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Abstract

Solving Stochastic Differential Equations (SPDE) can be a computationally intensive
task, particularly when the underlying parametrization of the stochastic input field involves
a large number of random variables. Direct Monte Carlo (MC) sampling methods are well
suited for this type of situation, since their cost is independent of the input complexity.
Unfortunately, MC sampling methods suffer from slow convergence. In this manuscript, we
propose an acceleration framework for elliptic SPDEs that relies on Domain Decomposition
techniques and Polynomial Chaos (PC) expansions of local operators to reduce the cost of
solving a SPDE via MC sampling. The approach exploits the fact that, at the subdomain
level, the number of variables required to accurately parametrize the input stochastic field
can be significantly reduced, as covered in detail in the prequel (“Part A”) to this paper.
This makes it feasible to construct PC expansions of the local contributions to the con-
densed problem (i.e. the Schur Complement of the discretized operator). The approach
basically consists of two main stages: 1) a preprocessing stage in which PC expansions of
the condensed problem are computed and 2) a Monte Carlo sampling stage where random
samples of the solution are computed. The proposed method its naturally parallelizable.
Extensive numerical tests are used to validate the methodology and assess its serial and
parallel performance.

Keywords: Stochastic Elliptic Equations, Domain Decomposition, Polynomial Chaos ex-
pansion, Monte Carlo method

1 Introduction
Stochastic Partial Differential Equations (SPDEs) are of great importance in a wide range of
applications. Computational approaches for the solution of SPDEs conceptually involve three
essential steps: the modeling of the input uncertainty, the solution of the governing equations,
and ultimately the post-processing the output to characterize the uncertainty. This paper (“Part
B”) and its prequel (“Part A”) focus on the first two steps. In Part A [10], we discussed a domain
decomposition strategy to approximate random fields (input uncertainty) using local reduced
bases and local coordinates. Now (in Part B), the structure of local representations is exploited
to accelerate the Monte Carlo sampling of the solution.
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Two common approaches to solving SPDE are the Stochastic Spectral method [15, 21] and
Monte Carlo (MC) sampling methods [5, 30, 2, 8]. One particular class of Stochastic Spec-
tral methods uses polynomial chaos (PC) expansions. PC expansions have been studied ex-
tensively [15, 21, 37] and perform very well in a number of applications, including elliptic and
parabolic problems with random coefficients [22, 11, 1, 12, 14] and fluid flow models [23, 19, 25].
Unfortunately, the use of PC expansions is subject to the curse of dimensionality, and can quickly
become computationally intractable when the stochastic dimension is large (the complexity can
grow exponentially as a function of the stochastic dimension). Different methods have been
devised to address the complexity issue, e.g. using low-rank approximations [27, 28, 29, 35]
and adaptive strategies [4, 3, 7], but when the stochastic dimension is very large some of the
challenges can still remain [9]. On the other hand, the cost of direct MC sampling methods is
independent of the stochastic dimension, which is a desirable feature when dealing with high
dimensional problems. However, it is known that MC methods have a slow convergence rate,
with the root mean squared error inversely proportional to the square root of the number of
samples. So, if the computational cost of obtaining an individual sample is high, these methods
can be quite costly.

The stochastic dimension of the problem is closely related to the stochastic discretization
method used to solve the problem. One common approach to discretize the stochastic space is
the Karhunen-Loève (KL) expansion [24, 17, 16]. The number of terms in the KL expansion is
what sets the stochastic dimension, and it turns out that for a given accuracy level, the number
of terms in the expansion is actually proportional to the size of the physical domain. Thus, the
smaller the domain, the fewer terms that are necessary in the expansion to achieve a desired level
of accuracy. In [6], Chen et al. rely on Domain Decomposition technique to exploit this fact. By
partitioning the global domain into smaller subdomains, a set of local problems is obtained, each
with a significantly reduced stochastic dimension. In [31] Gosh and Pranesh present a closely
related approach based on the Spectral Stochastic Finite Element Method.

In both of the approaches mentioned above, PC approximations of the local problem solution
at the subdomain level are constructed. The cost of obtaining these local PC approximations
is reduced by using the local random variables over each subdomain (i.e. the lower stochastic
dimension at the subdomain level reduces the cost). An important point, that is acknowledged
in these two papers, is that the local random variables in one subdomain have a dependence
structure on the local random variables in other subdomains. Nonetheless, in these two works the
local random variables are treated as independent across subdomains (corrections are made with
the introduction of additional global random variables). In contrast, in our proposed approach
developed in the two-parts manuscript, we consider the actual dependence structure of the local
variables and use them in the construction of local boundary-to-boundary maps that help us
accelerate the solution of Stochastic Elliptic PDEs via MC sampling. Part A [10] analyzed in
detail the local KL expansions approach and the dependences of the local random variables. The
present Part B concerns the solution of the Stochastic Elliptic PDEs by means of a MC sampling
method that is accelerated by constructing PC expansions of the boundary-to-boundary maps
(and not of the local problem solutions).

