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Abstract

This paper describes a rigorous a posteriori error analysis for the stochastic solution of non-linear un-
certain chemical models. The dual-based a posteriori stochastic error analysis extends the methodology
developed in the deterministic finite elements context to stochastic discretization frameworks. It requires
the resolution of two additional (dual) problems to yield the local error estimate. The stochastic error esti-
mate can then be used to adapt the stochastic discretization. Different anisotropic refinement strategies are
proposed, leading to a cost-efficient tool suitable for multi-dimensional problems. The adaptive strategies
allow both for refinement and coarsening of the stochastic discretization, as needed to satisfy a prescribed
error tolerance. The adaptive strategies were successfully tested on a model for the hydrogen oxidation
in supercritical conditions having up to 8 random parameters. The proposed methodologies are however
general enough to be also applicable for a wide class of models such as uncertain fluid flows.

Key words: uncertainty quantification, error analysis, stochastic finite elements method, adaptive mesh
refinement, Polynomial Chaos

1. Introduction

With the quickly increasing computational power of modern calculators and the constant progresses
of numerical methods and algorithms, it becomes affordable to deal with large problems and to simulate
more and more complex physical phenomena. In a similar aim to simulate ever more realistic systems, it is
also desirable to account for the uncertainty which may lie on some parameters of its mathematical model.
Indeed, even so the computation may be very accurate, simulation may be of little help if the operating
conditions of the physical system are not perfectly known, at the very least, to a comparable level of accuracy
as the solution is sought for. In fact, as simulation tools progress, it becomes more and more crucial to
propagate and quantify uncertainty on model data to assess its impact on the model solution. This is best
achieved in a probabilistic framework, where the solution uncertainty is characterized by its probability law
or abstract statistical quantities (e.g. its mean, variance, first moments, quantiles, confidence intervals, . . . ),
for prescribed probabilistic distribution of the uncertain model data.

As far as chemical systems are concerned, uncertainty quantification is primarily needed due to the
use of reduced reaction mechanisms which involves model constants (e.g. reaction rates) identified from
experiments -or more detailed models- with a significant level of uncertainty. The main difficulty with
uncertainty propagation and quantification in chemical systems is the non-linear character of the governing
equations. The non-linearities in the model equations have generally for direct consequence a complex
dependence (non monotonic, bifurcation, . . . ) of the solution with the model data with an amplification
of the variability as a result [17]. This prevents using simple deterministic propagation techniques, such as
local sensitivity analysis.
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To characterize the solution uncertainty, given a probabilistic description of the input data, the most
common method is certainly the Monte-Carlo simulation approach. It basically consists in multiple resolu-
tions of the model for a sample set of independent realizations of the uncertain data, followed by a sample
set-based (or empirical) statistical characterization of the solution variability. Though robust and straight-
forward to implement in the context of complex or legacy codes, which here are used as black-boxes possibly
running in parallel, the convergence of the empirical estimates are slow, in a Monte-Carlo simulation, such
that well converged estimates require a prohibitively large number of realizations for models whose resolution
is time consuming. This limitation can be partially tempered using advanced sampling strategies (Latin
Hypercube Sampling, Quasi-Monte-Carlo sampling,. . . ), but the convergence rates remain generally too low
to achieve accuracy levels comparable to those of the deterministic model solvers.

The stochastic spectral method is an alternative approach to the simulation methods, where the uncertain
data are thought as generating new dimensions in the model solution. One can then seek for a convergent
approximation of the uncertain solution on a space spanned by suitable stochastic functionals. In practice, a
parameterization of the uncertain model data is first performed using a set of independent random variables
with prescribed probability distributions, followed by a projection of the solution on the space of second order
functionals in the random variables. The work of Wiener [22], suggested to use standard Gaussian variables
and orthogonal polynomial functionals to span the projection space, leading to the so-called Polynomial
Chaos expansion (PC) of a second order random variable. The original PC expansions were used for
uncertainty quantification and propagation in the seminal work of Ghanem and Spanos [7]. Later, these
polynomial expansions were generalized to independent random variables with arbitrary probability measures
in [23] and to dependent random variables in [20]. Initially applied in structural mechanics, [7], the PC
approach has now widely spread in many application domains such as heat transfer [8, 10], flow in porous
media [6], and fluid mechanics [14, 13]. The efficiency of the stochastic spectral methods comes from the fast
convergence of the PC expansions, such that the variability of the solution can be accurately represented on
a low dimensional stochastic space, with efficient computational procedures as a result.

Although found effective for many applications, and much faster and accurate than simulation methods
(provided that the number of random variables in the parameterization is not too large), stochastic spectral
methods are challenged by chemical systems whose solutions may lack regularity and exhibit steep depen-
dences with regards to the random variables: stochastic bases of spectral polynomials are inappropriate.
Instead, for these non-linear models, piecewise polynomial expansions are needed, such as the Multi-Element
Generalized Polynomial Chaos (ME-GPC) [5, 21] or stochastic Multi-Wavelet (MW) bases [11, 12]. The
main advantage of these representations is that they allow for discontinuous dependences and offer flexibility
in the local control of the stochastic discretization by relying on polynomial functionals which have compact
supports in the random variables domain. A key aspect here is the need for efficient and reliable procedures
to control the stochastic discretization while keeping the overall number of terms in the expansion to a
reasonable level. In this direction, an adaptation procedure was proposed in a multi-resolution framework
and MW discretizations in [12, 17]. However, this adaptation algorithm used in these works relies mainly on
heuristic considerations to decide further enrichment of the stochastic discretization. Instead, it would be
desirable to derive rigorous estimations of the local stochastic error to trigger the stochastic discretization
adaptation.

