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Abstract

We present an a posteriori error estimation for the numerical solution of a stochas-
tic variational problem arising in the context of parametric uncertainties. The dis-
cretization of the stochastic variational problem uses standard finite elements in
space and piecewise continuous orthogonal polynomials in the stochastic domain.
The a posteriori methodology is derived by measuring the error as the functional
difference between the continuous and discrete solutions. This functional difference
is approximated using the discrete solution of the primal stochastic problem and
two discrete adjoint solutions (on two imbricated spaces) of the associated dual
stochastic problem. The dual problem being linear, the error estimation results in a
limited computational overhead. With this error estimate, an adaptive refinement of
the approximation space can be performed. The refinement can concern the spatial
or stochastic approximations, and can consist in increasing the approximation order
or in using finer elements. The efficiency of the proposed methodology is verified for
the uncertain Burgers’ equation using different refinement strategies.

Key words: error analysis, stochastic finite element method, uncertainty
quantification, refinement scheme.

1 Introduction

Simulation of physical systems is often challenged by incomplete knowledge of
model parameters, including initial conditions, boundary conditions, external
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forcing, physical properties and modeling constants. In these situations, it is
relevant to rely on a probabilistic framework and to consider the unknown
model data as random quantities. Consequently, it becomes essential to assess
the variability of the model solution induced by the variability of the model
data, i.e. to propagate and quantify the impact of the uncertainty on the
model solution. In a probabilistic framework, the uncertainty quantification
consists in the determination of the probability law of the model solution
induced by the probability law of the data, in order to establish confidence
intervals, to estimate limits of predictability and/or to support model-based
decision analysis.

Uncertainty propagation and quantification has recently received consider-
able attention, particularly through the development of efficient spectral tech-
niques based on Polynomial Chaos (PC) expansions. PC based methods were
originally developed for engineering problems in solid mechanics [10, 25] and
subsequently applied to a large variety of problems, including flow through
porous media [8, 9], thermal problems [12, 13], incompressible [15, 19, 30] and
compressible flows [20, 21] (see also [14] for a review of recent developments
in PC methods for fluid flows) and reacting systems [7, 24]. PC expansions
consist in the representation of the uncertain data as functionals of a finite
set of independent random variables with prescribed densities, the uncertainty
germ, and in expanding the dependence the model solution using a suitable
basis of uncorrelated functionals of the germs. A classic choice for the basis is
a set of polynomials in the germ. If the germ has zero-mean normalized Gaus-
sian components, one obtains the Wiener-Hermite PC basis [28, 5], which is
formed of generalized Hermite polynomials. Other density types of the germ
components result in various families of orthogonal polynomials or mixtures
of orthogonal polynomials [29]. Two distinct types of solution methods can
be used to compute the expansion coefficients of the stochastic solution: the
sampling based approaches and the Galerkin projection. In the former type
of methods, one solves a series of deterministic problems for different values
of the uncertain model data and makes use of the resulting sample set of so-
lutions to estimate the expansion coefficients (see for instance [24, 19]). The
second type of methods, which is considered in the following, consists on the
contrary in a projection of the model equations (weak formulation) on the
expansion basis. This Galerkin projection results in a set of generally coupled
deterministic problems for the stochastic modes of the solution.

Piecewise polynomials [27] and multi-wavelets [16, 17] were recently proposed
as elements of the stochastic basis. These representations were developed to
address the limitations of global spectral representations for complex, steep
or even discontinuous dependencies of the model solution with regard to the
data, for instance when a bifurcation appears for values of the data in the
uncertainty domain. A key aspect of these discontinuous stochastic approx-
imations is that they naturally offer flexibility for a local adaptation of the
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representation to the solution. This adaptation allows for improvements of
the computed solution, through local refinements of the approximation space,
while maintaining the dimension of the representation basis and of the set of
coupled problems to be solved at a reasonable level. The refinement of the
stochastic approximation space can in fact consist in an increase of the local
expansion order (p-refinement) or in using polynomials being continuous over
smaller supports (h-refinement). For instance, in [16, 17] the domain of the
random parameters is partitioned in sub-domains over which independent dis-
continuous low order expansions are employed. Heuristic criteria, based on the
spectrum of the local expansion, is used to decide whether the local expansion
is sufficient or whether it should be improved by means of h-refinement, i.e. by
splitting the sub-domain into smaller ones, and along which dimension of the
germ. A similar strategy is pursued in [27] but in the context of hp-spectral
approximations. The refinement is also based on heuristic arguments involv-
ing the relative contribution of the higher order terms to the local solution
expansion.

Although these schemes have been shown to provide significant improvements
over global PC expansions, in terms of robustness (see for instance [18]) and
computational efficiency, they still lack rigorous criteria for triggering the re-
finement. The objective of the present paper is therefore the derivation of a
rigorous error estimator, to be used in place of the heuristic error indicators. To
this end, we have decided to extend the dual-based a posteriori error technique
commonly used in the (deterministic) finite element community. This choice
was motivated by the firm and rigorous theoretical foundations of this error
estimate technique, and because of its variational framework which makes it
suitable for extension to the Galerkin projection of stochastic problems.

The paper is organized as follows. In Section 2, the variational formulation of
a generic stochastic problem, based on a mathematical model involving para-
metric (data) uncertainties, is considered. The stochastic variational problem
and construction of the approximation space are detailed. The latter involves
a finite element discretization in space and a piecewise continuous approxima-
tion along the stochastic dimensions. In Section 3, the dual-based a posteriori

error estimation is introduced. The methodology makes use of a differentiable
functional to measure the difference between the exact (continuous) and ap-
proximated (discrete) stochastic solutions. Provided the discrete solution is
sufficiently close to the continuous one, their functional difference is shown to
be well approximated by a simple estimate. This estimate involves the discrete
solutions of the primal and associated dual problems, and the continuous ad-
joint solution of the dual problem. A classic surrogate of the continuous adjoint
solution is proposed, resulting in an error estimate methodology requiring the
resolution of the discrete primal problem and two dual problems on differ-
ent approximation spaces. The dual problems to be solved being linear, the
computational overhead of the error estimator is expected to be limited. In
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Section 4, we discuss the various strategies that can be subsequently used to
improve the approximation in order to reduce the error. The reduction of the
error can be performed by using smaller elements or by increasing the orders of
the spatial and stochastic approximation spaces. As in the deterministic con-
text, the determination of the optimal refinement strategy is an open question,
which is made even more difficult and critical in the present stochastic context
where the stochastic space (domain of the germ) may have many dimensions.
Consequently, Section 5 presents some numerical tests aiming at showing the
validity of the proposed dual-based error estimator in deciding which spa-
tial/stochastic elements need priority refinement. The test problem is based
on the 1-D Burgers’ equation, with uncertainty on the viscosity and a bound-
ary condition. Different algorithms of increasing complexity are proposed for
the local refinement of the stochastic and spatial approximations, based on
the dual-based error estimation. Finally, major findings of this work and few
recommendations for future developments are summarized in Section 6.

2 Variational formulation of uncertain flow

2.1 Deterministic variational problem

We consider the standard variational problem for u on a M-dimensional do-
main Ωx ⊂ R

M with homogeneous Dirichlet boundary condition (u = 0) on
the boundary ∂Ωx of Ωx:

a(u; ϕ) = b(ϕ) ∀ϕ ∈ Vx, (1)

to be solved for u ∈ Vx, a suitable Hilbert space of Ωx. In Eq. (1), a is a
differentiable semi-linear form and b a linear functional.

