water column then starts to oscillate. In the following
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results we use the isentropic equation of state for air:

p/p0 = (ρ/ρ0)1/γ (43)

with γ = 1.4, and initial value ρ0 = 0.001. This also sets the reference speed
of sound value in air ca = (γp0/ρ0)1/2 = 37.42. Water is considered as incom-
pressible, of constant density ρw = 1, and the fluid viscosities are set to zero.
In our low Mach model, the thermodynamic pressure P is used in (43). Let
us notice that in this problem the Mach number in the gas never exceeds 0.03
as we have verified, justifying the low Mach assumption.

In [19], water and air are both treated as compressible fluids, and an explicit
method is used. The work in [18] also treats the water as compressible, and
makes use of a single pressure implicit method aimed at solving all speed
multi-phase flows, where a Helmholtz equation comparable to the one in [7] is
solved for pressure. However in [18] the gas-dynamics equations are not solved
in the gas, avoiding the difficulties of a real two-phase flow computation.
Let us briefly describe the single pressure method that we use for these com-
putations. The flow model is a single pressure isentropic version of (21), that
writes: 




∇ · v = −H(x, t)
1

ρ

Dρ

Dt
= −H(x, t)

1

γp

Dp

Dt
∂v

∂t
+ v · ∇v +

1

ρ
∇p =

1

ρ
∇ · τ + g

(44)

where p is the (unique) pressure that is involved in the equation of state. We
first approximate the continuity equation by:

∇ · vn+1 = −Hn+1 1

γp∗
(
pn+1 − pn

δt
+ v∗∇pn+1) (45)

v∗ being the predicted velocity and p∗ obtained by second order backward
time extrapolation. This results in the following equation for the pressure:

∇ · ( 1

ρ∗
∇φ)− 1

δt2
Hn+1

γp∗
φ− 1

δt

Hn+1

γp∗
v∗∇φ =

1

δt
∇ · v∗ +

1

δt

Hn+1

γp∗
v∗∇pn (46)

with ρ∗ = Hn+1ρ0(p∗/p0)γ + (1−Hn+1)ρw.
We first present the results obtained using our two-pressure low Mach method.
For comparison with an explicit method and the results in [19] and [18], the
time step is calculated as a multiple of the one obtained by using the stability
criteria in [19]:

δt = CFL
δx

maxj|uj|+ cw
(47)

where cw is the value of speed of sound in water used in [19], cw = 144.94. In
the explicit case the stability criterion is CFL ≤ 1, while a stability criterion
based on the convective velocity would allow values of CFL of the order of
100.
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We present results for a uniform grid with δx = 1/40. Fig. 3 presents the time
evolution of the pressure coefficients obtained using our low Mach model, for
two values of the CFL number, CFL = 1 and CFL = 100. The pressure
coefficients are defined as

P (t) =
p(xwall, t)− p0

p0

(48)

