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Abstract

This work presents a method to efficiently determine the dominant Karhunen-Loève (KL)
modes of a random process with known covariance function. The truncated KL expansion
is one of the most common techniques for the approximation of random processes, primarily
because it is an optimal representation, in the mean squared error sense, with respect to the
number of random variables in the representation. However, finding the KL expansion in-
volves solving integral problems, which tends to be computationally demanding. This work
addresses this issue by means of a work-subdivision strategy based on a domain decomposi-
tion approach, enabling the efficient computation of a possibly large number of dominant KL
modes. Specifically, the computational domain is partitioned into smaller non-overlapping
subdomains, over which independent local KL decompositions are performed to generate lo-
cal bases which are subsequently used to discretize the global modes over the entire domain.
The latter are determined by means of a Galerkin projection. The procedure leads to the
resolution of a reduced Galerkin problem, whose size is not related to the dimension of the
underlying discretization space, but is actually determined by the desired accuracy and the
number of subdomains. It can also be easily implemented in parallel. Extensive numerical
tests are used to validate the methodology and assess its serial and parallel performance.
The resulting expansion is exploited in Part B to accelerate the solution of the stochastic
partial differential equations using a Monte-Carlo approach.

Keywords: Domain Decomposition, Stochastic Processes, Karhunen-Loève Expansion

1 Introduction
Stochastic Partial Differential Equations (PDEs), and elliptic ones in particular, are increasingly
being used to account for situations involving uncertain or incomplete knowledge of the simulated
system, and to perform, for example, inference tasks and sensitivity analyses. Computational
approaches for the solution of SPDEs conceptually involve three essential steps: the modeling of
the input uncertainty, the solution of the governing equations, and ultimately post-processing the
output to characterize the uncertainty. This paper (“Part A”) and its companion (“Part B”) focus
on the two first steps respectively. We discuss at present a domain decomposition strategy to
approximate random fields using local reduced bases and local coordinates. These developments
are motivated by the computational approach proposed in Part B, where the structure of local
representations is exploited to accelerate the Monte Carlo sampling of the solution.
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Modeling and approximating random processes is an important task in many applications and
in particular in uncertainty quantification problems. Focusing on random processes in spatial
domains, it is often convenient to perform a discretization of the process in both stochastic
and spatial dimensions for computational purposes. One way to achieve this is to rely on the
representation of the process in terms of random coordinates in a spatial basis, and proceed with
the discretization of the spatial basis functions and random coordinates. An overview of several
stochastic-discretization methods for random fields is provided in [20, 26, 25]. Among these
methods, a common one in the area of computational stochastic mechanics is the Karhunen-
Loève (KL) expansion [16, 12, 11]. A key advantage of the KL expansion is that it is optimal,
with respect to the number of random variables involved in the representation, in the mean
squared error sense. This is particularly attractive when using stochastic spectral methods,
such as Polynomial Chaos expansions [5, 14], in view of analyzing the influence of the process
on a model solution; that is, performing uncertainty quantification. Indeed, these functional
representation methods exploit heavily the smoothness of the model solution with respect to
the stochastic coordinates appearing in the KL decomposition. A challenge, however, is that
finding the KL expansion of a stochastic process involves decomposing its covariance function.
This leads to solving a Fredholm integral equation of the second kind, for a kernel consisting
of the two-point covariance function. Decomposing such kernels is computationally demanding,
because large spatial discretization grids are routinely considered when solving partial differential
equations. A detailed description of Fredholm integral equations of the second kind is provided
in [1], and a comparison of different methods that solve the KL expansion is found in [3].

For some particular covariance kernels, an analytical solution of the Fredholm integral equa-
tion is available (see for instance [5]). However, this is not typically the case and numerical
procedures are required for its spectral decomposition [7]. Different approaches have been de-
vised in order to make more tractable the computation of the KL expansion. For instance, in [22]
a wavelet-Galerkin approach is discussed, which provides localized support leading to sparse ma-
trix equations that can be solved at a reduced cost. Another approach is presented in [24],
which relies on fast multipole methods to speed up the computations. A more recent attempt at
making the problem more tractable is provided in [3], but still finding the KL expansion remains
a challenging problem, specially in situations where a large number of terms are needed or the
physical space is multidimensional.

This paper proposes an efficient parallel method for the computation of KL expansions with
a potentially large number of terms (broad spectrum). The method is based on a domain decom-
position technique and we refer to it as the Domain Decomposition KL (DD-KL) method. The
proposed strategy involves partitioning the computational domain into smaller non-overlapping
subdomains, over which local KL decomposition problems are solved to generate local bases. Our
approach elucidates the exact correlation structure between sets of local coordinates associated
to different subdomains and is composed of the following three main stages: (i) solving a local
KL expansion problem over each subdomain; (ii) using the dominant eigenfunctions from the
local expansions to assemble a reduced eigenvalue problem; and (iii), solving the reduced eigen-
value problem to obtain the desired (global) KL expansion. Our representation is exploited in
Part B to accelerate the solution of elliptic PDEs using a Monte-Carlo procedure, specifically
applying the local representations to expand the condensed stochastic problem of the domain
decomposition formulation as local Polynomial Chaos (PC) expansions.

In addition to the immediate computational advantages of (i) solving small independent local
problems and (ii) solving a low dimensional reduced global one, the method also allows us to
efficiently distribute and parallelize most of the computations. Finally, as mentioned above, the
method yields a representation in terms of independent stochastic coordinates that is convenient
to perform uncertainty quantification tasks and sensitivity analyses, to characterize for instance
the impact of the random process on a model solution. Indeed, the expansion in terms of
independent random coordinates enables both sampling based approaches (e.g., Monte Carlo)
and functional expansions (e.g. Polynomial Chaos and low rank approximations [5, 13, 21, 27]).
Furthermore, the global random coordinates can be related to small sets of local coordinates,
over the subdomains, to reduce the computational complexity of the uncertainty quantification
problem based on the KL approximation of the process.

The outline of the paper is as follows. In section 2, we recall the KL expansion and detail
the proposed domain decomposition method. Also, in this section, a truncation strategy for
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the DD-KL method is established in order to control the error in the resulting approximation.
In section 3, numerical results are provided illustrating the effectiveness of the DD-KL method
and the error control. Next, section 4 is dedicated to illustrating both the serial behavior of
the approach and its parallel scalability and efficiency. Finally, in section 5, some concluding
remarks are provided.

2 A Domain Decomposition Method for KL Expansions
In this section we introduce the proposed domain decomposition method to approximate the KL
expansion of a stochastic process. We start by introducing several notations used throughout
the paper. Consider a probability space P “ pΘ,ΣΘ, µΘq, where Θ is the set of events, ΣΘ a
sigma-algebra over Θ and µΘ a probability measure. We denote by E r¨s the expectation operator,

E rU s “
ż

Θ

UpθqdµΘpθq, (1)

and L2pΘq the corresponding space of second-order random variables, i.e., such that E
“

U2
‰

ă

`8. At the deterministic level, we consider Ω a bounded subset of Rn (with n “ 1, 2 or 3) and
define L2pΩq the space of square integrable functionals f : x P Ω ÞÑ fpxq P R. We shall denote
by }¨}Ω the norm in L2pΩq induced by the scalar product 〈¨, ¨〉Ω:

@f P L2pΩq, }f}
2
Ω “ 〈f, f〉Ω “

ż

Ω

|fpxq|2dx. (2)

Finally, we denote by L2pΩ,Θq the space of real-valued second-order processes U : Ω ˆ Θ Ñ R
such that Up¨, θq P L2pΩq, Upx, ¨q P L2pΘq and

