
Numerical study of liquid inclusion oscillations inside a closed 1-D

microchannel filled with gas

M.-C. Duluc O.P. Le Maître V. Daru P. Le Quéré∗

Preprint submitted to microfluidics and nanofluidics

Abstract

The motion of a liquid inclusion inside a 1D microchannel filled with gas and externally
heated is simulated. An incompressible formulation is used for the liquid while a low Mach
approximation is considered for the gas flow. Gas-liquid interfaces are captured using an ALE
method. The whole liquid-gas system is shown to behave as a damped oscillator. Natural fre-
quency of the linearized system and associated eigenmodes are first identified. Forced oscillations
are investigated for different heating conditions (temperature or heat flux) at the microchannel
ends. Detailed analyses are performed and reveal the main thermo-mechanical effects involved
in the oscillations. The relevant parameters governing the dynamics are found out through a
dimensionless analysis. Finally, heating conditions leading to non decaying oscillations of the
liquid inclusion are proposed.

1 Introduction

Micro electromechanical elements (MEMS) make a wide use of fluid flows in microchannels (<
1 mm). Due to the small size of the channels, these flows are associated with low values of the
Reynolds number and are therefore laminar. Various operations like pumping, mixing, separation,
. . . , require a controlled motion of the fluid. This motion is often generated by the conversion
of electrical energy into mechanical energy (displacement of a moving part), for instance in mi-
cropumps using piezoelectric membranes. Recent papers have shown that thermal actuation could
be another suitable means to achieve fluid motion in microfluidic systems. This was achieved for
instance using thermocapillary forces (displacement of a liquid plug, see [8]) or thermal expansion
of a fluid (for micromixing [19] or deformation of a membrane in a micropump [4]). Beyond exper-
imental evidences of thermal actuation feasibility for microfluidic systems, a better understanding
of the physical phenomena involved, specifically those associated with microscales, is still needed
to improve the design of such devices. To model these systems, one has to account for various
physical effects, including thermodynamics, heat transfer and fluid dynamics.

The present study focuses on a simplified system consisting in a liquid inclusion inside a closed
microchannel filled with a gas. The main objective is to investigate an idealized thermopneumatic
actuator, which relies on heating/cooling at the channel ends to induce gas expansion/contraction in
order to displace the liquid inclusion. Special attention is paid to oscillations of the liquid inclusion
induced by periodic heating at the channel ends. As a first approach towards the modeling of
such oscillatory flows, a simplified system is considered. In this approximation, variations of the
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flow in the channel transverse direction are disregarded, i.e. the flow is one-dimensional. Also,
surface tension effects and wall friction, that are present in real systems, are ignored in the present
model. It is clear that these effects may have a significant impact on the microflow dynamics.
Nevertheless, this simplified model is expected to provide qualitative estimates of the essential
scales and phenomena related to the thermopneumatic effects which are the focus of the present
work. To be quantitatively relevant to actual microsystems, the model will need to be complemented
to account for 2D effects (slip velocity, temperature jump, surface tension), this is the object of
ongoing efforts.

The simulation of microfluidic flows rises various difficulties. A first aspect concerns the validity
of a continuous description using the Navier-Stokes equations, as opposed to discrete models. A
major difficulty in the simulation of microflows arises with the presence of different phases with high
density ratio (such as for microbubbles in liquids) and contrasted compressibilities. This requires
the use of robust numerical strategies capable of handling flows with discontinuities in the fluid
properties in addition to the tracking of the interfaces between the phases. To address these difficul-
ties, various numerical methods are proposed in the literature. For continuous models, as concerned
in this paper, both Lagrangian (particle methods [11], Smoothed Particle Hydrodynamics [10],. . . )
and Eulerian (finite -volumes, -differences, -elements,. . . see e.g the review papers [7, 5]) discretiza-
tions of the Navier-Stokes equations have been used previously. Similarly, numerical methods for
the interfaces description can be gathered into Eulerian (level-set [16, 14], volume of fluid [18],
Lattice-Boltzmann [22, 23],. . . ) and Lagrangian (immersed interface method [20, 9], boundary el-
ement method [17]) approaches. All these techniques for the interface treatment rely on a single
fluid domain involving a single set of equations for all phases and discontinuous properties across
the interfaces (single field formulation).

In this work, we adopt an alternative strategy where different sets of governing equations are
considered in the liquid and gas domains. An Arbitrary Lagrangian Eulerian (ALE) formulation
is used to account for the deformations and displacements of the liquid and gas domains. Doing
so, we are able to use governing equations well suited to the dynamics of each phase. Specifically
the incompressible Navier-Stokes equations are used in the liquid domains, while compressibility
is taken into account in the gas domains. Still, for microchannel flows, the gas velocity is small
compared to the acoustic velocity and a low Mach number approximation is valid. The so-called
low-Mach approximation as proposed in [12, 2] consists in filtering-out unwanted fast acoustic waves
from the full set of compressible Navier-Stokes equations, while accounting for the state equation,
and so, modeling of essential thermopneumatic effects. In [6], we have proposed a low-Mach model
for the description of liquid-vapor flows. This model has been adapted to the present system
by introducing the ALE method for the motion of interfaces. The resulting model allows for an
accurate representation of the dynamics in each phase and of the interfaces location and conditions.
These features are essential for the problem considered in this work, where thermopneumatic effects
are the driving phenomenon.

The paper is organized as follows. The physical model of the system is presented in section 2.
Details are provided on the interfaces boundary conditions and dynamics, while a numerical algo-
rithm for the resolution of the resulting set of equations is given in Appendix A. In Section 3, a
preliminary study, based on a simplified version of the model, is conducted to yield the natural
frequencies of the oscillating liquid inclusion. The non linear dynamics of the liquid inclusion is sub-
sequently investigated in Section 4 using different forcings applied at the channel ends. The relevant
dimensionless parameters governing the dynamics are identified. Major findings are summarized in
Section 5.
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2 Physical model

2.1 Physical system

We consider the one-dimensional fluid system consisting of two layers of gas (Ω1 and Ω2) enclosing
a liquid layer (Ωl). The system is closed by two walls. The situation is depicted in Fig. 1. We
denote l1, l2 and ll the dimensions of the two gases and liquid domains respectively: li = |Ωi|. The
total length of the system is L = l1 + l2 + ll. We denote Γ1 (resp. Γ2) the gas-liquid interface
between Ω1 (resp. Ω2) and Ωl. Gaseous domains of small extension are considered in the present
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Figure 1: Schematic representation of the layered fluid system.

