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Abstract

A method is presented for inferring the presence of an inclusion inside a domain; the proposed approach is
suitable to be used in a diagnostic device with low computational power. Specifically, we use the Bayesian
framework for the inference of stiff inclusions embedded in a soft matrix, mimicking tumors in soft tissues.
We rely on a Polynomial Chaos (PC) surrogate to accelerate the inference process. The PC surrogate
predicts the dependence of the displacements field with the random elastic moduli of the materials, and are
computed by means of the Stochastic Galerkin (SG) projection method. Moreover, the inclusion’s geometry
is assumed to be unknown, and this is addressed by using a dictionary consisting of several geometrical
models with different configurations. A model selection approach based on the evidence provided by the
data (Bayes factors) is used to discriminate among the different geometrical models and select the most
suitable one. The idea of using a dictionary of pre-computed geometrical models helps to maintain the
computational cost of the inference process very low, as most of the computational burden is carried out
off-line for the resolution of the SG problems. Numerical tests are used to validate the methodology, assess
its performance, and analyze the robustness to model errors.

Keywords: Bayesian Inference, Model Selection, Uncertainty Quantification, Polynomial Chaos, Elasticity
Imaging, Soft Tissue

1. Introduction

The nondestructive characterization of the parameters describing a physical system is a task of great
importance and interest in various disciplines within science and engineering. Examples of such tasks include
seismic imaging [1, 2], health monitoring of infrastructure [3, 4, 5], and more recently elasticity imaging [6, 7].
Elasticity imaging is a very promising branch of medical diagnosis which applies inverse problems techniques
to compute the elasticity modulus given a set of measurements of a displacement or velocity field that is
the result of some excitation force [8]. The idea is inspired by the palpation technique used by doctors
to determine the presence of abnormal tissue through the sense of touch [9, 10]. Palpation, however, is
limited in detecting anomalies that lie deep in the body or which are too small [11]; moreover, it tends to
be qualitative as opposed to quantitative. Elasticity imaging takes palpation to the next level by extending
its range and effectiveness, all in a more quantitative manner. The general goal of this work is to use a
collection of models within a Bayesian framework to estimate the contrast between the elastic properties of
different regions in a given domain.

The elasticity imaging technique encompasses three basic steps: first, the body is deformed through an
applied external load, then the deformation field is measured (e.g. using ultrasound techniques), and finally
the elastic properties are estimated by solving an inverse problem. To approach this problem, Oberai et al. [8]
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assume that the displacements are governed by the equations of equilibrium of an incompressible, linear-
elastic solid undergoing small, quasi-static deformation, and cast the problem as a non-linear optimization
problem; the objective is to find a shear modulus field that minimizes the discrepancy between the measured
and predicted displacement fields. Another optimization approach is based on minimizing the Modified Error
in Constitutive Equation Functional [12], which measures the discrepancy in the constitutive equations that
connect kinematically admissible strains and dynamically admissible stresses in addition to measuring the
discrepancy between the measured and predicted displacement fields. Other approaches include direct
inversion methods [13, 14, 15], but these methods, although computationally less expensive, tend to be more
sensitive to noise in measurement data. All these approaches are deterministic, and consequently result in
a single estimate of the elastic modulus, which doesn’t accommodate for the quantification of uncertainty.

Important insights emerge by approaching inverse problems using a probabilistic framework. Some of the
methods introduced to deal with this problem include the extended maximum likelihood method [16], the
spectral stochastic method [17, 18], the sparse grid collocation approach [19, 20], stochastic reduced order
models [21], and the Bayesian inference approach [22, 23]. In the Bayesian formalism, one obtains additional
insight by computing a probability distribution that summarizes all available information about the elastic
moduli (e.g., we can estimate moments, marginal distributions, quantiles), as opposed to the single value
obtained in the deterministic setting. Specifically, in the context of elasticity imaging, Koutsourelakis [24]
use a Bayesian framework to obtain probabilistic estimates of the material properties that account for various
possible sources of uncertainty; this works deals with simplified geometries and large contrast ratio of the
elastic properties. Another interesting approach is proposed by Iglesias [25], where the Bayesian framework
is applied under an infinite dimensional setting; this work, however, is limited to deterministic (known)
elastic properties and it requires an appropriate prior model.

For complex forward models, extracting information from the posterior distribution can be very com-
putationally expensive. Several techniques are applied to address this computational challenge, such as
the use of a two-stage MCMC to increase the acceptance rate of the algorithm by using an inexpensive
approximation of the posterior distribution [26, 27, 28]; the use of proper orthogonal decomposition (POD)
to construct a reduced-order model for the direct simulations [29, 30]; the use of adaptive hierarchical sparse
grid collocation (ASGC) to obtain an approximate stochastic solution to the forward problem using piece-
wise linear interpolation [31]; and the use of Polynomial Chaos (PC) to approximate the solution of the
stochastic forward model either through collocation [32, 33] or through the stochastic Galerkin method [34].
A related application of PC representations in the context of inverse acoustic scattering problems is found in
[35], where PC expansions are integrated with optimization methods for the probabilistic characterization
of hidden obstacles and inclusions in acoustic media.

The objective of this work is to develop a method that can be used in a diagnostic device with a low
computational power to quickly assess the presence of an inclusion in a given domain. To achieve this, the
proposed approach breaks the process in two steps: (1) an offline or pre-processing step where surrogate
models are constructed for different geometrical models, and (2) an online step where a model selection
and inference are performed on the basis of observations to assess the presence of an inclusion. This is
advantageous, since the main computational cost is carried by the construction of the surrogate models,
which is something that can be done offline with a dedicated computer. Thus, once the surrogate models
have been constructed, the computational cost of the model selection and inference problem is relatively low
and can be effectively handled by the diagnostic device with limited computational power. In more details,
we extend the Bayesian approach proposed by Marzouk et al. [34] to the case of multiple geometrical models
as follows. First, a dictionary of inclusion geometries is considered and for each of these geometries a suitable
Polynomial Chaos expansion of the displacement field is computed, in terms of the unknown parameters
(in our case the Young’s modulus and the Poisson’s ratio in soft matrix and inclusion) by means of the
Stochastic Galerkin (SG) method [36, 37]. The SG allows for a fine control approximation error. When
observations are made available, the PC surrogates can be used to derived corresponding approximations of
the posterior distribution for the elastic properties given a geometry. Then, these posteriors can be compared
by computing the evidences or Bayes factors of the geometrical models, in order to rank them and select
the best one (or few best ones). The posterior distribution(s) of the elastic properties for the best model (or
best ones) can then be used to reach a decision confirming or refuting the presence of an inclusion, analyzing
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for instance the ratios between the mean properties in the inclusion and soft matrix domains.
The outline of the paper is as follows. In section 2, we introduce the mechanical model of the elasticity

problem and derive the Polynomial Chaos expansions of the displacement field for a given geometry. In
section 3, we describe the use of the Bayesian framework to solve both inverse problem and the model
selection problem. In section 4 we present some numerical results showing the behavior of the approach
when the exact geometry of the model is known. Then, in section 5, we look at the case when the exact
model geometry is unknown and construct a dictionary of surrogate models and rank them based on the
evidence provided by the data; also we test the robustness of the approach with respect to errors in the
mechanical model. Finally, in section 6 we provide concluding remarks.