E
”

}Up¨, θq}
2
Ω

ı

ă `8 ô U P L2pΩ,Θq. (3)

2.1 The KL expansion
Let U P L2pΩ,Θq be a centered random process with known covariance C : Ωˆ Ω Ñ R:

Cpx,x1q ” E
“

Upx, ¨qUpx1, ¨q
‰

. (4)

The truncated KL approximation, UN , of a second-order stochastic process U , consists in a
N -term expansion where each term is composed of the product of a deterministic function of
L2pΩq with a random variable of L2pΘq. The KL approximation UN is defined as to minimize
the representation error U ´ UN in the L2pΩ,Θq sense. As covariance functions are symmetric
and non-negative, it can be shown that the sought KL expansion is given by

UN px, θq ”
N
ÿ

α“1

a

λαηαpθqΦαpxq, (5)

where the λα’s and the Φα’s are the (dominant) eigenvalues and associated (normalized) eigen-
functions of the covariance, i.e., the solution to the integral equation

ż

Ω

Cpx,x1qΦpx1qdx1 “ λΦpxq, 〈Φ,Φ〉Ω “ 1. (6)

The ηαpθq are the stochastic coordinates of U , having the property of being orthonormal:

E rηαηβs “

#

1, α “ β,

0, otherwise.
(7)

Owing to the structure of the covariance function, C, the eigenvalues are non-negative and can
be ordered in decreasing magnitude, leading to a natural energy criterion for the truncation of
the expansion. Classically, N is fixed as to satisfy some error tolerance in the L2pΩ,Θq norm.
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Specifically, one sets N so the following inequality is satisfied for some prescribed error tolerance
0 ă δ ă 1

E
”

}U ´ UN }
2
Ω

ı

“ E
”

}U}
2
Ω

ı

´

N
ÿ

α“1

λα ď E
”

}U}
2
Ω

ı

δ2. (8)

Note that the process norm can be evaluated from the covariance function, E
”

}U}
2
Ω

ı

“
ş

Ω
Cpx,xqdx,

or through the whole KL spectrum: E
”

}U}
2
Ω

ı

“
ř

α λα.

Galerkin approximation In most cases, an analytical solution of (6) is not available, and
we have to rely on a numerical method to approximate the eigenvalues and eigenfunctions.
To this end, we choose a finite dimensional space V, consisting of the linear span of a basis
tv1pxq, v2pxq, . . . , vQpxqu, with basis functions vi P L2pΩq. Let Φhpxq “

řQ
k“1 ckvkpxq P V be

the (finite dimensional) approximation and Φpxq. Using the approximate into Eq. 6 gives the
residual

rpxq ” λΦhpxq ´

ż

Ω

Cpx,x1qΦhpx1qdx1 “
Q
ÿ

k“1

ck

ˆ

λvkpxq ´

ż

Ω

Cpx,x1qvkpx
1qdx1

˙

. (9)

In the Galerkin method, the vector of coefficients c “ pc1, ¨ ¨ ¨ , cQqT is chosen by forcing rpxq to
be orthogonal to all functions in V, i.e.:

〈r, u〉Ω “ 0, @u P V. (10)

Substituting (9) into (10) and exploiting the structure of V, the problem can be recast as a
generalized eigenvalue problem:

rKsc “ λrM sc, (11)

where rKs and rM s are non-negative symmetric matrices of RQˆQ with entries

rKsij “

ż

Ω

ż

Ω

Cpx,x1qvipx
1qvjpxqdx

1dx, rM sij “ 〈vi, vj〉Ω. (12)

The dimension Q of the discrete generalized eigenvalue problem (11) depends on the dimension
of the approximation space V. If a Finite Element (FE) method is used to discretize the problem,
the dimension of the basis is equal to the number of degrees of freedom Q of the FE space, which
is determined by the number and type of elements used. Depending on the covariance struc-
ture, a very fine discretization (i.e., very large Q) might be required to accurately represent the
eigenfunctions and, as a result, solving the eigenvalue problem could become computationally in-
tensive. This prevents the use of direct methods for most practical problems with large Q. As one
is generally not interested in the full KL decomposition of U but in the N -dimensional dominant
subspace, iterative methods (e.g., sub-space iterations, Arnoldi, Lanczos; see for instance [6]) can
be considered as an alternative for the resolution of (11). However, although for typical finite
element discretizations the mass matrix rM s is sparse, most covariance functions induce a full
matrix rKs, with possibly prohibitive memory requirements for its storage. Matrix-free iterative
methods and parallel implementation can be used to overcome memory limitations and accelerate
computations, but the full character of the operator rKs induces large computational cost and
important communication burdens that can severely impact the efficiency of these approaches.

In the following subsection, we introduce an alternative strategy suitable to the parallel com-
putation of the KL decomposition. It uses a domain decomposition approach to conveniently
distribute the computational load among several processors and recast (11) in a reduced eigen-
value problem having a size dictated by the targeted error tolerance rather than by the dimension
of the underlying discretization space, e.g. Q.

2.2 Domain Decomposition approach
As illustrated in Figure 1, our approach starts by partitioning the domain Ω into D non-
overlapping subdomains:

Ω̄ “
ŤD
d“1 Ωd, Ωi X Ωj‰i “ H. (13)
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Figure 1: Partitioning of a square domain Ω into D “ 8 non-overlapping subdomains.

Next, for each subdomain Ωd, d “ 1, ¨ ¨ ¨ , D, we introduce the local eigenmodes φ̃pdqβ : Ωd Ñ R,
defined as the solutions of:

ż

Ωd

Cpx,x1qφ̃
pdq
β px

1qdx1 “ λ
pdq
β φ̃

pdq
β pxq,

›

›

›
φ̃
pdq
β

›

›

›

Ωd

“ 1. (14)

In (14), we have denoted by }¨}Ωd
the natural restriction of the norm in L2pΩq to the subdomain

Ωd. It is seen that the φ̃pdqβ are the eigenfunctions of the correlation Cpx,x1q restricted to the
d-th subdomain. These local eigenfuctions are extended to the global domain Ω by defining

@x P Ω̄, φ
pdq
β pxq “

#

φ̃
pdq
β pxq, x P Ωd,

0, x R Ωd.
(15)

We observe that because the φpdqβ are orthonormal in Ωd, in light of (15) we have

〈
φ
pdq
β , φ

pd1
q

β1

〉
Ω
“

#

1, if d “ d1 and β “ β1,

0, otherwise.
(16)

For each subdomain Ωd we retain the md ą 0 dominant eigenpairs according to the criterion
discussed later in section 2.3. The D sets of dominant eigenfunctions are collected to form an
orthonormal reduced basis B of L2pΩq:

B “

D
ď

d“1

Bd, Bd “

!

φ
pdq
β , β “ 1, . . . ,md

)

. (17)

We denote by VB the linear span of B. We then seek an approximation Φ̂ P VB of the global
modes solution of (6), that is

Φpxq « Φ̂pxq “
D
ÿ

d“1

md
ÿ

β“1

a
pdq
β φ

pdq
β pxq. (18)

We set apdq “ papdq1 , . . . , a
pdq
mdq

T , the vector of the local coordinates of Φ̂ for x P Ωd. Applying the
Galerkin method,

@φ
pdq
β P B :

〈
ż

Ω

Cpx,x1qΦ̂px1qdx1, φ
pdq
β

〉
Ω

“ Λ
〈

Φ̂, φ
pdq
β

〉
Ω
, (19)

the approximate eigenfunctions are seen to solve the following discrete eigenvalue problem,
»

—

—

—

–

rK̂11s rK̂12s ¨ ¨ ¨ rK̂1Ds

rK̂21s rK̂22s ¨ ¨ ¨ rK̂2Ds

...
...