study (li . 50 µm). The gas flow regime is first identified using the Knudsen number [3]:

Kn = λ/l, λ =
1√

2πd2

kT

P
. (1)

The gas considered in the present study is air. The highest value likely to be encountered for the
mean free path λ, corresponds to a temperature T = 373.15 K and to a pressure P = 101325 Pa.
Using for the molecular diameter d = 0.37 nm, one obtains λ ' 84 nm. Characteristic length for
the gas domains is l ' 10−5 m, leading to characteristic Knudsen number of about 0.01. This
value of the Knudsen number suggests that a continuous model is adapted to the simulation of
the flow. Nevertheless, for 10−3 ≤ Kn ≤ 10−1 slip conditions need to be considered at the domain
boundaries [3]. For one-dimensional flows with fixed walls, the velocity slip condition is not relevant.
This will be however necessary in the future extension of the model to domains with finite thickness.
The temperature jump condition at the wall writes as:

T − Tw =
Ft − 2

Ft

2γ

γ + 1

λ

Pr

(

∂T

∂x

)

wall

(2)

with the thermal accommodation coefficient Ft, the Prandtl number Pr = 0.7, the specific heat
ratio γ = 1.4 and ( ∂T

∂x )wall the normal wall temperature gradient. Estimating the gradient as ∆T/l,
with ∆T ∼ 80 K the wall temperature rise in the simulations below, and assuming a perfectly
diffuse reflection (Ft = 1), we obtain T − Tw ∼ 0.2 K. This estimate, though not negligeable, is
much less than ∆T . As a result, temperature jump will be neglected in the following. As for the
slip velocity, temperature jump will have to be accounted for in two-dimensional systems.

2.2 Gas layers

The gases in layers 1 and 2 are the same, with thermal conductivity kg, specific heat capacities cg
p

and cg
v and viscosity µg. The gas is assumed ideal with state equation:

P 1,2 = ρ1,2rT 1,2, (3)

where P i is the thermodynamic pressure, ρi the gas density, T i the gas temperature, and r the ideal
gas constant. The characteristic Mach number, Ma, of the gas flows is Ma = U/C with C =

√
γrT
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the sound velocity, γ = cg
p/c

g
v , and U the characteristic flow velocity based on the characteristic

interface displacement velocity. Assuming Ma � 1, the asymptotic analysis of the full system
of compressible Navier-Stokes equations shows that, at leading order in Ma, the thermodynamic
pressure in each gaseous domain is uniform:

P i(x, t) = P i(t), i = 1, 2.

This approximation corresponds to the low Mach model of the fully compressible Navier-Stokes
equations, for which acoustic waves are filtered-out [12, 2]. The corresponding mass, momentum
and energy conservation equations are [2, 12, 21]:

∂

∂t
ρi +

∂

∂x
(ρiui) = 0, (4)

ρi ∂

∂t
ui + ρiui ∂

∂x
ui = − ∂

∂x
Πi + µg ∂2

∂x2
ui, (5)

ρicg
p

(

∂

∂t
T i + ui ∂

∂x
T i

)

= kg ∂2

∂x2
T i +

d

dt
P i, (6)

where ui is the gas velocity and Πi the hydrodynamic pressure.

2.3 Liquid layer

The liquid has a thermal conductivity kl and a specific heat capacity cl. It is assumed incompress-
ible, so for one-dimensional flow the velocity in Ωl is uniform and the liquid density constant:

ul(x, t) = ul(t), ρl(x, t) = ρl. (7)

The momentum and energy conservation equations in the liquid consequently simplify to:

ρl d

dt
ul = − ∂

∂x
Πl, (8)

ρlcl

(

∂

∂t
T l + ul ∂

∂x
T l

)

= kl ∂2

∂x2
T l. (9)

It follows that the pressure gradient in the liquid is constant and proportional to the pressure
difference at the interfaces:

∂

∂x
Πl =

Πl(Γ2, t) − Πl(Γ1, t)

ll
(10)

2.4 Boundary conditions and interface dynamics

At the interface Γi, the solutions in the gas and liquid domains satisfy the following continuity
relations:

T i(Γi, t) = T l(Γi, t) (11)

kg ∂

∂x
T i(Γi, t) = kl ∂

∂x
T l(Γi, t) (12)

ui(Γi, t) = ul(Γi, t). (13)

For the pressure on the interface, we identify the hydrodynamic pressure in the liquid domain with
the thermodynamic pressure in the gas domain:

Πl(Γi, t) = P i(t) i = 1, 2. (14)
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Boundary conditions in the gaseous domains for x = 0 and x = L are also needed. For the velocity,
these are ui = 0 as discussed previously. For temperature, Dirichlet and Neumann conditions will
be used depending on the problem considered.

The liquid being incompressible, it is first remarked that both interfaces move with equal velocity
so

d

dt
Γ1 =

d

dt
Γ2,

d

dt
l1 =

d

dt
Γ1 = − d

dt
l2, (15)

and the dynamics of the liquid layer is entirely determined by l1(t): ul = dl1/dt. From the state
equation Eq. (3), we have

∫

Ωi

P i(t)

T i(x, t)
dx = r

∫

Ωi

ρi(x, t)dx = rmi, (16)

where mi is the mass of gas in Ωi. Since we assume no phase change dmi/dt = 0. Now, introducing
the harmonic mean

〈

T i(t)
〉

defined as:

1

〈T i(t)〉 =
1

〈T i〉 ≡ 1

li

∫

Ωi

dx

T i(x)
. (17)

we obtain from Eq. (16)

P i(t) =
rmi

li(t)

〈

T i(t)
〉

. (18)

Then, using equations (14) and (10) the momentum equation (8) in the liquid becomes:

ml d
2l1(t)

dt2
= r

[

m1

〈

T 1
〉

l1
− m2

〈

T 2
〉

l2

]

. (19)

This differential equation yields time evolution of the liquid layer position. In Appendix A we
provide a quick overview of the numerical methods and algorithms used for the resolution of the
flow dynamics.