2. Physical Model and Polynomial Chaos Expansion

2.1. Physical Model
2.1.1. Continuous problem

The strong form of the equilibrium equations of a linear-elastic solid undergoing static deformation due
to boundary loads and displacements can be expressed as:

∇ · σ = 0 in Ω (1)

with boundary conditions:

σ · n = τ on Γτ , u = u0 on Γu, (2)

where σ = C : ε ≡ Cijkl εkl is the stress tensor; ε(u) = (∇u + ∇uT )/2 is the linearized strain tensor;
u is the displacement field; n the unit normal to the boundary; τ is the traction vector; Ω is the spatial
domain; Γτ and Γu form a partition of the boundary Γ of Ω; u0 is the essential boundary condition; and
C is the fourth-order constitutive tensor of linear elasticity. Under the assumption of an isotropic medium,
the constitutive tensor has only two independent elastic constants and can be written as:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (3)

where δij is the Kronecker delta and λ and µ are the Lamé constants [38]. This decomposition of C is very
advantageous for the computation of the PC coefficients described in section 2.2.1.

The forward problem consists in finding the displacement field u that satisfies (1) for a given constitutive
tensor C (i.e. known material properties). The weak formulation of the forward problem is obtained after
defining the space of trial functions, S =

{
u | ui ∈ H1(Ω),u = u0 on Γu

}
, and the space of test functions,

V =
{
v | vi ∈ H1(Ω),v = 0 on Γu

}
. Multiplying (1) by an arbitrary v ∈ V, integrating over the spatial

domain, using the divergence theorem, and the symmetry of C we get:

a (u,v) = (τ ,v) , ∀ v ∈ V, (4)

where

a (u,v) ≡
∫

Ω

ε(v) : C : ε(u)dΩ , (τ ,v) ≡
∫

Γτ

τ · vdΓτ . (5)

The function u ∈ S that satisfies (4) is the equivalent weak solution of (1).
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2.1.2. Finite element formulation
Using standard Voigt notation [39], the displacement fields, test functions, and their derivatives are

expressed as:
uh = [N ]{u}, vh = [N ]{v}, εh(u) = [B]{u}, εh(v) = [B]{v}, (6)

where {u} and {v} belong to Rm, m depends on the resolution of the finite element basis, whereas [N ]
and [B] represent matrices of finite element shape functions and their derivatives with respect to spatial
coordinates, respectively. Substituting the above approximations into the variational problem in (4) we get:

[A] {u} = {F} , (7)

where

[A] ≡
∑

elements

∫
Ωe

[B]
T

[C] [B] dΩ , {F} ≡
∑

elements

∫
Γeτ

[N ]
T
τ dΓ, (8)

and [C] is the matrix representation of the fourth-oder tensor C. Thus, the solution of the discretized
forward problem reduces to inverting the linear system given by (7).

Notice that through (7) we can define a map

T : [C]→ {u}, (9)

that takes a constitutive matrix as its input, and outputs a discretized displacement field. This mapping,
of course, is determined by the geometry of the problem and its boundary conditions. We will refer to this
map as the Deterministic Forward Map.

2.2. Polynomial Chaos Surrogate Model
From now on we will study the situation where the Lamé constants, λ and µ, are stochastic quantities

(i.e. [C] is random) and will layout the framework to accommodate this situation. As an initial step we
seek to construct a stochastic map T̂ that approximates (9) when [C] is random and that can be efficiently
sampled. This map will be constructed using polynomial chaos expansion [36, 37], and we will refer to it as
the surrogate model.

In this work, we focus on the specific class of random processes that are in L2, the space of second-order
quantities. Following the notation in [37], let (Θ,ΣΘ, PΘ) be a probability space and θ a random event
belonging to Θ. We denote L2 (Θ, PΘ) the space of second-order random variables defined on (Θ,ΣΘ, PΘ)
equipped with the inner product 〈·, ·〉 and associated norm ‖ · ‖Θ:

〈X,Y 〉 =

∫
Θ

X(θ)Y (θ)dPΘ(θ) = E [XY ] ∀X,Y ∈ L2 (Θ, PΘ) (10)

X ∈ L2 (Θ, PΘ) ⇐⇒ 〈X,X〉 = ‖X‖2Θ <∞, (11)

where E [·] is the expectation operator.
The discrete counterpart of (3) is

[C] = λ
[
Cλ
]

+ µ [Cµ] , (12)

where
[
Cλ
]
and [Cµ] are constant matrices independent of both λ and µ. The parameters λ and µ are

bounded quantities and we will model them as a random processes λ(x, θ), µ(x, θ) ∈ L∞(Ω) × L2 (Θ, PΘ),
and represent them in terms of the truncated PC expansions:

λ(x, θ) '
Pλ∑
γ=0

λγ(x)Ψγ(ξ(θ)),

µ(x, θ) '
Pµ∑
γ=0

µγ(x)Ψγ(ξ(θ)),

(13)
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where ξ (θ) = {ξ1 (θ) , ξ2 (θ) , · · · , ξN (θ)} is a N -dimensional random vector, with independent components
having joint density pξ and Pλ + 1 and Pµ + 1 are the number of terms in each corresponding expansion.
The Ψγ form an orthonormal basis, and are indexed such that Ψ0 = 1. For simplicity we will take the
number of terms in both expansions to be the same, i.e. Pλ = Pµ = P . Furthermore, the number of terms in
each expansion is determined by the number of random variables, N , and the polynomial degree of the PC
expansion, p (again, we take the same polynomial degree for both expansions); for a total order truncation,
it is given by [37]:

P + 1 =
(N + p)!