. . .
...

rK̂D1s rK̂D2s ¨ ¨ ¨ rK̂DDs

fi

ffi

ffi

ffi

fl

$

’

’

’

&

’

’

’

%

ap1q

ap2q

...
apDq

,

/

/

/

.

/

/

/

-

“ Λ

$

’

’

’

&

’

’

’

%

ap1q

ap2q

...
apDq

,

/

/

/

.

/

/

/

-

, (20)
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where the block matrices rK̂i,js P Rmiˆmj have for respective entries,

rK̂i,jsα,β “

ż

Ωi

ż

Ωj

Cpx,x1qφpiqα pxqφ
pjq
β px

1qdxdx1, 1 ď α ď mi, 1 ď β ď mj . (21)

We refer to (20) as the condensed eigenvalue problem. The dimension of this problem is

nt “
D
ÿ

d“1

md “ card B. (22)

It is easily shown that the matrix rK̂s P Rntˆnt is symmetric and positive definite if the covariance
function is such that for all u P L2pΩq,

}u}Ω ą 0 ñ

〈
u,

ż

Ω

Cp¨,xqupxqdx

〉
Ω

ą 0. (23)

This assumption is satisfied for most covariance functions, in particular for the whole Matérn
class, and should not be restrictive in practice. Consequently, the nt eigenvalues Λα of rK̂s can
be ordered with decreasing magnitude as

Λ1 ě Λ2 ě ¨ ¨ ¨ ě Λnt ě 0. (24)

Then, for reasons explained in section 2.3, we can select the smallest N̂ , 1 ď N̂ ď nt, such that
for a prescribed relative error tolerance 0 ď δ ď 1 we have

nt
ÿ

α“N̂`1

Λα ď
δ2

2

nt
ÿ

α“1

Λα. (25)

The truncated approximation of U is then given by

Upx, θq « ÛN̂ px, θq ”
N̂
ÿ

α“1

a

Λα η̂αpθqΦ̂αpxq, (26)

where

Φ̂αpxq “
D
ÿ

d“1

md
ÿ

β“1

a
pdq
α,βφ

pdq
β pxq. (27)

is the eigenfunction corresponding to Λα.
As illustrated in the examples section, nt is essentially fixed by the requested accuracy and

not by the size of the discretization space. In fact, in our simulations, typical values for nt were
small enough to permit the use of direct solvers for the solution of the reduced problem. However,
any other type of solver, for instance iterative ones, can be considered for the solution of (20). In
the following, we refer to the approximation (26) as the DD-KL expansion. Algorithm 1 provides
a schematic of the main steps involved in the DD-KL approach. The algorithm highlights the two
main steps that can be carried out in parallel, namely the construction of the local bases Bd and
the assembly of the matrix rK̂s of the condensed operator. The actual parallel implementation
of the method is further discussed and tested in section 4.

Remark A numerical method is needed to solve the local problems and yield the local eigenpairs
pλ, φq; in the present work we use Finite Element methods to discretize the Galerkin weak
form of (6). Even though we mentioned in section 2.1 that using this approach could become
computationally intractable for large problems, using it to solve the local problems is now a viable
option, owing to the much smaller size of the local problems. Specifically, their number of degrees
of freedom is approximately divided by D as compared to the global problem. Moreover, the
local modes over distinct subdomains can be computed in parallel exploiting the independence
of the local problems; this allows to effectively distribute the computational load among several
processors.
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Algorithm 1: Schematic steps of the DD-KL approach.
Partition the domain Ω into D subdomains ;
// Parallel loop – Computing local modes
foreach subdomain Ωd do

Discretize the local integral equation given by (14) to get rKpdqs and rM pdqs ;
Solve the local generalized eigenvalue problem rKpdqstφ̃pdqu “ λpdqrM pdqstφ̃pdqu

end foreach

// Parallel loop – Computing entries of reduced problem
foreach subdomain Ωi do

foreach subdomain Ωj do
foreach 1 ď α ď mi and 1 ď β ď mj do

Compute rK̂i,jsα,β “
ş

Ωi

ş

Ωj
Cpx,x1qφ

piq
α pxqφ

pjq
β px

1qdxdx1

end foreach
end foreach

end foreach
Assemble and solve the reduced eigenvalue problem ; /* see equation (20) */

Get approximated global eigenfunctions ; /* see equation (18) */

Remark The cost of solving the reduced eigenvalue problem is independent of the size of
the discretization space used for the resolution of the local problem. Instead, it depends on
the number of local modes retained in each subdomain, md, which add up to nt; we expect
nt “ OpNq, which is in practice much less than Q. The computational cost and complexity
analysis of the method are discussed in section 4 on the basis of computational examples.

Remark Even if the local modes φpdqβ pxq’s are all approximated using the same FE method1

over each subdomain Ωd, the condensed problem (20) does not ensure that the final approxima-
tion belongs to the FE space that would have been built over the whole domain Ω. For instance,
a typical situation corresponds to the case of continuous FE approximations over each subdomain
Ωd to compute the φpdqβ ’s, so the Φ̂α will generally be only piecewise continuous over the union of
the Ωd as indicated by (18), with jumps across the interfaces between subdomains. Such jumps
are generally not a problem, but they can eventually be removed if needed at a post-processing
stage, e.g. by one of the averaging procedures routinely used in Discontinuous Galerkin methods.

Remark Substituting (18) into (26) we get the following alternative representation of the DD-
KL expansion directly in terms of the local eigenmodes

ÛN̂ px, θq “
D
ÿ

d“1

«

md
ÿ

β“1

b

λ
pdq
β ξ

pdq
β pθqφ

pdq
β pxq

ff

, ξ
pdq
β pθq “

N̂
ÿ

α“1

d

Λα

λ
pdq
β

a
pdq
α,β η̂αpθq, (28)

where the tξpdqβ pθq, β “ 1, . . . ,mdu are called the local random variables. This expression high-
lights that for x P Ωd the process Upx, θq can be approximated using an expansion that depends
only on the local coordinates ξpdq1ďβďmd

. In other words, even though the stochastic dimension of
the truncated expansion is nt, at the subdomain level we can characterize the process using a
reduced stochastic dimension md. In addition, it can be shown that the local coordinates of a
subdomain are uncorrelated but that coordinates of distinct subdomains are generally correlated.
This representation of the process in terms of local random variables is exploited in the sequel
to this paper (Part B) to accelerate the solution of stochastic elliptic PDEs using a Monte-Carlo
approach.

1In fact, distinct subdomains could be treated using different discretization methods.
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2.3 Truncation strategy
In this section we address the selection of the parameters governing the proposed method. An
obvious question concerns the selection of the number D of subdomains and the actual partition
of Ω. In the example section 3.3, we numerically illustrate the robustness of the method with
respect to the partitioning of Ω in D subdomains and investigate the effects of varying D. Here,
we focus on the selection of the number of local modes md and the appropriate truncation of the
final DD-KL expansion, for a fixed partition of Ω.

The method introduces two different sources of error in the approximation of U by ÛN̂ . First,
an error is introduced when representing the eigenfunctions of U in the finite dimensional space
VB built on the local bases, see (18). Hereafter, we shall denote by UB the projection of U on
VB:

UBpx, θq “
D
ÿ

d“1

md
ÿ

α“1

b

λ
pdq
α ηpdqα pθqφpdqα pxq. (29)

Second, the projected process UB is further reduced, through the resolution of the reduced
problem, to yield the final approximation ÛN̂ .