3 Linear dynamics of free systems

Before considering the full non-linear problem, we provide in this section a simplified linear analysis
aiming at exhibiting the relevant time-scales of the problem. To this end, we focus on oscillations
in the free system around an equilibrium state corresponding to a temperature Te, pressure Pe,
and domain sizes lie. By free system, we mean the system without forcing, i.e. with both walls
thermally insulated.

3.1 Linear eigen-problem

We start by deriving a first linear approximation for the dynamics of free oscillations of the layered
system. We consider displacements of the interfaces, hereafter denoted ε(t), small compared to l1e
and l2e . We further assume in this first approach that: a) the displacement of the interfaces is slow
compared to the sound velocity C =

√
γrTe; b) temperature in each gaseous domain is uniform and

dependent on time only. The conservation equations for the gas internal energies (ei = micg
vT i)

simplify consequently to










m1cg
v

d

dt
T 1 = −P 1 d

dt
ε − q”1→2,

m2cg
v

d

dt
T 2 = P 2 d

dt
ε − q”2→1,

(20)
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where q′′1→2 = −q′′2→1 is the heat flux transferred from domain 1 to domain 2. The heat flux is
classically modeled as

q”1→2 =
T 1 − T 2

Rl
, (21)

where Rl is the thermal resistance of the liquid layer defined as Rl ≡ ll/kl. The equations of the
simplified dynamics are then (20), (21) and the equation for the dynamics of the liquid layer:

ml d2

dt2
ε = P 1 − P 2.

The mass conservation equations are in turn

m1 = ρel
1
e = ρ1(l1e + ε), m2 = ρel

2
e = ρ2(l2e − ε), (22)

with ρe = Pe/rTe the equilibrium density. With this latter relation, the perturbations equations
become

m1cg
v

d

dt
T ′

1 = −r
m1

l1e + ε
(Te + T ′

1)
d

dt
ε − T ′

1 − T ′

2

Rl
,

m2cg
v

d

dt
T ′

2 = r
m2

l2e − ε
(Te + T ′

2)
d

dt
ε +

T ′

1 − T ′

2

Rl
,

d2

dt2
ε =

r

ml

[

m1

l1e + ε
(Te + T ′

1) −
m2

l2e − ε
(Te + T ′

2)

]

,

where primes denote temperature perturbations from the equilibrium conditions: T i ≡ Te + T ′

i .
Finally, introducing the interfaces velocity ε̇ ≡ dε/dt and linearizing these equations, one obtains
the following system of first order linear ODEs:

m1cg
v

d

dt
T ′

1 = −Peε̇ −
T ′

1 − T ′

2

Rl
,

m2cg
v

d

dt
T ′

2 = Peε̇ +
T ′

1 − T ′

2

Rl
,

ml d

dt
ε̇ = −rTe

[

m1

(l1e)
2

+
m2

(l2e)
2

]

ε + r

[

m1

l1e
T ′

1 −
m2

l2e
T ′

2

]

,

d

dt
ε = ε̇.

This system of ODEs can be recast in the matrix form,

d

dt
X = [A]X, (23)

for the vector X ≡ (T ′

1 T ′

2 ε̇ ε)t. The characteristics of small amplitude free oscillations are obtained
by solving the eigen-problem

λX = [A]X. (24)

For simplicity, we focus on the case where l1e = l2e = le, so m1 = m2 = me = ρele. In such conditions,
[A] has the following structure:

[A] =









−α α −β 0
α −α β 0
η −η 0 κ
0 0 1 0









. (25)
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Since the matrix [A] is not symmetric, complex eigenmodes are expected. In fact, [A] has two real
eigenvalues, one of which being zero, and a complex conjugate pair of eigenvalues. Specifically,
the first eigenvalue λ = 0 corresponds to a steady mode, with equal temperature perturbation in
the two domains and unperturbed interfaces ε = ε̇ = 0 (see Fig. 2 for a schematic representation).
The second real eigenvalue, λ < 0, corresponds to a monotonic decay of the perturbation with
characteristic time-scale τd = −1/λ. The eigenmode exhibits opposite temperature perturbation
T ′

1 = −T ′

2 and consistent interface perturbations (e.g. ε̇ = λε). Finally, the two conjugate modes
correspond to damped oscillations with frequency fo = |Im(λ)|/2π and damping time scale τo =
−1/Re(λ).

le le
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Figure 2: Schematical representation of the eigenmodes for the linearized system dynamics (vertical
arrows represent evolutions of gas temperatures and horizontal arrows the interfaces velocity).

The characteristic damping times τd and τo of the monotonic and oscillatory dynamics are
reported as a function of Rl in Fig 3 for an air-water system with L = 100 µm le = 45 µm,
ρl = 1000 kg/m3, Pe = 101325 Pa, Te = 293.15 K, r = 286.69 J kg−1K−1 and cg

v = 714 J kg−1K−1.
It shows that the monotonic decay is faster as the thermal resistance of the liquid R l → 0. This
expected behavior has to be contrasted with the oscillatory damping time scale τo. Indeed, if
τo increases with liquid thermal resistance when Rl becomes higher than > 10−4 Km2W−1, it
also increases when Rl → 0. This trend suggests that two mechanisms are competing in the
oscillatory dynamics, a different one being dominant depending on the liquid thermal resistance.
This competition between oscillatory mechanisms is even more stressed in Fig. 4 where plotted is
the oscillation frequency fo as a function of the thermal resistance Rl: the fo value levels down and
up as Rl goes to 0 or ∞, with a transition region corresponding to Rl ∈ [10−5, 10−3]. These two
mechanisms call for further explanations.
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Figure 3: Dependence of the damping time-scales with the liquid thermal resistance R l.

7



 105000

 110000

 115000

 120000

 125000

 130000

-8 -6 -4 -2  0  2

f (
Hz

)
log10 (Rl)

fafifo

Figure 4: Dependence of the oscillatory frequency with the liquid thermal resistance R l.