N ! p!
. (14)

We also represent the stochastic discrete displacement field as a random field using a PC expansion of the
form:

{û(θ)} '
Pu∑
α=0

{uα}Ψα(ξ(θ)), (15)

where ξ (θ) is the same random vector introduced above, {uα} ∈ Rm are the PC coefficients, and P + 1 is
the number of terms in the PC expansion of u. Pu is determined from N and pu using (14). Without loss
of generality we take Pu = P .

2.2.1. Computation of PC coefficients
In this section we will describe the method to compute the coefficients in (15). We start by substituting

(13) into (12) to get the following PC expansion for [C]:

[C] (ξ) '
P∑
γ=0

[Cγ ] Ψγ(ξ) =

P∑
γ=0

(
λγ
[
Cλ
]

+ µγ [Cµ]
)

Ψγ(ξ). (16)

Notice that the decomposition of [C] as given in (12) provides an explicit way to compute the [Cγ ]’s from the
coefficients in the PC expansions of λ and µ. Substituting (16) into (8) and using the Galerkin projection
on (7) accounting for (15), we get the following coupled system of P + 1 equations for the PC coefficients:

[A0] {uβ}+

P∑
α=0

P∑
γ=1

[Aγ ] {uα} 〈ΨγΨα,Ψβ〉 = {Fβ} , β = 0, · · · , P, (17)

where

[Aγ ] =
∑

elements

∫
Ωe

[B]
T

[Cγ ] [B] dΩ γ = 0, · · · , P.

Equation (17) can be written more compactly as

[A]{U} = {F}, (18)

where [A] = [Ā] + [Ã]; [Ā]α,β = [A0] δα,β ; [Ã]α,β =
∑P
γ=1 [Aγ ] 〈ΨγΨα,Ψβ〉; {U}β = {uβ}; and

{F}β = {Fβ}; 0 ≤ α, β ≤ P .
We notice that the matrix [A] in the deterministic case, (7), is m ×m, whereas the matrix [A] in (18)

is (m · (P + 1)) × (m · (P + 1)). Thus, if m is large to start with, which is typically the case, solving for
{U} might incur a significant computational cost. However, effectively exploiting the structure of [A] could
offer great computational savings. A simple approach [40, 41, 37] is to take advantage of the decomposition
[A] = [Ā] + [Ã], which allows us to solve for {U} iteratively according to:

{U}k+1 = [Ā]−1
(
{F} − [Ã]{U}k

)
. (19)
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Since [Ā] is block-diagonal, the iterations in (19) can be decoupled into (P + 1) independent updates for the
{uβ}’s, requiring the unique factorization of [A0] ∈ Rm×m. Thus, the computation can be parallelized, and
the same deterministic solver can be used in the iterations.

So far we have expressed the constitutive matrix [C] in term of the Lamé constants λ and µ because they
facilitate the computation of the PC expansion of u. The proposed approach can be immediately adapted to
work in terms of alternative pairs of elastic constants. For instance, it might be desirable to think in terms
of the Young’s modulus (E) and the Poisson’s ratio (ν). When this is the case, we can first determine the
corresponding PC expansions for E and ν and substitute them in the following relations

λ(x, θ) =
E(x, θ) ν(x, θ)

(1 + ν(x, θ))(1− 2ν(x, θ))
, µ(x, θ) =

E(x, θ)

2(1 + ν(x, θ))
, (20)

using the Galerkin product and division [37]. The polynomial order in the expansions is selected such
that the error introduced in this step is sufficiently small. The same can be done for other pairs of elastic
constants such as the shear modulus and the bulk modulus. In the present work, we considered model based
in (E, ν) variabilities, though we take the Poisson’s ratio in a range ν ≈ 0.5 where the material is nearly
incompressible and in agreement or consistent with other properties variability reported in the literature
(see e.g. [42, 43, 44, 45]).

2.3. Error in the PC surrogate model
In order to assess the fidelity of the surrogate, we rely on the following error measure,

ϑ̂2 ≡
E
[
‖u(ξ)− û(ξ)‖2L2(Ω)

]
E
[
‖u(ξ)‖2L2(Ω)

] , (21)

where u is the displacement computed using the full forward model and û =
∑P
α=0 uαΨα is the displacement

computed using the surrogate model.
We approximate (21) by Monte Carlo sampling, computing the sample mean and integrating over the

discretized finite-element domain, i.e. we estimate ϑ̂ using

ϑ̂2 ≈ ϑ2 ≡
∑MS

i=1 ‖u(ξ(i))− û(ξ(i))‖2L2(S)∑MS

i=1 ‖u(ξ(i))‖2L2(S)

, (22)

where MS is the number of Monte Carlo samples and ξ(i) are i.i.d. random realizations of ξ(θ). In practice,
a low number of samples MS can be used to get a sense of how well the surrogate approximates the full
model over the entire range of ξ. Further, we recall that this surrogate construction is performed offline,
and not during the inference step.

One parameter that impacts ϑ is P (or p). Recall that this parameter represents the number of terms
in the approximations of [C] and û. In section 4, we will analyze how the error ϑ changes as a function of
P . This will allow us to characterize how the PC expansion of the displacement (i.e. the surrogate model)
converges as we increase the number of terms in the approximation.

3. Bayesian Inference and Model Selection

This section focuses on applying the Bayesian framework to solve two tasks: 1) the inference problem of
estimating [C] for a given geometrical model and 2) for a given collection of models, how to rank them in
order to select the ones that are more suitable.

Figure 1 shows the schematic of the physical model and also two different approximations of the physical
model that can be used for the construction of a surrogate model. In the first part of this section, we discuss
the case in which the physical geometry is completely known and we describe how to estimate the material
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properties of the domain using Bayesian inference. However, in practice, the actual shape and/or location
of the inclusion is unlikely to be completely known, and in the second part of this section we present an
approach that consists in creating a dictionary of surrogate models each built with a different geometrical
configuration for the size and/or location of the inclusion. We apply a model selection analysis based on the
evidence provided by the data to discriminate among the different models.