Because U´UB is orthogonal to UB´ÛN̂ , the squared norm of the error U´ÛN̂ can actually
be broken down into two independent parts as follows:

E
„

›

›

›
U ´ ÛN̂

›

›

›

2

Ω



“ E
”

}U ´ UB}
2
Ω

ı

` E
„

›

›

›
UB ´ ÛN̂

›

›

›

2

Ω



. (30)

See appendix A for the derivation. The first term is obtained by adding up the local contributions
over the subdomains, which, by construction of the local modes, are given by

ε2d ” E
”

}U ´ UB}
2
Ωd

ı

“ E
”

}U}
2
Ωd

ı

´

md
ÿ

α“1

λpdqα , @d “ 1, . . . , D. (31)

Then, gathering the local contributions, we end up with

ε2B ” E
”

}U ´ UB}
2
Ω

ı

“

D
ÿ

d“1

ε2d “ E
”

}U}
2
Ω

ı

´

D
ÿ

d“1

md
ÿ

α“1

λpdqα . (32)

Finally, similarly to the classical KL truncation error, the second error contribution is

ε2
BN̂

” E
„

›

›

›
UB ´ ÛN̂

›

›

›

2

Ω



“ E
”

}UB}
2
Ω

ı

´

N̂
ÿ

α“1

Λα. (33)

Since E
”

}UB}
2
Ω

ı

ď E
”

}U}
2
Ω

ı

, the overall error can be estimated from:

E
„

›

›

›
U ´ ÛN̂

›

›

›

2

Ω



“ ε2B ` ε
2
BN̂

ď 2E
”

}U}
2
Ω

ı

´

D
ÿ

d“1

md
ÿ

α“1

λpdqα ´

N̂
ÿ

α“1

Λα. (34)

This expression shows that to reduce the error, one needs to jointly increase the size of the local
basis over all the subdomains and increase N̂ . Clearly, this suggests the existence of an optimal
(in terms of computational efficiency) set of values for md and N̂ . In this work, in order to
achieve an overall relative error 0 ď δ ď 1, we simply enforce the following error levels. First,
regarding the local errors, we require simply that the md’s are selected to ensure for each d

ε2d “ E
”

}U}
2
Ωd

ı

´

md
ÿ

α“1

λpdqα ď E
”

}U}
2
Ωd

ıδ2

2
, (35)

such that ε2B ď E
”

}U}
2
Ω

ı

δ2{2. Then, N̂ is selected so that (25) holds, which ensures that

E
„

›

›

›
U ´ ÛN̂

›

›

›

2

Ω



ď δ2E
”

}U}
2
Ω

ı

. (36)
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Remark We observe that the selection of the md’s in (35) balances the local relative (squared)
error over the subdomains; this could be further improved by collecting the local eigenvalues
for all the subdomains and selecting the nt dominant ones that ensure ε2B ď δ2{2. However,
numerical experiments have shown that the local selection based on (35) is quite satisfactory and
in addition it maintains a strict independence of the local bases construction.

3 Numerical Examples
In this section we describe the test problem used to validate the domain decomposition approach
(Section 3.1), present several numerical results that demonstrate the convergence and the error
control (Section 3.2) of the method. Finally, we provide in Section 3.3 a brief analysis of the
impact of the domain partitioning on the behavior of the method.

3.1 Test problem
The method is applied to the decomposition of a second-order stochastic process Upx, θq defined
over the two-dimensional unit square Ω “ r0, 1s2. For the covariance of the process, we assume
the classical stationary squared exponential structure, with characteristic correlation length L
and unit variance:

Cpx,x1q “ exp
´

´
›

›x´ x1
›

›

2

2
{L2

¯

. (37)

We stress that the proposed method is not limited to this specific covariance structure and domain
shape. For the spatial discretization of the KL modes, we use piecewise constant Finite Element
discretization unless otherwise indicated. This low order FE approximation space is chosen
because of the application to stochastic elliptic PDEs we have in mind; in these applications, the
stochastic coefficient field modeled by KL expansion is often considered as constant over the finite
elements [4]. In any case, we stress that our method perfectly accommodate for higher order
FE methods. The spatial mesh consists of a conforming triangulation of Ω into a set Σ of Ne
finite elements. Eventually, the set of elements is partitioned into D subsets forming connected
non-overlapping subdomains Ωd, for d “ 1, . . . , D. For the partitioner, we rely on a k´means
geometrical clustering algorithm [17, 15, 18] .

The correlation length L has a marked effect on the spectral decay of the KL expansion.
Figure 2 shows the magnitude of the ordered eigenvalues of Cpx,x1q. From the Figure, we can
appreciate the slower decay rate of λk for smaller values of L. In fact, for the smallest correlation
lengths tested, the leading eigenvalues are seen to be essentially equal with an asymptotic decay
that is increasingly delayed as L decreases. The slower the decay rate, the larger the number of
terms required in the KL expansion to achieve a desired accuracy. For instance, setting δ2 “ 10´3

in equation (8) we get N “ 3, N “ 8, N “ 259, and N “ 22,356 for L “ 10, L “ 1, L “ 0.1, and
L “ 0.01, respectively.

The DD-KL approach exploits the fact that the convergence behavior of the KL expansion, for
fixed covariance structure, is governed by the magnitude of L relative to the characteristic length
of the domain. Indeed, decreasing (resp. increasing) the characteristic extent of the domain has
a similar effect as increasing (resp. decreasing) the correlation length. In the DD-KL approach,
increasing the number of subdomains allows to reduce the extent of the subdomains, leading to
an apparent larger L and a faster spectral decay for the local expansions. This is illustrated in
Figure 3, where the spectra of local expansions are shown for different values of the number of
subdomains. Note that the Figure reports the spectra for all the D subdomains, so there are
D spectra plotted when Ω is partitioned into D subdomains. Here, we observe that for a given
number D of subdomains, the local subdomains all have roughly the same extent so the local
expansions have a similar decay. Moreover, it is seen that, as expected, the local expansions have
spectra which decay faster as D increases.

The variability of the spectra among the D sudomains can be appreciated from Figure 3b.
This variability is principally due to the partitioning procedure that generates non identical
subdomains, with slightly variable apparent L as a result.
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Figure 2: Spectra of the global decomposition for the squared exponential covariance in (37)
with different values of the correlation length L as indicated.
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Figure 3: Spectra of local decompositions for the squared Gaussian covariance (37), with L “ 0.1,
and different D as indicated. The plot in (a) uses a linear scale for the x-axis, whereas the plot
in (b) uses a logarithmic scale.