The derivation of rigorous error estimates and related adaptation strategies constitutes the main objective
of the present paper which is organized as follows. In Section 2, the model equations of the uncertain chemical
system are presented. This apparently simple system is selected as it is known from previous works to be
actually extremely challenging [12]. Then, the stochastic discretization of the solution is introduced and the
Galerkin projection of the model equations is detailed (for a given stochastic discretization). In Section 3, we
present a dual-based stochastic error estimation methodology. The methodology is similar to the a posteriori
error estimation technique used in the deterministic finite element context (see for instance [2]), which was
extended to the stochastic framework in [15]. It requires the resolution of two adjoint problems, whose
derivation is detailed. In Section 4, we discuss different adaptation strategies on the basis of the previously
derived error estimate. The discussion emphasizes the issue of directional enrichment in order to limit the
dimension of the resulting discretization space. In addition to the enrichment, a coarsening procedure is
considered to remove some elements of the stochastic basis when they become unnecessary as time evolves.
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j reaction Γ̂f,j γj λj

1 OH + H � H2O 1.479 1014 +∞ 3.16
2 H2 + OH � H2O + H 6.295 1011 4.380 10−4 1.26
3 H + O2 � HO2 8.314 1013 9.879 10−14 1.58
4 HO2 + HO2 � H2O2 + O2 7.281 1011 1.045 10−9 1.41
5 H2O2 + OH � H2O + HO2 3.469 1012 3.382 10−9 1.58
6 H2O2 + H � HO2 + H2 1.696 1011 7.723 10−6 2.00
7 H2O2 � OH + OH 3.993 101 1.589 1011 3.16
8 OH + HO2 � H2O + O2 3.917 1013 3.534 10−18 3.16

Table 1: Description of the different chemical reactions and their kinetics properties involved in the simplified mechanism.

Finally, in Section 5, the proposed algorithms are tested on problem with 2 and 8 uncertain parameters to
demonstrate their effectiveness, and major findings are summarized in Section 6.

2. Uncertain chemical system

The simulation of the time-evolution of the hydrogen oxidation in supercritical conditions with uncertain
settings is here considered. The problem is both complex and stiff since it involves several chemical reactions
which time scales are driven by the different reactions rates varying by several or even tens of orders of
magnitude from each other. However, we here focus on a simplified mechanism as already considered in
[12] involving only 8 reactions and 7 chemical species. The reaction rates are obtained from experiments
but their measure is difficult and their values are subjected to a large discrepancy. To account for the
information provided by the discrepancy, the reaction rates are modeled as random variables and we rely
on the hypothesis that they are statistically independent. This allows to re-express the whole problem in
a stochastic framework. Through the equations of the chemical system problem, the uncertainty in the
reaction rates leads to uncertain species content which are then random processes. Finally, the resulting
problem at hand is then a 8-D time-dependent uncertainty quantification problem.

2.1. Problem settings
The chemical model describes the concentration of nS = 7 species, [OH], [H], [HO2], [O2], [H2O], [H2]

and [H2O2], through a reduced mechanism of nR = 8 reactions.
The reaction rates being random, they are defined on an abstract probability space (Θ,B, dµ), Θ being

the set of outcomes, B the associated σ-algebra and µ the probability measure. The reactions are defined
by their forward and reverse rates denoted respectively Γf,j(θ) and Γr,j(θ), j = 1, . . . , nR. The rates are
assumed to be independent random variables with log-normal distributions characterized by their respective
coefficients of variation λj , defined with regard to the forward rates. The coefficient of variation is related
to the 95% confidence interval through:

Prob(Γf,j ∈ [Γ̂f,j/λj ; Γ̂f,j λj ]) = 0.95 ∀ j = 1, . . . , nR, (1)

where Γ̂f,j is the median value of the forward rate of the j-th reaction. For each reaction, the ratio of forward
and reverse rates is assumed deterministic (certain) and is denoted γj ≡ Γ̂f,j(θ)/Γ̂r,j(θ) (with probability
one). The reactions, median rates, coefficients of variations and forward to reverse ratii are summarized in
Table 1.

2.2. Stochastic discretization
For the stochastic discretization of the model, it is convenient to parameterize the reaction rates us-

ing a set of nR independent identically distributed (iid) random variables, ξ(θ) = (ξ1(θ) . . . ξnR
(θ)), with
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probability density function pξ(ξ). Since the random variables are iid, pξ has a product form:

pξ(ξ) =
nR∏
j=1

p(ξj). (2)

Without loss of generality, we shall restrict ourselves to random variables having a uniform probability onto
[−1; 1] so that

p(ξj) =
{

1/2, if ξj ∈ [−1, 1]
0, otherwise (3)

and we define Ωξ ≡ [−1; 1]nR . The random variables define an image probability space, (Ωξ,Bξ, pξ), and we
denote Vξ(Ωξ, pξ) the space of second order random variables defined on the image probability space:

f(ξ(θ)) ∈ Vξ ⇒ E [f ] ≡
∫

Θ

f(ξ(θ)dµ(θ) =
∫

Ωξ

f(ξ)pξ(ξ)dξ = 〈f〉Ωξ
< +∞. (4)

The set of orthogonal random polynomials Ψ for the uniform density pξ are the nR-D Legendre polynomials
[1], which satisfy∫

Ωξ

Ψi(ξ) Ψj(ξ) pξ(ξ) dξ = 〈Ψi(ξ) Ψj(ξ)〉Ωξ
= δij

〈
Ψ2

i

〉
Ωξ

∀i, j = 0, 1, 2, . . . , (5)

These polynomials form an orthogonal basis of Vξ:

Vξ = span {Ψk} . (6)

For practical implementation purposes, a finite dimensional stochastic space is to be used. This is constructed
by considering a finite number (Pξ + 1) of polynomials to form the approximation basis. We denote

Vh
ξ = span{Ψ0, . . . ,ΨPξ

} ⊂ Vξ, (7)

the discrete stochastic approximation space. Classically, the discrete basis consists of the polynomials with
(total) degree less or equal to q such that

Pξ + 1 =
(q + nR)!

q! nR!
. (8)

Using the random variable ξj to parameterize the rate Γ̂f,j (and Γ̂r,j), the approximation of the random
rates are obtained by means of an orthogonal projection on Vh

ξ ; we end with

Γf,j ≈
Pξ∑

k=0

(Γf,j)k Ψk(ξ) ∀j = 1, . . . , nR,

where the projection coefficients (Γf,j)k have for expression:

(Γf,j)k

〈
Ψ2

k

〉
Ωξ

=
∫

Ωξ

Γ̂f,j exp
log λj
1.96 T (ξj) Ψk(ξ) pξ(ξ) dξ, (9)

where T (ξj) is an isoprobabilistic mapping between (−1, 1) to (−∞,+∞), such that T has a standard
normal distribution (zero mean and unit variance). Similar expressions hold for the reverse rates.
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2.3. Solution method: stochastic Galerkin projection
The model solution is fully described by the time-evolution of the state vector containing the different

chemical species concentrations: U = ([OH] [H] [HO2] [O2] [H2O] [H2O2])T . Since the model involves
some random parameters, its solution is a random process defined on the image space. Therefore, we have
U = U(t, ξ). The chemical system is governed by a set of non-linear coupled stochastic ODEs. For instance
the ODE for [OH] is:

d[OH](t, ξ)
dt

= Γr,1(ξ)[H2O](t, ξ) + Γr,2(ξ)[H2O](t, ξ))[H] + Γr,5(ξ)[H2O](t, ξ)[HO2](t, ξ)

+Γr,8(ξ)[H2O](t, ξ)[O2](t, ξ)− 2Γf,7(ξ)[H2O2](t, ξ). (10)

The solution is sought for Ωt = [0, T ], so initial conditions at t = 0 are needed; these will be considered
deterministic:

[OH] = 0, [H2O] = 4.281 10−3, [H] = 0, [H2] = 2.060 10−6,
[HO2] = 0, [O2] = 1.040 10−6, [H2O2] = 0.