2.2 Stochastic variational problem

It is assumed that the mathematical model given by Eq. (1) involves some
parameters, or data, denoted by a real-valued vector d. The data may for
instance consist of some physical constants involved in the model. Clearly, the
solution u of the variational problem depends on the data value, a fact stressed
by making explicit the dependence of the variational problem with d:

a(u; ϕ|d) = b(ϕ|d) ∀ϕ ∈ Vx. (2)

If the actual value of the data d is not exactly known, i.e. if it is uncertain, it is
suitable to consider d as a random quantity defined on an abstract probability
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space (Θ,B, dP ), Θ being the set of elementary outcomes θ, B the σ-algebra of
the events and dP a probability measure. In this context, the solution of the
model is also random. In the following, we adopt the convention consisting in
using uppercase letters to denote random quantities. Therefore, the random
solution U and data D are dependent stochastic quantities defined on the same
probability space (Θ,B, dP ); the dependency between U and D is prescribed
by the model. Uncertainty propagation and quantification thus consists in
the inference of the probability law of U , given the probability law of D and
the mathematical model relating the two. It is assumed that the problem is
well-posed in the sense that problem (2) has almost surely a unique solution.

We denote VΘ = L2(Θ, dP ) the space of second order random variables. We
thus have to solve, for U ∈ Vx ⊗ VΘ,

A(U ; Φ|D) = B(Φ|D) ∀Φ ∈ Vx ⊗ VΘ, (3)

where

A(U ; Φ|D) ≡
∫

Θ
a(U(θ); Φ(θ)|D(θ)dP (θ), B(Φ|D) ≡

∫

Θ
b(Φ(θ)|D(θ))dP (θ).

(4)

2.3 Stochastic discretization

We assume that D is parameterized as a functional of a finite number N of
independent identically distributed real valued random variables ξi, defined
on (Θ,B, dP ) with value in Sξ ⊂ R:

D = D(ξ), ξ = (ξ1, . . . , ξN) ∈ (Sξ)
N ≡ Ωξ ⊂ R

N. (5)

The vector ξ of random parameters is often referred to as the uncertainty
germ. We denote p the known probability density function of ξi such that, by
virtue of the independence, the joint distribution of ξ writes

pξ(ξ) = pξ(ξ1, . . . , ξN) =
N∏

i=1

p(ξi). (6)

Without loss of generality, we shall restrict ourself in the following to germs
having uniformly distributed components on Sξ = [−1, 1] and consequently
we have

p(ξi) =





1/2 if ξi ∈ [−1, 1]

0 otherwise
, Ωξ = [−1, 1]N. (7)

Note however that the developments given below can be easily extended to
the situation where the ξi have different ranges and/or different distributions.
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The variational problem can be formulated in the image probability space
(Ωξ,Bξ, pξ), using

A(U ; Φ|D) =
∫

Θ
a(U(θ); Φ(θ)|D(θ) dP (θ)

=
∫

Ωξ

a(U(ξ); Φ(ξ)|D(ξ) pξ(ξ)dξ ≡ 〈a(U ; Φ|D)〉Ωξ
, (8)

B(Φ|D) =
∫

Θ
b(Φ(θ)|D(θ)) dP (θ)

=
∫

Ωξ

b(Φ(ξ)|D(ξ)) pξ(ξ)dξ ≡ 〈b(Φ|D)〉Ωξ
. (9)

Moreover, the stochastic functional space is now Vξ = L2(Ωξ, pξ) and the
variational problem becomes

A(U ; Φ|D) = B(Φ|D) ∀Φ ∈ Vx ⊗ Vξ, (10)

to be solved for U ∈ V ≡ Vx ⊗ Vξ.

Following [27], we rely on piecewise orthogonal polynomials to construct the
stochastic approximation space. The stochastic range Ωξ is divided into a

collection of Nb non-overlapping sub-domains Ω
(m)
ξ referred to as stochastic

elements (SEs) in the following. In this work, the SEs are hyper-rectangles:

Ωξ =
Nb⋃

m=1

Ω
(m)
ξ , Ω

(m)
ξ = [ξ

(m),−
1 , ξ

(m),+
1 ] × · · · × [ξ

(m),−
N , ξ

(m),+
N ]. (11)

On Ω
(m)
ξ , the dependence of the data and solution with the random germ ξ is

expressed as a truncated Fourier-like series,

U(ξ ∈ Ω
(m)
ξ ) =

P(m)∑

k=0

u
(m)
k Ψ

(m)
k (ξ), D(ξ ∈ Ω

(m)
ξ ) =

P(m)∑

k=0

d
(m)
k Ψ

(m)
k (ξ), (12)

where Ψ
(m)
k (ξ) are orthogonal random polynomials in ξ and u

(m)
k , d

(m)
k are the

deterministic expansion coefficients over Ω
(m)
ξ of the solution and data respec-

tively. The orthogonality of the random polynomials is defined with regards
to the expectation over the respective SE. Denoting 〈·〉

Ω
(m)
ξ

the expectation

over the m-th SE, the orthogonality of the polynomials writes:

〈
Ψ

(m)
k Ψ

(m)
k′

〉

Ω
(m)
ξ

=
1∣∣∣Ω(m)
ξ

∣∣∣

∫

Ω
(m)
ξ

Ψ
(m)
k (ξ) Ψ

(m)
k′ (ξ) pξ(ξ) dξ

= δkk′

〈
Ψ

(m)
k

2
〉

Ω
(m)
ξ

, (13)
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where ∣∣∣Ω(m)
ξ

∣∣∣ =
∫

Ω
(m)
ξ

pξ(ξ) dξ, (14)

and δkk′ is the usual Kronecker delta symbol. These polynomials vanish outside
their respective support:

Ψ
(m)
k (ξ /∈ Ω

(m)
ξ ) = 0 ∀k = 0, . . . , P(m). (15)

The number of terms P(m) in the expansions Eqs. (12) is a function of the
selected stochastic expansion order q(m) of the SE:

P(m) + 1 =
(q(m) + N)!

q(m)! N!
. (16)

The ξi being uniformly distributed, the polynomials Ψ
(m)
k are simply rescaled

and shifted multidimensional Legendre polynomials [1]. The stochastic ap-
proximation space is

Vh
ξ = span

(
{Ψ(m)

k }, 1 ≤ m ≤ Nb, 0 ≤ k ≤ P(m)
)
, (17)

and the stochastic approximation can be improved by increasing the number
Nb of SEs, i.e. through refinement of the partition of Ωξ, and/or by increasing
the stochastic expansion order q(m) over some stochastic elements.

2.4 Finite element discretization

Consider a partition of Ωx into a set of Nx non-overlapping finite elements
(FE) with respective support Ω(l)

x for l = 1, . . . , Nx:

Ωx =
Nx⋃

l=1

Ω(l)
x . (18)

The FE approximation of the continuous solution U , denoted Uh, over the
element Ω(l)

x writes

Uh(x ∈ Ω(l)
x ) =

Nd(l)∑

i=1

U
(l)
i N (l)

i (x), (19)

where Nd(l) is the number of degrees of freedom of the l-th element and N (l)
i

the associated spatial shape functions. We denote p(l) the polynomial order
of the shape functions over Ω(l)

x . The spatial approximation space is thus

Vh
x = span

(
{N (l)

i }, 1 ≤ l ≤ Nx, 1 ≤ i ≤ Nd(l)
)
, (20)
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and the spatial approximation can be improved by a refinement of the partition
of the spatial domain Ωx or by increasing the spatial order p(l) of some finite
elements.