3.2 Convergence analysis
We start by demonstrating that the proposed method converges towards the direct decomposition
estimates of the dominant or truncated decomposition of U . To this end, we select arbitrarily
truncation levels N ą 0 and check that the DD-KL solution ÛN converges to the truncated
direct solution UN (i.e., the solution computed without the domain decomposition), as the
error tolerance is lowered. In fact, the comparison and convergence analyses are conducted
using the spatially discretized solutions, over the same finite element mesh. We compute UN
solving (6) discretized over the finite element mesh, as described in Section 2.1. The same finite
element mesh with Ne “ 40,802 elements and piecewise constant approximation is used for
both decompositions. In this case, the differences between ÛN and UN result from the DD-KL
reduction error only. To measure these differences, we define the following error metrics. First,
we consider error in the spectra, computing the normalized `1-distance between the N dominant
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eigenvalues of the DD-KL solution (Λk) and of the direct computation (λk):

εspec “

řN
k“1 |λk ´ Λk|
řN
k“1 |λk|

. (38)

In addition to the error in spectra, εspec, we quantify the distance between the N -dimensional
subspaces of the direct and DD-KL eigen bases. Different error measures can be thought to char-
acterize the distance between subspaces; here we simply rely on the expected squared L2-norm
of the projection error in the linear span of the eigenvectors Φ̂αpxq of the DD-KL approximation.
For a generic second order process V , the (relative) subspace error measure ε2subpV q is defined
as follows:

ε2subpV q “
E
„

›

›

›
V px, θq ´

řN
α“1

〈
V px, θq, Φ̂αpxq

〉
Ω

Φ̂αpxq
›

›

›

2

Ω



E
”

}V px, θq}
2
Ω

ı . (39)

Note that ε2subpUN q is therefore the spatially discretized version of the normalized projection
error εB in (32) for the truncated process UN . In order to compute the expectation in the
previous error definition, the process U is assumed to be Gaussian in what follows.

For N and D fixed, we expect the difference between UN and ÛN to decrease as richer and
richer local bases are considered. Recalling that the dimension of the local basis for subdomain
Ωd is md, we expect ÛN Ñ UN , in the sense of the metrics defined above, when md increases for
all the subdomains. As explained before, the local basis dimension md yields a local expansion
error εd given by equation (31). In the following, we choose a positive tolerance parameter δ˚ to
control the error in the local expansions and we select the smallest md P N` satisfying

ε2d ď E
”

}U}
2
Ωd

ı

ˆ δ˚, @d “ 1, ¨ ¨ ¨ , D. (40)

Figures 4 and 5 report the errors εspec and ε2sub, respectively, as a function of the tolerance
parameter δ˚. The two figures show that one can improve the accuracy of the KL-DD expansion
and approximate better and better UN by lowering the tolerance δ˚, that is, by increasing the size
of the local bases and accordingly enriching the reduced space. In the figures, a dashed line with
unit slope is shown to serve as a visual reference corresponding to εspec “ δ˚ and ε2sub “ δ˚,
respectively. We also note that as larger N are considered, δ˚ has to decrease consistently,
because increasing N requires nt “

ř

dmd ě N : a minimal tolerance δ˚ is therefore required to
induce a reduced basis B large enough (card B ą N) when selecting the md through (40). This
explains the different ranges for δ˚ considered in the plot, depending on N . Another interesting
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Figure 4: Relative spectrum error εspec, between UN and ÛN , as a function of the local tolerance
δ˚ (see (40)) for different subspace dimensions N as indicated. Computations use D “ 80 and
L “ 0.1. The dashed line has unit slope.

observation from Figures 4 and 5 is that the two errors decay proportionally with the local
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Figure 5: Subspace error ε2subpUN q in (39) as a function of the local tolerance δ˚ (see (40)) for
different subspace dimensions N as indicated. Computations use D “ 80 and L “ 0.1. The
dashed line has unit slope.

tolerance δ˚. This trend demonstrates that the local accuracy fixes the global precision on UN ,
for a fixed N and δ˚ small enough. Conversely, for a fixed and small enough δ˚, the relative error
ε2sub increases as we demand to approximate more and more modes (increasing N) but always
remains less than δ˚. Note that the error is always below the dashed line, which illustrates that
we can effectively bound the error in the approximation to be less than any desired value δ˚.

Now that we have established that the truncated DD-KL solution ÛN converges to the trun-
cated process UN when the tolerance on the local error is lowered, we proceed to investigate the
error between ÛN and the non-truncated process U . Strictly speaking, we actually look at the
differences between the spatially discretized versions of U and ÛN . Also, to compute efficiently
the subspace error ε2subpUq in (39), we need either to directly sample realizations of U or to
know its (untruncated) KL expansion. Here, however, we use as a proxy for U a truncated KL
expansion of U , obtained with the direct method, with a very large number of modes, typically
several times larger than the requested N . In Figure 6, the evolution of ε2subpUq is shown as a
function of the local tolerance δ˚, for different values of N . These curves must be compared with
the errors with respect to UN plotted in Figure 5. Contrary to the error with respect to UN , the
error with respect to U is seen to level off and not to continue to decay when the tolerance δ˚ is
lowered. This behavior reflects the decomposition of the error in (30): when the projection error
εB is made smaller and smaller, lowering δ˚, the truncation error εBN̂ becomes dominant such
that U ´ ÛN can not be reduced further but by increasing N . It confirms that increasing the
dimension of the local bases beyond a certain threshold does not provide any appreciable advan-
tages. On the contrary, it requires determining more local modes and solving a larger reduced
problem with higher numerical cost as a result. The plots also verify the appropriateness of the
strategy described in Section 2.3, since we can observe that for a given N the relative subspace
error stagnates after δ˚ « ε2subpUq.

So far, we have kept the number of subdomains constant in analyzing the error in the DD-KL
solution. We now show that the proposed error-control approach is not compromised when we
increase the number of subdomains D used to partition Ω. In the following numerical test, we
fix a target relative error δ and select the local and global truncation level using equations (25)
and (35), to balance the projection (ε2B ď δ2

2 ) and truncation (ε2
BN̂

ď δ2

2 ) errors. The DD-KL
solution is then computed for different numbers D of subdomains and we report in Figure 7 the
resulting relative projection error ε2subpUq. The curves demonstrate that a relative error less
than δ is consistently achieved irrespective of the number of subdomains considered.

The numerical experiments on the convergence of the DD-KL method were repeated using
continuous piecewise quadratic finite element discretizations (P2). We obtained results that are
similar to the piecewise constant case and, therefore, they are not reported here. Note, however,
that the discretized DD-KL and direct solutions lives in different finite dimensional space for the
quadratic approximation, as the direct solution is continuous over the whole domain Ω, when
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Figure 6: Projection error ε2subpUq with respect to the untruncated process, as a function of
tolerance δ˚ defining the local truncation through (40). Computations are conducted for L “ 0.1
using D “ 80 subdomains and different values of N as indicated. The dashed black line is a
reference of unit slope.
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Figure 7: Projection error ε2subpUq as a function of the number of subdomains D and for different
targeted relative accuracy δ as indicated.

the DD-KL solution is only continuous over the subdomains Ωd, with possibly discontinuities
across the boundaries between subdomains. Our numerical tests indicates that the DD-KL
approach remains convergent for finite element discretization with order greater than 0, and is
not compromised as D increases. Of course, changing the order of the FE method affects the
error in the computed eigenmodes of the local problems, such that a coarser mesh with a lower
number of degrees of freedom Q could be considered for the P2 FE discretization, compared to the
P1 or P0 discretizations, while maintaining a comparable accuracy in the final approximations.
The present work is not concerned with the question of determining the optimal FE order and
mesh size to achieve a prescribe accuracy at a minimal computational cost. This question is left
as a subject to future studies.
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3.3 Effect of domain partitioning
We have just seen that changing the number of subdomains does not affect the accuracy of the
final DD-KL expansion, provided that the truncations of the local and final expansions are prop-
erly set. However, the number of subdomains is obviously expected to affect the computational
cost, as the DD-KL method was motivated by the complexity reduction in the first place. The
analysis of the computational efficiency of DD-KL method is delayed to the next section, where
a parallel implementation is presented. In this section, we focus on the behavior of the local and
reduced bases when D varies and depending on the type of partioning of Ω considered.