More precisely, our proposed approach is divided into two main stages: 1) a preprocessing
stage in which PC expansions of a condensed problem are computed, and 2) a Monte Carlo sam-
pling stage where samples of the solution are computed. First, the physical domain is discretized
using the finite element method; then the global domain Ω is divided into D non-overlapping sub-
domains. This results in a condensed problem for the nodal values at the subdomains’ interfaces.
Given this discretization, the preprocessing stage starts by breaking the condensed problem into
individual contributions from each subdomain, and computing local KL expansions over each
subdomain (as described in [10]). Then, using the local KL expansion, and taking advantage of
the reduced stochastic dimension of the local problems, PC expansions of the local contributions
to the condensed problem are constructed. The second stage then consists of generating samples
(this requires taking into consideration the dependence structure of the local random variables),
evaluating the PC expansion of the reduced problem for said samples, and solving the reduced
problem to obtain samples of the solution.

In summary, our approach is a parallel solver that takes advantage of the PC method at the
local level to reduce the cost of using the MC sampling method at a global level. There are two
main contributions of the current work; first we take into account the dependence structure of
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the local random variables across subdomains. Furthermore, these local random variables are
jointly sampled with the convenient approach described in [10], which allows us to accurately
characterize the random process on which the SPDE depends. (In general this is not possible
when the local random variables are assumed independent across subdomains.) The second
contribution is that we use the local expansions to construct local PC expansions of the condensed
problem (as opposed to constructing local PC expansion of the solutions at the subdomain level),
and from these local expansions we build a PC expansion of the global condensed problem, which
significantly reduces the sampling cost in the MC sampling method. We remark that by building
the global condensed system in this manner we preserve the proper dependence structure in the
overall solution sought.

The outline of this paper is as follows. In section 2, we first recall how the domain decom-
position method is applied, both to a deterministic and to a stochastic PDE, and also discuss
the Monte Carlo sampling method. In section 3, we discuss the limitations of constructing a PC
expansion of the solution and describe how instead we proceed with the construction of the PC
expansion of the Condensed Problem. We also address the sampling of the condensed problem
and outline some of the implementation details. Next, in section 4 the method is validated with
some numerical results. In section 5, we analyze for the test case the performance of the method
terms of complexity and parallel efficiency. Finally, in section 6, some concluding remarks are
provided.

2 Elliptic Problem

2.1 Deterministic case
We consider the following elliptic problem in a bounded domain Ω Ă Rm, with boundary BΩ:

#

∇ ¨ pκpxq∇uq “ ´fpxq, x P Ω

Bpx, uq “ 0, x P BΩ,
(1)

where B is the (linear) boundary condition operator and 0 ă κmin ă κpxq ă κmax ă `8 is
the diffusion coefficient. For simplicity, we shall restrict ourselves to the case of homogeneous
Dirichlet and Neumann boundary conditions, that is

upx P BΩDq “ 0, Bnupx P BΩN q “ 0, (2)

where Bn is the derivative in the normal direction, and ΩD and ΩN are the Dirichlet and Neumann
parts of the boundary, such that BΩN Y BΩD “ BΩ, BΩN X BΩD “ H.

To solve (1) we consider standard finite element (FE) methods based on a conforming trian-
gulation of Ω into a set, T , of Ne non-overlapping elements, Σe. The FE approximation is based
on a nodal basis representation. Let n be a node of the mesh, with position xn, we denote by N
the set of nodes that do not belong to the Dirichlet boundary BΩD, and Nn

.
“ |N | the number

of nodes in N . The approximation of u is sought as

upxq «
ÿ

nPN
Φnpxqun, (3)

where the functions Φn are nodal basis functions satisfying:

@n,n1 P N ,Φnpxn1q “

#

1, n “ n1

0, n1 ‰ n,
(4)

and Φnpx P BΩDq “ 0. It is further assumed that the support of Φn is limited to the elements
that have n as one of their nodes. The weak form of problem (1) is:
Find u P V FE such that

ż

Ω

κpxq∇upxq ¨∇vpxqdx “

ż

Ω

fpxqvpxqdx @v P V FE, (5)
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where V FE is the linear span of nodal functions tΦn,n P N u. The variational problem can be
recast as a linear system of equations for the vector, u, of unknown nodal values,

rAsu “ b, (6)

where u and b P RNn . The system matrix rAs P RNnˆNn is symmetric positive definite, with
entries

rAsnn1 “

ż

Ω

κpxq∇Φnpxq ¨∇Φn1pxqdx. (7)

The components of the system right-hand-side are given by

bn “

ż

Ω

fpxqΦnpxqdx. (8)

2.1.1 Domain Decomposition method

Owing to the compact support of the nodal basis functions, the matrix rAs is sparse and effi-
cient iterative methods (e.g. Preconditioned Conjugate Gradient) can be employed to solve (6).
However the system size Nn may be large, inducing a significant resolution cost and motivating
the introduction of domain decomposition methods [20, 32, 34, 36].

Domain partitioning. To this end, we first partition Ω into a set of D non-overlapping sub-
domains Ωpdq consisting of subsets T pdq of neighboring elements; we have

Ωpdq
.
“

ď

ePT pdq

Σe,
D
ď

d“1

T pdq “ T , T pdq X T pd
1
‰dq “ H. (9)

where Ωpdq is the closure of Ωpdq. We denote N
pdq
e “ |T pdq| the number of elements in Ωpdq and

N pdq the subset of nodes in N belonging to Ωpdq:

N pdq “

!

n P N ;xn P Ωpdq
)

. (10)

The sets N pdq can be further split into disjoint subsets of interior nodes belonging to Ωpdq only,
and boundary nodes lying at the interface of more than one subdomain:

N pdq
in “

!

n P N pdq; n R N pd1
‰dq

)

, N pdq
Γ “ N pdqzN pdq

in . (11)