where xwall denote the positions at the left and right walls. The pressure p in
(48) is taken as the thermodynamic pressure for the low Mach method. One
can remark that the curves corresponding to CFL = 1 and CFL = 100 are
nearly superimposed, indicating that the method is accurate even using large
time steps. Surprisingly, the pressure levels are the same as in [18], which
are different from those in [19], although we use a two-fluid model. On the
contrary, corresponding results using the single pressure method, presented in
Fig. 4, exhibit a very large dependence on the time step. For CFL = 1, the
results coincide with those given by the low Mach method. For CFL = 100,
the oscillation of the flow decays due to significant numerical dissipation. This
implies that the single pressure method can be used only with small values of
the CFL number based on acoustic speed, leading to poor efficiency.
Fig. 5 and Fig. 6 present the time evolution of the relative error of total mass
of air in the tube for the two methods. The error presents a similar ampli-
tude, about 10−3, for the two methods at CFL = 1. This value is close to
the one reported in [19]. It is much higher than the mass conservation error
reported in [18] (10−7). However in this work the interface was considered as a
moving boundary, described using a level set method combined with a ghost
fluid treatment that avoids the errors due to the jump of the fluids proper-
ties. For CFL = 100, the error of the low Mach method is only about 3-4
times the error for CFL = 1, which shows that the gain in efficiency is not
accompanied by an error increase in the same proportions. On the contrary,
the single pressure method generates much larger mass conservation errors for
large CFL values. Moreover the total mass of air is decreasing, meaning that
air is converted into water. This phenomenon, that was also observed in [19],
does not appear when using the low Mach method, the mass of each fluid
being conserved separately.
We conclude this section with a grid convergence study of the low Mach
method for CFL = 100. Fig. 7 presents the velocity fields at time t = 10,
obtained for increasing grid resolution : δx = 1/40, δx = 1/80, δx = 1/160,
δx = 1/320. In the liquid column the velocity is uniform due to incompress-
ibility, while it is linear in the gaseous columns. One can notice that the differ-
ences between the four grids are small, and that convergence is nearly reached
for δx = 1/80. Moreover the velocity appears continuous at the interfaces,
showing that the jump relations are indeed satisfied.
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5 Investigations of Air-Water configurations using the low Mach
method

All the simulations presented below involve water and air as the incompressible
and compressible fluid respectively. Surface tension is taken into account in
the 2D case, except for case 1. For water, the physical characteristics are the
following : density ρl = 1000 kg/m3, dynamic viscosity µl = 0.001 Pa.s,
thermal conductivity kl = 0.6 Wm−1K−1, specific heat cpl = 4184 JK−1kg−1.
For air, considered as a perfect gas, the values are : dynamic viscosity µg =
1.82 10−5 Pa.s, thermal conductivity kl = 0.0256 Wm−1K−1, specific heat
at constant pressure cpg = 1004.5 JK−1kg−1, specific heat ratio γ = 1.4. For
air/water interfaces the surface tension coefficient is σ = 0.07 Nm−1.
The time step that is used in these simulations is restricted by the explicit
stability condition imposed by the diffusive part of the equations: viscous and
thermal conduction effects, the latest being generally the most restrictive.
Thus the time step is taken as δt = 0.25 δx2/max(k/ρcp). Using an implicit
scheme for the diffusive terms of the Navier Stokes equations would remove
this restriction and allow for the use of a convective time step.

5.1 Numerical results for a 1D non-isothermal problem

A one-dimensional fluid system consisting of two layers of gas (air) enclos-
ing a layer of liquid (water) is considered. The system is closed by two walls.
The total length of the system is 100 µm, the length of the liquid layer is
10 µm, the latter being initially situated at the center of the system. The
initial thermodynamic conditions are P0 = 101, 325 Pa, T0 = 293.15 K. At
initial time, the left wall is heated to Tw = 373.15 K, the right wall being insu-
lated. After a transient evolution, a steady state establishes where the initial
positions of the liquid-gas interfaces are recovered, due to mass conservation.
In the gas, the density at steady state is unchanged, Tf = Tw everywhere, and
Pf = P0 · Tf/T0 = 128, 976.37 Pa following the perfect gas equation of state.
This test case was treated in [10], based on a Arbitrary Lagrangian Eulerian
(ALE) method (moving mesh). In this way, the interfaces between liquid and
gas are real discontinuities, and there are no errors that could be attributed to
the front tracking method and the existence of a mixing zone. Using an accu-
rate discretization, we can consider the results given by this code as reference
results (see [10] for more details about the ALE procedure).
The domain is discretized using 100 grid points. The time step is equal to
10−8s, due to stability limits. Fig. 8 presents trajectories of the two liquid-gas
interfaces. The first remark that can be done is that those trajectories are
parallel (the liquid has a rigid body motion), and that the initial positions
are well recovered. This last point is a very important and demanding test for
mass conservation for the method.
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A logarithmic representation of the interface trajectory reveals that in the
early stages right after the heating of the left wall, an oscillatory motion of
the liquid zone is observed. This effect is entirely due to the gas compressibility
and was analyzed in detail in [10]. The corresponding thermodynamic pressure
history is shown in Fig. 9, in linear and logarithmic scales. As the pressures
in the two gaseous zones are not equal, the liquid undergoes an acceleration.
Fig. 10 shows the fluid velocity in the whole domain, for two successive times.
One can remark that the velocity is constant in the liquid, showing again that
it behaves as a rigid body in this 1D case, whereas it is not the case in the gas
due to compressibility effects. In the first microseconds, high velocities can be
attained. The hydrodynamic pressure at t = 1µs is shown in Fig. 11 (left).
The temperature fields for several successive times are shown in Fig. 11 (right)
and reveal that after an initial transient where a piston effect can be observed
in the rightmost part of the left gaseous zone [28], a purely conductive regime
establishes in the left gaseous zone while temperature is nearly uniform in the
right gaseous zone due to the adiabatic wall condition. The relative total mass
variation in the cavity never exceeds 0.5% throughout the entire evolution,
demonstrating good mass conservation properties of the algorithm.
Finally, in Fig. 12 we compare the results given by the front-tracking algo-
rithm and the ALE approach, the latter being considered as reference. It
can be seen, from the trajectories and the pressures history, that the results
are very close, although the front-tracking algorithm is only first order in
time. This validates the low Mach compressible/incompressible approach in
the front-tracking framework.