(a) Problem geometry (b) Surrogate geometry A (c) Surrogate geometry B

Figure 1: Schematic of the elasticity problem in which a given domain Ω has an inclusion ΩI with different material properties.
The part of the domain which excludes the inclusion is denoted by ΩB . Figure (a) represents the geometry corresponding to the
physical model. Figures (b) and (c) correspond to two different approximations of physical geometry used to build surrogate
models.

3.1. Bayesian Inference
We now focus on estimating [C] using Bayesian inference. We assume knowledge of a geometry G and the

availability of mo noisy observations of the displacement u at points xi ∈ Ω. Since [C] is parametrized by ξ,
the Bayesian inference is recast in terms of the parameter. We rely on a Metropolis-Hastings algorithm to
determine the posterior. The covariance matrix of the proposal distribution is determined using information
from the Hessian as outlined in Appendix A.

Using Bayes’ formula, the posterior distribution of ξ is given by

p(ξ, ε|{Yi},G) ∝ pY ({Yi}|ξ, ε,G)pξ(ξ)pε(ε), (23)

where pY ({Yi}|ξ, ε,G) is the likelihood of the observations, pξ(ξ) is the prior, pε(ε) is the prior distribution
of the noise hyper-parameter ε. The prior could be made dependent on the geometry G, but for the sake of
simplicity we will take the same prior for all the geometries.

We assume that the noise in the observations follows a Gaussian distribution, i.e. Yi = u(xi) + ηi,
i = 1, · · · ,mo, where the ηi’s are i.i.d centered Gaussian RVs, with variance ε2. Since the ηi’s are independent
and Gaussian, it follows that

pY ({Yi}|ξ, ε,G) =

mo∏
i=1

1√
2πε2

exp

(
− (û(xi, ξ;G)− Yi)2

2ε2

)
. (24)

Notice that in (24) we have replaced u by û (the surrogate model approximation). This substitution al-
lows us to sample the posterior distribution at low computational cost [34, 46]. Of course, success of this
approximation depends on the availability of a faithful surrogate, as further analyzed below.

We rely on an uninformative Jeffreys prior [47, 48] for the hyper-parameter ε > 0, i.e. we set:

pε(ε) ∼
1

ε
. (25)

As for the prior, we assume that material properties of the background and the inclusion are homogeneous,
i.e. they are constant along the spatial dimension in each respective domain. Furthermore, we work in terms
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of Poisson’s ratio and Young’s modulus, and assume both of them to be uncertain. The background and the
inclusion are assumed to have the same, but uncertain, Poisson’s ratio (ν(x, θ) ≡ ν(θ)) and a potentially
different Young’s modulus (E(x, θ)). Consequently, we express the Young’s modulus as:

E(x, θ) = EB(θ) (1− I(x)) + EI(θ)I(x) (26)

where EB and EI are the Young’s moduli of the background and the inclusion, respectively; I(x) is an
indicator function that takes a value of one inside the inclusion and zero outside. Thus, the prior distribution
is parameterized using a three-dimensional germ, ξ (θ) = {ξ1 (θ) , ξ2 (θ) , ξ3 (θ)}; one dimension is used to
characterize the uncertainty in Poisson’s ratio and the other two to characterize the uncertainty in the
Young’s modulus of the background and the inclusion.

The Poisson ratio (ν) and the background Young’s modulus (EB) are modeled as uniform random
variables on the intervals (νmin, νmax) and (EminB , EmaxB ), respectively. The inclusion Young’s modulus
(EI) is modeled as EI = κEB , where κ is uniformly distributed on (1, κmax). Parameterizing in terms of
the ξi’s we have:

ν(θ) = ν(ξ1(θ)) = νmin + (νmax − νmin)ξ1(θ)), ξ1 ∼ U(0, 1) (27)

EB(θ) = EB(ξ1(θ)) = EminB + (EmaxB − EminB )ξ2(θ)), ξ2 ∼ U(0, 1) (28)
EI(θ) = EI(ξ1(θ)) = [1 + (κmax − 1)ξ3(θ)]EB(θ), ξ3 ∼ U(0, 1) (29)

where the parameters νmin, νmax, EminB , EmaxB , and κmax are variables that encode the prior knowledge. In
particular, µmax characterizes the amount by which EI surpasses EB . For this parametrization we have
almost surely EI > EB . Note that following the definitions above, the ξi’s are uniformly distributed over
[0,1]. Therefore, the PC basis functions Ψα(ξ1, ξ2, ξ3) consist in products of univariate shifted-Legendre
polynomials.

Table 1 shows the values for the prior parameters that are used, unless otherwise specified, throughout
this paper. The values are based on the ranges used in [43, 44, 45, 49, 50]. Note that the Poisson’s ratio has
been treated as random to show the generality of the method, although in imaging application it is usually
considered known and fixed, assuming incompressible tissues. The prior distribution is however selected so
that the soft tissue is modeled as nearly incompressible for almost any event.

Parameter Value
EminB 1× 104Pa
EmaxB 9× 104Pa
νmin 0.45
νmax 0.49
κmax 6

Table 1: Default parameters corresponding to the Young’s modulus prior [49, 50] and the Poisson’s ratio prior [43, 44, 45].

3.2. Evidence-Based Model Selection
As stated before, complete knowledge of the geometry might not be available. However, in order to build

the surrogate model that speeds up the MCMC algorithm, we need the specifics of the geometry. To address
this we propose to build not one, but many surrogates using different geometrical models. So, even if we
don’t know the true geometrical model, we can find a good approximation if our dictionary is extensive
enough. For instance, for the physical model shown in figure 1(a), a surrogate built with the geometry
shown in figure 1(b) would allow us to properly infer the presence of an inclusion in the domain; this will be
further illustrated in section 5. A remaining question, however, is how to discriminate among the different
models in our dictionary to select a suitable one. To address this, we consider the probability of observing
the data given the geometrical model Gk (commonly referred as the evidence)

Ik
.
= pY ({Yi}|Gk) =

∫
pY ({Yi}|ξ, ε,Gk)pξ(ξ)pε(ε)dξdε. (30)
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Evaluating the integrals Ik =
∫
pY ({Yi}|ξ, ε,Gk)pξ(ξ)pε(ε)dξdε can be computationally difficult and expen-

sive. However, when the posterior density is highly peaked about its maximum a posteriori (MAP) (ξ̃, ε̃),
we can use Laplace’s method to approximate the integral I as follows [51]:

