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Abstract

This paper presents a multi-resolution approach for the propagation of parametric uncertainty in chemical
systems. It is motivated by previous studies where Galerkin formulations of Wiener-Hermite expansions
were found to fail in presence of steep dependences of the species concentrations with regard to the reaction
rates. The multi-resolution scheme is based on representation of the uncertain concentration in terms of
compact polynomial multi-wavelets, allowing for the control of the convergence in terms of polynomial order
and resolution level. The resulting representation is shown to greatly improve the robustness of the Galerkin
procedure in presence of steep dependences. However this improvement comes with a higher computational
cost which drastically increases with the number of uncertain reaction rates. To overcome this drawback
an adaptive strategy is proposed to control locally (in the parameter space) and in time the resolution
level. The efficiency of the method is demonstrated for an uncertain chemical system having eight random
parameters.
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1. Introduction

Quantification of uncertainty in the modeling of chemical systems is necessary for analysis, design and
optimization purposes. It is also useful in the context of model validation with respect to experimental
measurements that are generally imperfect and subject to systematic errors and noise. Numerical models
aim to represent real physical processes, but are always approximations of the actual physics, involving
both model and parametric uncertainties. Model uncertainty caused by modeling approximations will not
be discussed here. Rather, we shall restrict ourselves to the uncertainty associated with the empirical
physical parameters appearing in the simulation models (such as the reaction rate constants in chemical
models). These physical parameters are usually extracted from (uncertain) experimental measurements,
involving noise, by assuming an underlying chemical kinetic model. As a consequence, truly precise values
are rarely available, and measured parameter values can strongly depend on the experimental conditions and
apparatus used for their estimations. Thus, a probabilistic characterization (uncertainty bars, likelihood,
. . . ) of these parameters is more appropriate, and numerical techniques are called for to quantify the
resulting uncertainties in the simulation output.
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Often, Monte Carlo (MC) techniques are used for analysis of parametric uncertainties. This approach
involves performing a (pseudo) random sampling of the parameter distributions, followed by a statistical
treatment of the corresponding set of simulations, yielding estimates of the expectation, moments and any
desired statistics of the model output (see for instance [11, 14]. However, MC techniques are limited to simple
models and/or rough estimates, due to the computational overhead required to solve the deterministic model
multiple times. In fact, the large number of model realizations needed comes from the low convergence rate
of the statistical estimates with regard to the size of the sample set. This fact strongly supports the use
of deterministic techniques, as an alternative to MC sampling strategies. Among deterministic approaches,
Polynomial Chaos (PC) expansions of the solution are attractive candidates, as they allow for a compact and
convenient way of representing the functional dependences of the solution on the input random parameters.

PC methods have been the focus of many efforts within different fields of application (solid mechan-
ics, thermal sciences, fluid flow,. . . ) over the past decade, starting from the early work of Ghanem and
Spanos[10]. The essence of these methods is the projection of the model output onto a subspace spanned
by a basis of polynomial functions having for argument a denumerable set of independent random vari-
ables parameterizing the uncertain input data. For normalized Gaussian random variables one obtains the
“classical” Wiener-Hermite expansion which has been generalized recently to other types of distributions by
Karniadakis and co-workers [20]. First attempts to apply these techniques to the propagation of uncertainty
in chemical and reacting flow models has been proposed in [18, 17, 7].

There are essentially two types of approaches for the determination of the spectral (projection) coefficients
involved in the series expansion of the model output. In the first approach, orthogonality of the PC basis is
exploited to perform a non-intrusive projection of the uncertain model solution: a sampling, either stochastic
or deterministic, of the uncertainty range provides a set of model output values to be projected, i.e., to
compute the correlation between model output and basis polynomials. The second approach makes use of the
mathematical model to derive a new set of equations -the spectral problem- through a Galerkin procedure, to
be solved for the projection coefficients. The first approach is termed non-intrusive as it requires solving the
deterministic model only, but for different values of the uncertain parameters. The second approach, termed
intrusive, requires a reformulation of the deterministic model solution algorithm to handle the spectral
problem. While more complex than the non-intrusive approach, the intrusive construction is potentially
more efficient. However, the intrusive approach does yield a larger (compared to the original one) system of
equations, and is particularly challenged by the non-linearities involved in chemical models [17, 8]. In fact,
as shown in [17], even for simple reaction mechanisms, the intrusive spectral approach may fail to yield the
correct solution because of truncation errors and lack of robustness. These issues are the central focus of
the current paper.

The lack of robustness in intrusive spectral simulations is essentially due to (1) the loss of the “double
infinity” limit of the polynomial chaos expansions because a single stochastic dimension is associated with
each uncertain parameter, and (2) the decomposition of the solution using a basis of global polynomials,
which appears to be inadequate when dealing with uncertain chemical systems: for sufficiently large uncer-
tainty levels, the solution may exhibit strong dependence on the uncertain parameters (e.g. the reaction
rates) leading to multi-modal probability density functions (PDFs). The requisite PC order necessary for
representation of such solutions can be very high, so that truncated spectral computations break down due to
numerical instabilities and aliasing errors. For example, the oscillatory nature of the polynomials can result
in PC expansions for concentrations that contain negative valued realizations with non vanishing probability
when truncated to finite order. Moreover, the use of high order expansions in spectral computations is not
feasible in practice, due, first, to the emergence of numerical instability and, second, to the stiffness of the
resulting system of equations whose time integration would require prohibitively small time-steps [17]. To
address these limitations, we propose here to substitute the PC representation of chemical kinetic models
with a multi-resolution scheme based on the multi-wavelet (MW) construction of Alpert [3], following the
methodology introduced in [12] for 0-order or Wiener-Haar expansions, and later extended to arbitrary poly-
nomial order in [13]. These new representations have been designed to deal with steepness and bifurcations
triggered by uncertainty; by allowing for discontinuous dependences and introducing the notion of localized
decomposition and resolution level (scales), the MW are expected to be better suited for complex chemical
reactions than the usual PC expansion.
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The paper is organized as follows. Section 2 presents the Multi-Resolution Analysis (MRA) scheme
and MW expansion. It starts with a short summary of the spectral stochastic formulation for uncertainty
quantification in Sections 2.1-2.2. Details on the MRA scheme and the construction method for the MW
basis are then provided in Sections 2.3–2.5. Section 2.6 offers a short discussion on the Galerkin derivation of
the spectral problem and implementation details needed for the examples treated in the remaining sections.
In Section 3, we focus on the simple test-problem proposed in [17] for which the Wiener-Hermite (WHe)
expansion was found ineffective. The causes for the WHe expansion failure are first analyzed in Section 3.1.
The results obtained using the MW expansion, for the same problem, are then presented in Section 3.2 and
a numerical inspection of the convergence of the MW representation is given. In the remaining sections
the MRA scheme is applied to a more complex chemical model. This model corresponds to the uncertain
hydrogen oxidation mechanism described in [16] and briefly summarized in Section 4. In Section 5, the
situation where only one of the reaction rate constants is uncertain is first considered. This reaction rate
constant is selected as the one having the largest impact on the concentrations. Our objective here is to
demonstrate the flexibility and robustness provided by the MW representation in adapting the polynomial
order and resolution level to the actual solution of the problem. The results shown in Section 5 are achieved
at the cost of a significant enrichment of the expansion basis, which in turn directly translates into significant
computational overhead. As a consequence, an adaptive strategy where a controlled local level of resolution
applies is called for. Such a strategy is developed in Section 6, based on an extension of the technique
proposed in [13] for unsteady solutions. The effectiveness of the overall method (MRA plus adaptive scheme)
is demonstrated for up to 8 uncertain reaction rate constants. Finally, major conclusions and proposed future
developments and improvements are given in Section 7.

2. Multi-Resolution Analysis and Multi-Wavelet Basis

2.1. Spectral Stochastic Representations
Consider a generic equation governing a function P that depends on space (x), time (t) and an initial

random event (θ):
O(P(x, t, θ),x, t, κ(θ)) = 0, (1)

where O is a non-linear operator with random parameters κ(θ). The spectral stochastic representations
considered in this paper rely on an orthogonal Fourier-like decomposition of the solution process according
to:

P(x, t, θ) =
∑

i

Pi(x, t)Ψi(ξ(θ)), (2)

where the Pi(x, t)’s are the (yet-to-be-determined) spectral coefficients, {Ψi}i∈IN is the spectral basis and
ξ is a random vector having independent components. The orthogonality of the basis functions, as well as
the equality in Eq. (2), holds in the mean square sense (for the sake of brevity, the dependency on θ is no
longer made explicit):

(∀(i, j) ∈ IN2) 〈Ψi(ξ)Ψj(ξ)〉 = δij
〈
Ψ2

i (ξ)
〉
, (3)

where the brackets denote the mathematical expectation. The expansion (2) is an orthogonal basis function
representation of P. This approach has lead to the concepts of Homogeneous Chaos and Polynomial Chaos
(PC) expansions [19, 6, 10] when ξ is a Gaussian vector with independent components. It can also be
extended to non-Gaussian measures [9, 20]. Due to the orthogonality of the basis functions, the spectral
coefficients satisfy:

(∀i ∈ IN) Pi =
〈PΨi(ξ)〉
〈Ψi(ξ)Ψi(ξ)〉

. (4)

In order to determine the solution P it is sufficient to determine the spectral coefficients, Pi. Several
approaches can be used to determine the Pi’s. A simple approach is to use Monte Carlo sampling (e.g. [18])
or, alternatively, deterministic quadrature formulas (e.g. [15]). In both cases, the problem is reduced to
repeated solutions of a deterministic problem corresponding to different realizations of ξ. The ensemble of
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realizations is then used to reconstruct the spectral coefficients. We refer to this approach as a non-intrusive
spectral projection (NISP) because it enables immediate application of a deterministic solution scheme.