Clearly, the setsN pdq
in are disjoint, whileN pdq

Γ XN pd1
q

Γ is not empty for two neighboring subdomains
such that BΩpdq X BΩpd

1
q ‰ H. We then define the full set of inner and boundary nodes of the

partitioned domain through

Nin “

D
ď

d“1

N pdq
in , NΓ “

D
ď

d“1

N pdq
Γ , (12)

and set Nin “ |Nin|, NΓ “ |NΓ|. We can now rewrite the FE approximation of u in (3) as

upxq «
ÿ

nPNin

unΦnpxq `
ÿ

nPNΓ

unΦnpxq. (13)

Iterative Domain Decomposition solver. Upon reordering of the nodes, the linear system
in (6) can be recast in the following block matrix form,

„

rAΓ,Γs rAΓ,ins

rAin,Γs rAin,ins

ˆ

uΓ

uin

˙

“

ˆ

bΓ

bin

˙

, (14)

with the previous expressions for the matrix and right-hand-sides entries. This system can be
further manipulated to eliminate the internal unknowns in uin to come up with the condensed
problem for the nodal values at the subdomains’ interfaces,

yrAsuΓ “ pb, (15)
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where
yrAs

.
“ rAΓ,Γs ´ rAΓ,insrAin,ins

´1rAin,Γs, pb
.
“ bΓ ´ rAΓ,insrAin,ins

´1bin. (16)

Considering an iterative method to solve (15), the main computationally heavy task amounts
to performing matrix-vector products between yrAs and successive iterates vectors of RNΓ . A
closer inspection reveals that multiplying a vector by yrAs involves solving for v by inverting a
system of the form rAin,insv “ w. This step is actually the heaviest one in the iterative solution,
as it requires the solution of a linear system whose dimension, Nn ´ NΓ, is generally close to
the dimension of the non-condensed problem, that is Nn. However, it is crucial to remark that
rAin,ins has diagonal block structure when the nodes in Nin are ordered by subdomains; in this
case, we have

rAin,insv “

»

—

—

—

—

—

—

–

”

A
p1q
in,in

ı

r0s ¨ ¨ ¨ r0s

r0s
. . . . . .

...
...

. . . . . . r0s

r0s ¨ ¨ ¨ r0s
”

A
pDq
in,in

ı

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˝

vp1q

...
vpDq

˛

‹

‚

“

¨

˚

˝

wp1q

...
wpDq

˛

‹

‚

ñ vpdq “
”

A
pdq
in,in

ı´1

wpdq.

(17)
It shows that computing v “ rAin,ins

´1
w, given w P RNin , amounts to solving D subsystems or

local problems independently over each subdomain. Not only does this call for the inversion of
systems with much smaller sizes, typically N

pdq
in « Nn{D, but these computations can be carried

out in parallel for different subdomains. The same remark also applies to the determination of
the right-hand-side pb of the reduced problem (15). The possibility of applying efficiently the
condensed operator yrAs on a vector u P RNΓ , through local solves over subdomains, motivates
the use of matrix-free type iterative methods where yrAs is never formally assembled. In such an
approach, one eventually only computes the sparse matrices rAΓ,Γs and rAin,Γs and the local
problem matrices

”

A
pdq
in,in

ı

. The latter, owing to their low dimension, can even be factorized to

speed-up subsequent products with yrAs.
Finally, when the reduced problem solution uΓ is obtained, one can compute the solution over

selected subdomains solving local problems with corresponding Dirichlet boundary conditions in
uΓ (see below).

2.1.2 Subdomains expansion of the condensed operator

The discussion above highlighted the role of the local problems in the structure of the condensed
problem. In fact, the system in (15) can be formally recast to highlight independent contributions
from the subdomains, namely according to:

yrAsuΓ “

D
ÿ

d“1

yrAs
pdq

u
pdq
Γ , pb “ bΓ `

D
ÿ

d“1

pb
pdq
. (18)

Focusing first on the right-hand-side expansion, we identify

pb
pdq
“ ´

”

A
pdq
Γ,in

ı”

A
pdq
in,in

ı´1

b
pdq
in . (19)

Note that for simplicity, the expressions above are formal and involved an abuse of notations.
In particular, we allow varying the size of matrices and vectors, by removing unnecessary entries
or nodal components, or by padding with zeros when necessary. For instance, depending on the

context the matrix
”

A
pdq
in,in

ı´1

can be understood as a N
pdq
in ˆN

pdq
in matrix or as its padded to

zero to form the Nin ˆ Nin version with only a nonzero pdq-th diagonal block. With this abuse
of notation, the inverse of rAin,ins in (17) can be formally written as

rAin,ins
´1
“

D
ÿ

d“1

”

A
pdq
in,in

ı´1

.
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Similarly, the expansion of yrAs in (18) means that the expansion term yrAs
pdq

u
pdq
Γ accounts

for the effect of the pdq-th subdomain only. To derive an expression for these matrices, we fix a
subdomain d, select n P N pdq

Γ and consider the solution of
”

A
pdq
in,in

ı

u
pdq
in,n “ ´

”

A
pdq
in,Γ

ı

epdqn , (20)

where e
pdq
n is the canonical vector with all zero component except the n-th one equal to 1. The

solution u
pdq
in,n are the (internal) nodal values of the finite element approximation of the elliptic

problem over Ωpdq for homogeneous boundary conditions all over BΩpdq, except at node n P N pdq
Γ

where the nodal value is set to one. From this family of elementary solutions we define the vector