5.2 2D numerical results

5.2.1 Case 1 : a bubble in water in a heated box

We now consider a two-phase system: a circular air bubble trapped in the
middle of a hundred micron square container of water. The radius of the bubble
is 30µm. A uniform 32× 32 grid is used. The initial characteristic H function
is presented in Figure 13. To focus on the phenomena of interest, buoyancy
effects are neglected, and surface tension is not taken into account. Initially
the fluid is at temperature T0 = 293.15K, and the thermodynamic pressure
in air is P0 = 101325Pa. At initial time, the walls are heated at temperature
T1 = 373.15K. In water, heating does not induce any flow. However, as soon as
the heat flux becomes significant at the interface, the thermodynamic pressure
increases in the air bubble. Some results are presented in Figures 14 and
15. The time variation of the mean pressure in Figure 15 clearly shows the
mean pressure rise in the container as a result of the corresponding increase
in the temperature of the air bubble. It is interesting to note the initially
constant mean pressure during the phase of heat diffusion in the liquid. Figure

22



15 also shows the evolution of the mean velocity modulus in time, which
reaches a maximum value of the order of 10−6m/s, justifying the low Mach flow
hypothesis that was made. Figure 14 shows the velocity field superimposed on
the temperature field and on the velocity divergence field at time equal 4 s.
The heat amount received by the bubble induces a compression flow inside of
it. The water is not completely motionless as the air flow is not axisymmetric,
due to the square shape of the cavity. Streamlines in the water show the
development of eight vortices around the bubble (figure 14). After a transient
period, steady state is reached, where temperature is at uniform value T1 in
the cavity, and by virtue of mass conservation the thermodynamic pressure in
air satisfies P1/P0 = T1/T0 = 1.273.