An alternative to MC and quadrature schemes is the Galerkin approach, where the expansion (2) is sub-
stituted into the governing equation (1) and orthogonal projections onto the basis functions are performed,
resulting in the following system for the spectral coefficients:

(∀j ∈ IN)

〈
O

(∑
i

Pi(x, t)Ψi(ξ),x, t,
∑

k

κkΨk(ξ)

)
Ψj(ξ)

〉
= 0, (5)

where
∑

k κkΨk is the spectral expansion of the random parameters; this expansion is known provided
that the statistic of κ is prescribed. In the following, we introduce a multi-wavelet (MW) basis function
expansion which overcomes some of the limitations of representations based on bases of smooth global
polynomials, which have been shown to be impractical for the modeling of uncertain chemical systems with
large uncertainty level [17]. To simplify the presentation, we first focus on the case of a one-dimensional
random vector ξ; generalization to the multi-dimensional case is then addressed in subsection 2.5.

2.2. Change of Variable
Let p(η) denote the Cumulative Density Function CDF, giving the probability that ξ ≤ η. As in [12],

we assume that p(η) is a continuous, strictly increasing function of η over the interval [a, b], where a < b
are two real numbers, possibly infinite, and that p(a) = 0 and p(b) = 1. Based on these properties of
p(η), it follows that for all r ∈ [0, 1] there is a unique η ∈ [a, b], such that p(η) = r. In addition, if x is a
uniformly distributed random variable on [0, 1], then p−1(x) is a random variable with values in [a, b] having
the same distribution as ξ [11]. Consequently, using the mappings x = p(ξ) and ξ = p−1(x), we develop
a representation of P in terms of x = p(ξ). To shorten the notation we shall write x(ξ) (resp. ξ(x)) for
x = p(ξ) (resp. ξ = p−1(x)).

2.3. Multi-Resolution Analysis
In this section, we recall some properties of the multi-wavelet bases introduced by Alpert [3] (see also [2]).

The application to the representation of ODEs with random initial conditions is considered in section 2.4.

2.3.1. Vector Spaces
For No = 0, 1, . . . and k = 0, 1, 2, . . . , we define the space VNo

k of piecewise-continuous polynomials
according to:

VNo
k =

{
f : Supp(f) = [0, 1],∀l ∈ {0, . . . , 2k − 1} f|]2−kl,2−k(l+1)[

∈ IRNo [X]
}
, (6)

where Supp(f) and IRNo [X] respectively denote the support of f and the ring of degree No polynomials with
real coefficients. In other words, the restriction of f to any interval ]2−kl, 2−k(l + 1)[ is such a polynomial
function, and f vanishes outside of [0, 1]. Thus, VNo

k has dimension 2k(No + 1) and VNo
0 ⊂ VNo

1 ⊂ · · · ⊂
VNo

k ⊂ . . . . Denoting by VNo the union of all of spaces VNo
k , VNo =

⋃
k≥0V

No
k , [3], we remark that VNo is

dense in L2([0, 1]) with respect to the norm ‖f‖ = 〈f, f〉1/2 where

〈f, g〉 =
∫ 1

0

f(x)g(x)dx (7)

is the standard inner product in L2([0, 1]). In addition, for any integer k, the subspace WNo
k , which we

employ below as the Multi-Wavelet (MW) subspace, is defined as the orthogonal complement of VNo
k in

VNo
k+1; we write:

(∀k ∈ IN) VNo
k ⊕WNo

k = VNo
k+1, WNo

k ⊥ VNo
k , (8)

where ⊕ denotes direct sum of vector spaces. From this construction we have:

VNo
0

⊕
k∈IN

WNo
k = L2([0, 1]). (9)
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2.3.2. Multi-Wavelet Basis
Let {ψ0, ψ1, . . . , ψNo} be an orthonormal basis of WNo

0 , where the ψi’s are piecewise polynomial functions
of degree less than or equal to No. From the orthonormality condition, we have:

(∀(i, j) ∈ IN2) 〈ψi(x), ψj(x)〉 = δij . (10)

Since WNo
0 ⊥ VNo

0 , the first No + 1 moments of the ψi vanish, i.e.

(∀(i, j) ∈ IN2, i < j ≤ No)
〈
ψj , x

i
〉

= 0. (11)

Equations (10) and (11) result in a system of polynomial equations which is solved, yielding the (No +1) ψi

functions (see [3]). The space WNo
k , whose dimension is 2k(No + 1), is spanned by the multi-wavelets, ψk

jl,
which are images of the ψi’s by translations and dilations. The ψk

jl are given by:

(∀(j, k, l) ∈ IN3, j ≤ No, l < 2k) ψk
jl(x) = 2k/2ψj(2kx− l). (12)

and their support is Supp(ψk
jl) = [2−kl, 2−k(l + 1)]. Due to the orthonormality of the ψ’s, we have:〈

ψk
im, ψ

l
jn

〉
= δijδmnδkl. (13)

A basis {φ0, . . . , φk−1} for Vk
0 is then constructed, using rescaled Legendre polynomials. Denoting Li as the

Legendre polynomial [1] of degree i, defined over [−1, 1], we set:

(∀i ∈ IN, i ≤ No) φi(x) =
Li(2x− 1)

li
, (14)

where li is a normalization factor selected such that

(∀(i, j) ∈ IN2, i ≤ No, j ≤ No) 〈φi(x), φj(x)〉 = δij . (15)

The space VNo
k , whose dimension is 2k(No + 1), is spanned by the polynomials φk

il(x) = 2k/2φi(2kx− l), for
i = 0, . . . ,No and l = 0, . . . , 2k − 1, that are images of the φi’s by translations and dilations.

2.3.3. MW Expansion
A function f ∈ L2([0, 1]) can be arbitrarily well approximated using the MRA scheme constructed above.

We denote by fNo,Nr the projection of f on VNo
Nr

; we have:

fNo,Nr(x) =
2Nr−1∑

l=0

No∑
i=0

〈
φNr

il (x), f(x)
〉
φNr

il (x) =
2Nr−1∑

l=0

No∑
i=0

f
Nr

il φ
Nr
il (x). (16)

An alternative expression for fNo,Nr , valid for all Nr ≥ 1, in terms of multi-wavelets is:

fNo,Nr(x) = fNo,0 +
Nr−1∑
k=0

2k−1∑
l=0

(
No∑
i=0

dfk
ilψ

k
il(x)

)
. (17)

This expression, with fNo,0(x) evaluated from Eq. (16), provides the sought-after expansion of fNo,Nr(x) in
terms of Legendre polynomials overlaid with a specified number of MW details. The MW coefficients dfk

il

appearing in Eq. (17) are given by:

dfk
il =

〈{
fNo,k+1 − fNo,k

}
, ψk

il

〉
(18)

Denoting by δNo,Nr the L2-norm of the approximation error of f on VNo
Nr

:

δNo,Nr =
〈
f − fNo,Nr , f − fNo,Nr

〉
, (19)

convergence is characterized by δNo,Nr → 0 when the polynomial order No (p convergence) and the number
of resolution levels Nr (h convergence) tend to ∞.

5



2.4. Expansion of a process
Consider an ODE governing P, that depends on a random variable ξ satisfying the assumptions of

section 2.2. Further, we assume that P(ξ) has a second order moment. Using the change of variables
introduced in section 2.2, we express P(ξ) in terms of x = p(ξ) as:

P(ξ) = P(p−1(x)) = P̃(x(ξ)). (20)

Introducing this change of variable, and taking into account that x is uniformly distributed on [0, 1], it is
easy to show that P̃(x) ∈ L2([0, 1]). Thus, P̃(x) can be expanded according to Eq. (17). This expansion
can be recasted through convenient indexation as (see [12]) :

P(ξ) = P̃(x(ξ)) =
∑
λ∈♦

P̃λWλ(x(ξ)), ♦ ≡ 4∪40 (21)

where 
Wλ(x) = ψλ(x) for λ ∈ 4 ≡

{
λ : λ = (No + 1)(2k + l − 1) + i,

(i, j, k) ∈ IN3, i ≤ No, j < 2k
}
,

Wλ(x) = φ−1−λ(x) for λ ∈ 40 ≡ {−No − 1,−No, . . . ,−1} .
(22)

The resolution level k for any λ ∈ 4 will be denoted by |λ|.