Ipdqn
.
“

”

A
pdq
Γ,in

ı

u
pdq
in,n `

”

A
pdq
Γ,Γ

ı

epdqn , (21)

where
”

A
pdq
Γ,Γ

ı

n,n1

.
“

$

&

%

ż

Ωpdq

κ∇Φn ¨∇Φn1dx, n,n1 P N pdq
Γ

0, otherwise.
(22)

We observe that the computation of the vector Ipdqn involves only quantities and operators lo-
calized on the considered subdomain. In particular, we note that the definition of the matrix
in (22) involves an integral restricted to Ωpdq, such that rAΓ,Γs “

ř

d

”

A
pdq
Γ,Γ

ı

. Finally, exploiting
the linearity of elliptic equation and superposition principle, we obtain:

yrAsuΓ “

D
ÿ

d“1

yrAs
pdq

u
pdq
Γ , yrAs

pdq
u
pdq
Γ “

ÿ

nPN pdq

Γ

Ipdqn

´

u
pdq
Γ

¯

n
, (23)

showing that the columns of the matrices yrAs
pdq

are made of the vectors Ipdq
nPN pdq

Γ

.

Constructing the condensed operator expansion in (18) involves the solution over each sub-
domain of a set of local elliptic problems (20), in fact the same elliptic problem with N pdq

Γ

right-hand-sides. Although it can be performed efficiently in parallel, the explicit construction
of the condensed operator is generally not considered in the practical implementation of domain
decomposition approaches for elliptic problems, because of its computational complexity which
is generally larger than that of the direct matrix-free iterative method described in the previous
section. However, the case of stochastic elliptic problems is different as many stochastic sam-
ples may have to be computed, so that having an explicit representation of the (now stochastic)
condensed operator may be interesting. We expand on this idea in the following sections.

2.2 Stochastic elliptic problem
2.2.1 Formulation of the stochastic problem

We now extend the deterministic problem in (1) to the stochastic case. The case of stochastic
forcing f induces no particular difficulty and can be treated in the framework to be introduced
below. For simplicity with restrict the presentation to the case of a random diffusion field κ. Let
pΘ,Σ, µq be a probability triplet; the problem now becomes

∇ ¨ pκpx, θq∇upx, θqq “ ´fpxq, x P Ω, θ P Θ, (24)

with additional (almost sure) homogenous Neumann and Dirichlet boundary conditions for x P
BΩ. For the well posedness of the problem, we assume that the random field κpx, θq is almost
surely bounded below and above for almost every x. Then the stochastic solution u has finite
second order moments,

E
“

upx, ¨q2
‰

“

ż

Θ

upx, θq2dµpθq ă `8, (25)

where E r¨s denotes the expectation operator.
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As in the deterministic case, we proceed with the spatial discretization over a deterministic
finite element space V FE, expressing the discrete solution from its random nodal values over the
mesh,

upx, θq “
ÿ

nPN
unpθqΦnpxq P V

FE. (26)

Above, we denoted the solution space VFE which results from the tensorization of the spatial
FE space with the space of second order random variables: VFE “ V FE b L2pΘ, µq. The (semi)
weak form is obtained multiplying (24) by v P V FE, and integrating (by parts) first over Ω; this
results in

ż

Ω

κpx, θq∇upx, θq ¨∇vpxqdx “

ż

Ω

fpxqvpxqdx, @v P V FE.

Note that the equality stands in the almost sure sense. Given the approximation form in (26),
the variational formulation can be recast in a linear system of equations involving the vector of
random nodal values upθq, the stochastic analogous of (6),

rAspθqupθq “ b, rAsn,n1pθq “

ż

Ω

κpx, θq∇Φnpxq ¨∇Φn1pxqdx. (27)

2.2.2 Direct Monte Carlo sampling

A common approach to solve the discrete stochastic problem is to resort to Monte Carlo (MC)
sampling methods. In a MC approach, samples κpx, θiq of the the random field are generated,
leading to samples of the stochastic matrix rAspθiq and corresponding realizations upx, θiq P V FE

of the stochastic solution. Note that different samples can be computed in parallel. Different
moments and statistics of the solution can be computed, in particular the solution mean and the
two-points correlations can be estimated from

E rupx, ¨qs “ lim
MÑ8

1

M

M
ÿ

i“1

upx, θiq, E
“

upx, ¨q, upx1, ¨q
‰

“ lim
MÑ8

1

M

M
ÿ

i“1

upx, θiqupx
1, θiq.

The computational complexity of the method is thus proportional to the number of samplesM
one uses in the MC estimation, and there is an obvious interest in reducing the computational cost
of generating individual samples. Applying efficient deterministic strategies is therefore critical,
and for this purpose MC is well suited to reuse the domain decomposition method detailed in
the previous section. To do so, we can first derive formally the stochastic form of the condensed
problem,

yrAspθq uΓpθq “ pbpθq, (28)

where,

yrAspθq “ rAΓ,Γspθq´rAΓ,inspθqrAin,ins
´1pθqrAin,Γspθq, pbpθq “ bΓ´rAΓ,inspθqrAin,ins