Ik ≈ Îk = (2π)(N+1)/2 |−[HLP ]|−1/2
pY ({Yi}|ξ̃, ε̃,Gk)pξ(ξ̃)pε(ε̃), (31)

where N is the dimension of ξ and [HLP ] is the Hessian matrix of the log-posterior distribution of model Gk.
The computation of the Hessian is made relatively straight forward thanks to the fact that we are using PC
representations. Additional details regarding the computation of the Hessian are provided in Appendix A.
Furthermore, the MAP point, (ξ̃, ε̃), can be obtained either by using an optimization approach or by using
the MCMC algorithm to sample the posterior. In both cases, having a surrogate model provides significant
computational savings. Moreover, if an optimization approach were to be used, one could take advantage of
the availability of the exact PC Hessian to speed up the process. In this paper we use the sampled posterior
to compute the MAP. Since several models are to be compared, we have to sample several posteriors which
are expected to differ from a model to another. The sampling of the different models is however inexpensive,
thanks to the availability of the surrogates, and it can be performed in parallel. More advanced sampling
techniques could be considered, including the exploration of the models space in addition of the parameters
space. This has not been considered in the present work as it was found easier to fit proposal parameters
adapted to each model, than determining more general proposal parameters.

We have stressed the importance of evaluating the evidence at a low computational cost because this
step would be performed by a diagnosis device with a relatively low computational power. Conversely,
building an extensive dictionary of surrogates for different geometries can be costly, but this process is part
of a pre-processing stage and can be done “offline” with a dedicated, more capable computer. Whence the
evidences Ik have been approximated a Bayes factor analysis can be applied to rank the geometrical models,
with the first rank corresponding to the model with the highest evidence.

4. Inference of Elastic Properties

In this section, we apply the methodology above to a simple example consisting of a rectangular solid
with an inclusion. A uniform static pressure (magnitude F = 1Pa) is applied at the top of the solid while
the bottom part is restrained from motion. A schematic representation of the setup is shown to scale in
figure 2. We assume that the background and the inclusion are homogeneous materials, i.e. the Poisson ratio
and Young’s modulus are constant in each respective domain. Furthermore, we assume that the inclusion
has a potentially higher Young’s modulus than the background, whereas the Poisson ratio is the same in
both regions. In addition, we set L/H = 1, aI/L = 1/2, bI/H = 1/4, and assume the inclusion is centered
at (xc, yc) = (0.65L, 0.65H). The problem is solved on a finite-element mesh with T6 elements, generated
using the Triangle mesh generator [52] with the parameter area = 0.001 (which yields approximately 1,600
elements).

4.1. PC Surrogate
As stated earlier, it is essential to assess the fidelity of the PC surrogate model. To this end, we analyze

the behavior of the error ϑ (defined in section 2.3) as function of p, the degree of the PC expansions of u,E,
and ν. Specifically, we use (22) to analyze the convergence of the approximation as the polynomial orders
p is increased. The error is estimated using a Monte Carlo approach with Ms = 10,000; a large number of
samples was used to assure a high accuracy in the computation of the error.

Figure 3 shows a plots of ϑ versus p, for νmin = 0.45, νmax = 0.49, EminB = 10 kPa, EmaxB = 90 kPa,
and three different values of κmax. As expected, the relative error decreases as p increases. We notice that
increasing κmax results in a higher error for p < 6; this is because higher values of κmax imply higher levels
of uncertainty. Similarly, reducing (resp. increasing) the range for the Poisson’s ratio and/or the Young’s
modulus would reduce (resp. increase) the error. For the present situation where only 3 parameters are
involved in the PC expansion, an isotropic order is not an issue. So, unless otherwise specified, we shall use
in the following p = 6, a value that ensures a relative error of approximately 1%.
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4.2. Numerical Results
To assess the performance of the inference method, we generated a synthetic set of mo observations of

the local displacement field, {Yi} ≡ u(xi) + ηi, i = 1, · · · ,mo, where the displacement u(x) is computed
by solving (7) with ν = 0.48, EB = 60 kPa, EI = 240 kPa, and the ηi’s are independent, identically
distributed, centered, Gaussian random variables with standard deviation ε = 0.03 × uref , where uref =
2×F ×H/(EB +EI) is the deformation of a bar in uniaxial compression that behaves according to Hooke’s
law with modulus (EB +EI)/2. We scale the noise variance by the reference displacement so that the error
is relative to the displacement’s magnitude. Meanwhile, we constructed a surrogate model for u(x, ξ) using
EminB = 10 kPa, EmaxB = 90 kPa, νmin = 0.45, νmax = 0.49, κmax = 6, and p = 6.

Figure 4 shows the marginal posterior distributions of ξ1, ξ2, ξ3 and the hyper-parameter, ε. These
posteriors were sampled using a Markov Chain Monte Carlo (MCMC) algorithm. Posterior distributions
were then obtained from the chain samples using kernel density estimation [53]. We used a total of mo = 545
observations (distributed according to the regular pattern described in section 4.2.3). We notice that the
marginal posterior distributions are highly peaked and allow for very good estimates of the true values of
the Poisson ration ν, Young moduli EB , EI and noise level ε to be obtained. Specifically, the calculated
Maximum a Posteriori (MAP) estimates νMAP = 0.482, EMAP

B = 60.1 kPa, EMAP
I = 239.4 kPa, and

εMAP = 0.01, are in close agreement with the true values.
From a diagnostic perspective, our main interest is to decide whether or not the value of the Young’s

modulus at the suspected inclusion is different from the value of the Young’s modulus of the background, i.e.
whether an anomaly is present. To this end, it is more effective to analyze, directly, the posterior distribution
of ρ = EI/EB . We expect for this ratio to be one if the Young’s modulus of the inclusion coincides with
that of the background, and greater than one if they are different (because we assume that EI ≥ EB).
Consequently, the results below will focus on the posterior distribution of the contrast ratio ρ = EI/EB .

Note that the formulation of the proposed method accommodates naturally other priors, depending on
the inference problem. For instance, one could relax the constrain EI ≥ EB , using EI(ξ1(θ)) = [1/κmax +
(κmax − 1/κmax)ξ3(θ)]EB(θ) with ξ3 ∼ U(0, 1), and define ρ = max{EI/EB , EB/EI} as the diagnostic
quantity. However, since the present work focuses on inferring inclusions stiffer than the background, we

bI

aI

𝑥"

𝑥# L

H
yc

xc

Figure 2: Schematic illustration of the computational domain, showing coordinate axes and geometry of inclusion.
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Figure 3: Error versus polynomial order for (Emin
B , Emax

B ) = (1e4, 9e4), (νmin, νmax) = (0.45, 0.49), with curves generated for
different values of κmax, as indicated. Estimates are obtained using (22) with Ms = 10,000.

found it preferable to incorporate this information in the prior definition.