We first assume that Ω is partitioned into D subdomains having similar size. Following the
discussion above, the change in apparent L is proportional to D1{n, for n spatial dimensions. In
addition to the reduction of the dimensionality of the discretized local problems, we also expect
the size of the local bases to decrease for larger D. However, the spectra shown in Figure 3a
indicate that the reduction in the average (over the D subdomains) number of local modes,
m̄, becomes marginally insignificant as D increases. In any cases, we have the lower bound
md ě 1, indicating that the behavior of the method for very large D (compared to N) can be
problematic. To clarify this point, we report in Table 1 the evolution of the reduced problem
size (nt), average local basis dimension (m̄) and standard deviation of md (denoted σmd

), when
increasing the numbers of subdomains. The results reported correspond to the previous example,
with a target accuracy δ2 “ 2 ˆ 10´3. We observe that as D increases the dimension nt of the
reduced problem increases. In fact, it is expected that asymptotically we would have nt “ OpQq,
where Q is the number of degrees of freedom. This claim is supported by the evolutions of the
averaged local basis dimension m̄ which is seen to initially drop quickly and then continues to
drop at a lower rate. For the range of D investigated the smallest value we reached was m̄ “ 3,
but if D continues to increase we will eventually converge to m̄ “ 1. Similarly, the standard
deviation of the local basis dimension md is reported to decay monotonically to zero. Since,
for a fixed target accuracy δ we have roughly fixed number of term N in the expansion, the
evolution of nt with D indicates the existence of an optimal number of subdomains, balancing
the complexity reduction in the local problems with the progressive increase in the size nt of the
reduced problem. Determining this optimum is not obvious as it depends on implementation
(e.g. how many local problems can be solved in parallel) and on the numerical method used to
solve the reduced problem. Regardless of these considerations, we remark that, over the range
of values for D shown in Table 1, the KL decomposition problem is recast in a reduced one that
has a dimension ranging from nt “ 431 to 3, 840, indicating a significant complexity reduction
compared to the direct approach. For example, using intermediate value D “ 160, the DD-KL
approach involves the solution of 160 independent eigen problems (possibly in parallel) with size
roughly 40, 802{160 “ 255 and the resolution of the reduced problem with size nt “ 983; these
have to be compared with the direct approach in which one has to solve a single eigen problem
with dimension 40, 802.

D nt m̄˘ σmd

20 431 21.55˘ 1.43
40 542 13.55˘ 0.59
80 741 9.26˘ 0.56
160 983 6.14˘ 0.35
320 1682 5.26˘ 0.44
640 2,306 3.60˘ 0.53
1280 3,840 3.00˘ 0.00

Table 1: Progression of nt for different values of D with δ2 “ 2ˆ 10´3 and L “ 0.1.

It should be clear at this point that the efficiency of the DD-KL method depends on the
behavior of the local problems when the domain is partitioned into smaller ones. It is then
important to investigate the impact of the partitioning method on this behavior. There are several
approaches available to decompose Ω intoD non-overlapping subdomains Ωd. We briefly mention
two popular families: graph partitioning and k-means clustering. The graph partitioning methods
convert the mesh into a dual graph, in which the vertices are the mesh elements, and edges link
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neighboring elements. The graph is then partitioned as to balance the number of vertices in each
partition, while minimizing the number of edges that straddle different partitions. The k-means
clustering [17, 8, 9, 15] consists in partitioning data points into k clusters, where each data point
is assigned to the cluster whose mean (or centroid) is the nearest. In the context of domain
decomposition, the data points to be partitioned correspond to the mesh element centroids or
nodes. In this section, we rely on the k-means clustering method and consider different distance
functions to control the geometrical properties of the subdomains Ωd. Specifically, we consider
an anisotropic Euclidean distance,

∆dpx,x
1q “

a

px´ x1q2 ` ρpy ´ y1q2, (41)

to control with ρ ą 0 the aspect-ratio of the Ωd; and with R ą 1 control the dispersion of the
subdomain sizes by using coefficients rd, drawn uniformly in r1, Rs, to scale the distance to the
d-th centroid. Figure 8 shows several partitions of Ω into D “ 20 subdomains using different
values of ρ and R. It is seen that as ρ ą 1 increases (from left to right) the subdomains are more
and more stretched horizontally. Further, for R “ 1 (top row) the subdomains have all similar
size (surface), in contrast to the case with R “ 10 (bottom row) where a significant dispersion
of the subdomains size is seen.

(a) ρ “ 1, R “ 1 (b) ρ “ 5, R “ 1 (c) ρ “ 20, R “ 1

(d) ρ “ 1, R “ 10 (e) ρ “ 5, R “ 10 (f) ρ “ 20, R “ 10

Figure 8: Partitioning of Ω “ p0, 1q2 into D “ 20 subdomains with the k-means clustering
method, using different parameter values of ρ and R as indicated.

Before investigating the effects of the partition on the DD-KL method, we first check in
Figure 9 that changing the geometry of the subdomains does not affect the accuracy of the
method and that the selection of the local and global truncations remains appropriate. The
plots confirm that, for all partitions tested, the method achieves the desired accuracy set with
δ2 “ 2ˆ 10´3.

Plotted in Figure 10 are the evolutions of the reduced problem size, nt, as a function of the
anisotropy parameter ρ, for different values of R and D. Consistently with the results reported
in Table 1, nt increases with D when R and ρ are held fixed. In addition, an effect related to
the aspect-ratio of the subdomains is evidenced in Figure 10. Specifically, the size of the reduced
problem is adversely affected for stretched subdomains. This effect was anticipated from the
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Figure 9: ε2subpUq versus ρ for a target accuracy δ2 “ 2ˆ 10´3. The domain is partitioned into
D “ 80 subdomains using the k-means clustering with parameters ρ and R as indicated.

trends and behaviors reported above: the most effective reduction of the local bases is expected
for subdomains that have well balanced size in all directions. Incidentally, this behavior means
that, in the case of anisotropic covariance functions, one would have interest in designing a
partition of Ω that fits with the principal directions of C. We remark, however, that the effect of
stretched subdomains is not so severe, with a reported increase of less than 50% in the reduced
problem size when going from 1:1 to 1:20 aspect-ratios. Finally, we observe from Figure 10 that
increasing the dispersion of the subdomains size (increasing R) has a negligible effect on nt. This
can be explained by compensation effects between larger md for large subdomains and lower
md for smaller ones. Having nt roughly independent of R does not necessarily translate into a
constant computational cost. In fact, having subdomains with very different sizes could induce
severe load balancing issues for the parallel resolution of the local problems. On the positive side,
being able to tune the geometric size of the subdomains, without impacting much nt, means that
one can eventually adapt the partition in the case of a non-uniform spatial discretization.
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Figure 10: nt versus ρ for a target accuracy δ2 “ 2 ˆ 10´3. Curves are generated for different
values of D and R as indicated.

4 Performance Analysis
This section is dedicated to assessing the serial behavior of our approach, as well as its parallel
scalability and efficiency.
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4.1 Serial behavior
We first investigate the influence of the number of subdomains D on the computational time of
the method in a serial implementation. For the reasons discussed later in Section 4.2, we only
report the behavior of the local solves (see Eq. (14)) and the assembly of the reduced problem,
i.e., the filling of the block matrices (see Eq. (20)). Figure 11 depicts the dependence of the
computational times of these stages on the number of subdomains. We also compare the case of
a discretization with either piecewise constant (P0) and piecewise quadratic (P2) finite elements
in Figures 11a and 11b, respectively. The computational times are reported in arbitrary units.