3.2 Limiting cases

The first limiting case corresponds to Rl → ∞. In this case, for small perturbations the heat fluxes
q′′1→2 and q′′2→1 becomes negligible so the transformations in the two gas domains can be idealized
as adiabatic transformations. As this simplified model does not account for mechanical or thermal
irreversibility, one may use the classical isentropic relations for an ideal gas:

P ili
γ

= Pel
i
e
γ
, (26)

The adiabatic dynamics of the liquid layer turns to

ml d

dt
ε̇ = P 1 − P 2 = Pe

[

l1e
γ

(l1e + ε)γ − l2e
γ

(l2e − ε)γ

]

. (27)

Linearization of this equation about ε = 0 gives:

ml d2

dt2
ε ≈ −Peγ

l1e + l2e
l1e l

2
e

ε. (28)

This is the classical equation of an undamped linear oscillator, with natural frequency fa as

2πfa =

√

Peγ

ml

l1e + l2e
l1el

2
e

. (29)

This frequency is reported in Fig. 4 which shows that indeed fo = fa for sufficiently large values of
the liquid thermal resistance.

On the other hand, for a low thermal resistance, the heat fluxes q ′′ are very efficient at restoring
equal temperatures in the two gas domains so the approximation T ′

1 ≈ T ′

2 is valid and the second
term in the r.h.s. of the ODE for d

dt ε̇ is negligible compared to the first one. Consequently, this
equation can be recast in

ml d

dt
ε̇ ≈ −Pe

l1e + l2e
l1el

2
e

ε, (30)

which again corresponds to an undamped linear oscillator with natural frequency fi as

fi =
1

2π

√

Pe

ml

l1e + l2e
l1el

2
e

=
1√
γ

fa. (31)

This frequency is also reported in Fig. 4, where fo is indeed seen equal to fi for low values of the
liquid thermal resistance.
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3.3 Discussion

From the developments above, the following conclusions can be drawn. For systems with a liquid
layer offering a large thermal resistance, weakly damped oscillations with characteristic frequency
given by Eq. (29) are to be expected. Temperature deviations T ′

1 and T ′

2 are then mostly governed
by adiabatic processes as the gas domains are alternatively compressed and expanded. Since com-
pression and expansion occur with opposite phase in the two domains, the difference in temperature
fluctuations yields a heat flux q′′ between the two domains that induces a weak damping through
irreversible heat conduction phenomenon. On the contrary, when the liquid thermal resistance is
sufficiently low, the compression and expansion processes are essentially isothermal, with frequency
given by Eq. (31), as any temperature rise in a compressed domain is quickly resorbed by mean
of conductive heat transfer toward the second domain. This prevent the emergence of significant
temperature differences. This process is therefore associated to low thermal irreversibility. As a
result is observed a weak damping of the oscillations. Systems in the intermediate range of thermal
resistance (Rl ∈ [10−5, 10−3]) combine the two mechanisms and so experience larger damping rates
with intermediate oscillatory frequency fo ∈ [fi, fa].

The analysis in this section has dealt with a rough idealization of the liquid layer modeled as
a medium characterized by its mass ml and thermal resistance Rl only. The actual systems, as
simulated in the following, are however more complex as the liquid can store energy (q ′′

1→2 = −q′′2→1

does not necessarily hold) and will be the source of additional thermal irreversibility by inducing
non-uniform temperature fields, especially for a liquid layer with large thermal inertia. Still, the
time scales found through the linear analysis are expected to be relevant for the detailed system.

4 Dynamics of forced systems

In the following, we consider systems which are initially at an equilibrium state (Te, Pe, l
l
e) and

subsequently disturbed. Different types of forcing are considered: imposed temperature or imposed
heat flux at one or two of the channel ends. We focus on water/air system with, otherwise explicitly
stated, the following nominal physical properties (in SI units -kg, J, m, W, K-): ρl = 1000, cl = 4184
and kl = 0.6 (liquid water), and cg

p = 1000, r = 286.69, kg = 0.0256 and µg = 1.82 10−5 (air). The
peak gas velocity is 0.4 m/s which corresponds to a Reynolds number equal to 1.2. The flow is
therefore laminar. Variations of physical properties are disregarded. In addition, the geometry of
the system at equilibrium is L = 10−4 m, l1e = 45 10−6 m and ll = 10−5 m, with thermodynamical
conditions Pe = 101325 Pa, Te = 293.15 K. This situation will be referred in the following as the
nominal case

4.1 Temperature forcing

For this forcing, a sudden change in temperature is imposed on the left wall (x = 0):

T (x = 0, t > 0) = Tw 6= Te,

while the right wall (x = L) is assumed perfectly insulated. For these boundary conditions there
exists an asymptotic steady state for t → ∞ given by:

T (x,∞) = Tw, P (x,∞) = Pw ≡ PeTw

Te
, ∀x ∈ [0, L].

Moreover, the asymptotic geometry corresponds to the equilibrium one:

lim
t→∞

li(t) = lie. (32)
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We set Tw = 373.15K > Te, and the full low-Mach number simulation is performed with numerical
parameters: ∆t = 5 10−8s and spectral elements with polynomial order 25 and 10 in the gas and
liquid domains respectively. These numerical parameters were carefully selected from a convergence
analysis (not shown).

Fig. 5 presents the evolution with time of the left gas domain extension l1(t). It is seen that the
dynamics can be split into two distinct stages: the liquid layer first undergoes a rapid oscillatory
motion with a net displacement toward the right of the domain, and subsequently slowly moves
back monotonically to the asymptotic position. The first stage (t < 150 µs) is associated with
significant velocities (∼ 1 ms−1), though much less than the speed of sound. The evolutions of
the thermodynamical pressures within the two gaseous media, reported in Fig. 6, are seen to be
responsible for the oscillatory motion of the liquid layer. In fact, the oscillatory motion during
the first stage presents similar characteristics with the ones developed in the linear analysis of
the previous section, both in terms of frequency and damping time scale. During the second
stage (t > 150 µs), Fig. 6 shows that both pressures are essentially equal leading to much lower
acceleration levels and a slow motion of the liquid layer toward the asymptotic state as a result. We
now analyze in detail these two stages, starting with the second one for the sake of comprehension.
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Figure 5: Location of the first interface as a function of time: comparison of numerical result and
theoretical value from Eq. (42).
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Figure 6: Pressures in the gas domain as a function of time. Nominal case.