4.2.1. Effect of contrast
In the analysis above, we used a PC surrogate obtained for κmax = 6, i.e. the prior anticipates that EI

falls in the range EB ≤ EI ≤ 6EB . Using this PC surrogate, a synthetic inference exercise was conducted
for EB = 60 kPa and EI = 240 kPa, showing satisfactory predictions. However, we expect the two extreme
cases EI = EB and EI = κmaxEB to provide more challenging tests. The former is of great interest because
it represents the case where there is no anomaly, and we want to be able to correctly infer this to avoid
false-positives. The case where EI/EB is significantly larger than 1 is of lesser concern, because the presence
of the inclusion will be easily ascertained; it is included nonetheless.

Figure 5 shows the inferred marginal distributions of ρ = EI/EB , for three different contrast values,
generated with fixed ν = 0.48 and EB = 60 kPa, and EI = 60, 240, and 360 kPa. Synthetic data are
generated using the same procedure described above, and the PC surrogate constructed earlier is used for
the purpose of sampling the posterior. In all cases, the MAP estimate of the contrast ratio is in good
agreement with the true value used to generate the observations. Specifically, for the present tests, the
situation involving absence of the anomaly is correctly detected with an essentially zero posterior probability
for ratios EI/EB & 1.1. Situations involving the presence of the anomaly are also correctly diagnosed, even
for extreme values of the contrast ratio.

4.2.2. Effect of noise amplitude
One expects that the higher the noise level in the observations, the more challenging it would be to

obtain accurate inference of the contrast ratio. To analyze the impact of the noise amplitude, we solved
the inverse problem with EI/EB = 4 and different noise levels. Results are presented in Table 2, which
provides estimates of the mean and standard deviation of the marginal posterior for the contrast ratio. We
notice that, as expected, the standard deviation of the marginal distributions increases appreciably, roughly
linearly, with the noise amplitude. On the other hand, the mean values (and the MAP estimates) are only
weakly affected by the noise amplitude. Thus, for the present case and the noise range considered, the noise
amplitude has insignificant impact on the diagnostic result.

4.2.3. Effects of observation density
To analyze how the inference is affected by the number and location of observations, we investigated the

posterior distributions of the contrast ratio for different values of mo. In addition, we obtained results for
observations made at locations distributed according a regular pattern that is illustrated in figure 6. The
pattern starts with an observation mesh with five points and the observation density is then systematically
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Figure 4: Posterior distributions. In the plots, the red dashed-line corresponds to a Gaussian fit of the distribution and the
purple vertical line indicates the location of the true values of ξ1, ξ2, ξ3, and ε, respectively.

increased by introducing new locations such that the minimum distance between observation points is
maximized. The figure depicts the observation mesh corresponding to mo = 13, 25 and 41.

Figure 4.2.3 shows the mean and standard deviation of the posterior density of EI/EB as a function of
mo. We notice that the mean fluctuates for small values of mo, but that as we increase mo the inferred mean
starts to converge to a value close to 4 (the true value of EI/EB). Furthermore, we see that, as expected, the
standard deviation rapidly decreases as mo increases. It is very satisfactory that even with a very limited
number of observations (e.g. 5), we can satisfactorily infer the presence of the inclusion.
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Figure 5: Posterior distribution of ρ = EI/EB (blue curves) for different values of EI , with 1% noise. The dashed red curve
corresponds to the Gaussian fit of the distributions, and the purple vertical line indicates the true value of ρ.

p( ρ |Y )
µ σ

ε = 0.5% 3.955 0.0169
ε = 1% 3.965 0.0333
ε = 3% 4.003 0.1021
ε = 5% 4.057 0.1773
ε = 10% 4.206 0.3837
ε = 20% 4.482 0.7048

Table 2: Comparison of inferred estimates of ρ = EI/EB for different noise levels. The values µ and σ correspond to the mean
and standard deviation of the posterior density of ρ.
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(c) 41 observations

Figure 6: Schematic of the location of the observations. New points are selected following a regular pattern in which the
distant to existing locations is maximized.

5. Model Selection

In this section we analyze the case when the actual geometry of the physical problem is not completely
known (which is expected in most practical applications). To address this issue, we propose to compute
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Figure 7: Mean and standard deviation of the posterior density of ρ = EI/EB as a function of the number of observations, mo.

not only one, but several surrogates using different geometrical models. As described in section 3.2, we use
pY ({Yi}|Gk), the evidence provided by the data, to rank the different models.

In the present work, a dictionary composed of 12 geometrical models is used. Schematics of the models
are shown in figure 8. The models are ordered from left-to-right and top-to-bottom based on the value of the
evidence; with the first model corresponding to the one with the highest evidence. In the figures, the area
enclosed by the blue solid-line corresponds to the geometry of the inclusion assumed by the model, and the
area enclosed by the yellow doted-line corresponds to the actual geometry of the physical model. Visually,
we notice that, as expected, the highest ranked models are the ones in which the surrogate geometries agrees
the most with the true geometry.

Figure 9 shows the normalized log-evidence (left plot) and also the MAP estimate of ρ (right plot) for
each model. The evidence is normalized as follows:

Ek =
log (pY ({Yi}|Gk))−minj log (pY ({Yi}|Gj))
log (pY ({Yi}|G0))−minj log (pY ({Yi}|Gj))

, (32)

where pY ({Yi}|G0) is the evidence given the true geometry. Since the true geometry is expected to provide the
highest value for the evidence, the normalized log-evidence effectively falls in the range [0, 1]. We appreciate
that the Evidence heavily favors models 1 through 7 (which is what one would expect from figure 8). From
the MAP estimates of ρ shown in figure 9(b), we notice that for model G1 the estimated value is very close
to the true value; this is not surprising, since G1 approximates well G0. For other models, we see some
deviation in the estimate from the true value. The estimates provided by models G3 and G5 are higher than
the true value because these geometries have a good overlap with the true inclusion, but they enclose a
smaller area in the domain. Because of the smaller area the surrogate believes that the Young’s modulus of
the inclusion in higher than what it actually is. The converse is true for models G2, G4, G6, and G7. Using
nested geometries might provide some means to get a closer estimate of ρ in this kind of setting.