2.5. The Multi-Dimensional Basis
Extension of the 1D MW expansion to the Nd-dimensional case is now considered. For simplicity, we

focus on a vector ξ with random uncorrelated and independent components {ξ1, . . . , ξNd} :

pdf(ξ) =
Nd∏
d=0

pdfd(ξd).

where pdfd denotes the probability density function of ξd. For each component ξd the real numbers ad < bd
and assume that pdfd satisfies the assumptions of 2.2. Then ∀xd ∈ [0, 1] there is a unique ξd ∈ [ad, bd],
denoted for short ξd(xd), such that pd(ξd) = xd. Consistent with the one-dimensional case, we write for
short ξ(x) = (ξ1(x1), . . . , ξNd(xNd)) and x(ξ) = (x1(ξ1), . . . , xNd(ξNd)). We now consider the multi-index
λ = (λ1, . . . , λNd), and define the sets

Λk =

{
λ :

Nd∑
d=1

|λd| = k

}
,Wk =

{
Nd∏
d=1

Wλd
(xd) : λ = (λ1, . . . , λNd) ∈ Λk

}
. (23)

Wk is the set of multidimensional multi-wavelets having resolution level k. Let Mk = Card(Λk), such that
the MW expansion of P̃(x) can now be formally written as:

P̃(x) =
M0∑
i=1

c0i Γ
0
i (x) +

M1∑
i=1

c1i Γ
1
i (x) +

M2∑
i=1

c2i Γ
2
i (x) + . . . (24)

where Γk(x) ∈ Wk denotes a multidimensional multi-wavelet of resolution k. In practice, the MW expansion
has to be truncated. For instance, we can choose to retain all multi-indices λ such that |λ| =

∑Nd
d=1 |λd| ≤ Nr,

where Nr is a prescribed resolution level. After truncation, the finite expansion may be rewritten in a single
index form as:

P(ξ) = P̃(x(ξ)) ≈
Nw∑
i=0

P̃iMi(x(ξ)), (25)

where Nw + 1 =
∑Nr

i=0Mi is the dimension of the truncated basis {Mi, i = 0, . . . ,Nw}. Further, we use the
convention that the indexing is performed in such a way that the first element of the basis isM0 = 1. With
this convention, the mean and variance of P(ξ) are respectively given by:

〈P〉 = P̃0, σ2(P) =
Nw∑
i=1

P̃2
i .
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2.6. Galerkin Projection Schemes
When an intrusive approach is used, the spectral coefficients appearing in the MW expansion of the

process P̃(x) are determined using the Galerkin projection technique outlined in section 2.1. However, the
projection of the governing equations on the spectral basis, as given by Eq. (5), may raise several difficulties
depending on the nature of the non-linear operator O. For instance, in chemical systems, one has to deal
with both polynomial and non-algebraic functionals in the determination of the chemical source terms. The
general spectral treatment of uncertain chemical source terms was extensively discussed in [17], and we only
detail here the non-linearities appearing in the computational examples presented in the following, namely
binary and ternary products of uncertain quantities. For other types of non-linearities (e.g. non-algebraic
terms such as exp, log, square root, . . . ), the reader should consult [17, 7, 8] since the methodologies readily
extend to the MW expansions.

In this work, we have to evaluate the spectral coefficients (ab)i and (abc)i of binary and ternary products
respectively of uncertain quantities a, b and c (for instance a is a reaction rate and b and c two species
concentrations), knowing their MW expansions:

a =
Nw∑
i=0

aiMi, b =
Nw∑
i=0

biMi, and c =
Nw∑
i=0

ciMi.

Clearly, (ab)i is given by:

(ab)i = 〈ab,Mi〉 =
Nw∑
j=0

Nw∑
k=0

ajbk 〈MjMk,Mi〉 =
Nw∑
j=0

Nw∑
k=0

Dijkajbk,

where we have denoted by Dijk = 〈MjMk,Mi〉 the components of the binary product tensor D. The
components of D are independent of a and b, and are only functions of the basis. Thus, D is computed
once and stored for subsequent use. It has to be mentioned that D is sparse, thanks to the orthogonality of
the MW basis functions. A similar Galerkin projection can be used to compute the spectral coefficients of
ternary products (abc). It yields the ternary product tensor Tijkl = 〈MjMkMl,Mi〉:

(abc)i =
Nw∑
j=0

Nw∑
k=0

Nw∑
l=0

Tijklajbkcl.

However, even if Tijkl is again a sparse tensor, the number of arithmetic operations required by the applica-
tion of the previous expression may be prohibitive for large Nr and/or No. In that case, a pseudo-spectral
approximation based on the application of two successive binary products is preferred:

(abc)i =
Nw∑
j=0

Nw∑
k=0

Dijk(ab)jck, where (ab)j =
Nw∑
l=0

Nw∑
m=0

Djlmalbm.

The pseudo-spectral approximation of ternary products yields significant reduction of the computational
load, but introduces aliasing errors caused by the truncation of (ab) at the intermediate step. In general,
the impact of these aliasing errors has to be carefully analyzed and controlled.

3. Comparison of WHe and MW Expansions

The purpose of this section is to examine the efficiency and robustness of the MW representation,
compared to a global WHe expansion [19, 6, 10]. To this end, a simple problem is used, namely that
proposed in [17]. In section 3.1, we demonstrate the limitation of the WHe expansion for this simple
problem. Next (section 3.2) MW expansions are considered and their efficiency is contrasted with that of
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WHe expansions. The test-problem is now introduced. Consider an uncertain system described by a state
variable X ∈ R obeying: { dX

dt
= −X(X −B)(X − C),

X = X0 for t = 0,
(26)

where B < 0 and C > 0 are two real constants, and the initial condition X0 is uncertain. The system has
three fixed-points, X = 0, B and C, the first one being unstable. In the following, we set B = −6 and
C = 1. While very simple, this problem is challenging for PC expansions whenever the initial condition is
such the set of possible realizations of X0 overlaps the unstable point. In this case, the set of realizations
splits into two parts, depending on the sign of X0, leading to a discontinuous solution as time advances. This
discontinuity in the solution is a source of breakdown of the spectral representation, when using a global
smooth basis.

3.1. Wiener-Hermite expansion
To start with, we consider the case where X0 ∼ N (µ0, σ

2
0), i.e., the distribution of X0 is Gaussian with

mean µ0 and standard deviation σ0, where µ0 ≥ 0 and σ0 > 0 are two arbitrary real constants. Hence, the
parametric representation of X0 in terms of a normalized Gaussian variable ξ is:

X0(ξ) = µ0 + σ0ξ, ξ ∼ N (0, 1). (27)

Also, the solution X(t, ξ) has a WHe PC expansion up to the order No given by:

X(t, ξ) =
No∑

k=0

Xk(t)Ψ(H)
k (ξ),

where the basis functions Ψ(H)
k (ξ) are the Hermite polynomials with respective degrees k [1]. To solve this

problem, the Galerkin method described in section 2.6 is employed with a fourth order Runge-Kutta scheme
using a time step ∆t = 10−3.

For a fixed order No = 5, the numerical experiments presented in Figure 1 show that if the probability
of X0 < 0 is significant (for instance for σ0 = 0.4 and 0.1), then all the realizations identically (with unit
probability) end on the negative stable fixed-point. In contrast, if the probability of X0 < 0 is small enough
(for example σ0 = 0.05), one obtains limt→∞X(t) = C. This result contradicts the exact expected behavior:
limt→∞X(t) = B if X0(θ) < 0 and limt→∞X(t) = C if X0(θ) > 0. Further, fixing µ0 = 0.2 and σ0 = 0.1,
and increasing the expansion order from No = 1 to 7, we observe that the positive stable fixed-point is
selected for No ≤ 2, while the solution goes to the negative fixed-point for 3 ≤ No ≤ 7; worst, increasing
further No leads to unstable computations.

This simple problem may be viewed as a “prototype” for chemical reaction models, with X being iden-
tified with the “concentration” of the species of interest and −B and C the constant “concentrations” of
two intermediate species. First, if X is really considered as a concentration, X0 should be positive with
probability 1, as well as X(t), and it is fundamental that the numerical method preserves the positivity of the
random concentration X(t) even for large variance of the solution. Second, if we allow the “concentration”
X to be negative, the model can be understood as a chemical system having two asymptotic steady states
dependening of the composition of the initial mixture; many chemical systems present such behaviors, for
instance in presence of ignition or extinction of the reaction depending on the mixture composition, and it
is essential that the random model can capture such drastically different dynamics. To enforce a strictly
positive initial condition, one often uses a log-normal rather than a Gaussian distribution; so let us select
X0(ξ) = exp(β(ξ)), where β(ξ) = µβ + σβξ ∼ N (µβ , σ

2
β). As a result, the initial condition has the following

1D WHe expansion [9]:

X0(ξ) = exp

(
µβ +

σ2
β

2

)
=

∞∑
k=0

 σk
β〈

Ψ(H)
k

2〉Ψ(H)
k (ξ)

 > 0 w.p.1. (28)
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Figure 1: Time evolution of X(t) for the test problem of section 3, using the WHe expansion and Gaussian initial condition:
X0 ∼ N (µ0, σ2

0). Left: results for µ0 = 0.2, 5th order expansion and σ0 = 0.4, 0.1 and 0.05; plotted are the mean of X(t) and
error bar extending to ±σ(X(t)). Right: mean of X(t) for µ0 = 0.2, σ0 = 0.1 and different expansion orders No = 1, . . . , 7.
Computations for No > 7 are unstable.