2.5 Approximation space Vh

From the stochastic and spatial approximation spaces defined above, the ap-
proximation space Vh of the stochastic variational problem is seen to be:

Vh = Vh
x ⊗ Vh

ξ . (21)

The solution at a point (x, ξ) of Ω ≡ Ωx × Ωξ has for expression:

U(x ∈ Ω(l)
x , ξ ∈ Ω

(m)
ξ ) =

Nd(l)∑

i=1

P(m)∑

k=0

u
(l,m)
i,k N (l)

i (x) Ψ
(m)
k (ξ), (22)

where the deterministic coefficient u
(l,m)
i,k is the k-th uncertainty mode of the

m-th SE for the i-th degree of freedom of the l-th FE.

An immediate consequence of the tensored construction of the approximation
space Vh is that the spatial FE discretization is the same for all the stochastic
elements Ω

(m)
ξ , and conversely the stochastic discretization is the same for all

spatial finite elements Ω(l)
x . This is clearly not optimal as some portions of

the stochastic domain Ωξ may require finer spatial discretization than oth-
ers to achieve a similar accuracy. Conversely, the solution in some parts of
spatial domain Ωx may exhibit more complex dependences with regards to
D(ξ), therefore requiring a finer stochastic discretization than at other loca-
tions. However, for the tensored construction Vh, the discrete solution can be
improved through a) refinement of the FE approximation space Vh

x uniformly
over Ωξ, and b) refinement of the stochastic approximation space Vh

ξ uniformly
over Ωx.

In fact, this symmetric situation can be easily relaxed: an adaptation to each
SE of the spatial discretization, i.e. the number of elements Nx and/or the
number of degrees of freedom of the elements Nd, causes no difficulty. This
is due to the complete independence of the solution over different stochas-
tic elements, a feature emerging from the absence of any differential operator
along the uncertainty dimensions. Consequently, the adaptation of Vh

x with
the SEs was actually implemented and used for the generation of the results
presented hereafter. However, to simplify the presentation of the method and
the notation, this feature is not detailed here. On the other hand, using a
variable stochastic approximation for different spatial FE is much more cum-
bersome and remains to be investigated. This adaptation would require the
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development of non-obvious matching conditions of the stochastic approxima-
tion across FE boundaries.

3 Dual-based a posteriori error estimate

3.1 a posteriori error

We adopt the convention that the functionals are linear with respect to argu-
ments placed on the right-side of a semicolon. For a finite dimensional sub-
space Vh ⊂ V, the discretized solution Uh ∈ Vh is the Galerkin approximation
defined as the solution of the discrete problem

A(Uh; Φh|Dh) = B(Φh|Dh) ∀Φh ∈ Vh. (23)

Let J : Ω → R be a differentiable functional of the solution. In the spirit of
[3] and [2] among others, one is interested in approximating J (U) as closely
as possible by J (Uh), i.e. to minimize the difference J (U)−J (Uh) in some
sense. We seek for an expression of J (U)−J (Uh). To this end, let us define
the Lagrangian L of the continuous solution by:

L (U ; Z) ≡ J (U) + B(Z|D) − A(U ; Z|D), (24)

where Z ∈ V is the adjoint variable of the continuous problem. The adjoint
variable Z is a Lagrange multiplier of the optimization problem for the mini-
mization of J (U) under the constraints of Eq. (10). Formally, this minimum
corresponds to the stationary points of L :

∂L

∂U
=J ′(U ; Φ′) − A′(U ; Φ′, Z|D) = 0 ∀Φ′ ∈ V, (25)

∂L

∂Z
=B(Φ|D) − A(U ; Φ|D) = 0 ∀Φ ∈ V. (26)

Eq. (25) is the adjoint (or dual) problem, while Eq. (26) is the state (or primal)
problem. Note that the derivatives are in the Gâteaux sense:

J ′(U ; Φ′)= lim
ε→0

J (U + ε Φ′) − J (U)

ε
,

A′(U ; Φ′, Z|D)= lim
ε→0

A(U + ε Φ′; Z|D) − A(U ; Z|D)

ε
.

The discrete counterpart of the dual and primal problems are in turn
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J ′(Uh; Φh′

) − A′(Uh; Φh′

, Zh|Dh)= 0 ∀Φh′ ∈ Vh, (27)

B(Φh|Dh) − A(Uh; Φh|Dh)= 0 ∀Φh ∈ Vh. (28)

Combining these results, one obtains

L (U, Z) − L (Uh, Zh) =J (U) + B(Z) − A(U ; Z) − J (Uh) − B(Zh)

+A(Uh; Zh)

=J (U) − J (Uh), (29)

where the dependences of A and F on D have been dropped to simplify the
notations. It is seen from Eq. (29) that the difference in J for the continuous
and discrete solutions is equal to the difference in their respective Lagrangian.

3.2 A posterior error estimation

Following [4], among others, we now derive a more practical expression for the
difference J (U)−J (Uh). Let K(·) be a differentiable functional on a given
functional space W. The difference K(v) − K(vh), for v and v′ ∈ W, can be
expressed as an integral between v and vh of the derivative of K:

K(v) − K(vh) =
∫ v

vh
K ′(v′) dv′. (30)

The integration path can be parameterized to obtain

K(v) − K(vh) =
∫ 1

0
K ′(vh + s (v − vh)) (v − vh) ds

=
∫ 1

0
K ′(vh + s ev; ev) ds, (31)

where ev ≡ v − vh. Here, use was made again of the convention regarding the
linearity of the functional forms with regard to the arguments on the right-
side of the semicolon. Using K ′(v) = 0, the right-hand side of Eq. (31) can be
rewritten as

K(v)−K(vh) =
∫ 1

0
K ′(vh+sev; ev)ds+

1

2

[
K ′(vh; ev) − K ′(vh; ev) + K ′(v; ev)

]
.

(32)
Making use of the Galerkin orthogonality and the trapezoidal rule it comes

K(v) − K(vh) =
1

2
K ′(vh; ev) +

1

2

∫ 1

0
K(3)(vh + s ev; e

3
v) s (s − 1) ds. (33)
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Applying this relation to the difference of the Lagrangian of the continuous
and discrete solutions leads, after some algebra, to:

J (U) − J (Uh) =
1

2

[
ρ(Uh, Z − Φ′h) + ρ∗(Zh, U − Φh)

]
+ R̃, (34)

with the residuals

ρ(Uh, ·)≡B(·) − A(Uh; ·), (35)

ρ∗(Zh, ·)≡J ′(Uh, ·) − A′(Uh; ·, Zh). (36)

The remainder term R̃ in Eq. (34) has for expression

R̃ =
1

2

∫ 1

0

[
J (3)(Uh + s EU ; E3

U) − A(3)(Uh + s EU ; E3
U , Zh + s EZ)

−3 A′′ (Uh + s EU ; E2
U EZ)