Even though the inferred MAP of the contrast ratio are quite sensitive to geometrical errors, the pre-
dictions are quite robust in the sense that in all cases one correctly concludes that the domain is likely to
contain an inclusion. In a diagnostic framework, this equates to having a significant probability of encoun-
tering an anomaly inside the inspected sample. In addition, the sensitivity to geometrical errors suggests
that the inference of the inclusion geometry is feasible from the observations.

Note that even though our dictionary in this specific example consists exclusively of ellipses, the method
actually allows for different types of geometries to be considered simultaneously. This provides a great
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(a) G1 (b) G2 (c) G3 (d) G4

(e) G5 (f) G6 (g) G7 (h) G8

(i) G9 (j) G10 (k) G11 (l) G12

Figure 8: Schematics of 12 different geometrical configurations. In the figures the area enclosed by yellow doted-line correspond
to the actual geometry of the inclusion, and the area enclosed by the blue solid-line corresponds to the location and shape of
the inclusion assumed by the surrogate. The geometries are shown to scale. The models are ordered from left to right, top to
bottom according to the value of the evidence.

deal of flexibility because one is not restricted to a single family of shapes, which is a limitation of some
approaches where the geometry is parametrized by a small set of parameters. In fact, the geometries in the
dictionary can be generated based on any prior information available regarding the shape and size of the
inclusion (e.g. images of known existing tumors). Moreover, the method has shown to be robust to model
errors, meaning that we can still detect the presence of an inclusion despite discrepancies between the true
geometry and the geometries considered in the dictionary.

5.1. Non-homogeneous Young’s modulus
Now, we analyze the impact of model errors on the robustness of the inference method. Specifically,

we focus on the mechanical model errors arising due to a non-homogeneous distribution of the Young’s
modulus. So far, we have assumed that the background and the inclusion are both homogeneous. However,
we now analyze how a surrogate model built assuming a homogeneous Young’s moduli would perform when
the observations correspond to a non-homogeneous distribution of the Young’s modulus.

The aim of this analysis is to understand how tissue inhomogeneity would be interpreted by the model. In
particular, in the case when there is not an inclusion, we want to know if inhomogeneities would be interpreted
as the presence of an inclusion (i.e. a false-positive diagnostic). To this end, we consider observations
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Figure 9: The left plot shows the normalized evidence of the models. The plot on the right show the MAP estimate of ρ for
each model. The index of the model corresponds to the order of the geometries shown in figure 8 (index zero correspond to the
true geometry). The purple line in the right plot corresponds to the true value of ρ.

generated with a non-homogeneous Young modulus field, Ẽ(x, θ), that is constructed by perturbing the
homogeneous field E(x) = Ē with a realization of a Gaussian process, K(x, θ), namely according to:

Ẽ(x, θ) = Ē exp [K(x, θ)] (33)

where K(x) is the centered Gaussian Process with correlation matrix

C(x1,x2) = ᾱ2 exp

[
−‖x1 − x2‖2

2l2

]
.

The variance ᾱ2 and the correlation length l are used to control the spatial variability of Ẽ(x, θ). Moreover,
we define ρ̄ = (µE + 3σE)/(µE − 3σE) = (1 + 3

√
eᾱ2 − 1)/(1− 3

√
eᾱ2 − 1), where µE and σE are the mean

and variance of Ẽ(x, θ) at a given fixed value of x. This expression for ρ̄ provides a sense of how the
parameter ᾱ impacts the variability of the Young’s modulus field. Note that for ᾱ = 0 one recovers almost
surely the homogeneous field Ẽ(x, θ) = Ē.

For the analysis we generate perturbation fields for l = 0.001, 0.1, 0.5, 1, 10 (these values are relative to
the dimension of the domain) and ᾱ = 0.01, 0.05, 0.1 (i.e. ρ̄ ≈ 1.062, 1.352, 1.860). For each combination of
these values we generated 30 realizations of the Young’s modulus field.

For each realization of the field, we selected the best model according to the evidence and plotted the
value of ρMAP in figure 10. First we notice that, as expected, the larger the value of ᾱ the more our estimate
for ρ deviates from the actual value. Moreover, we see that for large value of the correlation length the value
of ρMAP remains close to one; this is because the field is highly correlated and we do not expect to see much
variability. We also observe a similar behavior when l is very small; in this case the there is more fluctuation
in the field but the fluctuations are small relative to the size of the suspected inclusion, and as a result they
are “averaged-out”. Finally, we see the largest deviations in the estimate when the correlation is about the
size of the domain.

We can better understand the behavior observed in the previous figure by looking at some of the real-
izations of the field shown in figure 11. We see that for l = 10 the field is nearly constant, and as a result
the inferred value for ρ is close to one as previously seen. For l = 0.5 we observe some high contrast regions
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which are comparable in size to the inclusion’s assumed geometries, which explains the higher values of
ρMAP . Finally, for l = 0.01 we also see high contrast in the material, but the fluctuations are very small
compared to the size of the assumed inclusions. Fluctuations like the ones depicted in figures 11(b) and 11(e)
could in fact lead to a false-positive diagnostic, since they mimic the presence of an inclusion. However, if
fluctuations like these are expected, the decision threshold for the value of ρ could be adjusted accordingly.
Specific analysis about calculating the probabilities of miss-detection and false-positives, and decisions about
the selection of an appropriate threshold for ρ are left for a future study and will be reported elsewhere.
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Figure 10: MAP estimate of the ratio ρ for the case of a non-homogeneous Young’s modulus for different combinations of l and
ᾱ. The MAP corresponds to the model with the highest Evidence. Each blue marker represent a different realization of the
field. The purple line corresponds to a value of ρ = 1 that would be expected in the presence of a homogeneous field.

6. Conclusions

In this paper, we presented a method to quickly assess the presence of inclusion in soft tissue at a
low computational cost. Specifically, our focus was to create a dictionary of surrogate models in order
to determine the posterior probability distribution of the Young’s modulus based on noisy observations of
the displacement field. In order to reduce the cost of the inverse problem, we used a Polynomial Chaos
expansion to construct a surrogate model that provides a faithful approximation of the forward problem.
A Galerkin methodology was applied for this purpose, and the accuracy of the predictions was established
using systematic refinement of the expansion order.