However, truncation of Eq. (28) to a finite order No may again introduce a non vanishing probability of
having X0 < 0. This issue was considered in [17], and we provide in Figure 2 the reconstruction of the
parametric representation of X0 in terms of ξ as given by Eq.(28), for different orders and µβ = −2.5,
σβ = 1.1. The plots show that while the 1D WHe expansion of X0(ξ) given by the truncated expansion
(28) does converge to the exact mapping of the log-normal distribution for increasing No, oscillations of the
left tail around X0 = 0 (see details on the right plot) lead to negative realizations for X0. Moreover, these
oscillations are damped with increasing frequency as No increases and occur for lower values of ξ, so they are
more unlikely. However these oscillations around the unstable point have a dramatic impact on the model
robustness: each point where the mapping crosses the axis X0 = 0 induces a discontinuity in the solution
limt→∞X(t), and so is a source for spectral breakdown. In other words, even though the probability of
X0 < 0 decreases for increasing No, amplification of the higher order coefficients is expected because of the
increasing number of zeros in the truncated mapping. This is evidenced in Figure 3, where the evolution of
the mean and standard deviation of X with time are plotted, for different orders No = 1, . . . , 7. This time,
only No = 2 and 3 yield the correct long-time solution, while again computations with No ≥ 8 were found
unstable. Also, the exact long-time solution of Eq.(26) is achieved for No = 2 and 3; a prediction that is in
fact inconsistent with the actual truncated initial condition used for the simulation, which should lead to a
partition of the realization set between the two stable fixed-points.

3.2. Multi-Wavelet expansion
We repeat the experiments of the previous section using the MW expansion. The solution (and initial

condition) are now expanded in terms of x = p(ξ), with ξ ∼ N (0, 1):

X(t, ξ) = X̃(t, x = p(ξ)) =
Nw∑
i=0

X̃i(t)Mi(x). (29)

For these tests, we select the Gaussian distribution of the initial condition X0 ∼ N (µ0, σ
2
0) and rely on

Eq. (27) to determine the spectral coefficients of the initial condition:

(X̃0)i =
〈
(µ0 + σ0p−1(x)),Mi(x)

〉
= µ0δi0 + σ0

∫ 1

0

p−1(x)Mi(x)dx. (30)

To compute the integral appearing in the right-hand side of (30) high-order Gauss quadrature formulas [1]
are used. However, since p−1(x) is not a polynomial, (X̃0)i can not be exactly computed from a Gauss
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Figure 3: Time evolution of the computed mean (left) and standard deviation (right) of X(t) for the test problem of section 3,
using the WHe expansion with No = 1, . . . , 7. log-normal initial condition with µβ = −2.5 and σβ = 1.1.

quadrature. To minimize the quadrature error, 32 Gauss-points were used to estimate these integrals.
We present in Figure 4 the resulting projection of X̃(t = 0, x) using different resolution levels Nr and
polynomial orders No, for µ0 = 0.2 and σ0 = 0.2. The plots highlight the discontinuous character of the
MW approximation, and its rate of convergence toward the exact mapping as both Nr and No increases.
Further, it is shown that for fixed order No, the details at successive resolution levels are more and more
focused on the tails of the distribution, i.e. at the MW supports for x in the neighborhood of 0 and 1. This
behavior is expected because X, although integrable on [0, 1], as shown in section 2.4, tends to ±∞ when x
tends to 0 or 1.

Then, provided with the mapping of the initial condition, the governing equations for the MW coefficients
are time integrated, still using the 4th order Runge-Kutta scheme with ∆t = 10−3, but employing the pseudo-
spectral approximation of the ternary products (see section 2.6). The pseudo-spectral approximation was
required here, because the size of the ternary product tensor would be too large for the largest values of
No and Nr tested, even for sparse format storage. In Figures 5 and 6 we plot the time evolution of the
computed mean and standard deviation of X for No = 0, . . . , 3 and Nr = 1, . . . , 6. The results illustrate
that, for fixed No, both first and second order statistics converge for increasing Nr. In contrast with the WHe
computations, the statistics converge to their ”exact” values (available by sampling) and not to spurious
ones. Specifically, all realizations point towards the negative or positive stable fixed-points depending on
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Figure 4: MW parametric mapping of X̃0(x) (Eq. (30)) for the Gaussian initial condition X0 ∼ N (0.2, 0.12); different orders
No and resolution level Nr are presented as indicated.

their respective initial condition, and are not altogether trapped by one of the stable points. This behavior
is clearly an improvement compared to the WHe case where computations, when stable, always predict
vanishing standard deviation for long time. Moreover, it is found that the minimal resolution level to be
used to satisfactorily capture the dynamics of X is roughly Nr = 4 for No = 1, 3 and Nr = 5 when using
No = 0, 2.

To further understand the behavior of the MW expansion, we provide in Figure 7 reconstructions of the
response-surfaces X̃(t, x), for No = 0 and four values of Nr. It is shown that for Nr = 1, the model predicts
that all realizations end on the positive stable point. This is consistent with the mapping of the actual initial
condition of the simulation which for this low resolution level is positive ∀x ∈ [0, 1] (see Fig. 4). For Nr = 2,
Fig. 4 shows that the probability of realizations having negative initial condition will be overestimated: the
computed mean of X(t) presented in Fig. 5 reflects this fact, over-predicting the final negative mean, while
the corresponding response-surface in Fig. 7 illustrates how the MW expansion can actually split the set
of realizations consistently with the approximation of the initial condition. When Nr is increased further,
the approximation of the initial mapping becomes better and better, the discontinuity point is found with
greater and greater precision, and the transient dynamics of individual realizations improve (see Fig. 7).

Figure 8 depicts the response surfaces computed for Nr = 4 and No = 0, . . . , 3. As explained above, this
level of resolution provides quite an accurate estimate of the discontinuity location, but spurious oscillations
in the solution are observed in the neighborhood of the discontinuity for No > 0, whose magnitudes increase
with the polynomial order. These oscillations are in fact essentially due to Gibbs phenomena, characteristic
of the representation of discontinuous solution using (even local) smooth polynomials. However, these oscil-
lations are limited to the support overlapping the discontinuity, and do not contaminate the full uncertainty
range. Hence, the contribution of the spurious oscillations to the statistics of the process decreases exponen-
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Figure 5: Time evolution of the computed mean of X(t) for the MW expansions with No and Nr as indicated. The initial
condition corresponds to the Gaussian distribution with µ0 = 0.2 and σ0 = 0.1, whose corresponding MW approximations are
plotted in Figure 4.

tially when the resolution level Nr increases, explaining the convergence, for No > 0, of the first and second
order moments reported in Fig. 5 and 6. Clearly, these observations suggest that zero order polynomials
should be used on supports overlapping discontinuities, and future work will focus on the adaptation of the
local polynomial order with regard to the local behavior (smoothness) of the solution.

Repeating the experiment for the log-normal distribution of the previous subsection with the MW ex-
pansion (not shown) yields similar conclusions: correct long time solution for any resolution level and order,
h and p convergence and more robustness compared to the WHe expansion. The results are not presented
since in the following section we shall consider log-normal uncertainties in the context of (more complex)
chemical system. To summarize the findings of the section, we stress that the MW expansion offers an
attractive alternative to the WHe expansion in the context of chemical modeling, by providing more ro-
bustness and a better efficiency when dealing with steep or discontinuous processes. The MW expansion
seems to be superior to WHe expansions when dealing with constrained problems, such as positivity of the
solution, thanks to the local character of the representation. Moreover, by offering two ways of improving
the predictions through increasing resolution level and polynomial order, the MW representation provides
more flexibility than traditional global polynomial expansions with fixed dimension that can suffer from lack
of robustness when increasing the representation order (recall, of course, that the general convergence of
the PC representation is guaranteed only for increasing order and dimensionality). These claims are further
investigated in the following sections.
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Figure 6: Time evolution of the computed standard deviation of X(t) for the MW expansions with No and Nr as indicated. The
initial condition corresponds to the Gaussian distribution with µ0 = 0.2 and σ0 = 0.1, whose corresponding MW approximations
are plotted in Figure 4.

4. Chemical Test Problem

4.1. Uncertainty Parameterization
In this section, we present a short description of the chemical model used in the remainder of this paper

to test the efficiency of the proposed methods. This model is selected as it has been previously used as a test
problem for uncertainty quantification in chemical system in [16, 18] and because spectral PC expansions are
known to fail for this system. The model is a reduced hydrogen oxidation mechanism involving seven species
(OH, H, H2O, H2, O2, HO2 and H2O2) and the eight reactions listed in Table 1 (see [16] for more details).
The initial temperature and pressure are defined to be at supercritical conditions, and the overall oxidation
process is assumed to be isothermal. For this chemical system, uncertainties in the forward reaction rates,
kf,j , are present: from experimental data, these uncertainties have been characterized in [16] by their median
values k̂f,j and respective uncertainty levels UFj . It is assumed that the actual forward rates are contained,
with 95% confidence level, within the lower and upper bounds k̂f,j/UFj and k̂f,j × UFj . Moreover, the
forward reaction rates are modeled as independent random variables, and their probabilistic behaviors are
modeled as log-normal distributions. It has to be noted that the assumption of independence is fairly strong
but justified from the information theory point of view in the absence of any knowledge regarding the joint
densities of the reaction rates : it yields the less informative probability law of the chemical model. From
these assumptions, the eight forward rates can be parameterized using a set of eight independent normalized
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Figure 7: MW response-surfaces of X̃(t, x) solution of the problem of section 3 and initial condition X0 ∼ N (0.2, 0.12). Plots
were generated for No = 0 and Nr = 1, 2, 4 and 6 as indicated.