4.1.1 Second stage

The second stage is characterized by essentially equal pressures in the gaseous domains. This allows
for further simplifications of Eq. (19) to obtain:

l1(t) ≈
(

L − ll
)

(

1 +
l2e
l1e

〈

T 2(t)
〉

〈T 1(t)〉

)

−1

(33)
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Eq. (33) shows that the displacement of the liquid layer depends on the geometric parameters (L,
ll and l1e) and on the harmonic means for the gas temperatures within each gaseous medium: the
motion during the second stage is a quasi-static process, entirely governed by the thermal fields.
Time evolution of the temperature fields, derived from numerical simulations, is presented in Fig. 7.
During the second stage, temperature of the liquid layer is roughly uniform due to its significantly
larger thermal conductivity than the gas one. The temperature distribution in the second gas
(x ∈ Ω2) is also roughly uniform and equal to the liquid temperature. This logically stems from the
adiabatic wall at x = L. In the first gas domain is observed a quasi linear temperature profile. This
suggests to approximate the temperature distributions in the gaseous domains during the second
stage as:

{

T 1(x, t) ≈ Tw + x(T l(t) − Tw)/l1, x ∈ Ω1,
T 2(x, t) ≈ T l(t), x ∈ Ω2.

(34)

Using these approximated temperature profiles, one can estimate the harmonic means
〈

T 1(t)
〉

and
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Figure 7: Temperature fields at different times t as indicated. Nominal case.

〈

T 2(t)
〉

to be:






〈

T 1(t)
〉

=
(T l(t) − Tw)

ln(T l(t)/Tw)
,

〈

T 2(t)
〉

= T l(t).
(35)

We now need to derive an expression for temperature evolution in the liquid layer. Liquid is assumed
to be incompressible, thus energy exchanged with its surroundings is solely thermal energy. Thus,
one has for energy conservation:

ρl d

dt

∫

Ωl

eldx = q”(Γ1, t) − q”(Γ2, t) (36)

where el = clT l is the specific internal energy of the liquid phase. Now considering temperature
profiles in the gaseous media given by Eq. (34), one obtains at the liquid boundaries:







q”(Γ1, t) ' kg Tw − T l

l1e
,

q”(Γ2, t) ' 0.
(37)

Reminding that thermal conductivity of the liquid is much higher than the gaseous one, continuity
of the heat flux at the gas-liquid interface Γ1 yields:

(

∂T l

∂x

)

Γ1+

�
(

∂T 1

∂x

)

Γ1−

. (38)
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Temperature is thus assumed to be uniform in the liquid domain, and the energy conservation now
reads:

mlcl d

dt
T l = kg Tw − T l

l1e
. (39)

Time evolution of the liquid temperature is then given by a first order ordinary differential equation:

ρlllcl dT l

dt
= kg Tw − T l

l1e
, (40)

which after integration yields

T l(t) = Tw + (Te − Tw)e−t/τ , τ ≡ ρlllcl/kg. (41)

Time evolution of the liquid temperature is plotted in Fig. 8. Time evolution of the temperature on
the interfaces (x = Γ1 and x = Γ2) and on the adiabatic wall (x = L) derived from the numerical
simulation are also presented. An excellent agreement, for the second stage, is reported between
the theoretical estimate in Eq. (41) for the liquid temperature and the computed evolutions of the
temperature at the interfaces. Now, introducing in Eq. (33) the expressions of the harmonic means
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Figure 8: Temperature of the interfaces and at the insulated wall as a function of time for t ∈
[10−7, 1] (top plot) and details for t ∈ [10−7, 10−2] (bottom plot). Also provided is the theoretical
estimate given by Eq. (41).

〈

T 1(t)
〉

and
〈

T 2(t)
〉

given by Eq. (35) and using Eq. (41), one obtains an analytical expression for
the location of the first interface:

l1(t) =

(

L − ll
)

1 +
l2e
l1e

Tw + (Te − Tw)e−t/τ

(Te − Tw) e−t/τ
ln

(

1 +
Te − Tw

Tw
e−t/τ

)
. (42)

This result, whose validity is limited to the second stage, is compared in Fig. 5 with the result of
the numerical simulation. An excellent agreement is reported for the second phase. The theoretical
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model developed here relies on the essential assumption that temperature is uniform within the
liquid layer. Close inspection of the temperature plots in Fig. 8 reveals that the temperatures of
the interfaces in the simulation are not exactly equal, though the theoretical estimate in Eq. (41)
provides an excellent approximation of the interfaces temperature. These differences are deemed
due to the finite conductivity of the liquid. To support this claim, a new simulation was performed
with a liquid thermal conductivity 100 times larger than its nominal value. Using k l = 60 is
indeed seen to improve the agreement between the simulation and the theoretical model, as one
may appreciate from Fig. 9 where plotted are the first interface location as computed for k l = 0.6,
kl = 60 and predicted by Eq. (42).
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Figure 9: Comparison of the first interface location computed for k l = 0.6 and kl = 60 with the
theoretical model in Eq. (42).

The theoretical model also allows for quantitative assessment of the maximum displacement,
denoted lm, of the liquid layer from its equilibrium position:

lm ≡ max
t

(

l1(t) − l1e
)

=
L − ll

1 +
l2e
l1e

ln(Tw/Te)

Tw/Te − 1

− l1e . (43)

The theoretical maximum displacement is seen to depend on the geometric parameters ( L, l l, l1e)
and the temperature ratio Tw/Te, but not on the fluid properties. In particular, lm is a static
quantity that does not depend on the liquid density. Fig. 10 depicts lm for the nominal geometri-
cal parameters L and ll, but for different ratio of the gaseous domains extensions and for different
temperature ratio Tw/Te. As one may have anticipated, the magnitude of lm increases as Tw/Te de-
viates from 1, and is maximal when the gaseous domains have comparable sizes. High temperature
ratio is nevertheless required to obtain a substantial displacement of the liquid layer.

4.1.2 First stage

The dynamics during the first stage (t < 150 µs) is essentially governed by the pressure difference
between both gaseous media (see Fig. 6). The analysis of free oscillations presented in section 3
highlighted specific frequencies related to the natural oscillation processes. The frequency, which
depends on the liquid thermal resistance, ranges between fi given by Eq. (31) and fa given by
Eq. (29). The numerical values associated to the present test-case are Rl = 1.7 10−5Km2W−1,
fi ∼ 107 kHz and fa ∼ 126 kHz. One observes from Fig. 4 that the present Rl value leads to
a frequency very close to fi. One therefore expects natural oscillations to have a period close to
ti = 1/fi ' 9.4 µs. Indeed, one observes in Fig. 5 that this value closely matches with the interface
oscillations reported during the first stage.