]
s (s − 1) ds, (37)

with the error terms defined as EU = U − Uh and EZ = Z − Zh. Thus R̃
is cubic in the error, suggesting that it can be neglected provided that the
continuous and discrete solutions are sufficiently close. It is also seen that the
residuals are functional of both the primal and dual continuous solutions U
and Z, such that using Eq. (34) to estimate J (U) − J (Uh) would require
two surrogates of U and Z even if R̃ is neglected. In fact, the expression can
be further simplified to remove the contribution of U . Using an integration by
part of R̃, one obtains [4]

ρ∗(Zh, U − Φh) = ρ(Uh, Z − Φ′h) + ∆ρ, (38)

where

∆ρ =
∫ 1

0

[
A′′(Uh + sEU ; E2

U , Zh + sEZ) − J ′′(Uh + sEU ; E2
U)
]
ds. (39)

Introducing this result into Eq. (34) leads to the final expression for the ap-
proximation error:

J (U) − J (Uh) = ρ(Uh, Z − Φ′h) + r, (40)

where

r =
∫ 1

0

[
A′′(Uh + sEU ; E2

U , Z) − J ′′(Uh + sEU ; E2
U)
]

s ds. (41)

The remainder term r is now quadratic in EU and will be neglected hereafter,
assuming again that the discrete solution Uh is indeed a sufficiently close
approximation of U .
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3.3 Methodology

At this point we have an estimate of the approximation error given by

J (U) − J (Uh) ≈ B(Z − Zh|Dh) − A(Uh; Z − Zh|Dh), (42)

where we have substituted Φ′h by the adjoint solution of the discrete prob-
lem in Eq. (40), as usual in a posteriori error methodology. To evaluate this
estimate, one needs to know the solutions Uh and Zh of the primal and dual
discrete problems and the solution Z of the continuous dual problem given
by Eq. (25). However, the continuous dual problem can not be solved as it
requires the knowledge of the exact solution U . Instead, a surrogate of Z de-
noted Z̃ is used. This surrogate is classically constructed by solving a discrete

dual problem on a refined finite dimensional space V h̃ containing Vh. The
methodology is thus the following. Given an approximation space Vh we solve
the primal and dual problems Eqs. (28,27) for Uh and Zh ∈ Vh. The refined

space V h̃ ⊃ Vh is constructed by increasing the polynomial orders of both the
approximation space Vh

x and Vh
ξ , and we solve the following dual problem for

Z̃ ∈ V h̃

J ′(Uh; Φ) − A′(Uh; Φ, Z̃|Dh̃) = 0 ∀Φ ∈ V h̃. (43)

It yields the a posteriori error estimate given by

J (U) − J (Uh) ≈ B(Z̃ − Zh|Dh) − A(Uh; Z̃ − Zh|Dh). (44)

Two important remarks are necessary at this point. First, it is underlined
that the dual problems are linear and significantly less expansive to solve
than the primal problems, even in an enriched approximation space. Second,
as shown by Eq. (43), the adjoint solution Z̃ is based on a functional form

A′ constructed with the approximation of D on the enriched space V h̃. As
a consequence, the resulting error estimate based on Z̃ accounts for possible
error in the approximation of the uncertain data D(ξ) on Vh

ξ .

4 Refinement procedures

4.1 Global and local error estimates

The a posteriori error methodology described in section 3 gives access to an
estimate of J (U) −J (Uh) according to Eq.(44). The global approximation
error η is therefore:
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η =
∣∣∣A(Uh; Z̃ − Zh|Dh) − B(Z̃ − Zh|Dh)

∣∣∣

=

∣∣∣∣
〈
a(Uh; Z̃ − Zh|Dh) − b(Z̃ − Zh|Dh)

〉

Ωξ

∣∣∣∣

≤
Nb∑

m=1

∣∣∣Ω(m)
ξ

∣∣∣

∣∣∣∣∣
〈
a(Uh; Z̃ − Zh|Dh) − b(Z̃ − Zh|Dh)

〉

Ω
(m)
ξ

∣∣∣∣∣ (45)

Defining the local error on the element Ω(l)
x × Ω

(m)
ξ by

ηl,m ≡
∣∣∣∣∣

∫

Ω
(m)
ξ

∫

Ω
(l)
x

[
ã(Uh; Z̃ − Zh|Dh) − b̃(Z̃ − Zh|Dh)

]
pξ(ξ) dx dξ

∣∣∣∣∣ , (46)

where ∫

Ωx

ã(u; v|d)dx = a(u; v|d),
∫

Ωx

b̃(v|d)dx = b(v|d),

we obtain the following inequality:

η ≤
Nx∑

l=1

Nb∑

m=1

ηl,m. (47)

Then, the objective is to refine the approximation space Vh in order to reduce
the global error η as estimated from the a posteriori error analysis. A popular
strategy to ensure that the global error gets below a given threshold value ǫη

is to refine the approximation such that

ηl,m <
ǫη

NxNb

= ǫ, ∀l, m ∈ [1, Nx] × [1, Nb]. (48)

4.2 Refinement strategies

If the criterion given in Eq.(48) is not satisfied for at least one SFE, the
approximation space needs refinement. Different types of refinements are pos-
sible. First, from the tensored construction of the approximation space, Vh =
Vh

x ⊗ Vh
ξ , it is seen that the refinement may concern the spatial or stochastic

approximation spaces, or both. To distinguish these two types of refinement we
shall refer in the following to x and ξ-refinement for the spatial and stochastic
refinements respectively. Second, the refinement can be based on construction
of finer partitions of the domains or on increased approximation orders, here-
after referred to as h- and p-refinements respectively. Therefore, we can choose
between four fundamental types of refinements to reduce the approximation
error to satisfy Eq. (48), hξ-, hx-, pξ- or px-refinements, or any combination of
the four.

The problem is thus to find the refinement strategy that yields the largest de-
cay of the discretization error for the lowest computational cost. The difficulty
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here is that the local error estimate only provides some information about the
elements (SEs and FEs) over which the approximation is insufficient. In other
words, if for some l and m the local error is such that ηl,m > ǫ then we can

only safely consider that the approximation error over Ω
(m)
ξ ×Ω(l)

x is too large
but nothing more. Specifically, it is not possible to decide a) between h- or
p-refinement and b) whether one should enrich the approximation space Vh

x

or Vh
ξ .

Difficulty a) is a classic problem in (deterministic) hp-finite-element meth-
ods. In the deterministic context, different strategies have been proposed to
support the decision regarding h- or p-refinement, and most of these strate-
gies are based on trial approaches. For instance, in [11], a systematic trial of
h-refinement is performed. The efficiency of the h-refinement is subsequently
measured by comparing the resulting error reduction with its theoretical value
estimated using the convergence rate of the FE scheme. If the efficiency of the
h-refinement is not satisfactory, a p-refinement is enforced at the following re-
finement step. This type of trial/verification approach has not been retained
here because of its numerical cost. Difficulty b) is on the contrary specific
to stochastic finite-element methods and thus remains entirely to be investi-
gated. A possible way to deal with difficulty b) can be envisioned again by
a trial approach where one would apply successively x and ξ-refinements to
measure the respective effectiveness in error reduction. Again, trial approaches
are expected to be overly expensive in the stochastic context where the size
of the discrete problems to be solved can be many times larger than for the
deterministic case: better approaches, yet to be thought, are needed here.