(11)

To simplify the notations, we hereafter refer to U as any of the component of U .
We further denote V ≡ L2(Ωξ,Ωt, pξ) the space of second order random processes and we assume U ∈ V:∣∣∣〈U(t, ξ)U(t′, ξ)〉Ωξ

∣∣∣ < +∞, ∀t, t′ ∈ Ωt,

∫
Ωt

〈
U(t, ξ)2

〉
Ωξ

dt < +∞. (12)

The set of stochastic ODEs can be formally re-expressed as

a(U(t, ξ), ξ) = 0, pξ − a.s., ∀ t ∈ Ωt. (13)

It is assumed that the problem is well posed in the sense that it has pξ–almost surely a unique solution.
The weak form of Eq. (13) is: find U ∈ (V)nS such that

A(U ;φ) = 0, ∀φ = (φ1 . . . φnS
)T ∈ (V)nS . (14)

In the previous equation, the operator A is a differentiable semi-linear form defined as:

A(U ;φ) ≡
∫

Ωξ

∫
Ωt

a(U(t, ξ), ξ) φ(t, ξ) pξ(ξ) dt dξ =
〈∫

Ωt

a(U(t, ξ), ξ) φ(t, ξ) dt

〉
Ωξ

. (15)

In this paper, use is made of the convention that operators are linear with respect to variables appearing
after a semicolon sign.

Any component of U being a (second order) functional depending on time and on the random reaction
rates, it can be expanded as an infinite series:

U(t, ξ) =
∞∑

k=0

Uk(t) Ψk(ξ), Uk(t) ∈ L2(Ωt). (16)

However, for practical computations, the series has to be truncated. We denote Uh(t, ξ) the approximation
of U(t, ξ) on the semi-discrete approximation space Vh ≡ Vξ × L2(Ωt) ⊂ V:

Uh(t, ξ) =
Pξ∑

k=0

Uk(t) Ψk(ξ). (17)

Equations for the stochastic modes Uk(t) of the solution are derived from the variational form given in
Eq. (13), after plugging the rates and solution stochastic expansions. For instance, the equation for the
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0 ≤ k ≤ Pξ-th stochastic mode of the concentration [OH] is

d[OH]k(t)
dt

〈
Ψ2

k

〉
Ωξ

=
Pξ∑

i,j=0

(Γr,1)i (t) [H2O]j(t) 〈ΨiΨjΨk〉Ωξ

+
Pξ∑

i,j,o=0

(Γr,2)i (t) [H2O]j(t) [H]o(t) 〈ΨiΨjΨkΨo〉Ωξ

+
Pξ∑

i,j,o=0

(Γr,5)i (t) [H2O]j(t) [HO2]o(t) 〈ΨiΨjΨkΨo〉Ωξ

+
Pξ∑

i,j,o=0

(Γr,8)i (t) [H2O]j(t) [O2]o(t) 〈ΨiΨjΨkΨo〉Ωξ

−2
Pξ∑

i,j=0

(Γf,7)i (t) [H2O2]j(t) 〈ΨiΨjΨk〉Ωξ
, (18)

with

〈ΨiΨjΨk〉Ωξ
≡

∫
Ωξ

Ψi(ξ) Ψj(ξ) Ψk(ξ) pξ(ξ) dξ,

〈ΨiΨjΨkΨo〉Ωξ
≡

∫
Ωξ

Ψi(ξ) Ψj(ξ) Ψk(ξ) Ψo(ξ) pξ(ξ) dξ. (19)

These tensors are sparse and independent of the solution: they are computed once for all in a preprocessing
stage.

2.4. Time integration
As a result of the Galerkin projection, one is thus left with the time-integration of a set of nS × (Pξ + 1)

coupled non-linear ODEs describing the evolution of the stochastic modes of Uh(t, ξ). The time integration
of the set of ODEs is achieved by relying on the DVODE library [3] which uses an adaptive integration time-step
appropriate to steep ODEs. This algorithm is used with low a tolerance error criteria, such that the time-
integration error can be safely assumed negligible compared to the stochastic discretization error caused by
expanding the solution on the finite dimensional space Vh. Clearly, the error in the approximation can then
be theoretically controlled by increasing the stochastic expansion order q. However, for such non-linear stiff
chemical system, it has been shown [18] that for large uncertainty levels, the time-integration of the truncated
system of ODEs becomes more and more unstable as the expansion order increases. Therefore, performing
accurate simulations using high order stochastic spaces as described above is not feasible. To circumvent
this difficulty, a different strategy was proposed in [12], where a low order (typically less than 4) piecewise
polynomial approximation is used at the stochastic level, thus allowing for accurate and stable simulations
provided that an appropriate partition of the parameter space Ωξ is constructed. In the next section, we
describe an rigorous error analysis method which will be the basis of the adaptive strategies discussed latter
in Section 4. Since, an essential property of these adaptive schemes is to rely on independent problems over
non-overlapping sub-domains of Ωξ, the error analysis is presented in the case of a unique domain to ease
the presentation.