13



-0.1

-0.05

 0

 0.05

 0.1

 0  0.25  0.5  0.75  1

l m
/(l

1 e+
l2 e)

l1e/(l1e+l2e)

Tw/Te=2.0
Tw/Te=3/2
Tw/Te=1.1
Tw/Te=0.9
Tw/Te=2/3
Tw/Te=1/2

Figure 10: Normalized maximum displacement of the liquid layer as function of the extensions of
the two gaseous domains and for different temperature ratios as indicated. L = 10−4m, ll = 10−5m.

The temperature fields presented in Fig. 7, show that the temperature increases rapidly in the
heated gas during early times. A linear temperature profile is achieved in a time period of about
100 µs, which nearly corresponds to the duration of the first phase. This temperature field appears
very similar that one would observe in a purely diffusive regime. Now using the characteristic time
for heat diffusion,

td =
(l1e)

2

αg
= (l1e)

2 ρ1
ec

g
p

kg
, (44)

one obtains for the present situation td ' 95 µs, which indeed is a close estimate of the time period
required to achieve a linear temperature profile in the heated gas. Due to the high thermal inertia
of the liquid layer, the liquid temperature is not much affected during the first stage and remains
close to its initial value Te (see Fig. 7 and Fig. 8).

Evolutions of temperature in the second gaseous layer (x ∈ Ω2) deserve a few comments. We
recall that the second gas layer is thermally insulated on the right wall (x = L). The temperature
of the liquid layer remaining essentially constant during the first stage (see Fig. 7), one would thus
expect the temperature in Ω2 to do so. However, significant variations of the temperature in Ω2

are reported for early times. This can be seen from the evolution of the insulated wall temperature
(x = L) in the bottom plot of Fig. 8. These variations are due to compressibility effects: the
internal energy of the gas and therefore its bulk temperature increases (decreases) by the work of
compression (expansion) induced by the velocity of the liquid layer. The bulk temperature rise in
Ω2 disappears as the velocity of the liquid layer becomes small i.e. at the end of the first stage
t ∼ 10−4 s.

4.2 Flux forcing

Forcing with imposed constant heat flux is now considered. We denote q ′′ the forcing heat flux
applied at one of the wall, while the second one remains thermally insulated. The magnitude of the
heat flux is set to |q′′| = 4.5104 Wm−2, a value corresponding to kg(Tw −Te)/l

1
e with Tw = 373.15K

and Te = 293.15 K as previously. Fluids properties and equilibrium state are kept unchanged.
Contrary to the former situation (temperature forcing), there is no asymptotic steady state for
the flux forcing. Two cases are simulated using the low-Mach number model, one with a positive
heat flux and one with a negative heat flux. When positive, the heat flux is imposed at the left
wall (x = 0), while for negative heat flux it is imposed on the right wall (x = L). This ensures a
displacement of the liquid layer in the the same direction for the two cases to ease comparison.

The computed locations of the first interface (x = Γ1) are reported in Fig. 11 for q′′ > 0 and
q′′ < 0. Once again, observed are fast displacements of the liquid layer (first stage) followed by
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slower motions (second stage). Also similar to the temperature forcing is the duration of the first
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Figure 11: Evolution in time of the first interface location for positive heat flux (q ′′ > 0) at the left
wall and negative heat flux (q′′ < 0) at the right wall. Also plotted are the theoretical locations.
Nominal case.

stage which extends up to t ' 150 µs, as it is still associated to the characteristic time for heat
diffusion. However large amplitude oscillations observed for the temperature forcing have lower
amplitude here. The liquid layer undergoes a quick displacement to the right before reaching a
plateau at the end of the first stage. Interesting enough, the motion during the first stage and
achieved displacement at its end both depend on the sign of the imposed heat flux: this asymmetry
which is due to the gas compressibility develops as time elapses.

Another analytical approximation is derived for this second stage based on the following as-
sumptions:

1. temperature in the liquid is uniform (kl � kg);

2. acceleration of the liquid layer can be neglected;

3. temperature profile in the gas domain in contact with the heated wall is linear.

To avoid lengthy developments, we restrict ourself to the case q ′′ > 0, the case of q′′ < 0 being
similar. The linear temperature profile in Ω1 is:

T (x, t) = − q′′

kg

(

x − l1(t)
)

+ T l(t), x ∈ Ω1. (45)

As the acceleration of the liquid layer is neglected, Eq. (33) giving the position of the first interface
still holds with the harmonic means now having for expressions:

〈

T 2(t)
〉

= T l(t),

〈

T 1(t)
〉

=
q′′

kg
l1(t)






ln

T l(t)

T l(t) + q′′

kg l1(t)







−1

. (46)

Energy conservation for the liquid layer reads:

ρlclll
dT l

dt
= q′′. (47)

After integration, it gives the liquid temperature law:

T l(t) =
q′′

ρlclll
t + Te. (48)
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Inserting Eqs. (46) and (48) into Eq. (33), one obtains the following transcendental equation for
the first interface location:

l1(t) + ll − L = − l20

l10

q′′

kg

(

q′′

ρlclll
t + Te

)

ln











q′′t

ρlclll
+ Te

q′′

kg l1(t) +
q′′

ρlclll
t + Te











. (49)

This theoretical estimate is plotted in Fig. 11 for the two values of the heat flux. An excellent agree-
ment between the theoretical model and the numerical simulations is observed. Time evolutions of
temperature at the insulated wall (x = L for q ′′ > 0 and x = 0 for q′′ < 0) and at the interfaces
(x = Γ1(t) and x = Γ2(t)) are presented in Fig. 12 for the two heating conditions. The liquid
temperature given by Eq. (48) is also plotted on the graph. A good agreement is observed between
computed interface temperatures (x = Γ1 and x = Γ2) and the analytical liquid temperature given
by Eq. (48).
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Figure 12: Top plot: evolution in time of the wall and interface temperatures for positive heat
flux (q′′ > 0) at the left wall (right wall is insulated). Bottom plot: evolution in time of the wall
and interface temperatures for negative heat flux (q ′′ < 0) at the right wall (left wall is insulated).
Nominal case.