5.2.2 Case 2 : two bubbles in water with initial thermodynamic pressure dif-
ference

We consider a 50µm × 100µm rectangular closed box. The box walls are in-
sulated. Two circular bubbles of air with initial radius R1 = 12 µm and
R2 = 12 × √1.4 µm are included inside the liquid, centered at positions
(25 µm, 25 µm) and (25 µm, 75 µm). The initial surface ratio of the bubbles
S2/S1 is thus equal to 1.4. The fluid is initially at rest, and uniformly at a
temperature T0 = 293.15 K. At initial state, the two bubbles are at different
thermodynamic pressures, P1 = 1.4 atm and P2 = 1 atm. When time goes on,
this initial pressure difference induces an oscillatory movement in the liquid, in
the same way as in the above one dimensional case : the bubble at the higher
pressure expands, the other shrinks, this being allowed by compressibility of
the bubbles. As a consequence of the inertia of the incompressible fluid flow
between the two bubbles, the pressure in first bubble decreases below the equi-
librium pressure whereas that in the second bubble rises above equilibrium.
This reverses the direction of the flow, and after that the bubbles undergo an
oscillatory process involving alternate expansions and compressions. Mechan-
ical equilibrium is observed in a short time delay, of about tmech = 150 µs.
Once the mechanical equilibrium is achieved, the system evolves very slowly
towards steady-state due to the viscous and heat conduction effects. Indeed,
the time period required to achieve thermal equilibrium is much longer due to
the large time constant associated with heat transfer in the liquid phase. While
the total area of gas should remain constant, the area of each bubble varies
with expansions and compressions. At steady state, thermodynamic pressure
Pf and temperature Tf are uniform. Let us denote by M1 and M2 the masses
of gas in each bubble, that stay constant all over the evolution. Then we can
write: 




M1 =
P1

RT0

S1 =
Pf
RTf

S1f

M2 =
P2

RT0

S2 =
Pf
RTf

S2f

(49)

23



S1f and S2f being the final surfaces of the bubbles, such that the final ratio
of the surface of the bubbles is:

S2f

S1f

=
M2

M1

=
P2

P1

· S2

S1

(50)

In the same time, we can calculate the final pressure Pf in the bubbles. The
walls being adiabatic and rigid, the total energy in the box remains constant,
implying that the final temperature Tf is equal to T0 as the total surface of
gas and the mass of gas in each bubble is constant. Thus we can write:

M1 +M2 =
Pf
RT0

(S1 + S2) (51)

yielding:

Pf =
P1/P2 + S2/S1

1 + S2/S1

· P2 (52)

In the present case we obtain S2f = S1f and Pf = 7
6
P2 = 118212.5Pa at

steady state.
The results obtained using a 64 × 128 grid are shown in Fig. 16 and 17. The
characteristic function of the bubbles at several successive times is presented
in Fig. 16. The variation of the shape and surface of the bubbles induced
by the thermodynamic pressure variations is clearly seen here. In Fig. 17 are
presented the time variations of several quantities, showing the damped oscil-
lating motion of the system. Fig. 17-a) shows the surface ratio of the bubble,
which should converge to 1 at steady state. An error of about 2% is visible.
The thermodynamic pressures in the two bubbles, shown in Fig. 17-b), oscil-
late out of phase and converge to the same value after 0.15 ms. In Fig. 17-c)
one can see that the mean velocity modulus in the field reaches a value close
to 1 m/s. Local velocities in the flow can reach 3 m/s, and very high accelera-
tions are given to the fluid during the oscillatory period. Fig. 17-d) shows the
normalized total gas area during time evolution, which should stay constant
as the mass of gas is constant. One can notice that the mass conservation error
remains very small all over the system evolution.

In order to quantify the grid convergence of the method, we have reproduced
the same calculations for three different grids : 32×64, 64×128 and 128×256.
Fig. 18 shows the time evolution of the surface ratio of the bubbles and the
total gas area for the three grids. It can be noticed that the frequency of the
oscillations slightly increases as the mesh is refined, and in the same time the
damping time scale decreases. This effect could be related to the antidissi-
pative nature of a first order time discretization. The solution on the middle
mesh is close to that on the finer mesh, indicating that convergence is almost
reached.
Knowing the exact steady values, we have calculated for each mesh the numer-
ical error that is committed at steady state for the three quantities: S2f/S1f ,
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Grid size S2f/S1f Total gaseous area Pf

32× 64 3.2 0.009 0.21

64× 128 1.6 0.007 0.067

128× 256 0.83 0.0001 0.022
Table 1
Convergence study : relative errors at steady state as a function of the grid size (in
%)

total gaseous area and Pf . The relative errors in percentage are compiled
in Table 1. The quantity S2f/S1f is seen to converge with first order accu-
racy, which is consistent with the first order accuracy in time of the scheme.
However the convergence rate of the thermodynamic pressure is close to sec-
ond order, while it is not regular for the total gaseous area. The reason why
convergent rates are not the same for all variables remains unclear. The front
tracking method also has some influence which is difficult to quantify precisely.