3. Error analysis

3.1. A posteriori error estimation
The methodology for estimating the stochastic discretization error in the approximated solution is now

presented. To measure the error in the discrete solution Uh(t, ξ) with regard to the exact solution U(t, ξ),
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one needs to consider an appropriate metric J . Let this metric J be a differentiable functional of the
solution. We want to minimize the difference between the measure of the exact solution J (U) and that of
the approximated solution J (Uh). To this end, we define two Lagrangian to be

L ≡ J (U) + A(U ;Z), ∀Z = (Z1 . . . ZnS
)T

, Zi ∈ V,

Lh ≡ J (Uh) + A(Uh;Zh), ∀Zh =
(
Zh

1 . . . Zh
nS

)T
, Zh

i ∈ Vh, (20)

where Zi and Zh
i are Lagrange multipliers and the form A was given in (15). Let us consider the minimization

of the difference between the two Lagrangian. At the optimal point, the difference L−Lh is stationary and
has zero derivative in all its variables; for instance, considering L we have:

∂L
∂Z

= A(U ;φ) = 0, ∀ φ = (φ1 . . . φnS
)T

, φi ∈ V, (21)

∂L
∂U

= J ′(U ;φ′) + A′(U ;φ′,Z) = 0 ∀ φ′ =
(
φ′1 . . . φ′nS

)T
, φ′i ∈ V, (22)

since J is a functional depending on U . The derivatives are considered in the Gâteaux sense:

J ′(U ;φ′) = lim
ε→0

J (U + ε φ′)− J (U)
ε

,

A′(U ;φ′,Z) = lim
ε→0

A(U + ε φ′;Z)−A(U ;Z)
ε

.

(23)

The stationary condition of the Lagrangian expresses that the constraint must be enforced (Eq. 21) and
gives an expression for the Lagrange multiplier, or adjoint solution, as the solution of the adjoint equation
(Eq. 22). Similarly proceeding with the Lagrangian of the discrete problem, it finally yields:

L − Lh = J (U)− J (Uh) + A(U ;Z)−A(Uh;Zh),
= J (U)− J (Uh). (24)

Minimizing the difference in the Lagrangian then reduces to minimizing the approximation error of the
numerical solution in the functional J sense. As shown in [2] and [15], the approximation error can further
be expressed as:

J (U)− J (Uh) ' A(Uh;Z − φh) + r, (25)

with

r =
∫ 1

0

[
A′′(Uh + s EU ; E2

U ,Z)− J ′′(Uh + s EU ; E2
U )

]
s ds, (26)

the remainder term, and where EU ≡ U −Uh. The remainder term is seen to be quadratic in EU and can be
neglected compared to the leading term of Eq. (25), provided that EU is small enough, i.e. if the numerical
solution Uh is a sufficiently close approximation of the exact solution U . The interested reader may find
more details about the a posteriori stochastic error analysis in [15].

3.2. Error estimate
Finally, the error analysis in Eq. (25) leads us to the classical estimation of the discretization error which

is expressed as

η ≡
∣∣∣J (U)− J (Uh)

∣∣∣ ' ∣∣∣A(Uh;Z −Zh)
∣∣∣ , (27)

where the test function φh as been classically substituted by Zh.
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In the following, the accuracy of the numerical simulation will be evaluated in terms of a functional
J chosen as the weighted sum of the L2-norm of the nS species concentrations over the solution domain
Ωξ × Ωt:

J =
nS∑
i=1

wi

∫
Ωξ

∫
Ωt

(
Uh

i (t, ξ)
)2

pξ(ξ) dt dξ. (28)

The weights wi, i = 1, . . . , nS are chosen so as to normalize the contribution of the different species to the
functional J . The weights selection will be discussed in greater details in the next section.

It seen from Eq. (27), that to have an approximation η of the error on the numerical solution Uh, the
exact solution U is not required. However, the exact adjoint solution Z is required. As is usually done in
the a posteriori error analysis, this exact adjoint living in an infinite dimensional space is replaced by a high
discretization order numerical solution of the adjoint problem, i.e. one considers Z̃ a surrogate of Z:

η ≡
∣∣∣J (U)− J (Uh)

∣∣∣ ' ∣∣∣A(Uh; Z̃ −Zh)
∣∣∣ . (29)

In practice, approximating Z by Z̃ is not a problem as long as the actual error done on the surrogate adjoint
variable is negligible compared to that on the numerical solution of the adjoint problem Zh. To determine
Z̃, the dual code used to compute Zh is employed with a higher polynomial order discretization, say twice
as high as for Zh. The approximation space associated to Z̃ is then

(
Veh)nS

.

4. Adaption strategies

4.1. Stochastic finite element mesh
The enrichment of the stochastic approximation, to improve the discrete solution accuracy, is achieved

relying on a piecewise orthogonal polynomials representation in the stochastic domain. The approach corre-
sponds to a finite element methodology, with the essential property that the solutions over different stochastic
elements are fully independent. The stochastic finite element mesh consists in a partition of the stochastic
domain Ωξ = [−1, 1]nR into a collection of Nb non-overlapping elements Ωξ

m:

Ωξ =
Nb⋃

m=1

Ωξ
m, with Ωξ

m ≡ [ξm,−
1 ; ξm,+

1 [× . . .× [ξm,−
nR

; ξm,+
nR

[ ∀m = 1, . . . , Nb, (30)

where the superscripts + and − refer to the upper and lower bound respectively in the domain range. At a
given time t ∈ Ωt, a generic component Uh(t, ξ) of the solution has for expression:

Uh(t, ξ ∈ Ωξ
m) =

Pξ∑
k=0

Um
k (t) Ψm

k (ξ), (31)

where the superscript m on the solution coefficients is used to stress the local character of the expansion valid
over the stochastic element m. Since ξ is uniformly distributed on Ωξ, the local measure over a stochastic
element is also uniform. As a result, the polynomials Ψm

k (ξ) are simply rescaled and shifted multi-dimensional
Legendre polynomials. Their definition can be extended outside the support of the stochastic element by
setting Ψm

k (ξ /∈ Ωξ) = 0. These polynomials are then orthogonal:〈
Ψm

i Ψm′

j

〉
Ωξ

= δij δmm′

〈
(Ψm

i )2
〉

Ωξ

. (32)

The formulation on each stochastic element is thus formally similar to the expansion in Eq. (17) above,
namely

Uh(t, ξ) =
Nb∑

m=1

Pξ∑
k=0

Um
k Ψm

k (ξ), (33)
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but corresponds to an enriched stochastic approximation space:

Vh
ξ = span {{Ψm

k } , m = 1, . . . , Nb, k = 0, . . . , Pξ} , (34)

whose dimension is (Pξ + 1)Nb.