Gaussian variables ξ = (ξ1, . . . , ξ8) according to:

(∀(i, j) ∈ {1, . . . , 8}2)

 kf,j(ξj) = k̂f,j exp
[
log(UFj)

1.96
ξj

]
,

ξj ∼ N (0, 1), 〈ξiξj〉 = δij

(31)

where [18, 17] the factor 1.96 ensures that the rate kf,j is in the range [k̂f,j/UFj , k̂f,j×UFj ] with a probability
equal to 0.95. The reverse rates are constructed from the equilibrium constants K−1

c,j of each of the eight
reactions, which we presume to be known with unit probability. As a consequence, the reverse and forward
rates are fully correlated and related by:

kr,j(ξj) = kf,j(ξj)×K−1
c,j , (32)

The equilibrium constants are computed using the expected values of the heats of formation reported in
Table 2 of [16] neglecting any uncertainty therein, and are listed in Table 1. From this parameterization
of the reaction rates using the Gaussian vector ξ, we deduce their MW expansions in terms of the random
vector x = (x1, . . . , x8) with independent components, all being uniformly distributed on [0, 1]:

k̃f,j(xj) = kf,j(ξj(xj)) =
Nw∑
i=0

(
k̃f,j

)
i
Mi(x),

(
k̃f,j

)
i
=
〈
k̃f,j ,Mi

〉
, (33)

and similar expressions for the reverse rates.

4.2. Solution Method
The stochastic process to be modeled is then fully described by the time-evolution of the state vector

containing the species concentrations:

P̃(t,x) = ([OH](t,x), [H](t,x), . . . , [HO2](t,x), [H2O2](t,x))T, (34)
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Figure 8: MW response-surfaces of X̃(t, x) solution of the problem of section 3 and initial condition X0 ∼ N (0.2, 0.12). Plots
were generated for No = 0, . . . , 3 and Nr = 4 as indicated.

all having MW expansions of the form ζ(t,x) =
∑

i ζi(t)Mi(x), where ζ is a “generic” component of P̃.
The chemical system is governed by the following system of coupled ODEs:

dP̃(t,x)
dt

= R(P̃(t,x),x), (35)

where the right-hand side vector R is a non-linear functional of the uncertain species concentrations and
reaction rates. For instance, the second component of P̃ is governed by:

d[H](t,x)
dt

=
{
k̃r,1(x)[H2O](t,x) + k̃f,2(x)[H2](t,x)[OH](t,x)

+ k̃r,3(x)[HO2](t,x) + k̃r,6(x)[HO2](t,x)[H2](t,x)
}

−
{
k̃f,1(x)[OH](t,x)[H](t,x) + k̃r,2(x)[H2O](t,x)[H](t,x)

j Reaction k̂f,j Kc,j UFj

1 OH + H ←→ H2O 1.479 1014 0 3.16
2 H2 + OH ←→ H2O + H 6.295 1011 4.380 10−04 1.26
3 H + O2 ←→ HO2 8.314 1013 9.879 10−14 1.58
4 HO2 + HO2 ←→ H2O2 + O2 7.281 1011 1.045 10−09 1.41
5 H2O2 + OH ←→ H2O + HO2 3.469 1012 3.382 10−09 1.58
6 H2O2 + H ←→ HO2 + H2 1.696 1011 7.723 10−06 2.00
7 H2O2 ←→ OH + OH 3.993 1001 1.589 10+11 3.16
8 OH + H2O ←→ H2O + O2 3.917 1013 3.534 10−18 3.16

Table 1: List of reactions and chemical data for the reduced hydrogen oxidation mechanism of [16]. k̂f,j are the median
forward rates, the Kc,j = kf,j/kr,j are the (certain) equilibrium constants and the coefficients UFj measure the uncertainty
levels in each forward reaction rates as discussed in the text.
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+ k̃f,3(x)[H](t,x)[O2](t,x) + k̃f,6(x)[H2O2](t,x)[H](t,x)
}
. (36)

Then, introduction of the MW expansions of the concentrations and reaction rates into the governing
equations, followed by projection onto the spectral basis yields a system of 7(Nw + 1) ODEs for the MW
coefficients, where we recall that Nw + 1 is the dimension of the MW basis. The equation for the i-th MW
coefficient of [H] is, for instance :

d[H]i
dt

= + (kr,1[H2O] + kf,2[H2][OH] + kr,3[HO2] + kr,6[HO2][H2])i

− (kf,1[OH][H] + kr,2[H2O][H] + kf,3[H][O2] + kf,6[H2O2][H])i , (37)

which right-hand-side evaluation requires 2 binary and 6 ternary products. Due to the broad spectrum
of time scales involved in this chemical system, the deterministic system of equations resulting from the
Galerkin projection is stiff, as for the deterministic case. In the following, we shall make use of the software
package DVODE of Brown, Hindmarsh and Byrne, designed for the integration of system of stiff ordinary
differential equations [4, 5].

4.3. Initial conditions
To solve the chemical problem, initial conditions are needed. In this work, the initial concentrations are

certain, and set to: {
[OH] = [H] = [HO2] = [H2O2] = 0,
[H2O] = 4.281 10−3, [H2] = 2.06 10−6, [O2] = 1.04 10−6.

Since these initial conditions are certain, their respective initial expansions are simply: [H2O](t = 0,x) = 4.281 10−3M0,
[H2](t = 0,x) = 2.06 10−6M0,
[O2](t = 0,x) = 1.04 10−6M0.

The other species having all vanishing MW coefficients at t = 0.

5. 1-D MW modeling of Supercritical Hydrogen Oxidation

Before considering the full set of stochastic dimensions, we restrict our attention to the case where only
the seventh reaction rate constant is uncertain. Hence, the problem can be modeled with a single stochastic
dimension, enabling intensive computations and analysis. Still, the uncertainty in k̃f,7 and k̃r,7 impacts the
full set of species concentrations in a non-trivial way, as might be expected given the coupling of different
species by the chemical source term, and as will be illustrated below. Before we start presenting these
results, we recall that, for a given resolution level Nr and polynomial order No, the dimension of the MW
basis is Nw + 1 = (No + 1)2Nr .

5.1. Approximation of the reaction rates
As for the parameterization of the Gaussian distribution in the previous section, we provide in Figure 9

the MW approximations of the mapping for the log-normal distribution of the stochastic (uncertain) reaction
rate k̃f,7 (see Eq. (33)) obtained for different expansion orders and resolution levels. Since the mapping of
the reaction rate in terms of the CDF x(ξ) exhibits an infinite growth as x → 1, it is seen that significant
resolution is required to properly represent the distribution for the highest values of k̃f,7. However, while
the convergence of the mapping with increasing number of resolution levels is quite slow for the zero order
expansion, very few levels are needed when using No = 2 and 3. Also, it has to be noted that if the
parameterization of the reaction rates is singular, yet integrable, it does not necessarily imply that such
behavior is expected for the concentrations. Moreover, for unsufficient resolution level, discontinuities are
expected to be present in the reaction rate mapping, due to the piecewise character of the expansion. These
discontinuities in the reaction rate mapping are expected to affect in turn the continuity of concentration
solution. These claims are verified in the following results.
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Figure 9: Parameterization of the log-normal forward rate k̃f,7 as a function of x = x(ξ), for No = 0, . . . , 3 and Nr = 1, . . . , 5
as indicated. Also plotted is the exact mapping.

5.2. First order moments
Figures 10 and 11 show the time evolution of the two first statistical moments of H concentration.

Figure 10 displays the results obtained using straight-forward Monte-Carlo sampling (without NISP), with
a 5000-point sample of k̃f,7. On the other hand, Figure 11 shows the results obtained the intrusive MW
approach, for No = 0, . . . , 3 and Nr = 1, . . . , 5. The former thus provides a baseline against which the latter
can be compared.
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Figure 10: Mean (left) and standard deviation (right) of H concentration as a function of time. Computations with Monte-
Carlo sampling using a 5000-point sample. Only the uncertainty in the 7-th reaction (see Table 1) is considered, all other
forward rates being taken equal to their median values.