´1pθqbin,
(29)

and subsequently proceed with the MC sampling of the condensed problem to yield samples of
subdomain boundary nodal values uΓpθiq and solution upx, θiq. If one uses a matrix-free iterative
scheme without explicit construction of yrAspθiq, the heaviest part of the computation is dedicated
to the assembly of the local problem operators rAin,ins

pdqpθiq and possibly their factorizations.
At this point we remark that, contrary to the deterministic case, the stochastic condensed

problem is going to be queried multiple times, as large values ofM are generally needed to obtain
well converged MC estimators. This is quite a different situation from the deterministic case
where the actual assembly of yrAs appears computationally too expensive if it is to be queried
only once. This observation suggests that there could be an interest in actually assembling
the stochastic condensed problem, to sample from, as the overhead of the assembly would be
factorized (amortized) over the subsequent M samples. If such a strategy is feasible, one would
jointly sample directly the matrix yrAspθq and right-hand-side pbpθq, to get samples of the boundary
solution uΓpθq by means of a matrix-based iterative method. As a result, one would only have to
solve a unique local problem per subdomain for each sample, and only for the subdomain where
the solution is sought.
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To be effective, the approach just sketched would have to fulfill two conditions. First,
the stochastic condensed problem matrix and right-hand-side must be represented in a format
amenable to sampling. Second, the assembly overhead must remain reasonable for the method
to be practical. Below, we rely on stochastic spectral expansions to approximate the problem in
a suitable format; then we exploit the underlying structure of the condensed problem, namely
its expression as a sum of local stochastic operators, to come up with representation having
manageable complexity.

3 Stochastic Spectral Expansion of the Condensed Problem

3.1 PC expansion of the elliptic solution
Stochastic spectral expansions have been proposed as an alternative to Monte-Carlo methods.
The key observation supporting the spectral approach is the smooth dependences of the elliptic
equation solution with respect to the diffusivity coefficients. This fact motivates the expansion
of the solution upx, θq as a series of the form

upx, θq “
ÿ

α

uαpxqΨαpθq,

where the Ψα are random functionals. Typically, one starts by approximating the diffusion field
κ as a functional of a finite set of Nκ ě 1 independent random variables ηpθq with known density:

κpx, θq « κ̂px,ηpθqq. (30)

Such parametrization of κ can be obtained for instance by computing Karhunen-Loève expansions
as in the following sections. As a result, the solution is a functional of ηpθq, and the truncated
spectral expansion becomes

upx, θq « ũpx,ηpθqq “
ÿ

αPA
uαpxqΨαpηpθqq. (31)

Classically, one considers expansions using orthonormal functionals Ψα, in particular polynomials
in η. In this case, the expansion in (31) is called the Polynomial Chaos expansion of u. The multi-
index α “ pα1, . . . , αNκq P NNκ indicates the maximal polynomial degree αk in each component
ηk, and we shall denote |α| “

řNκ
k“1 αk the total degree of Ψα. The functionals are orthonormal

in the sense that

E rΨαΨβs “

ż

Θ

ΨαpηpθqqΨβpηpθqqdµpθq “

#

1, α “ β,

0, otherwise.

Finally, the summation in (31) is restricted to α belonging to the multi-index set A Ă tα P NNκu.
Different strategies can be used to define this set; without loss of generality and unless specified
otherwise, we shall control A by the maximal total polynomial degree No of the expansion, setting

A “ tα P NNκ , |α| ď Nou.

Under mild assumptions on κ, the solution u has exponentially converging expansions with
respect to the number of random variables in η and with the polynomial degree No of the
truncated form of the expansion. Regarding the computation of the expansion coefficients uα,
different approaches have been proposed and improved over the last 25 years. These include
the Galerkin and non-intrusive methods. In Galerkin type methods, one requires the equation
residual to be orthogonal to the stochastic approximation space, with possibly the need of deriving
from the original stochastic elliptic operator a set of coupled problems for the expansion coefficient
uα. Non-intrusive methods are sampling-based approaches, where one directly estimate the uα
from a set of resolutions of the deterministic elliptic problem corresponding to realizations of η.

The main limitation in the applicability of the spectral expansions to the solution of stochas-
tic elliptic problems comes with the number of terms in the series that can be prohibitively large
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in some situations. This has motivated adaptive strategies, in particular low rank approxima-
tions. However, the case of diffusion fields κ with large variances and short correlation lengths
remains challenging because it requires, first, a large number Nκ of random variables for their
parametrization in (30) and, second, a high degree No for the polynomial expansions. The is-
sue can be seen from the expression of the number of terms in an expansion (with total degree
truncation) involving Nκ random variables and degree No:

P “ |A| “ pNκ `Noq!

Nκ!No!
. (32)

Although more advanced truncation strategies have been proposed, in particular adapting the
expansion order in the different variables of η [], the relation (32) shows that cases of large
dimensional problems (η) remain critical even for low orders, and that it is highly desirable to
keep the dimension of η as small as possible.