5.2.3 Case 3 : six bubbles in water with initial thermodynamic pressure dif-
ference

We consider a 100µm × 150µm square closed box. A uniform 128 × 192 grid
is used. The box is filled with liquid water. Six identical circular air bubbles,
12 µm in radius are regularly distributed in the liquid, as shown in Fig. 19
(left) which presents the initial field of the characteristic function H. The
fluid is initially at rest with a uniform temperature T0 = 293.15K; differ-
ent values of the thermodynamic pressure are imposed inside the bubbles as
Pj0 = 1.4 atm for j = 1, 4, 6 and Pj0 = 1 atm for j = 2, 3, 5, where the sub-
script j represents the bubble’s number and the subscript 0 stands for initial
conditions (see Fig. 19 (left) for the numbering of the bubbles). At the very
beginning of the transient process, the three bubbles with the highest pres-
sures expand leading to the subsequent shrinkage of the three other bubbles.
Mutual interactions then produce a complex multimodal oscillatory process
until mechanical equilibrium is observed. This happens in a short time delay,
of about tmech = 100 µs. At that time, thermodynamic pressure is the same
in all six bubbles as illustrated in Fig. 22 (right). Computed data show that
at time tmech, the temperatures within the bubbles are almost equal to T0 and
that only small superheats are noticeable in the liquid, close to the bubble’s
interfaces. Then combining in a first approximation, mass conservation and
the equation of state for all six bubbles, one may estimate the thermodynamic
pressure at time tmech:

Pf =

∑6
j=1(Pj0Sj0)
∑6
j=1 Sj0

=

∑6
j=1(Pj0)

6
= 1.2 atm (53)
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The bubble surface at time tmech reads:

Sjf
Sj0

=
Pj0
Pf

for j = 1, 2, ...6 (54)

Numerical values are
Sjf
S0

= 7
6

for j = 1, 4, 6 and
Sjf
S0

= 5
6

for j = 2, 3, 5. Com-
puted data presented in Fig. 22 are in close agreement with these estimated
theoretical values.

The transient oscillating process (i.e. t < tmech) is now discussed. In Fig. 19,
the characteristic functions of the bubbles are presented for several successive
times including tmech. In addition, in Fig. 20 and 21 are also displayed for time
t = 3 µs the velocity field superimposed on the hydrodynamic pressure field,
the extended thermodynamic pressure field as derived from Eq. (20) and the
temperature field.
During the transient process, interactions between bubbles lead to deviations
from the initial circular shape. The circular shape is however recovered at time
tmech due to surface tension effects.

The hydrodynamic pressure (π) presented in Fig. 20 and the extended thermo-
dynamic (Pe) pressure fields presented in Fig. 21 show, as expected, that these
two quantities are very different in magnitude. Pressure π is discontinuous at
the bubble’s interface due to surface tension, its value inside the bubbles being
higher than in the liquid. Spatial variations of the hydrodynamic pressure are
about ρlV

2 in magnitude. Concerning the extended thermodynamic pressure
field Pe, it is reminded here that values inside the bubbles are the uniform
thermodynamic pressures, their magnitude being about 105Pa.

The velocity field, superimposed with the hydrodynamic pressure field in
Fig. 20, reveals 2D complex flows in both the liquid and gaseous phases. One
can remark that the velocity field is smooth in the vicinity of the interfaces,
although we consider large density ratio and real surface tension effects. The
liquid motion induced by the bubbles’ expansion or compression may be as-
sociated, in the early stages, to a velocity as large as 1 m/s.