Another issue arising in the stochastic context is the potentially large dimen-
sionality N of the stochastic domain Ωξ: an isotropic hξ-refinement, where
SEs are broken into smaller ones along each dimension ξi, can quickly re-
sult in a prohibitively large number of SEs. This issue was already observed
in [16, 17, 18] where adaptive multi-wavelet approximations are used. Rather,
it is desirable to gain further information on the structure of the local error
ηl,m in order to refine along the error’s principal directions solely. Several ap-
proaches may be thought of to deal with this constraint. In the context of
deterministic finite element method, several anisotropic error estimators have
been rigorously derived based on higher order information. Among others, [23]
and [22] use the Hessian matrix based on Clément interpolants [6] to derive an
estimate of the directional errors. Thought attractive, this method has only
been derived for first-order finite elements (P1) and its extension to higher
order remains largely an open problem. This limitation precludes its use in
the present context where approximation order q is routinely larger than one.

Considering all these difficulties, it was decided to first verify the effectiveness
of the dual-based a posteriori error estimation in indicating which elements
need refinement, and to delay the question of the refinement strategy decision
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to a future work. Consequently, we present in a next section some numerical
tests which essential purposes are to prove that the proposed error estimator
indeed detect areas of Ω where the error is the most significant. Still, we
perform refinements, of increasing complexity, without pretending in any way
that the decision algorithms used yield optimal approximation spaces, but
merely that they allow for a reduction of the global error to an arbitrary small
level.

5 Numerical examples

5.1 Uncertain Burgers’ equation

To test the a posteriori error estimator, we consider the 1-D Burgers’ equation
on the spatial domain Ωx ∈ [x−, x+]:





1

2
(u (1 − u))x − µ uxx = 0 ∀x ∈ [x−, x+],

u(x−) = u−, u(x+) = u+.
(49)

This equation is widely used in particular in the fluid dynamics community
as it features essential ingredients: diffusion as well as a quadratic convective
term. Depending on the boundary conditions, the solution of the Burgers’
equation exhibits areas where u(x) is nearly constant and equal to u− (for
x ≃ x−) and u+ (for x ≃ x+) with a central area, the transition layer, where
u quickly evolves from u− to u+ according to an hyperbolic tangent profile
having an increasing steepness with decreasing the fluid viscosity.

5.1.1 Uncertainty settings

We consider the random solution U(x, ξ) of the Burgers’ equation which arises
when the viscosity µ is uncertain and parameterized by the random vector ξ:
µ = µ(ξ). As discussed above, ξ is uniformly distributed in [−1, 1]N. The
number N of random variables depends on the parameterization. To ensure
the existence of a solution to the stochastic problem, the parameterization
is selected such that the viscosity is almost surely positive. The stochastic
Burgers’ equation is thus:





1

2
[U(x, ξ) (1 − U(x, ξ))]x − µ(ξ) Uxx(x, ξ) = 0 ∀x ∈ [x−, x+],

U(x−, ξ) = u−, U(x+, ξ) = u+.
(50)
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The viscosity is parameterized using N = 2 random variables as follows

µ(ξ) = µ0 + µ1ξ1 + µ2ξ2, µ0 > 0. (51)

The expectation of the viscosity is 〈µ〉Ωξ
= µ0, and provided that |µ1| +

|µ2| < µ0, µ(ξ) is almost surely positive. We shall set in the following µ0 = 1,
µ1 = 0.62 and µ2 = 0.36. The resulting probability density function (pdf) of
the random viscosity is plotted in Figure 1.
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Fig. 1. Probability density function of the viscosity.

Finally, we set x− = −10 and x+ = 10 and we use for the boundary conditions,

u− =
1

2

[
1 + tanh

(
x−

4 µ0

)]
≈ 0, u+ =

1

2

[
1 + tanh

(
x+

4 µ0

)]
≈ 1. (52)

For these boundary conditions,

u(x) =
1

2

[
1 + tanh

(
x

4 µ0

)]
,

is in fact solution of the deterministic Burgers’ equation for µ = µ0 [26].

5.1.2 Variational problems

The variational formulation of the Burgers’ equation is derived. By means
of integration by parts, one obtains for the primal problem to be solved for
U ∈ V:

A(U ; Φ|D) − B(Φ|D) =
〈∫

Ωx

[U(1 − U) − 2 µ Ux] Φx dx
〉

Ωξ

= 0 ∀Φ ∈ V∗,

(53)
where V∗ = V∗

x ⊗ Vξ is constructed using the restriction of Vx to functions
vanishing on ∂Ωx. For the derivation of the adjoint problem, an obvious choice
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is here to base the a posteriori error estimate on the solution itself, i.e. using

J (U) =
〈∫

Ωx

U dx
〉

Ωξ

. (54)

For this choice, we have

J ′(U ; Φ′) = lim
ε→0

J (U + ε Φ′) − J (U)

ε
=
〈∫

Ωx

Φ′ dx
〉

Ωξ

∀Φ′ ∈ V. (55)

and

A′(U, Φ′; Z|D)= lim
ε→0

A(U + ε Φ′; Z|D) − A(U ; Z|D)

ε
(56)

=
〈∫

Ωx

[(1 − 2 U) Zx Φ′ − 2 µ Zx Φ′

x] dx
〉

Ωx

. (57)

Thus the dual problem writes as

〈∫

Ωx

[(1 − 2 U) Zx Φ′ − 2 µ Zx Φ′

x + Φ′] dx
〉

Ωx

= 0 ∀Φ′ ∈ V, (58)

for Z ∈ V and deterministic boundary conditions Z(x−) = Z(x+) = 0.

For the discretization of the primal and dual problems, we use Chebyshev
finite elements to construct Vh

x , and Legendre polynomials (uniform distribu-
tion) for Vh

ξ [1]. To compute the surrogate of the exact solution of the adjoint

equation, the approximation Vh is extended to V h̃ by increasing the orders of
the Chebyshev and Legendre polynomials by one unit, as explained in Sec-
tion 3. In practice, this step is cheap due to the linearity of the dual problem,
as seen from Eq. (58), and the resolution of the dual problem only contributes
to a small fraction of the global CPU time.

A fundamental point is that primal and dual problems do not involve any
operator in the stochastic directions (derivatives in ξi) but in the spatial di-
rection x solely. This has the essential implication that realizations of the
Burgers’ flow for different realizations of the viscosity are fully independent.
As a result, the solution of the primal and dual problems over different SEs
are uncoupled, allowing for straightforward parallelization with drastic speed-
up of the computation. We took advantage of this characteristic by solving
SE-wise the primal and dual problems on a Linux-cluster having 4 nodes with
dual processors. Another interesting property of the stochastic decoupling be-
tween SEs is that, during the refinement process, the approximation needs
only to be updated for the stochastic sub-domains Ω

(m)
ξ that have been x or

ξ-refined.
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5.2 Isotropic hξ-refinement

In a first series of tests, the spatial discretization if held fixed with Nx = 6
Chebyshev finite elements having equal size and order p = 6. For the refine-
ment, only hξ-refinement is allowed here while the stochastic order is main-
tained to a constant value.