The first observation that can be drawn from these figures is that the two computational
times decrease as the number of subdomains increases, with a faster decay for the local solves
than the assembly of reduced problem, and the same behavior is reported for the two finite
element discretizations. Due to the faster decay of the local solves CPU time, the reduced
problem assembly time becomes dominant asD increases, and the combined time becomes quickly
dominated by the matrix fill.

It is easy to understand that solving the local problems becomes cheaper as the number
of subdomains increases: as D increases, the subdomains become smaller, and thus the local
problems involving fewer unknowns are cheaper to solve. In the tests presented, a direct solver
was used for the local problem, so the computational time reduction is very significant. Another
important advantage of the proposed approach stems from the independence of the local solves.
While solving the global generalized eigenvalue problem (11) would require the evaluation and
possibly the storage of the full stiffness matrix rKs in (12), the local problems only involve stiffness
matrices rKpdqs that correspond to pairs of points px,x1q belonging to a same subdomain Ωd. In
other words, the set of local matrices rKpdqs simply correspond to the diagonal, subdomain-based
blocks of the global matrix rKs. This can result in significant CPU time and memory savings as
compared to solving the global problem (11).

The reason for the reduction of the computational time for the reduced problem assembly is
less obvious, but can be explained as follows. A given block rK̂i,js has miˆmj entries, each one
requiring an integration over ΩiˆΩj , with complexity proportional to NeiˆNej (Ned being the
number of degrees of freedom of the approximations in Ωd). If the subdomains have roughly the
same numbers of local modes (mi « mj « m̄) and unknowns (Nei « Nej « Ne{D), and given
that there are DpD` 1q{2 such blocks to be computed (accouting for the symmetric structure),
the complexity in assembling the reduced matrix rK̂s can be estimated to be proportional to
Ne2m̄2ˆpD`1q{D. In Section 3, we have seen that the average number of local modes m̄ “ nt{D
tends to decrease with D (see Table 1), although nt increases. Consequently, the complexity of
the reduced problem assembly reduces with D though it is seen to progressively level-off for very
large number of subdomains. Eventually, as md can not be less than 1, increasing further D
would have a negative impact on the overall efficiency, because though the assembling stage may
not be penalized, the resolution cost of the reduced problem would continuously increase.
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(a) P0 finite elements.
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(b) P2 finite elements.

Figure 11: Computational times of local solves and reduced problem assembly versus D. Com-
putations are performed on a fixed mesh with Ne “ 16,441 elements. The correlation length is
L “ 0.1 and the target accuracy is δ2 “ 10´3.

Finally, from Figures 11a and 11b it is found that the P2 discretization is more expensive, in
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terms of computational times, regardless of the number of subdomains. This is due to a higher
number of unknowns for the P2 discretization compared to the P0 case. But a fair comparison
between the two discretizations should not only account for the computional times but also for
the spatial discretization error on the computed modes.

4.2 Parallel implementation
Our domain decomposition approach naturally lends itself to parallel computation. In addition
to the reduced complexity of solving smaller problems, as reported above, further gain can be
expected through parallelization. From the presentation of the method given in Section 2 and
summarized in Algorithm 1, one can identify the three main stages of the approach. First, local
generalized eigenvalue problems are solved at the subdomain level (see Eq. (14)); second, the
stiffness matrix of the reduced (regular) eigenvalue problem is constructed (see Eq. (20)); and
last, this reduced problem is solved. We shall focus here on the first two stages, which represent
the core of our approach. Regarding the last stage, let us simply mention that libraries exist to
efficiently deal with the parallel solution of reduced problem, for example, PARPACK (Parallel
ARPACK) [19], SLEPc (based on PETSc) [10, 23], or the Anasazi package of Trilinos [2].

In what follows, we rely on a Message Passing Interface (MPI) approach to parallelize the
solution of the local problems and the assembly of the reduced problem. We shall denote by
NMPI the number of MPI processes; we then split the set of subdomains into NMPI subsets.
Each process p holds the data corresponding to the Dp subdomains in the p-th subset. In a
static a priori load-balancing approach, provided that the number of degrees of freedom are
roughly constant from one subdomain to another, we would like the number of subdomains Dp

handled by process p to be evenly distributed among the processes, that is Dp “ D{NMPI for all
p. In practice, to tackle the case where NMPI does not divide D, we distribute the subdomains
among the processes through

@p “ 1, . . . , NMPI, Dp “ tD{NMPIu`

#

1 if p ď pD mod NMPIq,

0 otherwise,
(42)

where t¨u is the floor function. Such a distribution among processes is illustrated in Figure 12a,
in a case where NMPI does not divide D.

4.2.1 Parallel resolution of the local problems

In the first stage, the local problems are solved; they consist in the Fredholm equations defined by
Eq. (14), which after discretization lead to the generalized eigenvalue problems (see Algorithm 1):

rKpdqstφ̃
pdq
β u “ λ

pdq
β rM

pdqstφ̃
pdq
β u. (43)

It is clear that these problems are independent for each subdomain, and that only local data
is needed to construct the stiffness and mass matrices rKpdqs and rM pdqs. The parallel imple-
mentation of the local problems is thus trivial, as no communication is required between the
corresponding MPI processes. Similarly, the local eigenvalues λpdqβ and local eigenvectors φ̃pdqβ ,
for β “ 1, . . . ,md, can be conveniently stored locally in a distributed memory architecture. Be-
cause there are Dp subdomains held by process p, and one single local eigenvalue problem to be
solved per subdomain, process p is thus in charge of solving Dp problems. Provided that the
number of degrees of freedom are roughly constant from one subdomain to another, we could
expect the workload to be approximately balanced among the MPI processes and thus lead to
good parallel performance.

4.2.2 Construction of the reduced eigenvalue problem

The second stage differs from the previous one in many ways. Perhaps the most relevant difference
is the need to access non-local data. Indeed, as can be observed from Eq. (20), the block-
matrices rK̂i,js involve data that belong to subdomains Ωi and Ωj . For diagonal blocks (i “ j),
or for blocks corresponding to subdomains that are handled by the same process p, no MPI
communication is required, as all the needed data is held by the same process. On the contrary,

18



for other blocks, data have to be exchanged between different MPI processes, namely the local
modes φ̃pdqβ , as well as local mesh information for discretizing the integrals. This is handled by
resorting to an all-to-all communication, specifically to the MPI function MPI_Allgatherv.

Another important difference lies in the fact that the total number of blocks, NK ” D2, grows
quadratically with the number of subdomains D. The classical way of distributing the workload
would be for each process p to handle the construction of the Dp block-rows corresponding
to its subdomains. In other words, process p would compute rK̂i,js for all j “ 1, . . . , D and
for all i P Ip, where Ip denotes the set of subdomain indices handled by process p. Here,
we further exploit the characteristic block-symmetric structure of the reduced problem matrix
inherited from the symmetry of the covariance functions C. Specifically, we compute only the
N4
K ” DpD ` 1q{2 upper (or lower) triangular blocks of the matrix. The computation of these

N4
K blocks is distributed among the NMPI processes so that process p is in charge of N4

K,p

blocks. The distribution of the blocks on the different processes is again handled using Eq. (42),
substituting D and Dp with N4

K and N4
K,p, respectively. The distribution among processes is

illustrated in Fig. 12b, in a case where NMPI does not divide N
4
K .

(a) Distribution of subdomains for
the parallel resolution of the local
problems.

(b) Distribution of blocks for the
parallel reduced problem assembly.