3.2 Spectral expansion of the condensed problem
3.2.1 Local parametrization

It is well known that the dimensionality of η relates to the intrinsic stochastic dimensionality
of κ which, roughly speaking, corresponds to the minimal number of random variables in its
parametrization. It is also known from the properties of second-order orthogonal decompositions
à la Karhunen-Loève, that the stochastic dimensionality of a field over a fixed domain increases as
its correlation length decreases. The stochastic dimensionality of a stationary process is actually
governed by the ratio of correlation length and domain extension, expressing the fact that a lower
number of random variables can be used to parametrize the process over a subdomain. This
feature is exploited in [10] where we proposed a reduced basis method to perform Karhunen-
Loève decompositions (factorization of correlation functions) within a domain decomposition
framework. Specifically, the stochastic parametrization of κ is written as

κ̂px, θq “
D
ÿ

d“1

1Ωpdqpxqκ̂pdqpx,ηpdqq, 1Ωpdqpxq “

#

1 x P Ωpdq,

0 otherwise.
(33)

In (33), 1Ωpdq is the indicator function of a subdomain and κ̂pdq is a local approximation of κ
over Ωpdq which uses local random variables ηpdq whose number N

pdq
κ will be shown to be much

less than for the global parametrization of κ over the whole domain Ω, see [10].
One cannot express the elliptic equation solution u in a format similar to (33), using the

same local random vectors ηpdq as for the parametrization of κ. Indeed, the stochastic solution u
over a subdomain Ωpdq depends on the whole set of local random variables tηpdq, d “ 1, . . . ,Du,
because of the elliptic nature of the problem. In other words, it is not possible to expand u for
x P Ωpdq in terms of the local random variables ηpdq only. This prevents the direct construction
of a local expansion for upx P Ωpdq, θq using a low dimensional polynomial basis constructed on
the reduced set of N

pdq
κ local random variables in ηpdq. Alternatively, the construction of a global

expansion of upx P Ω, θq using the whole set of local variables would require a prohibitively large
PC basis as it would involve Nκ “

řD
d“1 N

pdq
κ random dimensions. Note that the ηpdq will be

generally not indepedent so it could be possible to reduce the global number of random variables,
but the approach would eventually remain at least as costly as for a direct parametrization of
κ as in (30). We thus consider a different approach in the following, avoiding to seek a PC
expansion of the solution.

3.2.2 Local PC expansion of the condensed problem

Although computational complexity reduction using direct local expansions of the solution cannot
be achieved, we propose to take advantage of the low dimensionality of the local parametrization
of κ to accelerate the Monte-Carlo sampling of the stochastic solution discussed in the previous
section. The key idea supporting the proposed approach comes from the following observation.
Contrary to the solution over a subdomain, the contribution to the condensed problem of the
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subdomain can be approximated solely in terms of its local random variables ηpdq. Specifically,
we can write

yrAspθq “
D
ÿ

d“1

yrAs
pdq
pθq «

D
ÿ

d“1

yrAs
pdq
pηpdqpθqq, (34)

with similar expressions of the right-hand-side pbpθq. It suffices to remind that, in the determinis-

tic case, the local condensed operator yrAs
pdq

and right-hand-side pb
pdq

can be determined solving
local elliptic problems over Ωpdq with selected boundary conditions. Our objective is therefore
to construct local PC approximation as

yrAs
pdq
pηpdqpθqq « ĄrAs

pdq
pηpdqpθqq

.
“

ÿ

αPApdq

yrAs
pdq

α Ψαpη
pdqq. (35)

To this end, we rely on the decomposition of κ in (33) and we first consider the stochastic
problems which are the counterpart of (20), namely for n P N pdq we solve

”

A
pdq
in,in

ı

pηpdqqu
pdq
in,npη

pdqq “ ´

”

A
pdq
in,Γ

ı

pηpdqqepdqn . (36)

The stochastic matrices
”

A
pdq
in,in

ı

pηpdqq and
”

A
pdq
in,Γ

ı

pηpdqq appearing in these problems now have
entries of the form

ż

Ωpdq

κ̂pdqpx,ηpdqq∇Φnpxq ¨∇Φn1pxqdx.

Further, the solutions of the elementary problems (36) can be approximated on a local PC basis
through

u
pdq
in,npη

pdqq « ũ
pdq
in,npη

pdqq
.
“

ÿ

αPApdq

´

u
pdq
in,n

¯

α
Ψαpη

pdqq.

The local basis defined by the local multi-index set Apdq may be based on different truncation
strategies. In this work, we shall restrict ourselves to the simplest case of total order truncation
using a fixed polynomial order No ě 1 for all the subdomains; the local basis cardinality Ppdq is
then function of the number N

pdq
κ and given by (32). We stress that, as we expect N

pdq
κ ! Nκ,

Ppdq is much reduced because of its exponential dependence on the number of random variables
(Npdqκ ).

For the computation of the expansion coefficients
´

u
pdq
in,n

¯

α
we shall rely on the Galerkin

approximation of (36). Specifically, we solve
ÿ

αPApdq

E
””

A
pdq
in,in

ı

ΨαΨβ

ı ´

u
pdq
in,n

¯

α
“ ´E

””

A
pdq
in,Γ

ı

Ψβ

ı

epdqn , @β P Apdq. (37)

Note that the size of this linear problem is N
pdq
in ˆ Ppdq, stressing the importance of achieving

low-dimensional local parameterization. We also remark that only the right-hand side of this
system is changing for different n P N pdq

Γ . This can be exploited to efficiently compute the set
of local solutions, for instance by pre-factorizing the linear system or employing an iterative
solver designed to handle multiple right-hand sides. Further, these sequences of problems are
independent from a subdomain to another, and so they can be carried out in parallel. Finally,
from the PC expansion of updqin,npη

pdqq we derive the PC expansion of the columns Ipdqn pηpdqq for
the subdomain contribution to the stochastic condensed operator (see (23)),

Ipdqn pηpdqq « Ĩpdqn pηpdqq “
ÿ

αPApdq

´

Ipdqn

¯

α
Ψαpη

pdqq,

using the Galerkin interpretation of the matrix-vector product:
´

Ipdqn

¯

α

.
“

ÿ

βPApdq

E
””