The model is therefore suitable to explain the system behavior during the second phase (at
least up to the point where temperatures are no longer consistent with the thermophysical model).
Lastly we notice that temperature evolutions in the gaseous medium in contact with the insulated
wall are similar to the ones observed for a Dirichlet boundary condition as reported in section 4.1.2:
the temperature oscillates during the first stage due to the work of compression/expansion. These
compressible effects are however less pronounced than for a Dirichlet boundary condition. This is
consistent with the evolution of the interface location previously discussed.
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4.3 Dimensionless analysis

For sake of simplicity, we restrict ourselves to systems with l1e = l2e and temperature forcing at the
left wall as in section 4.1. To summarize, three characteristic times have been derived from the
analysis:

1. to, the inertial time, related to the oscillations frequency of the liquid layer. We have seen that
the natural frequencies found in section 3 were a good estimate of the oscillation frequency
of the non linear system. Therefore we take:

to =
1

fi
= 2π

√

mll1e l
2
e

Pe(l1e + l2e)
. (50)

2. td related to heat diffusion in the heated gas and given by Eq. (44),

3. τ associated to thermal inertia of the liquid and given by Eq. (41).

Two dimensionless numbers can be established. We set :

Ndi ≡
td
to

, Clg ≡ τ

td
. (51)

Clg corresponds to the ratio of the heat capacities for the liquid and gas layers:

Clg ≡ τ

td
=

mlcl

m1cg
p
. (52)

This number which is proportional to the density ratio ρl/ρ1
e, is much greater than one. It now

becomes possible to consider time evolution of the liquid layer using dimensionless quantities. The
previous simulations revealed a two stage dynamics. The time scale corresponding to the end of
the first stage and to the beginning of the second one has been identified to td. The present process
involving time scales with different orders of magnitude, a logarithmic scaling appears relevant for
the definition of the dimensionless time, t∗:

t∗ = ln(t/td). (53)

With this scaling, the end of the first stage corresponds to t∗ = 0.
We normalize the displacement using the theoretical estimate for the maximum displacement given
by Eq. (43):

l∗1 =
l1 − l1e

lm
. (54)

Numerical simulations with imposed temperature on the left wall are performed to investigate
the influence of the numbers Ndi and Clg on the dynamics, and to verify the relevance of the pro-
posed normalization. The reference case corresponds to the nominal situation defined in section 4.1.
We then consider different values of the thermal conductivity kg and of the specific heat capacity
cl in order to modify both Ndi and Clg. The simulation cases, labeled A to G, are summarized in
Table 1.

We first examine cases A-D. Results of the numerical simulations are presented in Fig. 13
using physical variables (l1, t) then in Fig. 14 using dimensionless variables (l∗1, t

∗). As the Clg

number is the same for all curves A-D, a close superimposition is observed during the second phase
(Fig. 14). On the other hand, the increase of the Ndi number from one case to another leads
to significant differences between curves A-D during the first phase. This diversity deserves the
following comments:
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Case Ndi Clg cl (S.I.) kg (S.I.) td (s) τ (s)

A 1 100 542.5 2.6 10−1 9.4 10−6 9.4 10−4

B 10 100 542.5 2.6 10−2 9.4 10−5 9.4 10−3

C 100 100 542.5 2.6 10−3 9.4 10−4 9.4 10−2

D 1000 100 542.5 2.6 10−4 9.4 10−3 9.4 10−1

E 10 10 54.25 2.6 102 9.4 10−5 9.4 10−4

F 10 50 271.3 2.6 10−2 9.4 10−5 4.68 10−3

G 10 1000 5425 2.6 10−2 9.4 10−5 9.4 10−2

Table 1: Details for the numerical simulations presented in Figs. 13-15. All cases correspond to
to = 9.4 µs
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Figure 13: Evolution in time of the first interface location for Cases A-D.

• The duration of the first phase extends as the Ndi number increases (see Fig. 13). This
observation confirms the straightforward relation between the duration of the first phase and
the diffusion time in the heated gas.

• For cases B, C, D, (case A will be commented later), the maximum displacement of the liquid
layer coincides with the m quantity, defined in Eq. (43). This maximum is achieved at t∗ ∼ 0,
i.e. for a physical time close to td. Both features are clearly evidenced by Fig. 14.

• Results presented in Fig. 13 confirm that the oscillations frequency is the same for all
cases A-D. In particular the first maximum closely matches with half of the inertial time
to ' 9.4 10−6 s.

• The last point to be mentioned concerns the amplitude of the oscillations. Cases B, C and D
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Figure 14: Evolution with the rescaled time t∗ of the normalized liquid layer displacement l∗ for
Cases A-D.
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correspond to Ndi numbers larger than unity. This means that diffusion time td is higher than
inertial time to. As a result, the liquid inclusion starts moving while heat diffusion effects are
not yet perceptible in the whole gas domain (in particular, the temperature profile is not yet
linear). The pressure difference between both gaseous domains decreases as the Ndi number
increases, leading to oscillations with smaller amplitude and a delayed displacement of the
liquid layer (Fig. 13). Specific attention is now paid to the large oscillations displayed by
curve A. Case A corresponds to a Ndi number equal one. Thus, time for heat diffusion and
time associated to the start-up motion of the liquid layer are equal: the liquid layer starts to
move while temperature has already increased in the whole gaseous domain with a significant
pressure rise as a result. Then, the pressure difference between the two gas layers is large
leading to large accelerations of the liquid layer and intense oscillations. Note the overshoot
of the m quantity, as high as 60% reached during the first oscillation.
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Figure 15: Evolution with the rescaled time t∗ of the normalized liquid layer displacement for cases
E,F,B,G.

Numerical results obtained for cases (E,F,B,G) are presented in Fig. 15 using dimensionless
variables (l∗1, t

∗). These cases correspond to the same time to and to the same diffusion time
td = 10 to. This explains the perfect superimposition of the curves during the first phase. On the
contrary, the relaxation time leading the system back to an equilibrium situation increases with
Clg. This logically stems from the definition of Clg which is proportional to the characteristic time
associated with thermal inertia of the liquid layer (τ). As expected from the normalization, the
displacement of the liquid layer is maximum for a time close to td and corresponds to m defined in
Eq. (43).