Focusing first on the zero-order case, i.e. Wiener-Haar expansion, depicted on the top row in the figure,
the convergence of the solution when Nr increases is clearly visible. In fact, for the mean of [H](t), the solution
obtained with Nr = 1 is slightly over-estimated, but predictions for Nr ≥ 2 are hardly distinguishable in the
plot, and in excellent agreement with the high order computations of the following rows. For the standard
deviation, the convergence appears to be slower with Nr, and the case with Nr = 1 significantly under-
estimates the statistical dispersion of the concentration induced by the uncertainty. It even predicts the
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absence of any uncertainty in the concentration for t ≈ 6.5. This peculiar prediction will be explained
later when analyzing the response-surfaces in Figure 14. Nonetheless, the convergence of the second order
statistics, albeit slow, is still achieved for No = 0. Similar trends are reported when using No = 1, but
with more accurate predictions for Nr = 1, and a faster convergence rate: for the mean H concentration the
curves are nearly indistinguishable, and for the standard deviation, only the case for Nr = 1 has noticeable
deviations from the predictions using higher resolution levels. For the last two orders tested (No = 2, 3,
in the bottom lines of Fig. 11), even the predictions for Nr = 1 provide very accurate results, as far as
these low order moments are concerned; a result that may be surprising considering the mapping of the
corresponding reaction rates depicted in Figure 9. Increasing the level of resolution does not seem to bring
additional significant information into the uncertain process, even if the quality of the mapping appears
fairly poor for Nr = 1 and No = 2 and 3. In fact, a closer analysis (see below) of the supplementary details
introduced when increasing the resolution level indicates that they do improve the representation, although
their impact on the low-order statistics is negligible: a finer analysis of the predicted process distribution is
necessary to assess the improvement resulting from increasing resolution. Last, but not least, we see a very
good agreement between Monte-Carlo and MW results, agreement that improves as No increases.
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Figure 11: Mean (left) and standard deviation (right) of H concentration as a function of time. Computations with MW
expansions using No and Nr as indicated. Only the uncertainty in the 7-th reaction (see Table 1) is considered, all other
forward rates being taken equal to their median values.
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To support this assertion, we show in the left plot of Figure 12 the time evolution of the expected
concentration in H with the ± one standard deviation bounding box (σ([H])). In addition, the deterministic
solution corresponding to the median value of the forward rate (solid line) is also reported in the same plot.
While one may have expected the deterministic median solution to remain roughly within the neighborhood
of the expected solution, it appears that it actually departs significantly from the averaged realization,
reaching the +σ bound for t ≈ 6.5. This behavior is characteristic of highly skewed processes, reflecting the
non-linearity of the chemical source term. To better appreciate the skewness of the uncertainty in the H
concentration distribution, we provide in the right plot of Figure 12 a set of 40 sample paths of [H](t) for
random realizations of k̃f,7 following the prescribed log-normal distribution. These sample paths highlight
the complex dependence of the concentration on the actual value of the 7th forward rate, and the clearly
skewed distribution that results from it, with what appears as an upper limit in [H] for t > 5, that realizations
are unlikely to cross. At this point, it should be clear that first- and second-order statistical moments are
not enough to fully characterize the impact of the uncertainty in kf,7 on the solution.
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Figure 12: Left : mean of [H](t) with ±σ([H]) box (dashed lines) and deterministic [H](t) for k̃f,7(x) = k̂f,7 (solid line). Right :

40 deterministic samples of [H](t) (dashed lines) for random values of k̃f,7 log-normally distributed, together with the computed
expectation of [H](t)± σ([H]) (solid lines). Mean and standard deviation of [H](t) were obtained using Nr = 5 and No = 3.

5.3. Analysis of concentrations probability density functions
To stress further the need for accurate high order statistics in order to properly represent the impact

of uncertainty on the chemical process under study, and to illustrate the improvement in this direction
resulting from increasing the level of resolution in the MRA scheme, we now focus on the PDF of the species
concentrations. To this end, we use for each species sp the time-dependent relative likelihood R[sp] of species
concentration, defined as follows:

(∀t ∈ [0, 10]) R([sp], t) =
pdf([sp](t))

sup[sp] pdf([sp](t))
. (38)

Hence, one always has R([sp], t) ∈ [0, 1], with equality to 1 if and only if pdf([sp]) is equal to the highest PDF
at time t; this is in particular the case for the maximum likelihood estimation of [sp], when it exists – with
no guarantee of unicity. On the contrary, R([sp], t) vanishes if and only if the PDF of [sp] at time t vanishes
as well. The rescaling of the concentration PDF, with its local-time maxima, enables time-tracking of the
concentration value with the highest PDF, by removing the large fluctuations in magnitude of the absolute
PDF. As with the PDF, however, a thin R for a given observable means a highly predictable concentration,
while broad distributions or disperse peaks in R reflect large variability, possible unpredictability (at least
unreliability) and a low confidence level in the predicted concentrations. In Figure 13, we have plotted the
relative likelihood for two species concentrations: [H2] and [H]. The PDFs of the species concentrations
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were estimated using a set of one million samples for x, uniformly drawn on [0, 1], and used to compute the
corresponding concentration samples from their respective MW expansions.

The results in the figure clearly show the convergence ofR([H2], t) andR([H], t) (and so of their respective
PDF) with increasing Nr. The dominant features of the R([H2]) time-evolutions are largely converged for
Nr = 3, while low Nr artifacts in R([H], t) are not eliminated till Nr = 4 or 5. Further, while R([H2], t)
exhibits generally smooth behavior, persistent sharp features are evident in R([H], t) for t > 4. This suggests
the role of implicit equilibrium constraints in the chemical system at late time (as equilibrium is approached),
and the high sensitivity of the system to [H]. The result is that a very narrow distribution in [H] is allowed
for t > 4. Of course it is true that [H2] also exhibits a narrowing distribution at late time, but of a clearly
different qualitative nature. Note that the equilibrium state of the system is not uncertain, as it is determined
by the thermodynamics of the mixture and not by the rate kinetics. Since uncertainty is only presumed
here in the kinetic rate constant, it is expected that, for sufficiently large time, the residual distribution
of R([H2]) and R([H]) in the figure will approach peaked functions. Moreover, while [H2] tends to zero at
equilibrium and must remain positive, [H] tends to a non-zero limit and is skewed towards an upper limit
(highest concentrations).

5.4. Response-surfaces
Analogous to the response surface results shown in Figs 7-8 we examine here the MW response surfaces

for the chemical system; specifically for [H], as function of time and x(ξ). This data is shown in Figure 14 for
Nr ∈ {1, 2, 3, 4} and No ∈ {0, 1}, and in Figure 15 for No ∈ {0, 1, 2, 3} and Nr ∈ {1, 2, 3}. The discrete jumps
in the response surface for No = 0 are smoothed as No increases; these jumps are due to the discontinuous
mapping of the reaction rate. The results indicate the general convergence of the representation of the
response surface with increasing Nr and No. Moreover the change in the character of R([H]) observed in
Fig. 13 at late time is also evident here in the absence of any variation along the vertical axis in the [H]
response surface at late time. This follows a significant growth in this variation at early time.

6. Multi-Dimensional Process

Direct extension of the methodology of the previous section to the full uncertain problem is not feasible,
because the size of the MW basis, for given Nr and No exhibits a prohibitive rate of growth with the number
of independent parameters. Also, if the uncertain process to be expanded is essentially smooth with regard
to the parameter set, with only localized steep variations along only a few of the stochastic dimensions,
one can expect that a large part of the MW coefficients have low magnitude, so that many can actually be
neglected. However, the set of MW coefficients that could be removed from the expansion is not known
a priori, and an adaptive strategy that dynamically selects the relevant coefficients is required in order to
maintain an acceptable computational cost.

Although appealing, adaptive strategies based on coarsening/refinement of the set of MW coefficients is
difficult to implement in multi-dimensional problems, and not necessarily optimal from a CPU-load point
of view, since any changes in the basis imply changes in the product tensors Dijk, whose evaluation can
be expensive if it were to be repeated many times during the simulation. Further, when the number of
MW coefficients increases, the size of the set of non-vanishing elements in the binary and ternary products
increases dramatically (see [13]) due to the overlapping supports of the MW at different resolution levels.
This is a severe limitation for the use of MW expansions for Nd > 1 because the binary product is the key
operator in pseudo-spectral computations [8, 17].

These considerations lead us to the development of an alternative adaptive strategy in [13], which retains
the fundamental feature of MRA, specifically the piecewise polynomial character of the expansion, while
overcoming the issue of increasing complexity of the binary product when the resolution level increases. The
main ingredient of this adaptive scheme is the construction of an “analyzer-basis”, involving multidimensional
Legendre polynomials plus first resolution level one-dimensional details. This analyzer can be rescaled (to an
arbitrary resolution level in each of the stochastic dimensions) and displaced (within the parameter space)
to compute local expansions of the process. Within this framework, the aim of the adaptive strategy is to
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decide what is the minimal local level of resolution necessary to properly approximate the solution. Below,
we detail the construction of the adaptive scheme, which is then applied to the chemical test-problem.

6.1. Set Partition of the Parameter Space and Local Basis
We now develop a local refinement scheme based on the expansion in Eq. (16). Comparison of the

two expansions in Eqs. (16) and (17) shows that the former, in terms of φ functions, does not involve any
summation over the scale indices, contrary to the expansion in terms of details, ψ. This difference stems
from the fact that the basis functions φk

il, i = 0, . . . , No and l = 0, . . . , 2k − 1, couple with only No other
components, namely those having the same sliding index l. In contrast, the ψk

il couple with many other
components. This suggests an adaptive strategy based on successive set partitions of the random parameter
space, through the determination of a local resolution level. Let Ω = [a1, b1] × · · · × [aN , bNd ] be space of
random parameters. Let Ωm, m = 1, . . . ,Nb be a finite set partition of Ω in Nb non-overlapping sub-domains:

Ωm = [am
1 , b

m
1 ]× . . . [am

N , b
m
N ],

Ω =
⋃Nb

m=1 Ωm,

Ωm ∩ Ωm′
= ∅ if m 6= m′.

(39)

We define as follows the local probability density function of ξ on each of the sub-domains Ωm, denoted by
pdfm(ξ), using the independence of the random parameters:

pdfm(ξ) =
Nd∏
d=1

pdfm
d (ξd), pdfm

d (ξ) =
pdfd(ξ)

pd(bmd )− pd(am
d )
. (40)

Clearly, we have

pdfm(ξ) > 0 for ξ ∈ Ωm and
∫

Ωm

pdfm(ξ)dξ = 1. (41)

Moreover, defining

pm
d (ξ ∈ [am

d , b
m
d ]) =

∫ ξ

am
d

pdfm
d (ξ′)dξ′ ∈ [0, 1], (42)

if xm
d is uniformly distributed over [0, 1], then the random variable (pm

d )−1(xm
d ) ∈ [am

b , b
m
d ] and has the same

distribution as ξm
d . Thus, a second-order stochastic process can be locally expanded on Ωm, in terms of the

random vector xm, having independent components (xm
1 , . . . , x

m
Nd

) ∈ [0, 1]Nd , with uniform distributions.
Now let γ be the set of multidimensional indices

γ(No) =

{
(γ1, . . . , γNd) :

Nd∑
d=1

γd ≤ No

}
.