A
pdq
Γ,in

ı

ΨαΨβ

ı ´

u
pdq
in,n

¯

β
` E

””

A
pdq
Γ,Γ

ı

Ψα

ı

epdqn . (38)

A similar procedure is employed to derive the PC approximations of the stochastic subdomain
contributions to the condensed problem right-hand side, namely

pb
pdq
pηdq « rb

pdq
pηdq “

ÿ

αPApdq

pb
pdq

α Ψαpη
pdqq. (39)
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3.3 Sampling the stochastic condensed problem
At this point, we have described a strategy to compute a composite PC expansion of the con-
densed problem. These approximations can be used to generate approximate samples of the solu-
tion à la Monte Carlo. This task amounts to sampling jointly the local random variables ηpdq of
the subdomains as illustrated in the following example section. We shall denote ηpdqi “ ηpdqpθiq
a sample of the local random variables; the corresponding sample of the condensed problem
solution uΓpθiq is defined through

ĄrAspθiquΓpθiq “ rbpθiq, (40)

where
ĄrAspθiq “

D
ÿ

d“1

ÿ

αPApdq

yrAs
pdq

α Ψαpη
pdq
i q and rbpθiq “

D
ÿ

d“1

ÿ

αPApdq

pb
pdq

α Ψαpη
pdq
i q. (41)

The key advantage of the proposed approach is the substitution of the exact condensed operator
with its composite PC approximation. As a result, applying ĄrAspθiq to a given vector in an
iterative solution method for (40) is much less costly than having to solve local problems in the
classical method. Indeed, forming the reduced problem essentially amounts to evaluating poly-
nomial expansions for the subdomains contribution, which can be made in parallel. Obviously,
this comes at the cost of having first to compute the PC approximation ĄrAs of yrAs in the pre-
processing stage; however this overhead is factorized over the number of samples subsequently
generated.

Note that when the sample uΓpθiq solving (40) is obtained, the local problems can be inde-
pendently solved for (and only for) the subdomains where the solution is sought. Specifically,
once uΓpθiq is computed, one can solve (independently)

”

A
pdq
in,in

ı

pη
pdq
i q u

pdq
in pθiq “ b

pdq
in ´

”

A
pdq
in,Γ

ı

pη
pdq
i q u

pdq
Γ pθiq, (42)

to get the finite element approximation of upx, θiq for x P Ωpdq.

3.4 Monte Carlo algorithm and implementation
The proposed method thus involves two distinct steps as summarized in Algorithm 1: a prepro-
cessing stage where the PC approximations of the condensed problem are constructed and the
Monte Carlo sampling of the approximate solution.

Given a partition of Ω into D subdomains and associated local random variables for the
parametrization of κ, the preprocessing stage is dedicated to the construction of the local ap-
proximations for the condensed problem. The treatments of different subdomains are fully inde-
pendent and can be trivially carried out in parallel (loop starting at line 2). For each subdomain,
the main computational effort is the solution of a local stochastic elliptic problem (with multiple
right-hand-sides), whose size is made reasonable by considering sufficiently many subdomains so
N
pdq
in and N

pdq
κ are sufficiently small. The memory requirement to store the local PC expansions

ĄrAs
pdq
pηpdqq and rb

pdq
pηpdqq is proportional to N

pdq
Γ ˆN

pdq
Γ ˆ Ppdq and N

pdq
Γ ˆ Ppdq respectively.

In the sampling stage, starting at line 11, one generates joint samples ηpdqpθiq and evaluates
the subdomain contributions to the sample condensed problems. This involves polynomial eval-
uations which can be carried out in parallel over distinct subdomains (loop starting at line 13).
The resulting sampled problem (40) can be solved for instance by means of an iterative method,
without having to resort to any local problem solve. When the sample uΓpθiq is computed, see
line 16, one can eventually recompute classically the solution over subdomains of interest (loop
starting at line 17). Again these final solves over different subdomains can be carried out in
parallel.

The solver for the approximate condensed problem (40) can eventually be implemented in
parallel, and another advantage of the proposed approach is the possibility of relying on a precon-
ditioned iterative method. For instance, we show in the example section how to take advantage
of the manageable dimension and explicit representation of the condensed operator to determine
an effective preconditioner for the sampled problems. This preconditioner is a carefully selected
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realization of ĄrAs, whose LU decomposition is computed at the preprocessing stage and subse-
quently employed in the sampling stage to further accelerate the convergence of the iterative
solves.
Algorithm 1: Proposed method.
Data: Partitioning of the domain, local parametrization of κ, polynomial order No

Result: Produce M samples of the stochastic solution

1 Preprocessing stage: approximation of the condensed problem
2 for subdomain with index d “ 1, . . . ,D do
3 Set local PC basis

4 Compute PC expansion rb
pdq
pηpdqq

5 for boundary node n P N pdq
Γ do

6 Solve local stochastic problem (37)

7 Set PC expansion of n-th column of ĄrAs
pdq
pηpdqq using (38)

8 end for
9 end for

10 Monte-Carlo Sampling Stage: Generate approximate samples of solution
11 for sample index i “ 1, . . . ,M do
12 Generate a random sample of ηi “ pη

p1q
i . . .η

pDq
i q

13 for subdomain with index d “ 1, . . . ,D do

14 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

15 end for
16 Solve sampled condensed problem (40) for uΓpθiq
17 for subdomain with index d “ 1, . . . ,D do
18 Solve local problem (42) for the inner unknowns updqin