For the purpose of comparison, we show in Figure 2 the convergence of the
error in the computed mean and variance of U at the point x = 0.52 when the
partition of Ωξ is uniformly refined by increasing the number Nb of SEs from
22 to 1002. The mean and variance have for expression:

〈
Uh
〉

Ωξ

=
Nb∑

m=1

∣∣∣Ω(m)
ξ

∣∣∣
〈
Uh
〉

Ω
(m)
ξ

,

σ2(U)≡
〈[

Uh −
〈
Uh
〉

Ωξ

]2〉

Ωξ

=
Nb∑

m=1

∣∣∣Ω(m)
ξ

∣∣∣
〈[

Uh −
〈
Uh
〉

Ωξ

]2〉

Ω
(m)
ξ

.(59)

In this experiment, the SEs are squares with equal size. To estimate the errors,
surrogates of the exact mean and variance of U were computed using Nx = 6,
p = 6, Nb = 1282 and q = 6. Note that these surrogates are in fact approxi-
mations of the exact mean and variance of the semi-continuous problem, the
spatial discretization being held fixed. Consequently, it is not expected that
the a posteriori error estimate η goes to zero since a small but finite spatial
error persists even for Vh

ξ → Vξ. The plot in Figure 2 shows the convergence
of the errors on the mean and variance at x = 0.52 of the semi-continuous so-
lution for two stochastic orders q = 2 and q = 4. The error is seen to quickly
decrease as the number of SEs increases, illustrating the convergence of the
solution process. The errors on the mean and variance converge with a similar
rate which is function of the stochastic order q.

However, it is known that this uniform refinement is not optimal, since some
areas of Ωξ may require a finer discretization than others. Thus, instead of
employing a uniform refinement, we now use the a posteriori error estimate to
identify the SEs requiring refinement. Following Eq. (48), an hξ-refinement is

to be performed on a SE Ω
(m)
ξ whenever ηl,m ≥ ǫ for some l ∈ [1, Nx = 6]. If so,

the refinement consists in splitting Ω
(m)
ξ into 2N = 4 smaller SEs of equal size

(i.e. isotropically). Applying this scheme for q = 2 gives the evolution with the
refinement iterations of the errors in the computed mean and variance of Uh at
x = 0.52 reported in Figure 3. These results were generated using ǫ = 2.10−5.
The errors are plotted as a function of the total number of dual and primal
problems actually solved during the iterative refinement process. The evolution
of the errors for the uniform refinement previously shown in Figure 2 is also
reported for comparison. A dramatic improvement of the convergence of the
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Fig. 2. Evolution of the errors on the computed (semi-continuous) mean and vari-
ance of the solution at x = 0.52 as a function of Nh =

√
Nb when using uniform

hξ-refinement. Two stochastic orders q = 2 and q = 4 are reported as indicated.

errors on the two first moments is observed when the a posteriori error based
refinement scheme is used, compared to the uniform refinement. Specifically,
an error of ∼ 10−7 in the (semi-continuous) mean and variance is achieved
at a cost of roughly 128 resolutions of the primal and dual problems when
using the adaptive hξ-refinement, while about 5000 primal problems have to
be solved to reach a similar accuracy when using a uniform refinement. Clearly,
the adaptive hξ-refinement out-performs the uniform refinement, not only in
terms of CPU-cost, but also in terms of memory requirements.

A better appreciation of the performance of the adaptive hξ-refinement can
be gained from the analysis of the data reported in Table 1, which presents
the evolution of the number Nb of SEs, the number of resolutions of primal
and dual problems and the errors in the first two moments as the refinement
proceeds. Starting from a partition of Ωξ into 4 equal SEs, they are first all
refined along the two-directions ξ1 and ξ2 leading to a partition involving 16
SEs. At the second iteration, all these SEs are still considered too coarse to
match the prescribed accuracy and are refined again in the two stochastic
directions, resulting in 64 SEs. After the third iteration, only a fraction of the
SEs needs further refinement and the process eventually stops after 6 iterations
with a partition of the stochastic space into 97 SEs.

In a second series of test, the a posteriori error based isotropic hξ-refinement
is applied with different stochastic orders q. The refinement criterion ǫ is
increased to 5.10−5 while other numerical parameters are kept constant (e.g.
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Fig. 3. Evolutions of the errors in computed (semi-continuous) mean and variance
of the solution at x = 0.52 as a function of the number of primal and dual problems
solves during the isotropic hξ-refinement and q = 2. Also plotted are the evolutions
of the errors for the uniform refinement.

Iteration Nb # of resolutions error on mean error on variance

1 4 4 4.1074 10−5 1.0189 10−3

2 16 20 4.7861 10−5 2.7054 10−3

3 64 84 1.0813 10−5 7.1067 10−4

4 76 100 1.3056 10−6 1.0944 10−4

5 88 116 8.7892 10−8 8.5915 10−6

6 97 128 6.9087 10−9 1.4032 10−7

Table 1
Evolutions of the SE discretization (Nb), number of primal and dual problems solves
and errors on mean and variance of the solution (at x = 0.52), with hξ-refinement
iteration and q = 2.

p = 6, Nx = 6). Figure 4 shows the resulting partition of Ωξ and surface
response of the solution at x = 0.1 for q = 1, 3 and 5. It is seen that to satisfy
the same error criterion a lower number of FEs is necessary when the stochastic
order increases. Specifically, for q = 1, 174 SEs are needed compared to 10
for q = 5. It is also seen that the partition of Ωξ is essentially refined in the
lower quadrant corresponding to lower values of the viscosity. An asymmetry
of the resulting partition of Ωξ is also seen for q = 1, denoting the different
contributions of ξ1 and ξ2 to the uncertainty of the solution as one may have
expected from the parameterization in Eq. (51).

20



Further more, the surface responses in Figure 4 show that the refinement of Ωξ

takes place in areas where the solution exhibits the steepest dependence with
regards to ξ, but also in areas where it is essentially unaffected by the viscosity;
this is due to the fact that the refinement is based on a criterion involving all
spatial locations: the solution at different spatial locations requires refinement
at different places in Ωξ.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

ξ 2

ξ1

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8-0.6-0.4-0.2  0  0.2 0.4 0.6 0.8  1

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9

u

ξ1

ξ2

u

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

ξ 2

ξ1

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8-0.6-0.4-0.2  0  0.2 0.4 0.6 0.8  1

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95

u

ξ1

ξ2

u

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

ξ 2

ξ1

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8-0.6-0.4-0.2  0  0.2 0.4 0.6 0.8  1

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95

u

ξ1

ξ2

u

Fig. 4. Partition of Ωξ (left) and surface response for U(ξ) at x = 0.1 (right) at
the end of the isotropic hξ-refinement process using ǫ = 5.10−5. Plots correspond
to q = 1, 3 and 5 from top to bottom.

5.3 Isotropic hξ,x-refinement

In the previous tests, an isotropic hξ-refinement only was applied. However,
as discussed previously, the a posteriori error estimate incorporate both the
stochastic and spatial errors. In fact, it is expected that when lowering µ a finer
and finer spatial FE discretization in the neighborhood of x = 0 is needed as
the solution becomes stiffer and stiffer. Consequently, one may find advantages
in adapting the FE discretization to Ω

(m)
ξ . This is achieved by introducing an
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additional test before applying the isotropic hξ-refinement. If the local error
ηl,n is greater than ǫ, the spatial discretization is first checked by computing
an estimate of the spatial error ηx

l,m from

(
ηx

l,m

)2
=
∫

Ω
(l)
x

〈[
Uh − Πl(Uh)

]2〉

Ω
(m)
ξ

dx, (60)

where Πl(Uh) is the (spatial) Clément interpolant [6] of Uh over the spatial
patch defined by the union of the FEs having a common point with the element
Ω(l)

x . The order of the Clément interpolant is set to p(l, m)+1. If this estimate
of the spatial error is greater than a prescribed second threshold ǫx a hx-
refinement is applied to the FE Ω(l)

x (for the SE Ω
(m)
ξ only), consisting in

its partition into two Chebyshev elements of equal size. On the contrary, if
ηx

l,m < ǫx for all l ∈ [1, Nb(m)], the hξ-refinement is applied as previously.