For ξ ∈ Ωm, we build the local projection basis as

Bp(Ωm,No) =

{
Φm

λ∈γ(No)
(xm(ξm))) =

Nd∏
d=1

φλd
(xm

d (ξm
d ))

}
,

and the details directional basis Bd
a(No), d = 1, . . . ,Nd as

Bd
a(Ωm,No) = {ψi(xm

d ), i = 0, . . . ,No} .

The full local expansion basis will be the union of Bp and Bd
a:

B(Ωm,No) = Bp(Ωm,No) +
Nd⋃
d=1

Bd
a(Ωm,No).
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Finally, the multidimensional process P(ξ) will have for local expansion on Ωm:

P(ξ) = P̃(xm(ξ)) ≈
∑
λ∈γ

P̃m
λ1,...,λN

Φλ1,...,λN
(xm(ξ)) +

Nd∑
d=1

No∑
i=0

P̃m
d,iψi(xm

d ), (43)

where again, the equality holds in the mean-square sense.
Note that the local basis B(Ωm,No), spanning the local expansion of P according to Eq. (43), is in

fact the rescaled Legendre polynomials basis (Bp(Ωm,No)) augmented with the first-level detail basis, Bd
a,

d = 1, . . . ,Nd. Thus, P̃(x), for ξ(x) ∈ Ωm, approximated by Eq. (43) is the local Wiener-Legendre projection
of order No, plus one dimensional details. The local expectation of P is given by 〈P〉Ωm = Pm

0,...,0, and its
local variance is

σ2
Ωm(P) ≈ (σ̂Ωm)2 +

Nd∑
d=1

(
σd

Ωm

)2
,

where (σ̂Ωm)2 =
∑

λ∈γp
(Pm

λ )2,
(
σd

Ωm

)2 =
∑No

i=0

(
Pm

d,i

)2

, and we have denoted γp = γ − {(0, . . . , 0)}. The
total expectation of the process is given by the volume-weighted summation of the local expectations:

〈P〉 =
Nb∑

m=1

〈P〉Ωm Volm, (44)

where Volm is the Euclidean volume of Ωm: Volm =
∏Nd

d=1(pd(bmd )− pd(am
d )). Finally the total variance of

the process is given by

σ2(P) =
Nb∑

m=1

[
σ2

Ωm(P) +
(
Pm

0,...,0 − 〈P〉
)2]Volm. (45)

6.1.1. Adaptive strategy
Assume that the current set partition of Ω involves Nb blocks, i.e. Ω =

⋃Nb
m=1 Ωm. On each sub-domain

Ωm, the process is expanded on the local basis B(Ωm,No), the spectral coefficients being computed through
Galerkin projection methods as previously. To decide if a given block m needs more refinement, and to
determine which stochastic directions need such refinement, we consider the following criterion:

Cm(d) =
σd

Ωm

σΩm

≥ εr (46)

and we refine the sub-domain along the d-th dimension if this inequality is satisfied. Here εr < 1 is a
prescribed threshold function. The test compares the “energy” of the one-dimensional details along the d-th
stochastic direction with the local variance of the solution. In other words, the one-dimensional details coef-
ficients are used as indicators of the quality of the representation along their respective stochastic direction.
A new set partition of Ω is then constructed, by splitting Ωm into smaller sub-domains. Specifically, if we as-
sume the inequality (46) is satisfied for a single dimension d, then refinement of Ωm = [am

1 , b
m
1 ]×· · ·×[am

N , b
m
N ]

will give birth to two new sub-domains Ωm′
and Ωm′′

, defined by:
Ωm′

= [am′

1 , bm
′

1 ]× · · · × [am′

N , bm
′

N ]
= [am

1 , b
m
1 ]× · · · × [am

d , (a
m
d + bmd )/2]× · · · × [am

N , b
m
N ]

Ωm′′
= [am′′

1 , bm
′′

1 ]× · · · × [am′′

N , bm
′′

N ]
= [am

1 , b
m
1 ]× · · · × [(am

d + bmd )/2, bmd ]× · · · × [am
N , b

m
N ].

(47)

Then, local expansions of the process on the newly created sub-domains are computed, before being analyzed
to determine whether additional refinement is needed. This sequence of analysis and refinement steps is
repeated up to convergence. It is emphasized that, during refinement, computations are performed in newly
created sub-domains only, since the local solutions over other sub-domains are unaffected. Note also that
this methodology is well suited for parallel implementation, since local computations are independent of
each other.
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6.1.2. Application to chemical systems
We now provide the algorithm used to integrate the system of stochastic ODEs governing the uncertain

supercritical hydrogen oxidation mechanism, with dynamical adaptation of the parameter space set partition.
In order to minimize the computational load, we do not recompute the solution, starting from the initial
time, for each refined sub-domain, as in [13]. Instead, we advance the solution in time using equally spaced
stages, where the correctness of the set partition with regard to the threshold function εr is verified. If the
set partition at the end of a given stage k needs further refinement, then it is refined, and the solution over
the created sub-domains is computed from the initial conditions corresponding to the solution at the end
of the stage k − 1. A procedure is required to provide initial conditions for the new sub-domains at the
beginning of the current stage k. This is performed efficiently and without approximation using polynomial
interpolations of the solution of the “parent” sub-domain that has been split.

Suppose that we wish to integrate the system for t ∈ [0, Tf ]. We denote ∆T the time-interval between
successive analyses of the set partition. With this notation, the time-marching algorithm has the following
structure:

1. Initialization:
(a) set times t = 0, t0 = 0 and t′ = ∆T ;
(b) Initialize the set partition of Ω to Ω1 = [0, 1]Nd , Nb = 1.
(c) Project the initial condition of the concentration on Ω1.
(d) Set sub-domain flag I(m = 1) to 1.

2. For each sub-domain Ωm of the set partition, m = 1, . . . ,Nb with I(m) = 1:
(a) Set the local expansion of the forward and reverse reaction rates;
(b) Set the local expansions for the concentrations at time t0;
(c) Perform the time integration between t0 and t′ of the local system of stochastic ODEs;

3. Set Nb
′ = Nb.

4. For each sub-domain Ωm of the set partition, m = 1, . . . ,Nb
′, with flag I(m) = 1:

(a) Set sub-domain flag to I(m) = 2;
(b) Compute Cm(d) given by Eq.(46), and retain highest value over the set of species concentrations;
(c) If ∀d = 1, . . . ,Nd: Cm(d) < εr, then do:

i. The sub-domain is sufficiently refined, update flag to I(m) = 0;
ii. Continue with the next sub-domain in the list (step number (4)).

(d) Else, for d = 1, . . . ,Nd do:
If Cm(d) ≥ εr then do:

i. For every sub-domain Ωm′≤Nb with I(m′) = 2, do:
• Store the solution S0 at time t0 over Ωm′

;
• Split (along the d-dimension) the sub-domain Ωm′

into two sub-domains with index m′

and m′′ = Nb + 1: Ωm′ → Ωm′ ∪ Ωm′′
;

• Set I(m′) and I(m′′) to 3 to make sure they are refined only once;
• Interpolate S0 on Ωm′

and Ωm′′
;

• Update the set partition: Nb ← Nb + 1.
ii. Shift all sub-domain flags with value 3 to I = 2, and proceed with the next dimension d in

step (d).
(e) Refinement of the sub-domain has been completed, set all flags I = 2 to I = 1 and proceed with

the next sub-domain in step (4).
5. If Nb > Nb

′, new sub-domains have been generated that need to be computed and further analyzed:
continue from step (2).

6. The set partition satisfies the refinement criteria, then:
(a) Record the set partition and the solutions over all sub-domains at time t = t′, to be used as initial

conditions in the next time interval;
(b) If t′ < Tf , then:

i. Set t0 ← t′, t′ ← t′ + ∆T ;
ii. For m = 1, . . . ,Nb set I(m) = 1;
iii. Continue from step (2).

7. End.
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6.2. Test cases
We now present some test cases in order to illustrate the validity of our approach.

6.2.1. 2-dimensional tests
We consider uncertainty in the rates of reactions 7 and 8, and apply the adaptive scheme for three

threshold values εr = 0.025, 0.01 and 0.001. Tests are considered for the first and second order expansion.
In Figure 16, we plot the final (t = 10) set partitions, response-surfaces together with the time evolutions

of the number of block in the set partition, for the six tests. The results highlight the dependence of the
MW discretization and domain decomposition on εr and No. The top panel shows the partitioning of the
(x7, x8) plane, and its dependence on εr and No. We note the more refined partitioning with decreasing εr
and No.

For higher No, less refinement of the (x7, x8) space is necessary for a given allowed directional block
variance, controlled by εr. The localization of the highly refined domain blocks at the (0, 1) limits of x7 and
x8 reflect both the variability of the rate constant mappings (as shown in Fig. 9) and the dependence of
various elements of the solution on the (x7, x8) space. The dependence of [H] (at t = 10) on (x7, x8) is shown
in the middle panel in Fig. 16, again for the indicated ranges of εr and No. The [H] response surfaces exhibit
strong variability with (x7, x8) in the vicinity of the origin, with generally smoother behavior elsewhere.
Sensitivity information can be conveniently extracted from the response surfaces.