Figure 12: Example of distribution among MPI processes of the subdomains (Fig. 12a) and
block computation for the reduced problem assembly (Fig. 12b). Case of D “ 4 subdomains
and NMPI “ 3 MPI processes. The processes p “ 1, 2, 3 are colored in blue, orange and green
respectively.

The cost of computing each block matrix rK̂i,js depends both on the number of degrees of
freedom in subdomains Ωi and Ωj and on the number of local modes mi and mj retained for
these subdomains. Provided that these are balanced, the workload of constructing the reduced
problem should also be balanced among the processes and thus lead to good parallel performance.
More general situations could be considered, in particular in the case of non uniform mesh and
non-isotropic covariance structure, by introducing more advanced load-balancing strategies. This
will be addressed in follow-on work.

4.3 Parallel efficiency
We now turn to investigate the efficiency of the parallel implementations of the local problem
solves and the assembly of the reduced problem matrix. Specifically, we measure the scalabil-
ity with the number of processes of performing these two tasks in parallel, including the MPI
communication times involved. The scalability is characterized using two quantities, the parallel
speedup S and the parallel efficiency E. The speedup and efficiency are reported as functions of
the number NMPI of MPI processes considered. The two measures are defined by

SpNMPIq ” T p1q{T pNMPIq, EpNMPIq ” 100ˆ SpNMPIq{NMPI (44)
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where T pNMPIq is the measured CPU times for the execution of the tasks using NMPI processes.
As the smallest number of processes tested is NMPI “ 16, the definitions of speedup and efficiency
are actually based on the approximation T p1q « 16T p16q, assuming a perfect speedup for 16
processes. The tests were carried out on a parallel Blue Gene machine, fixing a constant number
of MPI processes per computational node. For simplicity, we only report here the case with a
single MPI process per node, such that the parallel runs use as many nodes as processes.

For a fixed finite element mesh with Ne “ 40,802, we tested three different partitions of the
domain, considering D P t256; 512; 768u. A finer mesh with Ne “ 81,753 elements, is also tested
with D “ 256 subdomains. The problem size being kept constant as the number of processes is
increased, the reported speedup and efficiency correspond to a strong scaling experiment.

The results are reported in Fig. 13. Globally, the speedup and efficiency evolve satisfactorily
as NMPI is increased, especially considering that no fine tuning of the parallel implementation
has been performed. For the largest number of subdomains tested, D “ 512 and D “ 768, the
parallel efficiency decreases slowly with NMPI , down to approximately 85% for 256 processes.
This is due to the fact that the local problems are relatively small, owing to the large number
of subdomains, making the MPI communication time more significant compared to the actual
computation time. This trend becomes more pronounced as NMPI increases.
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Figure 13: Speedup (left) and efficiency (right) versus the number of MPI processes. Plotted are
curves for different values of D and Ne as indicated. The ideal scaling law is shown on the left
plot using a solid black line. The correlation length is L “ 0.1 and the energy criterion for the
local modes is δ2{2 “ 10´3.

For D “ 256, the actual computational time is large enough compared to the communication
time, even for NMPI “ 256 processes. Consequently, the parallel efficiency remains close to ideal
when NMPI increases, with a reported efficiency of about 97% with 256 processes. This effect is
confirmed considering a finer finite mesh with Ne “ 81,753 elements for the same D (256). In
this case, a higher efficiency of nearly 99% is measured for NMPI “ 256.

These tests demonstrate that the DD-KL approach is efficient and scalable. Not only does it
benefit from cost reduction owing to the domain decomposition that breaks the problem in a set
of small independent subproblems, but it also lends itself to natural parallel processing, involving
limited communication, and thus enabling the efficient computation of the KL decomposition for
large problems.

5 Conclusions
In this paper, we presented an efficient method to solve large-scale Kl decomposition problems,
based on a work-subdivision strategy. Specifically, the computational domain is partitioned into
smaller non-overlapping subdomains, over which local KL decomposition problems are solved
to generate local bases. A criterion has been proposed, and numerically demonstrated, for the
selection of the local bases’ dimensions in order to ensure a prescribed accuracy. The global

20



KL decomposition problem is subsequently reformulated by means of Galerkin projection in
the subspace of the local modes. This procedure leads us to solve a reduced global problem,
whose size is not related to the dimension of the underlying discretization space, but depends on
the requested accuracy and the number of subdomains. The low dimensionality of the reduced
problem enables efficient solution methods, including direct ones. But the approach is in fact
flexible and can accommodate any type of eigenvalue solvers (direct, iterative,. . . ), both for the
computing the local KL bases and solving of the reduced problem. In addition, although we
focused on the problem of performing KL decomposition, it should be noted that the approach
could be used in many different contexts and extended to determine the dominant subspace
associated to more general integral operators.

The method was illustrated on the approximation of stochastic processes defined over the two-
dimensional unit square. A squared exponential covariance structure was assumed, with short
correlation lengths yielding slowly decaying spectra. Our numerical experiments demonstrated
that the approach provides a fine control of the approximation error, and is very robust with
respect to the number of subdomains. It was also observed that the cost of solving the local
problems reduces with the numberD of subdomains, while the size and cost of solving the reduced
problem increases with D. This suggests the existence of an optimal value for D, balancing the
decreasing complexity of the local KL problems and the increasing size of the reduced problem.
In any case, the range of values of D over which the approach remains effective is large such
that selecting the optimal D is not critical. The sensitivity of the method to the shape of the
subdomains was also explored. It was found that, in the case of isotropic covariance, it is more
effective to use partitions with subdomains having similar size in all directions, rather than
having geometrically highly stretched subdomains. In any case, the influence of the subdomains
geometry is not too pronounced, such that the method would be able to effectively accommodate
complicated situations (in the covariance structure, geometry of the domain, adapted finite
element mesh,. . . ) without having to construct a dedicated partitioner. This is particularly
important in view of reusing standard libraries for partitioning the domain.

Beside the immediate computational advantages of breaking the scale size problem into
smaller ones, the proposed approach naturally lends itself to parallel implementation. In fact, the
parallelization of the local decompositions over individual subdomains is trivial, as local problems
are fully independent from one subdomain to another, and the error criterion to select the local
basis is also completely local. The parallel assembly of the reduced problem involves, on the
contrary, more significant communication between processes, with a less obvious parallelization
as a result. The parallel implementation, relying on the MPI framework, has been tested showing
an excellent scaling up to 256 processes, provided that the initial global problem is large enough.

The proposed approach allows us to effectively generate approximated samples of a Gaussian
process, using (26). Thus, as discussed in the introduction, the method is therefore an alter-
native to other existing methods to generate realizations of Gaussian stochastic processes with
prescribed covariance structure. In fact, the solution of the reduced problem exhibits the correla-
tion structure between local variables, such that one can also restrict the sampling to subsets of
subdomains. Such a sampler is advantageous, for instance, to solve stochastic partial differential
equations problems, in particular stochastic elliptic problems as considered in the second part of
the paper.
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A Derivation of the Error Expression
We have an initial process Upx, θq P L2pΩ,Θq, its projection UBpx, θq P VB ˆ L2pΘq and finally
Ûpx, θq P VB ˆ L2pΘq the truncated KL expansion of UB using N̂ ď nt modes. Our concern is
to derive an expression for the error U´ Û in the L2pΩ,Θq-norm. By definition this is the square
root of
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However the last term is zero as pUB ´ Ûq P VB ˆ L2pΘq while pU ´ UBq is orthogonal to
VB ˆ L2pΘq. Then it follows that
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