4.2. Local error
The error analysis presented in the previous section was derived for an arbitrary but orthogonal stochastic

basis. As a result, the global error estimation η in Eq. (29) remains valid for the piecewise polynomial
approximation on the stochastic mesh in Eq. (34). However, the global error estimation η can be bounded
as follows:

η ≤
m∑

m=1

ηm, ηm ≡
∣∣∣AΩξ

m(Uh; Z̃ −Zh)
∣∣∣ , (35)

where the form AΩξ
m is defined as

AΩξ
m(Uh; Z̃ −Zh) ≡

∫
Ωt

∫
Ωξ

m

a(Uh, ξ)
(
Z̃ −Zh

)
pξ(ξ)dξdt. (36)

An important point to stress is that since Uh, Zh and Z̃ being all expanded on the same mesh of Ωξ, they
can be computed in an element-wise fashion, thanks to the local character of the polynomials Ψm

k .
Equation (35) provides a local error estimation for the m-th stochastic element of the partition of Ωξ.

However, this expression is not convenient in practice as one does not want to adapt the mesh globally over
the entire time-domain Ωt. It is more useful to adapt the mesh “on the fly”, based on an error estimation
performed element-wise and for a fraction of the whole time-span only. Such procedure not only allows for
additional computational savings as the stochastic mesh can change with time, but it also avoids the need to
restart the computations over from the initial conditions as we iterate to adapt the stochastic mesh. Instead
we proceed sequentially, advancing the solution over successive time intervals [tl, tl+1], with constant time
span ∆t ≡ tl+1 − tl for simplicity: starting from the solution at time tl, we seek for the partition of Ωξ that
meets an accuracy criterion, to be discussed below, over the time-interval. When the adapted mesh is found
we proceed with the following time-interval. To do so, we need an error estimation ηl,m which is localized
both in the stochastic domain and in the current time span. This error estimation is directly derived from
Eq. (35), restricting the time integration to the current time-interval with index l:

ηl,m ≡

∣∣∣∣∣
∫ tl+1

tl

∫
Ωξ

m

a(Uh, ξ)
(
Z̃ −Zh

)
pξ(ξ)dξdt

∣∣∣∣∣ . (37)

To simplify the notations in the previous equation, we have not made explicit the dependence with the
time-interval index l of the stochastic mesh of Ωξ.

An important aspect is that this strategy requires additional procedures to define a local initial condition,
at the beginning of the considered time-interval (tl) from the solution at the end of the previous one ([tl−1, tl]).
Simple projection procedures are used to construct these local initial conditions (see [12] for details).

Finally, the functional J (see Eq. (28)) used for the error estimation involves weights wi, which balance
the contribution of the species. These weights are necessary because the specie contents vary by several
orders of magnitude from each other, and in time too, as the reaction advances. Numerical experiments
have shown that the weights could be appropriately selected as:

wl+1
i =


0 if

∫ tl+1

tl

〈Uh,i〉Ωξ
dt = 0,[∫ tl+1

tl

〈(
U l

h,i(ξ)
)2

〉
Ωξ

dt

]−1

otherwise.
(38)
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4.3. Adaptive strategies
4.3.1. Refinement

To reduce the global error η and make sure it remains below a prescribed threshold, we choose to reduce
the error in each stochastic element independently, such that the local error estimation remains below a
prescribed error tolerance εη ≥ 0:

ηl,m ≤ εη ∆t
∣∣∣Ωξ

l,m
∣∣∣ l = 0, 1, . . . , ∀m = 1, . . . , Nb(l), (39)

where
∣∣∣Ωξ

l,m
∣∣∣ is the volume of the m-th stochastic element in the l-th time-interval. This inequality gives

a rigorous criterion for activating the refinement: the stochastic a posteriori error analysis provides an
estimation of the local discretization error over a stochastic element over the time-interval.

However, ηl,m gives no further information about the structure of the error such as its dependence with
the stochastic discretization order or the size of the stochastic element along each of its dimensions. We are
thus left with a local error estimation, but no further indication allowing to derive a rigorous or optimal
way of decreasing this error by activating the most appropriate refinement procedure. To achieve the error
reduction, several strategies may be thought of:

• increase the temporal discretization level (t-refinement),

• increase the order of the discretization of the stochastic element (p-refinement),

• decrease the size of the stochastic element (h-refinement).

As discussed above, the temporal discretization of the problem relies on a stiff integrator with an adaptive
time-stepping. Thanks to the high level of sophistication of the time-integration procedure, the error due to
the time-integration is deemed negligible compared to the contribution of the stochastic discretization. One
is thus left with two alternative strategies to refine the stochastic discretization if the local error has been
estimated to be above the tolerance εη: p- or h-refinement. Since it is not clear which strategy is the best,
and to avoid high order discretizations because of the scaling of the stochastic basis dimension with the
order q (see Eq. (8)), we will hereafter only consider h-refinement, i.e. refinement of the stochastic element
mesh.

A crucial point is that we have no information available from the error estimation to decide along
which stochastic dimensions the h-refinement should be performed to efficiently reduce the error. Since
the stochastic domain for the considered problem has nR = 8 dimensions, a naive uniform (isotropic) h-
refinement of a stochastic element along all the dimensions is simply not an option: every refinement of
a stochastic element would leads to 28 = 256 − 1 new elements so the problem would quickly become
intractable. Then, one needs some directional information to adapt the discretization in a more efficient
way. A rigorous anisotropic error estimation would be desirable at this point, but such an estimator only
exists in a deterministic framework and for low discretization order [16], and is not available yet in the
stochastic context. Therefore, ad-hoc alternatives based on directional analysis of the solution over the
stochastic element are proposed below.

4.3.2. Coarsening
In addition to refinement, evolution problems may also benefit from a coarsening procedure of the

stochastic mesh. While not unusual in deterministic simulations, this issue has not been addressed yet
in the stochastic context and is nonetheless of crucial importance when dealing with stochastic problems
where needs for an enriched discretization of the stochastic space evolve in time. The interest for coarsening
procedures was clearly demonstrated in [17] for an ignition problem involving a single random parameter:
the solution of the ignition problem is steep and requires a refinement over a small area of Ωξ, that travels as
time progresses. An efficient adaptive strategy should then be able to refine the stochastic mesh in the steep
areas and later coarsen when the reaction front has moved away in the stochastic domain. Clearly, needs
for coarsening will be even more important for problems involving a larger number of random parameters.
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A possible coarsening strategy is evaluated in the following. The strategy rely on the (local) a posteriori
error estimation, ηl,m, to detect stochastic elements susceptible to be coarsened. Specifically, a stochastic
element is considered as a candidate for coarsening whenever its error estimation ηl,m falls below εη/γ,
where γ > 1 is the ratio between the maximum and minimal acceptable error and acts as a tolerance ratio.
The coarsening itself consists in merging two neighboring stochastic elements, both being admissible for
coarsening. To maintain, the mesh structure consisting of hyper-rectangles in Ωξ, two stochastic elements
can be merged only if they are conform along their common boundaries. This condition raises additional
difficulties especially when dealing with high dimensional problems.