Finally the bottom panel in the figure shows the time evolution of the number of bins Nb for the indicated
ranges of εr and No. In all cases, results indicate fast initial growth of the number of bins as the ignition
process unfolds, till about t = 2. Past this time, Nb increases only slightly, if any, as the system approaches
equilibrium, and the solution becomes gradually more insensitive to uncertainties in the rate constants.

The results clearly suggest the need for a coarsening strategy to accelerate the solution at late time, as
it is expected that many of the bins created at early time are no longer necessary as the system approaches
equilibrium at late time. The Nb-profiles also show clearly the need for higher Nb when both εr and No

are low, as observed pictorially in the top and middle panels in the figure. An optimal strategy ultimately
requires suitable choices of No and εr for the problem at hand.

We note finally the relative insensitivity of the [H] response surface shape to the choice of εr and No in
the ranges considered in Fig. 16. This is also evident in the mean and standard deviation profiles of [H]
versus time shown in Fig. 17. Any changes in these two moments over the specified range of εr and No is
simply not observable in the profiles for all time.

6.2.2. High dimensional tests
In this section the adaptive scheme is again applied considering all the reaction rates as uncertain. The

simulation runs up to t = 10 as previously. Figure 18 displays the numbers of bins involved in the partitions
as a function of time, for different orders No and refinement threshold εr. As for the previous case, Figure 18
indicates that the number of bins quickly increases at the early stages of the simulation and then tends to
level off. It may also be noticed that with εr = 0.05 and No = 3 the computations do not reach t = 10
because of numerical instabilities (even though the computations are stable for a longer period than with
WHe expansions).

Clearly, the efficiency of the partitioning strategy depends on the capability of the algorithm to divide
the parameter space into an optimal number of sub-domains. To minimize this number of sub-domains, the
successive divisions have to be limited to the directions along which steep dependences are present, while
avoiding division along smooth dimensions. To appreciate the capability of the algorithm to discriminate
directions (uncertain reaction rates) requiring divisions from the smooth ones, we present in Figure 19 the
frequency of successive divisions along the different dimensions of the parameter space for No = 1 and two
threshold values. For εr = 0.05 it is shown that no division is generated along dimensions 1-4 and 6, denoting
a smooth dependence of the concentrations with regard to the uncertainties in the corresponding reaction
rates. On the contrary, reactions 5, 7 and 8 do require divisions, up to 3 successive ones in some areas of
the parameter space. When εr is lowered to 0.005, more divisions are necessary along the previously divided
directions, to meet the refinement criteria, while some sub-domains have now also been cut along directions
6 and 2, but with a significantly lower frequency.
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It has been reported that using a larger expansion order requires a lower number of sub-domains to
satisfy a fixed refinement criteria. However, the dimension of the local basis quickly increases with the
order No such that a lower number of sub-domains does not necessarily imply a lower computational cost.
In fact, for given εr, the selection of the optimal order in terms of CPU cost remains an open question.
Moreover, because the solutions over sub-domains are fully independent and can be computed in parallel,
the trade-off between number of sub-domains and expansion order should account for memory requirement
and data flow as well. Also, the optimal trade-off is certainly problem dependent so no general guidelines
can be established. Another aspect that needs to be underlined is that different orders used with the same
threshold value will not generally leads exactly to the same accuracy, although the same order of error is
expected. To verify this assertion, we provide in Figure 20 the time-evolutions of the standard deviations in
[H] and [OH] when computed with No = 1 and No = 2 and for two threshold values εr = 0.05 and 0.01. It
is observed that all the predictions are in good agreement and appears to converge to the most refined and
highest order solution. Similar conclusions are obtained from the analysis of other concentrations and the
analysis of their expectations. In fact, for εr = 0.005 and No = 1, the predictions are not distinguishable
from the case No = 2, εr = 0.01 (not shown).

Again, Figure 20 suggests a fast convergence of the solution with both the threshold value and the
expansion order. However, if one is interested in a more complete statistical description of the solution, then
the improvement in the prediction with decreasing εr and increasing expansion order are more visible. To
illustrate this fact, we provide a quick analysis of the resulting pdfs of some species concentrations. Provided
in Figure 21 are pdfs of [H], [H2], [HO2] and [H2O2] at different times, computed with No = 1 and εr = 0.005.
The plots indicate that the pdfs are smooth (except at the tails) denoting no significant discontinuities of
the solution across sub-domain boundaries. For lower refinement thresholds (εr = 0.1) discontinuities are
present (not shown). Also, the plots demonstrate the need for an adaptation of the partition, as the shape
of the pdfs drastically evolve with time. It is clear that such a complex uncertainty impact would have
required a large order expansion if a global expansion is to be used (i.e. only one domain), but such high
order global expansion is numerically unstable as shown in [17].

Finally, the numerical instabilities in the global spectral simulations reported in [17] were attributed
to the spurious development of tails with negative concentrations in the solution expansion. Although the
present computations are stable, it is interesting to note that our simulations does not totally satisfy the
positivity of the concentrations: the probability of all concentration being positive is not exactly 0. This
is illustrated in Figure 22 where pdfs of [H] is plotted at time t = 10 for different orders and threshold
values. These plots show that the probability of [H] < 0 decreases with the order and the refinement criteria
(similar behavior is observed for the other species). It can be concluded that the automatic partitioning
of the parameter space stabilized the computation by maintaining a low order expansion, valid locally, and
dividing a sub-domain whenever its local solution develops instability. This effect is further illustrated in
Figure 23, which compares the computed pdfs of [H] at t = 10 for a fixed order No = 1 and different
refinement criteria.

7. Conclusions

In this paper, a Multi-Resolution Analysis scheme for the quantification of parametric uncertainties in
chemical systems has been developed. The impact of uncertainties is tackled using an orthogonal projection
of the model solution on spectral bases made of piecewise continuous polynomial functions (Multi-Wavelets)
of a set of random variables, which represents the variability in the system parameters. This approach
is a generalization of the classical global Polynomial Chaos expansions and is designed to allow for local
refinement of the representation in areas of the uncertain parameter space where it is needed. Such local
refinements are required when the system dynamics exhibits complex and steep dependences with regard to
the random parameters (here the reaction rates), a situation which is commonly encountered in chemical
systems. In fact, instead of using unnecessary large order global PC expansions a series of local low order
expansions at controlled resolution levels are employed.

The main improvement of the proposed MRA scheme comes from the numerical instability of the com-
putational methods (Galerkin projection) for the determination of the expansion coefficients, when the
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expansion order increases. Thus, maintaining a low to moderate expansion order is crucial for the robust-
ness of the computations, while convergence can still be controlled through the selection of an appropriate
level of resolution. Even-though the improvement of the computational stability allowed us to obtain accu-
rate predictions for simple problems, where global expansions were challenged, the fast increase of the basis
dimension with the resolution level prevents the straightforward application of the MRA scheme to situa-
tions involving multiple independent random parameters, and calls for adaptive techniques. Consequently, a
first attempt toward the local adaptation of the resolution level is proposed. This adaptive technique makes
use of the energy contained in the local correction at the next resolution level to decide if more resolution
is needed. It naturally leads to an iterative partition of the parameter space, up to a prescribed tolerance,
with the property that its computational cost is proportional to the resulting number of subdomains in the
partition and not a function of the basis dimension. Numerical experiments have demonstrated the validity
of the proposed adaptive scheme, but also highlight the need for an improvement of the methodology to
include a coarsening strategy and ultimately a local adaptation of the expansion order too. In fact, the op-
timal trade-off, between refinement of the partition into smaller subdomains and/or an increase of the local
expansion order, to reduce the approximation error is problem dependent and need further investigations;
a possible way to determine such optimal strategy could be based on a posteriori error estimators. Future
developments will focus on this aspect.
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Nr = 1 No = 3

Nr = 2 No = 3

Nr = 3 No = 3

Nr = 4 No = 3

Nr = 5 No = 3

Figure 13: Color coded normalized probability density functionsR([H2], t) (left) andR([H], t) (right) computed from their MW
expansion using different levels of resolution as indicated, and polynomial order No = 3. Dark red areas indicate concentrations
of highest probability density of observation, while deep blue regions correspond to vanishing probability densities.
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Figure 14: Response-surface for the concentration in H as a function of time and x(ξ), for the 7-th reaction uncertain only.
Surfaces are generated using zero order (left) and first order (right) MW expansions, with increasing level of resolution as
indicated.
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Figure 15: Response-surface for the concentration in H as a function of time and x(ξ), for the 7-th reaction uncertain only.
Surfaces are generated using one (left) and three (right) levels of resolution, and No = 0, . . . 3 as indicated.
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Figure 16: Results for the 2D problem considering uncertainty in the rates of reactions 7 and 8. Each column of plots
corresponds to a given value of εr, with εr = 0.025, 0.01, 0.001 from left to right. The top first and second rows of plots are
for No = 1, 2 respectively. Similarly for the next two rows. The top panel shows the partitioning of the (x7, x8) plane and its
dependence on εr and No. The middle panel shows the dependence of the [H] at t = 10 on x7 and x8. The bottom panel in
the figure shows the time evolution of the number of bins Nb for the indicated ranges of εr and No.
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indicated.
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Figure 21: Pdfs of [H], [H2], [HO2] and [H2O2] at different times, computed with No = 1 and εr = 0.005.
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