At time 3 µs, temperature is uniform in the liquid, equal to the initial value
T0 due to the high thermal mass. On the other hand, the temperature inside
the six bubbles is modified. Three bubbles, i.e. #1, 4, 6 are cooled due to the
expansion process, their respective temperatures being lower than the initial
value T0 = 293 K. In contrast, bubbles #2, 3, 5 are heated due to the work
supplied by compression. Their temperatures are thus higher than the initial
value. One will note that temperature in the bubbles is not uniform as time
t = 3 µs is smaller than the characteristic time scale for heat diffusion in the
gas, estimated to be about 7 µs.
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6 Conclusions and perspectives

In this work, a single field model aimed at the numerical simulation of liquid-
gas flows has been proposed. The liquid phase is considered as strictly in-
compressible, while compressibility effects are taken into account in the gas
through a low Mach approach. In contrast with previous works, our model al-
lows for the complete mechanical and thermal description for the dynamics of
each the two phases. The interface is treated using a front-tracking approach.
In the case of multiple gaseous inclusions, the single field approach raises the
problem of taking into account thermodynamic pressure differences effects.
We propose a solution to this problem via the definition of an extended ther-
modynamic pressure field, which allows to recover the correct interface jump
conditions. In addition, our method has the advantage of avoiding arithmetic
precision problems that could be encountered if the thermodynamic pressure
was incorporated into the hydrodynamic pressure field, the latter being several
orders of magnitude smaller.
Concerning the numerical solution, the unsteady momentum equations are ad-
vanced in time through a prediction-projection time stepping algorithm. The
projection step is done with a multigrid algorithm capable of dealing efficiently
with large fluid density ratios. It allows us to enforce the divergence free con-
dition in the liquid phase, and the specified value of the velocity divergence
in the gas phase. The algorithm enforces exactly compatibility conditions and
the coherence between energy and continuity equations at the discrete level.
To illustrate the efficiency of our method, the Oscillatory Water Column isen-
tropic test case was considered and comparisons were made with a single
pressure (all Mach) method. We showed that the low Mach method allows
the use of much larger time steps while maintaining time accuracy. Then
the entire algorithm was first validated against a 1D reference non isother-
mal case. Calculations were next performed for 2D test cases where the flow
is driven by thermopneumatic effects. Time evolution of the dynamics of the
flow is discussed, showing that the whole configuration relaxes in an oscilla-
tory way towards steady state. Alternate compression and dilatation phases
result in corresponding heating and cooling of the gas within each bubble. In
all cases, real fluids were considered (water and air), showing the robustness
of the method with respect to the large density ratio involved.
Current work concerns the implicitation of the numerical method and its ex-
tension to second order accuracy in time. This should allow gain in CPU time,
as the present explicit scheme is somewhat time consuming due to the restric-
tive diffusive stability condition. This is especially important as we plan to
consider 3D applications, for which the optimization of the numerical method
will be crucial. From the physical point of view, the model will be extended to
take into account phase change. An important feature of our model is that, in
contrast with purely incompressible approaches [17], it will give the possibility
to account for the saturation curve, which links pressure and temperature at
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the interface for liquid-vapor flows.
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A. Multigrid solver for the Poisson equation

The projection step consists in solving the equation

∇ · (λ∇f) = s (55)

with homogeneous Neumann boundary conditions, where λ = 1
ρ
. For the two-

phase flow configurations at hand, the density ρ is a discontinuous field with
jumps of three orders of magnitude. Efficient solution of this type of equation
has been the subject of intense research, as its solution can consume more then
80% of the total computing time, in particular when an explicit scheme is used
for the prediction step. To this aim we use a multigrid solver along the lines
of the algorithm proposed in [27, 21]. It is not our purpose to discuss in detail
the multigrid procedure which is well documented in several textbooks [2].
The ingredients of any multigrid procedure are the expression of the operator
on the coarse grids, the relaxation scheme, the smoother, the coarse transfer
operator that transfers the residual from a given grid to the next coarser grid
and the fine transfer operator that transfers the correction from a grid to the
next finer one to add it to the current estimate of the correction.