4.4. Directional indicators
We now discuss two directional error indicators to be used as criteria in the h-refinement and coarsening

procedures.

4.4.1. Directional partial variance indicators
We propose a first anisotropic error indicator ηl,m

σ,j for the stochastic element m and time-interval l
associated to the random parameter j (and a given specie). This indicator is defined as the total sensitivity
index [19, 9] restricted to the stochastic element and associated to parameter j. The total sensitivity
indexes measure the variability of the specie concentration with regards to the different random parameters.
An important point is that the orthogonal polynomial expansion of the solution explicitly provides these
sensitivity indexes [4] such that their evaluation is immediate. Specifically, we define(

ηm
j

)2 ≡
(
σm

j

)
/ (σm)2 j = 1, . . . , nR, (40)

where the time index has been omitted for clarity. In Eq. (40), (σm)2 is the local variance of the specie
concentration over the SE m, while

(
σm

j

)2 is the partial variance associated to the random parameter j:

(σm)2 ≡
Pξ∑

k=1

(Um
k )2k

〈
(Ψm

k )2
〉

Ωξ

,
(
σm

j

)2 ≡
∑

k∈Pm
j

(Um
k )2

〈
(Ψm

k )2
〉

, (41)

where

Pm
j =

{
1 ≤ k ≤ Pξ\

〈
(∂Ψm

k /∂ξj)
2
〉

Ωξ

6= 0
}

. (42)

These indicators allow to compare the respective contributions of different stochastic directions to the
variance. In fact, it is assumed reasonable to consider that the direction with the highest sensitivity index
yields the highest contribution to the discretization error. Consequently, the refinement of the stochastic
element, if needed, will be performed along the direction j having the highest indicator ηm

j . Procedures
based on the sensitivity indexes will hereafter be referred as Directional Partial-Variance (DPV) procedures.

4.4.2. Directional jump indicators
The second type of directional indicators are based on the discrete solution jump across the stochastic

element boundaries. Since the stochastic elements are hyper-rectangle, jumps are measured with respect to
interfaces having normals along a direction j. For a stochastic element m, one has:

ηm
j ≡ ∆jUm,+ + ∆jUm,−∣∣∣〈Um〉Ωξ

∣∣∣ , (43)

with 〈Um〉Ωξ
the expected concentration of the specie over the stochastic element m at time l, and(

∆jUm,+
)2

≡ 1∣∣∣Γl,m,+
j

∣∣∣
∫

Γm,+
j

(
∆jU

m,+(ξ)
)2

dξ,

(
∆jUm,−

)2

≡ 1∣∣Γm,−
j

∣∣
∫

Γm,−
j

(
∆jU

m,−(ξ)
)2

dξ, (44)
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where Γm,+
j and Γm,−

j are the upper and lower (nR−1)-dimensional boundaries of element m with normals in
direction ±j. ∆jU

m,+ and ∆jU
m,− are the differences (jump) of the trace of the solution on Γm,+

j and Γm,−
j

respectively. If the interface is on the boundary of Ωξ, the corresponding jump is set to zero. Furthermore,
the solution being polynomial in each element, the integrals can be computed exactly. In fact, the main
difficulty is here to deal with non-conform stochastic meshes. As for the DPV indicators, the jump-based
indicators are used to decide which direction should be refined first (the one with the highest indicator).

4.5. Summary of the adaptive algorithm
The global adaption algorithm thus proceeds along successive time intervals [tl, tl+1]. For each interval,

a two stage procedure is set up. In the first stage, the solution is advanced from tl to tl+1 while refining
the stochastic mesh to meet the accuracy criterion over every stochastic elements. In the second stage, an
attempt to coarsen the mesh is performed to yield the discrete solution at t = tl+1, before considering the
next time interval.

The algorithm for a time interval l is:

* Integration / refinement stage

For all stochastic elements

1. solve the primal and dual problems and get local solution Uh and Zh on Ωl,m
ξ ,

2. solve for Z̃ the local dual problem on a higher polynomial approximation,
3. compute the local errors estimates ηl,m from Eq. (37),

4. if ηl,m > εη∆t
∣∣∣Ωξ

l,m
∣∣∣ then SE needs refinement:

a) for each direction j, compute the highest ηl,m
j over the species from Eq. (40) or Eq. (43),

b) split the SE along the direction j having the highest directional error indicator,
c) update the stochastic mesh

else if ηl,m < εη ∆t
∣∣∣Ωξ

l,m
∣∣∣ /γ then mark stochastic element for coarsening,

Repeat until all stochastic elements satisfy the refinement criteria.

* Coarsening stage

For all stochastic elements marked for coarsening

1. compute the maximum over the species of the directional error indicator ηl,m
j from Eq. (40) or

Eq. (43),
2. let j be the dimension with lowest directional error indicator,
3. if neighboring stochastic element in directions j is also marked for coarsening and the two are

conforms then

a) merge the two stochastic elements,
b) project solution on the coarse element,
b) update stochastic mesh

Repeat until all stochastic elements have been checked.
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Remark.
The resolution of the adjoint equations for Zh and Z̃ over a stochastic element involves the knowledge of
the primal solution Uh along the time-interval. As said above, the time-integrations use the DVODE solver
which is based on automatic time-step adaptation, such that for the adjoint problem one has to provide
values for Uh at intermediate times, not known a priori, in [tl, tl+1]. To circumvent this issue, a polynomial
approximation of Uh(t) is used for the resolution of the adjoint problems. This polynomial approximation
formally deteriorates the accuracy of the adjoint computation, but for the numerical parameters retained in
the computations presented in the next section, in particular the span ∆t of the time-intervals, the loss of
accuracy was found negligible and not to affect the error estimation accuracy. In fact, a linear approximation
between initial and final states Uh(tl) and Uh(tl+1) can be safely used provided that ∆t is not too large.

5. Results

We now present simulation results to demonstrate the efficiency of the proposed adaptive strategies. To
ease the analysis, we consider in Section 5.1 a simplified version of the stochastic problem, where only two
reaction rates are uncertain. This simplification allows us to perform extensive tests, to construct a reference
solution and to study the impact of the different adaptation strategies without having to deal with a high
dimensional issues. Then, in Section 5.2 we return to the original problem with 8 uncertain parameter and
assess the algorithm performance for a high-dimensional problem.