To handle the lack of complete information about the geometry of the physical model, a family of PC
surrogates was built, each with a different assumed geometry. A model selection approach based on the
evidence provided by the data was used to discriminate among the different models. The availability of the
surrogate was exploited in the computation of the posterior’s Hessian, which was used to estimate the value
of the evidence. Furthermore, the Hessian was used compute the covariance of the proposal distribution in
the the M-H algorithm, improving its convergence.

The proposed method was shown to be advantageous since it divides the computational cost into more
costly preprocessing stage where the surrogate models are computed for several geometries, and a lower cost
model selection and inference stage where the decision regarding the presence of the inclusion is made using
observations. Thus, the approach makes feasible the use of a diagnostic device with a low computational
cost to identify the presence of an inclusion in soft tissue

Implementation of the methodology was illustrated in a simplified setting, consisting of a two-dimensional
rectangular solid containing an inclusion. Attention was focused on demonstrating the possibility of inferring
the presence of the inclusion from observations of the displacement field. In the wide range of conditions
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(a) ᾱ = 0.10, l = 10 (b) ᾱ = 0.10, l = 0.5 (c) ᾱ = 0.10, l = 0.01

(d) ᾱ = 0.05, l = 10 (e) ᾱ = 0.05, l = 0.5 (f) ᾱ = 0.05, l = 0.01

Figure 11: Selected realizations of the non-homogeneous Young’s modulus field for different values of l and ᾱ as depicted.

considered, the computations indicate that the approach is suitable for a wide range of contrast ratios, and
that the predictions are robust to measurement noise, geometrical model errors, as well as the presence of
spatial inhomogeneities.

The present developments motivate several avenues for further refinement. These include non-stationary
problems, the possibility of simultaneously inferring both elastic problems and geometric features, as well
as optimal selection of experimental observables. These topics will be the focus of future studies, and will
be reported elsewhere.
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Appendix A. MCMC Posterior Sampling

Given observations Yi, the joint posterior distribution of ξ and ε can be sampled by Markov Chain Monte
Carlo (MCMC) algorithms [54, 55] in the corresponding (ξ, ε) domain. In this work, we use an adaptive
Metropolis-Hastings (M-H) algorithm with a multivariate centered Gaussian proposal distribution. The
approach consists in using a proposal distribution with a (ξ, ε)-dependent covariance matrix based on the
decomposition of the Hessian of the log-posterior distribution.
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From the expressions of the priors and likelihood function, the log-posterior distribution can be expressed
as

LP (ξ, ε|{Yi}) = −
mo∑
i=1

(û(xi, ξ)− Yi)2

2ε2
− (mo + 1) log(ε) + log(pξ(ξ)) + C. (A.1)

where C groups all the constant terms in the expression. Under mild conditions on pξ (recall that the
component ξi of ξ are independent), the log-posterior can be differentiated twice, and we denote [HLP ] ∈
R(N+1)×(N+1) the Hessian matrix of the log-posterior distribution. Observing that [HLP ] is symmetric, it can
be decomposed as [HLP ] = [V ][Λ][V ]T , where [Λ] is a diagonal matrix whose elements are the real eigenvalues
of [HLP ], and [V ] is the matrix whose columns are the eigenvectors of [HLP ] such that [V ][V ]T = [I]. We
then define the covariance matrix Σ2 of the centered Gaussian proposal distribution according to:

Σ2 = σ2
Σ × [V ]D ([Λ]) [V ]T , (A.2)

where the non-negative diagonal matrix D is any convenient transformation of [Λ] and σ2
Σ > 0 is a scaling

factor. A suitable choice for D is

Dii ([Λ]) =

{
mink |Λkk|
|Λii| Λii 6= 0

1 Λii = 0
(A.3)

This transformation allows us to take a larger step along the direction where the log-posterior is flat (the
posterior varies slowly) and smaller steps along the directions of high curvature.

Note that in general the Hessian matrix [HLP ] will be a function of the current state (ξ, ε) of the chain.
Thus, as the chain evolves from one state to another the Hessian matrix will change accordingly. However, in
many cases the changes might not be significant, and it is possible to further reduce the computational cost
by reducing the frequency at which the covariance matrix of the proposal distribution is updated, without
significant performance degradation. Furthermore, in some instances we only need to compute the Hessian
once to determine an adequate proposal distribution.

An advantage of using PC representations is that it is straightforward to compute derivatives [56, 57]. In
particular one can derive expressions for the successive derivatives of û(x, ξ) with respect to components ξi
as needed for the computation of the Hessian. For instance, considering the partial derivative with respect
to ξi of û(x, ξ), we can write it as a PC expansion with the same basis used for û(x, ξ):

∂

∂ξi
û(x, ξ) =

∂

∂ξi

P∑
α=0

ûα(x)Ψα(ξ) =
P∑
α=0

(∂iû)α(x)Ψα(ξ), (A.4)

where the PC coefficients (∂iû)α of the derivative are related to the PC coefficients of û through


(∂iû)0

(∂iû)1

...
(∂iû)P

 = [Li]


û0

û1

...
ûP

 =



〈
∂
∂ξi

Ψ0,Ψ0

〉 〈
∂
∂ξi

Ψ1,Ψ0

〉
· · ·

〈
∂
∂ξi

ΨP ,Ψ0

〉〈
∂
∂ξi

Ψ0,Ψ1

〉 〈
∂
∂ξi

Ψ1,Ψ1

〉
· · ·

〈
∂
∂ξi

ΨP ,Ψ1

〉
...

...
. . .

...〈
∂
∂ξi

Ψ0,ΨP

〉 〈
∂
∂ξi

Ψ1,ΨP

〉
· · ·

〈
∂
∂ξi

ΨP ,ΨP

〉



û0

û1

...
ûP

 . (A.5)

The derivative operators [Li], i = 1, · · · , N can be precomputed exactly and stored, so that when
computing the Hessian in the MCMC algorithm, finding ∂

∂ξi
û reduces to a single matrix multiplication of

[Li] with the coefficients vector û. Higher-order derivatives amount to additional matrix multiplications.
Consequently, the computational complexity of the adaptive proposal covariance essentially reduces to the
spectral decomposition of the Hessian, which remains low provided that N is not too large. Finally, the
scale factor σ2

Σ is classically tuned as to obtain a prescribed rejection rate for the chain.
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