The computational domain Ω is covered with N×M cells of size ∆xi×∆zj, i =
1, · · · , N, j = 1, · · · ,M . λ is defined by its values at the cell centers λij. The
solution is also sought at the cell centers. The finite volume discretization of
the flux in (55) reads

λi+1/2,j
fi+1,j − fi,j
xi+1,j − xi,j

at the east side of the cell with similar expressions for the other faces. Following
[27, 21], the main idea of the algorithm is to enforce continuity of fluxes at
the cell interfaces. It is well known that this is achieved by defining λi+1/2,j as
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the harmonic average of λi+1,j and λi,j that is

2

λi+1/2,j

=
1

λi+1,j

+
1

λi,j
.

The coarse grids are defined by merging together two cells in each direction,
which sets the cell boundaries as guidelines to define the coarse grids. The cell
centers are defined accordingly. Once the grid is defined, we define λij on a
grid from the weighted average of the 4 corresponding values on the next finer
grid. Likewise, the residual restriction transfer operator is defined as the sum
of the residuals of the four corresponding cells, which ensures conservativity
of the mass unbalance.

The relaxation scheme is a simple SOR iteration whose acceleration parameter
is adjusted empirically in order to produce the best convergence rate.

Concerning the interpolation operator for the correction of the error, it is also
defined to ensure a constant flux interpolation in the following way: for each
coarse cell, 8 constant flux interpolations are first produced from coarse cell
neighbors, 4 at the middle of the faces, 4 at the corners. With straightforward
notations,

fe =
λi+1,jfi+1,j + λi,jfi,j

λi+1,j + λi,j
; fen =

λi+1,j+1fi+1,j+1 + λi,jfi,j
λi+1,j+1 + λi,j

with similar expressions for the other values. For each coarse cell, the cor-
responding 4 fine cell values are then defined as the arithmetic mean of the
interpolated coarse values at the four corresponding corners.

In addition, for other application purposes, we define a solid phase indicator
allowing for the presence of solid parts. One has then to solve the pressure
equation with the homogeneous Neumann boundary conditions imposed at the
fluid solid interface. The difficulty is to take into account this boundary condi-
tion to construct the operator in a systematic way. To do this, we recursively
define the solid indicator of the coarse grids with the following principle : a
coarse grid is considered as liquid iff one of the four corresponding fine cells is
liquid. With all the ingredients, all operators can be recursively defined on all
grids, allowing for an automatic algorithm once the various indicator functions
are defined on the finest grid.
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Fig. 3. Low Mach method. Time evolution of the pressure coefficients at left and
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blue dashed and dotted lines, left and right boundaries, CFL=100).
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Fig. 4. Single pressure method. Time evolution of the pressure coefficients at left
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CFL=1, blue dashed and dotted lines, left and right boundaries, CFL=100).

time

M
(x

1
00

0)

0 2 4 6 8 10-3

-2

-1

0

1

2

3

4

Fig. 5. Low Mach method. Time evolution of relative error in total mass of air. Solid
line : CFL=1, dash-dotted line : CFL=100.

31



time

M
(x

1
00

0)

0 2 4 6 8 10-20

-15

-10

-5

0

Fig. 6. Single pressure method. Time evolution of relative error in total mass of air.
Solid line : CFL=1, dash-dotted line : CFL=100.

X

ve
lo

ci
ty

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 7. Low Mach method, CFL = 100. Grid convergence of the velocity field at
time t = 10. Solid black line δx = 1/320, blue dash-dot-dotted δx = 1/160, green
dash-dot δx = 1/80, red dashed δx = 1/40.

interfaces positions ( µ m)

tim
e

(s
)

40 45 50 55 60 65
0

0.1

0.2

0.3

0.4

waterair air

interfaces positions ( µ m)

tim
e

(s
)

44 45 46 47 48 4910-7

10-6

10-5

10-4

10-3

10-2

10-1

Fig. 8. Trajectories of interfaces, in natural time scale (left), log scale (right).