5.1. Simplified stochastic problem
To start with, only reactions # 7 and 8 are considered uncertain, while rates for the other reactions are

taken deterministic and equal to their respective median values (see Table 1). As a result, the stochastic
domain has two dimensions only and the stochastic parameterization uses two random variables ξ7 and ξ8.

5.1.1. Reference solution
As a first step, a reference solution is computed with a first order polynomial discretization in the

stochastic space (q = 1). The reference solution is constructed on a regular mesh involving a fixed grid of
180 × 180 stochastic finite elements of constant size. The first two statistical moments of the content in
hydrogen [H] are plotted in Fig. 1 for this reference solution. These first moments denote the steep evolution
of the stochastic solution in time after a short initiation stage. For t > 1, the evolution is much slower
and for t > 6 the system experiences a slow evolution toward its asymptotic equilibrium state, which is
independent of the uncertainty rates (ratii of forward to reverse rates are deterministic). It is noted that
the variance, initially null (deterministic content), grows extremely fast and reaches a high level. In fact,
the variance grows at a faster rate than the mean value during the initial stage. This large variance of
the hydrogen content denotes the large sensitivity of the solution with regard to the reaction rates: small
changes in Γ7 and Γ8 values induce large changes in the reaction dynamics. This feature pleads for the use
of sophisticated techniques to accurately and efficiently represent the dependence of the solution with the
rates.

5.1.2. Uniform refinement
We now apply the adaptive algorithm on the 2-D problem, starting from an regular mesh involving 2×2

stochastic elements at t = 0. A time span ∆t = 0.05 is used for the adaptation, while no coarsening is
allowed.

In a first series of simulation, we investigate the effect of the polynomial order q on the resulting stochastic
mesh at t = 10 (s). Simulation are performed for q = 0, 1 and 2 and a constant error tolerance εη = 7.10−9

to trigger the refinement. In these simulations, the refinement is made uniform, i.e. a refined stochastic
element is split into 4 equal sub-elements, to get rid of any effect due to the directional indicators. In
addition, a minimal size is prescribed for the stochastic elements to limit the refinement. The stochastic
meshes are shown in Fig. 2. It is observed that as the order of the discretization increases a coarser mesh is
needed to satisfy the error tolerance on the solution.
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Figure 1: Mean (left) and standard deviation (right) of [H] as a function of time for the reference solution. Uncertainty in rates
# 7 and 8 only.
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Figure 2: Stochastic finite element mesh of the 2-D stochastic domain at t = 10 s for different discretization orders q. From
left to right: q = 0, 1, 2. εη = 7.10−9, uniform refinement, no coarsening.

The influence of the discretization order q onto the time-evolution of the number of stochastic elements
as driven by the adaptation algorithm is plotted in Fig. 3. It is seen that the number of stochastic elements
essentially varies at early times, as expected from the discussion of the reference solution. Latter, a slower
refinement of the stochastic mesh is observed.

Further, it is seen from Fig. 2 that the refinement procedure leads to finer stochastic elements mainly
concentrated at the boundary of the stochastic domain, while the central domain is not as much refined.
Increasing q primarily leads to coarser elements also in the center part of the domain while fine elements are
still needed along some part of the boundary. This behavior is due to the parameterization of the uncertain
reaction rates and their log-normal distribution. Indeed as ξ7 and ξ8 goes to ±1, the corresponding rates
goes to 0 or +∞. The mapping of the forward reaction rate Γf,7 as a function of ξ7 is shown in the left plot
Fig. 4 for illustration purpose (note that the reverse rate has an opposite trend). The variations of the rates
with ξ7 and ξ8 directly translate to the solution steepness (with regard to the random parameters). This can
be better appreciated from the surface response of the hydrogen content at the final time t = 10 s, shown
in the right plot of Fig. 4. The steep dependence of [H] near the stochastic domain boundary is clearly
exhibited. On the contrary, the solution is much smoother at the center of the domain, allowing for coarser
stochastic elements when the order q is increased, while along the boundaries increasing the polynomial
order is less efficient in reducing the error. This behavior demonstrates that the error estimation is able to
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Figure 4: Left: parameterization of the log-normal forward rate Γf,7 as a function of ξ7. Right: Response surface for the
hydrogen content [H] at t = 10 s. Spectral discretization order q = 1, uniform refinement with εη = 4.10−9 and no coarsening.

properly determine which stochastic elements require refinement, and areas of the stochastic domain which
are sufficiently discretized. In fact, these simulations indicate that a more effective strategy would consist
in an adaptation where one decides for either h or p-refinement depending on the local smoothness of the
solution.

5.1.3. Directional refinement
The impact of the selected refinement directional indicator, discussed in sections 4.4.1 and 4.4.2, is now

investigated. The indicators being different, the adaptation processes result in different stochastic meshes,
even if the error tolerance used is the same in the two cases. The meshes for the two-indicators however
exhibit comparable number of elements for the two directional indicators and same εη, with differences in
the meshes structure essentially limited to the immediate neighbor of the stochastic domain boundary. In
fact, the treatment of the jump-based directional indicators for elements with interfaces on the boundary of
Ωξ are most probably the origin of the differences.

In Fig. 5, we compare the norms of the error (based on the reference solution, obtained for the two
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directional indicators and the same tolerance εη. The error norms is defined as

ε2(t) =
〈(

[H]? − [H]h
)2

(t)
〉

Ωξ

/
〈(

[H]?
)2 (t)

〉
Ωξ

, (45)

where [H]? is the discrete reference solution. Since for the two indicators the number of stochastic ele-
ments are close, we can deduce from Fig. 5 that the two indicators perform equally well in discriminating
the stochastic dimensions requiring refinement. However, while performing as well as the DPV indicator,
the jump-based approach is more computationally expensive, as it requires information from neighboring
elements and to deal with non-conform meshes. On the contrary, the DPV indicator relies on elemental
information solely, a property which makes the DPV approach more suitable for higher dimensional problem.
Considering all these aspects, the DPV approach is retained throughout the remainder of the paper.
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Figure 5: Error time-evolution for the anisotropic refinement based on the two directional indicator. εη = 7.10−9.