This strategy is applied to the test problem, with the initial discretization
using Nx = 6 identical FEs with p = 6, over 4 equal SEs with q = 2 and a
refinement criteria ǫ = 10−4. The partition of Ω at the end of the refinement
process is shown in Figure 5. The left plot shows the partition of Ωξ and
highlights again the need for refinement for the lowest values of the viscosity.
The right plot shows the dependence of the refinement of the FE discretization
with ξ. Specifically, it is seen that hx-refinement essentially occurs for the
lowest values of the viscosity (i.e. when the solution exhibits the steepest
spatial evolutions) and in the neighborhood of x = 0 as one may have expected.
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Fig. 5. Partition of Ωξ (left) and Ω (right) after the hξ,x-refinement procedure.
Numerical parameters are given in the text.

Additional insights about the distribution of the local a posteriori error esti-
mate ηl,m in Ω can be gained examining Figure 6, where plotted is the local
error magnitude as spheres. A large sphere corresponds to a large error ηl,m,
with a scaling of the spheres’ diameter as d ∼ η0.25

l,m . As already stated, it is
seen that the maximum error occurs around x = 0 and that it decreases very
quickly as one gets away from that location. This plot clearly exemplifies the
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h-refinement strategy: divide elements where a large error occurs to make the
error magnitude below the prescribed tolerance ηl,m.

Fig. 6. Distribution of the local a posteriori error estimate ηl,m after hξ,x-refinement.
The spheres’ diameter d scales as d ∼ η0.25

l,m .

We present in Figure 7 the expectation (left) and variance (right) of the ap-
proximate solution Uh after refinement as a function of x. The plot of the
expectation

〈
Uh
〉

Ωξ

is also compared with the deterministic solution u(x) for

the mean viscosity µ0 = 1. This deterministic solution has for expression:

u(x; µ = 1) =
1

2

[
1 + tanh

x

4

]
. (61)

It is seen that the expected solution also has an hyperbolic tangent-like profile
but is not equal to the deterministic solution: the differences are due to the
non-linearities of the Burgers’ equation. The right plot in Figure 7 depicts the
solution variance σ2(Uh). The boundary conditions being deterministic the
variance vanishes at x− and x+. The uncertainty in the viscosity produces a
symmetric variance with regards to x = 0 as it only affects the steepness of
the hyperbolic tangent-like profile since

U(x, ξ) ≈ 1

2

[
1 + tanh

x

4 µ(ξ)

]
. (62)

Also, due to the selected boundary conditions, we have at the center of the
spatial domain U(ξ) = (u−+u+)/2 = 1/2 almost surely, provided that µ(ξ) >
0. Therefore, the variance of Uh vanishes at x = 0 as shown in Figure 7.

The probability density functions of Uh, together with the solution’s quantiles,
are reported in Figure 8 as functions of x. The quantiles are defined as the
level u(Q), for Q ∈]0, 1[, such that the probability of Uh(x) < u is equal to
Q. The plot of the pdf shows dramatic changes with x. For x = x− the pdf is
a Dirac of unit mass (no-uncertainty); then when x increases the pdf evolves
from a sharp lower tail distribution to a long lower tail distribution. At x = 0
it is again a Dirac (no-uncertainty). For x increasing further to x+ the opposite
evolution is observed (due to the central symmetry of the settings). Note that
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Fig. 7. Expectation (left) and variance (right) of the approximate solution Uh(x, ξ)
at the end of the hξ,x-refinement process.

the distribution of the solution is bounded since U almost surely ∈ [u−, 1/2]
for x ≤ 0 and U almost surely ∈ [1/2, u+] for x ≥ 0. The quantiles reflect the
complexity of the distribution with important changes with x of the spacing
between quantiles.

To further illustrate the need of refinement to properly capture the solution
distribution, we present in Figure 9 the convergence of the pdf of Uh at x =
0.52 along the hξ,x-refinement process. The left plot shows the pdf in linear-log
scales to appreciate the improvement in the tails of the distribution, while the
right plot in linear-linear scales shows the improvement in the high density
region. It is seen that during the first iterations of the refinement process the
pdf presents under-estimated right-tails and some spurious oscillations, which
are due to discontinuities of the approximate solution across SEs boundaries.

5.4 Anisotropic h/q-refinement

In the previous tests, an isotropic h-refinement was used in the stochastic
domain. As a result, each refined SE is split into 2N SEs. For large N this simple
procedure quickly results in a prohibitively large number of SEs. Instead, one
finds advantage in splitting Ω

(m)
ξ only along the stochastic directions yielding

the largest error reduction. Obviously, the a posteriori error estimate does not
provide enough information to decide along which directions Ω

(m)
ξ should be

split: an anisotropic error estimator is necessary to this end. In the absence of
such estimator, we rely on a criterion, inspired from [17, 27], which is based on
the relative contributions of each stochastic directions to the local variance.
The local variance is defined as

σ2

Ω
(m)
ξ

(U) =

〈[
U − 〈U〉

Ω
(m)
ξ

]2〉

Ω
(m)
ξ

. (63)
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Fig. 8. Top: pdf of the approximate solution Uh as a function of x at the end of the
hξ,x-refinement. The pdf-axis is truncated for clarity. Bottom: quantiles u(Q) of the
solution, as a function of x, for Q = 0.05 to 0.95 with constant increment ∆Q = 0.1.

Since the stochastic expansion of U over Ω
(m)
ξ writes as

U(ξ ∈ Ω
(m)
ξ ) =

P(m)∑

k=0

u
(m)
k Ψ

(m)
k (ξ),

and because by convention Ψ
(m)
k = 1 for k = 0 (i.e. mode 0 is the mean mode),

the local variance writes:

σ2

Ω
(m)
ξ

(U) =
P(m)∑

k=1

(
u

(m)
k

)2
〈
Ψ

(m)
k

2
〉

Ω
(m)
ξ

, (64)
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and we define

σ2

Ω
(m)
ξ

×Ω
(l)
x

(U) =
P(m)∑

k=1

〈
Ψ

(m)
k

2
〉

Ω
(m)
ξ

∫

Ω
(l)
x

(
u

(m)
k (x)

)2
dx. (65)

It is seen that the integral of the local variance on the FE Ω(l)
x is a weighted

sum of the integral of the squared stochastic expansion coefficients over the
FE. The idea is thus to define, for each direction i = 1, . . . , N, the contribution
of the polynomial of degree q(m) in ξi to this variance integrated on Ω(l)

x . This
contribution is denoted σ2

l,m(U ; i, q(m)). Using the respective contributions of

each direction, it is decided that Ω
(m)
ξ has to be split along the i-th stochastic

direction if the following test is satisfied for at least one FE:

σ2
l,m(U ; i, q(m))

∑N
i=1 σ2

l,m(U ; i, q(m))
≥ ǫ2. (66)

where 0 < ǫ2 < 1 is an additional threshold parameter. If none of the stochastic
directions satisfies the previous test, it is on the contrary decided to increment
by one unit the stochastic expansion order q(m) over Ω

(m)
ξ .