32



time (s)

th
er

m
od

yn
am

ic
pr

es
su

re
s

0 0.1 0.2 0.3 0.4 0.5
1

1.05

1.1

1.15

1.2

1.25

1.3

P1
P2
exact (steady state)

time (s)

th
er

m
od

yn
am

ic
pr

es
su

re
s

10-7 10-6 10-5 10-4 10-3 10-2 10-11

1.05

1.1

1.15

1.2

1.25

1.3

P1
P2
exact (steady state)

Fig. 9. Thermodynamic pressures (atm) in the gas zones, in natural time scale (left),
log scale (right).

X (µm)

ve
lo

ci
ty

(m
/s

)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

X (µm)

ve
lo

ci
ty

(m
/s

)

0 20 40 60 80 100

-4E-05

-2E-05

0

Fig. 10. Velocity in the domain, t = 1µs (left), t = 1ms (right).

x (µm)

hy
d

ro
d

yn
am

ic
pr

es
su

re
(P

a)

0 20 40 60 80 100

-400

-300

-200

-100

0

X (µm)

T
(K

)

0 20 40 60 80 100

300

320

340

360

Fig. 11. Left : hydrodynamic pressure (Pa), t = 1 µs. Right : temperature (K),
t = 1 µs, t = 4, 5, 6, 7, 8, 9 ms.

33



interface position (µm)

tim
e

(s
)

44 45 46 47 48 49
10-7

10-6

10-5

10-4

10-3

10-2

10-1

FT
ALE

time (s)

th
er

m
od

yn
am

ic
pr

es
su

re
s

10-7 10-6 10-5 10-4 10-3 10-2 10-11

1.05

1.1

1.15

1.2

1.25

1.3

FT
ALE

Fig. 12. Comparison of the front-tracking (FT) and ALE results. Left : left interface
trajectory. Right : Thermodynamic pressures (atm).

Fig. 13. Heated square box. Initial H function. Reference length L = 100µm.
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[25] Le Quéré, P., Weisman, C., Paillère, H., Vierendeels, J., Dick, E., Becker,
R., Braack, M., Locke, J.: Modelling of natural convection flows with large
temperature differences. Part 1 : Reference solutions. Math. Modelling
and Num. Analysis 39(3), 609–616 (2005)

[26] Legendre, D., Borée, J., Magnaudet, J.: Thermal and dynamic evolution
of a spherical bubble moving steadily in a superheated or subcooled liquid.
Phys. of Fluids 10, 1256–1272 (1998)

[27] Liu, C., Liu, Z., McCormick, S.: An efficient multigrid scheme for elliptic
equations with discontinuous coefficients. Comm. in Applied Num. Meth.
8, 621–631 (1992)

40



[28] Masuda, Y., Aizawa, T., Kanakubo, M., Saito, N., Ikushima, Y.: Numer-
ical simulation of two-dimensional piston effect and natural convection in
a square cavity heated from one side. International Communications in
Heat and Mass Transfer 31(2), 151–160 (2004)

[29] Ménard, T., Tanguy, S., Berlemont, A.: Coupling level set/vof/ghost fluid
methods: Validation and application to 3d simulation of the primary
break-up of a liquid jet. Int. Journal of Multiphase Flow 33, 510–524
(2007)

[30] Og̃uz, N., Prosperetti, A.: The natural frequency of oscillation of gas
bubbles in tubes. Journal of Acoustical Society of America 103(6), 3301–
3308 (1998)

[31] Ory, E., Yuan, H., Prosperetti, A., Popinet, S., Zaleski, S.: Growth and
collapse of a vapour bubble in a narrow tube. Physics of fluids 12(6),
1268–1277 (2000)
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