5.1.4. Error tolerance
To complete the series of 2-D simulations, we present in Fig. 6 the impact of the selected error tolerance

criterion εη on the time evolution of the number of stochastic elements in the mesh and on error norm.
Again, the h-refinement uses the DPV criteria, q = 1, and proceeds from an initial 2× 2 stochastic mesh at
t = 0. It is seen that as the tolerance is tightened the error clearly decreases at the price of a larger number
of stochastic elements.

5.2. 8-D uncertain problem
We now consider the full uncertain chemical system with all rates uncertain, with properties listed in

Table 1. The parameterization now involves nR random variables so the stochastic domain has 8 dimensions.
However, the uncertainty in the rates having different levels, and because of the complex dynamics of the
chemical mechanisms, the dependence of the solution along the stochastic dimensions are very different [12].
Note that the uncertainty on the rates for reaction 7 and 8, which were considered in the previous simplified
problem, are those with the largest and more complex impact on the solution.

This complex dependence of the solution with regard to the random parameters makes the problem very
difficult and extremely demanding for the anisotropic refinement strategy to construct adapted stochastic
meshes, with a tractable number of stochastic elements. We also recall that for simulations without piecewise
polynomial decomposition, the Galerkin formulation is unstable, even for large order expansions.
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Figure 7: Time evolution of the mean (left) and variance (right) of the hydrogen content. 8-D stochastic problem.

We present below two simulations for the full problem. In the first one, only the refinement is performed,
starting from a 2nR grid of stochastic elements with equal size. The anisotropic refinement uses the DPV
indicator. Again, a limitation is set on the refinement to avoid stochastic elements with too low volume.
The simulation uses q = 1 with an error tolerance εη = 1.75 10−8. The second simulation uses the same
refinement procedure and numerical parameters, but we allow for coarsening with γ = 4 and, again, the
DPV indicator.

In Fig. 7, we present the time evolution of the mean and standard deviation in [H], as computed with
the refinement only. These results are in excellent agreement with the simulation presented in [12], which
rely on multi-resolution scheme and multiwavelet expansions of the solution, with an isotropic adaptation
criterion based on ideas similar to the DPV indicator (but without error estimation). The results for the
simulation with coarsening are not shown as they are indistinguishable from the results with refinement
only.

The effect of the refinement-only or refinement/coarsening strategy is shown in Fig. 8 where the number
of required stochastic elements is plotted in time. As for the 2-D case, the error analysis triggers refinement
at short times to capture the stiff behavior induced by the fast scale reactions. After some time, the
number of blocks levels-off indicating that no further refinement is necessary. If coarsening is allowed, it is
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Figure 8: Time evolution of the number of blocks Nb for the refinement-only and the refinement-coarsening strategies. q = 1,
εη = 1.75 10−8, γ = 4.

seen to strongly reduce the number of blocks while the solution error is kept within the same prescribed
tolerance εη. At early times, the number of blocks is seen to be essentially the same as with the refinement-
only procedure but, after some time, the fast reactions have occurred and a slower dynamics sets in with
smoother dependences in the stochastic domain, hence calling for coarsening.

A somewhat finer picture of the mesh management strategy can be gained examining Fig. 9 where the
distributions of the size of the blocks along dimension 4 and 7 are plotted. From Fig. 9 (right), they are seen
to be refined along dimension 7 at early times while virtually no coarsening is observed for 0 < t < 10 s.
This denotes a stiff dependence to dimension 7, as already stated in the 2-D section. In contrast to this
behavior, blocks along dimension 4, Fig. 9 (left), are seen to be also initially refined (the ratio of small blocks
along dimension 4 increases) but, after some time (t & 4), coarsening occurs and some larger blocks result
from merging. Similar general behaviors may be observed from the other dimensions, not shown for sake of
conciseness.

A global view of the blocks size time-evolution can be gained from Fig. 10 where the distribution of the
volume of the blocks is plotted in time. The mesh is initialized with blocks of unit volume and is refined
at short times, giving rise to small volume blocks. After t & 4, coarsening occurs and some of the smallest
blocks merge to result in bigger ones. The resulting mesh then involves a wide range of blocks size, allowing
for an efficient adaptation of the solution approximation.

From the numerical point of view, the coarsening capability does not introduce a significant additional
cost compared to the refinement-only strategy while leading to a strongly reduced number of blocks for the
same accuracy. Indeed, coarsening criteria rely on the same quantities as those used for refinement (block
local error estimation, directional contributions to the local variance). The additional cost essentially comes
from the determination of the neighboring blocks and the check of conformity, if relevant. In this work, these
steps were not CPU time consuming and no particular strategy was employed but it may become an issue
if considering a higher dimensional problem involving tens or hundreds of dimensions. Efficient strategies
may then be used for the mesh properties storage in memory. Further, alternative (e.g. hierarchical) mesh
topology may be used to circumvent this potential issue and are the subject of on-going work.
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6. Conclusion

This paper has discussed adaptation procedures for the stochastic discretization of the solution of un-
certain chemical models. First, the dual-based a posteriori error analysis proposed in [15] was extended
to the stochastic chemical model equations. The method relies on solving both a primal and two adjoint
stochastic problems. At the expense of these additional dual computations, an accurate error estimation
in each elements of the discretization space is available and adaptive strategies may be used to properly
enrich the stochastic discretization and meet some accuracy criteria while maintaining a stochastic basis
with reasonable dimension.

Based on this rigorous expression for the error estimation, different adaption strategies were proposed. In
particular, an anisotropic strategy, for both stochastic refinement and coarsening, was discussed and tested
in the results section on a hydrogen oxidation in supercritical conditions problem with uncertain reactions
rates. This constitutes a high dimensional stiff uncertainty quantification problem which solution is difficult
to get without a specific and efficient numerical technique. The present method was shown to perform well
at a reasonable computational cost.

Several issues remain to be further investigated. A critical point of the a posteriori estimation is that
it does not distinguish the directional components of the error. To circumvent the absence of rigorous
anisotropic error estimators, we rely in this work on empirical anisotropic error indicators, based on di-
rectional contributions to the local variance or on jumps of the solution across stochastic sub-domains.
Although this empirical indicators were shown to give satisfactory results, rigorous estimators would clearly
improve the adaptation procedure and its reliability. This is the central focus of on-going works. Similarly,
the coarsening procedure considered here could be greatly improved by relying on more appropriate data
structures for the description of the stochastic discretization. The objective is here to construct (through
refinement and coarsening) stochastic meshes with higher level of conformity between neighboring stochastic
elements, in order to achieve higher acceptance rate at the coarsening stage of the present method.
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