The anisotropic h/p-refinement strategy now follows the general algorithm:

1. solve the primal and dual problems for the current approximation space Vh;
get Uh and Zh.

2. Solve the adjoint problem in the enriched space V h̃; get Z̃.
3. Compute the local error ηl,m from Eq. (46) for m = 1, . . . , Nb, l = 1, . . . , Nx(m).

If ηl,m < ǫ for m = 1, . . . , Nb, l = 1, . . . , Nx(m), then end computation.
4. For m = 1, . . . , Nb and l = 1, . . . , Nx(m)

If ηl,m > ǫ:
a. Compute the estimate of the spatial error ηx

l,m using Eq. (60).
b. If ηx

l,m > ǫx, mark element for hx-refinement.
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c. If the element has not been marked for hx-refinement,
a) Compute the directional variances.
b) For i = 1, . . . , N if the directional variance is greater than ǫ2 then mark

element Ω
(m)
ξ for hξ-refinement in direction i.

5. For m = 1, . . . , Nb: if Ω
(m)
ξ has not been marked for some hξ-refinement,

and none of the elements Ω
(m)
ξ × Ω(l)

x , l = 1, . . . , Nx(m), are marked for hx-
refinement but there exists at least one l ∈ [1, Nx(m)] such that ηl,m > ǫ,
then increase q(m) by one.

6. Construct the refined approximation space and restart from 1.

This refinement scheme has been successfully applied to the test problem,
with µ1 = 0.82 and µ2 = 0.16. The viscosity parameterization was changed
to increase the contribution of the first direction compared to the second to
the solution uncertainty. Note that the pdf of µ is affected by this change of
the parameterization, but the uncertainty range is kept constant. For illus-
tration purposes, we present in Figure 10 an example of the partition of the
stochastic space into SEs with variable stochastic expansion orders. The initial
discretization involves Nb = 4 equal SEs with q = 2. At the first iteration, all
SEs were split isotropically, the expansion order being kept constant. At the
second iteration, the SEs with boundary at ξ1 = −1 were further refined but
in the ξ1 direction only. For the following iterations, no further hξ-refinement
was required while some SEs still have a significant estimated error: it yielded
increase in the stochastic expansion order q(m). Again, the final expansion
order is the greatest for the SEs with ξ1 = −1 and/or ξ2 = −1 boundaries
(where viscosity is small), and is the lowest for the SE having boundary ξ1 = 1
and ξ2 = 1 where q has been kept constant.
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5.5 Tests for N = 3

To conclude this series of tests, an additional uncertainty source is considered
by taking the left boundary condition as random, U−. The random boundary
condition is assumed independent of the viscosity value and consequently pa-
rameterized using an additional random variable ξ3. The complete uncertainty
settings are:

µ(ξ) = 1 + 0.5 ξ1 + 0.05 ξ2, U−(ξ) = u−

0 + u′ ξ3, (67)

with u−

0 given by Eq. (52) and u′ = 5. 10−4. This low value of u′ is selected
as it is known that small perturbations of the boundary condition leads to
O(1) changes in the solution of the Burgers’ equation (see [31]). This is due
to the “supersensitivity” of the transition layer location with the boundary
condition: the low variability in U− will result in large variability of the so-
lution but essentially around the center of the spatial domain and not in the
neighborhood of x− where the solution variability is low. This problem is thus
well suited to test the effectiveness of the a posteriori error methodology in
providing correct local error estimators. Moreover, as the sensitivity of the
solution with regards to U− increases when the viscosity is lowered, a finer
partition of Ωξ is expected for low values of ξ1, while the contribution of ξ2

will be less as seen from Eq.(67).

The spatial discretization (Nx = 20, p = 6) and stochastic orders q being held
fixed, we proceed with the a posteriori error based anisotropic hξ-refinement
scheme described above. The target precision is set to ǫη = 0.001. In Figure 11
we show the reduction of the a posteriori error η along the refinement process
for orders q = 1 and 2. The evolution of the error estimate for a uniform
refinement of the stochastic space is also reported for comparison. Because
the stochastic space now has 3 dimensions, the increase in number of SEs for
the uniform refinement is seen to be dramatically large for a low resulting
reduction of the a posteriori error. On the contrary, using the local error
estimate to guide the refinement process is seen to significantly improve the
error reduction with the number of SEs. It is also remarked that the anisotropic
refinement requires 3 iterations to achieve the prescribed precision for q = 1,
while only 2 iterations are needed for q = 2.

Figure 12 depicts the partition of the stochastic space at the end of the hξ-
refinement process. The initial partition uses Nb = 2N = 8 identical SEs. In
fact, the anisotropic hξ-refinement process never requires refinement along the
second dimension ξ2: the plots of Figure 12 thus show the partition of Ωξ in a
plane where ξ2 is constant. The independence of the partition with regards to
ξ2 denotes the capability of the proposed scheme to detect the weak influence
of ξ2 on the solution. On the contrary, it is seen that for fixed ξ2 and ξ3

a finer division of Ωξ along the first direction is necessary when ξ1 decreases,
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because of the steeper behavior of the solution when the viscosity decreases. In
contrast, for fixed ξ1 and ξ2 the partition is uniform along the third direction,
but is finer for low viscosity and q = 1, as one may have anticipated from the
behavior of the Burgers’ solution.

To conclude these tests, we show in Figure 13 the variance of the stochastic
solution along the spatial domain, for the two stochastic orders q = 1 and 2,
at the end of the anisotropic refinement process. The effect of the uncertain
boundary condition on the solution variance can be appreciated through com-
parison with the result reported in Figure 7. Specifically, the variance of the
solution at the center of the spatial domain is now different from zero. It is seen
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that even so both orders leads to similar estimated error, small but noticeable
differences are visible in the spatial distribution of the solution variance. These
difference in terms of predicted variance can be better appreciated from the
right plot in Figure 13 where the differences for q = 1 and q = 2 are plotted.

6 Concluding remarks

A dual-based a posteriori error analysis has been proposed in the context
of stochastic finite element methods with stochastic discretization involving
piecewise continuous orthogonal polynomials approximations. The error esti-
mation involves the resolution of a linear stochastic dual problem, which com-
putational cost is deemed negligible compared to the primal problem (provided
the latter is non-linear). Numerical tests on the uncertain Burgers’ equation
have demonstrated the effectiveness of the methodology in providing relevant
error estimates that can be localized in the spatial and stochastic domain.

The principal limitation of the proposed method is the lack of resulting in-
formation regarding the structure of the estimated error. Specifically, the re-
spective contributions of the spatial and stochastic approximations to the es-
timated error are not accessible. At a finer level, the error estimator does not
allow for the discrimination between the relative contributions of the stochas-
tic directions to the overall error. We believe this is the most severe limitation
in view of anisotropic refinement of the stochastic approximation space re-
quired to treat problems with high dimensional uncertainty germs. However,
we consider that the proposed methodology constitutes a significant improve-
ment compared to error indicators previously proposed in the stochastic con-
text [17, 18, 27], which were based on the spectrum of the local stochastic
expansion.
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Several potential improvements of the refinement strategy have been identi-
fied throughout this work. It includes the derivation of rigorous and efficient
anisotropic error estimators for high order approximation schemes. Another
area of potential application of the a posteriori estimator is the coarsening of
the approximation space in view of application to, say, unsteady flows. Both
of these developments are the subject of on-going work.
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