4.4 Step-fluxes forcing

Based on the above analysis we propose a microfluidic device performing a periodic motion of a
liquid inclusion. This device uses a periodic flux forcing at the two ends of the channel. Flux
forcings are considered as they are more amenable to physical experimentation than a dynamical
temperature control.
The liquid layer has been shown to reach its maximum displacement (lm − l1e) for t ∼ td; this
suggests that heating steps with duration τp & td should be suitable to achieve a back and forth
motion of the liquid layer. Following this idea, we examine two periodic flux forcings for the nominal
case (L = 100 µm, ll = 10 µm, l1e = 45 µm, ρl = 1000 kg m−3):

• Case 1: starting from the equilibrium state, a flux q ′′ = qs (resp. q′′ = −qs) is applied at
x = 0 (resp. x = L) with a duration τp; the fluxes are then switched off for a second time
span also equal to τp. This cycle is repeated (see Fig. 16).
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• Case 2: starting for the equilibrium state, a flux with intensity q ′′ = qs (resp. q′′ = 0) is
applied at x = 0 (resp. x = L) with a duration τp; the fluxes are then exchanged (i.e. q ′′ = 0
at x = 0 and q′′ = qs at x = L) for another time span τp, before repeating the cycle (see
Fig. 17).

The forcing period is thus 2τp. We set τp ∼ 5td = 500 µs and qs = 4.5 104 Wm−2. A negative flux
(i.e. heat extraction) can be performed in practice by the means of Peltier devices.
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Figure 16: Heat fluxes imposed at the boundaries x = 0 and x = L in Case 1.
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Figure 17: Heat fluxes imposed at the boundaries x = 0 and x = L in Case 2 (signals have been
slightly shifted in time for clarity).

The displacement of the first interface, as predicted by the low-Mach model for Case 1, is
reported in Fig. 18. The amplitude of the displacement is roughly twice as large than for the case
presented in section 4.2: the liquid layer displacement results of both the heating in Ω1 (leading to a
volume increase) and the cooling in Ω2 (leading to a volume reduction). An excellent repeatability
of the interface motion is achieved with these heating conditions, as the heat supplied at one end
of the channel is entirely extracted at the other end. Motions of the liquid layer with constant
amplitude are then achieved since the net amount of heat supplied to the system during one cycle
is zero. Otherwise, the fluids get warmer (resp. cooler) as the net amount of heat supplied to the
system is positive (resp. negative) and a reduction (resp. increase) of the motion amplitude results.
This situation corresponds to case 2, where the net amount of heat per cycle supplied to the system
is 2qsτp. The displacements reported in Fig. 19 indeed exhibit a gradual decay as the system gets
warmer. This decay is however very weak.
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Figure 18: Displacement with time of the first interface for the forcing in Case 1.
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Figure 19: Displacement with time of the first interface for the forcing in Case 2. Note the damping
in the displacement amplitude.

5 Conclusion

In this paper, the motion of a 1D liquid inclusion inside a closed microchannel, filled with gas,
is investigated by means of theoretical analysis and numerical simulations. The simulations are
based on a low-Mach approximation of the flows inside the gas domains, while the liquid domain
is considered incompressible. Description of the interfaces is performed through an accurate ALE
method.

The whole liquid-gas system is shown to behave as a damped oscillator. Free oscillations
(i.e. for thermally insulated channel ends) are first investigated in the linear regime, considering
uniform temperatures in the gas domains. The associated eigenmodes are identified along with
the natural frequencies. The non-linear dynamics of the full system is next investigated through
simulations for different heating conditions (temperature or heat-flux) at the channel ends. The
main thermo-mechanical effects involved in the dynamics are identified. A scaling analysis is
developed highlighting two relevant dimensionless numbers governing the dynamics. Finally, we
propose suitable heating conditions to achieve oscillations of the liquid inclusion without decay.
Ongoing works focus on the extension of the simulation tool for two-dimensional configurations.
This requires the introduction of the wall friction and surface tension effects, as well as a different
treatment of the interface dynamics.
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A Numerical Methods

The domains Ωi moving with time, an Arbitrary Lagrangian Eulerian (ALE) method (see e.g.
[15, 13]) is used for the resolution of the governing equations of the flow. Specifically, linear
transformations are used to map Ω1∪Ωl∪Ω2 to a reference mathematical domain [0, 1]∪[1, 2]∪[2, 3].
The spatial discretization uses a high order spectral element for each sub-domain, with order p for
the temperature, density, velocity and order p− 2 for the hydrodynamic pressure [1]. The mapping
being time dependent, it yields additional correction terms in the governing equations to account
for the mesh velocity. The time integration of the flow involves diverse time discretizations and
numerical methods for the inversion of the resulting discrete operators. The complete numerical
methodology is detailed elsewhere, and we simply provide here a quick overview of the structure
of a time step. For simplicity, we temporarily drop the domain indexes that instead will denote
the time level. We assumed the solution known at time level n∆t, where ∆t is the time-step of the
simulation. The whole procedure for the determination of the solution at t = (n + 1)∆t is:

1. Set guessed estimates P n+1 for the thermodynamic pressure at the end of the time step.

2. Using P n+1, update velocities and positions of the interface using a semi-implicit Newmark
time-scheme. It yields the ALE mapping (geometry and mesh velocities).

3. Prediction step:

• The energy equations in the sub-domains are solved for a provisional temperature field
T ∗, using an implicit time-scheme and Schwartz methods for the enforcement of continu-
ity conditions across the interfaces. Other variables are taken to their respective values
at t = n∆t.

• Provisional thermodynamical pressures P ∗ and density fields ρ∗ in the two gas domains
are then determined using equation (18) and the state equation respectively.

• Momentum equations in the gaseous domains are then solved for the provisional velocities
u∗ and hydrodynamic pressures Π∗. The latter is determined, through the resolution of
an elliptic problem, as to yield ∂

∂x(ρu)∗ consistent with an estimate of ∂
∂tρ based on ρn

and ρ∗.

4. Correction step:
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• Solve the energy equation for T n+1 as in the prediction step, but using the provisional
values for the other variables.

• Set thermodynamical pressures P n+1 and density fields ρn+1 in the two gas domains.

• Set the velocities un+1 and hydrodynamic pressures Πn+1. The latter now being deter-
mined to yield ∂

∂x(ρu)n+1 consistent with an estimate of ∂
∂tρ based on ρn and ρn+1.

5. If the computed thermodynamical pressures P n+1 are different from the ones used at step 1,
restart from step 2 for a new iteration.

In the computation presented hereafter, 3 to 4 iterations were needed for the convergence of the
thermodynamical pressure P n+1.
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