19 end for
20 end for

4 Example of Stochastic Elliptic Problem
In the following sections we illustrate the application of the proposed methods to an elliptic
equation with log-normal coefficient field. The problem settings are detailed in Section 4.1.
Next, we provide various convergence studies in Section 4.2 to investigate the behavior of the
method with respect to its principal numerical parameters, namely the number of subdomains,

D, and the PC order, No, of the PC expansions of operators ĄrAs
pdq

and right-hand-side rb
pdq

. In
Section 4.3 we focus on the case of random coefficient κ with high variability to highlight the
main mechanism driving the error in the method in extreme problems. Finally, the efficiency
and parallel implementation of the method are discussed in Section 5.

4.1 Test problem
We consider the elliptic problem (24) over a two-dimensional domain consisting of the unit square,
Ω “ p0, 1q2. We set fpxq “ 1 and adopt homogeneous boundary conditions as follows:

upxq “ 0 for x P BΩD, and∇u ¨ n̂ “ 0 for x P BΩN , (43)

where BΩD corresponds to the West, South, and East sides of the domain; BΩN corresponds to
the North side of the domain; and n̂ is the unit normal to the boundary BΩN .

For the random field κ, we assume that κ´κmin is a stationary log-normal process, such that

Gpx, θq
.
“ log pκpx, θq ´ κminq „ NpµGpxq, Cpx,x

1qq.

Here, we have denoted NpµG, Cq the Gaussian process with mean µG and covariance function
C, whereas κmin is a small positive constant ensuring the well-posedness of the problem (in
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L2-sense). We shall classically a covariance function having a square exponential decay,

Cpx,x1q “ σ2 exp
`

´}x´ x1}22{L
2
˘

, (44)

where L is the correlation length and σ2 the variance. In the following, we use L “ 0.1, unless
otherwise indicated.

For the local parametrization of the process, we consider the local Karhunen-Loeve expansion
of G over each of the subdomain. Denoting Gpdq the restriction of G over Ωpdq, we have

Gpdqpx, θq “ µGpxq `
ÿ

ką1

b

λ
pdq
k g

pdq
k pxqη

pdq
k pθq, (45)

where the λpdqk and g
pdq
k are the (dominant) eigenvalues and normalized eigenfunctions of the

covariance satisfying
ż

Ωpdq

Cpx,x1qg
pdq
k px1qdx1 “ λ

pdq
k g

pdq
k pxq. (46)

It is a standard result that the random variables in the KL expansion above are independent
standard Gaussian random variables, that is ηpdqk „ Np0, 1q. Obviously, the KL expansion must
be truncated; we shall truncate (45) to the N

pdq
κ first dominant (largest eigenvalues); accordingly,

we have:

Gpdqpx, θq « Ĝpdqpx,ηpdqpθqq “ µGpxq `

Npdq
κ
ÿ

k“1

b

λ
pdq
k g

pdq
k pxqη

pdq
k pθq (47)

and where N
pdq
κ is selected from the following criteria (see [10]):

Npdq
κ
ÿ

k“1

λ
pdq
k ě p1´ εGqσ

2 |Ω
pdq|

|Ω|
. (48)

Here, εG ă 1 is a small positive constant measuring the approximation error in the L2-sense
and |Ω| (resp. |Ω|pdq) is the volume of the domain Ω (resp. Ωpdq). Extending to zero the
eigenfunctions outside of their respective supports Ωd, we end up with

κ « κ̂ “ κmin `

D
ÿ

d“1

1Ωpdqpxqκ̂pdqpx,ηpdqq, κ̂pdqpx,ηpdqq “ exp
”

Ĝpdqpx,ηpdqq
ı

, (49)

which has a structure similar to (33).
For the Monte Carlo sampling of the problem, we will have to sample jointly the ηpdq. Since

we know that the random variable are Gaussian and centered, we must provide the correlation
structure between the random variables ηpdqk . In [10], we have shown that the correlation structure
is given by

b

λ
pdq
l λ

pd1q

l1 E
”

η
pdq
l η

pd1
q

l1

ı

“

ĳ

ΩpdqˆΩpd1q

g
pdq
l pxqg

pd1
q

l1 px1qCpx,x1qdxdx1.

In particular, one observes that by construction the ηpdql of a subdomain are uncorrelated as
expected. Sampling the whole set of η “ tηpdq, d “ 1, . . . ,Du can be achieved by standard
techniques, e.g., decomposing the covariance matrix.

As an illustration of the parametrization of the random field κ, we provide in the top row
of Figure 1 three realizations for µG “ 0 and an increasing value of σ2 of G from left to right.
In these examples, the number of subdomains is set to D “ 480 and the boundaries of the
subdomains are outlined in the plot. With L “ 0.1 and εG “ 0.01, a total of Nκ “ 178 would
be necessary in a global construction. Instead, one only needs N

pdq
κ “ 3 random variables per

subdomain for the same level of approximation error, εG. The plots show the effect of varying
σ2 with its direct impact on the range of variability for κ, which is roughly 10 times lager for
σ2 “ 0.5 compared to the case with σ2 “ 0.05. The plots also illustrate the spatial structure of
the fields with multiple local minima and maxima, due to the small correlation length, and the
exponentiation effects that emphasizes the maxima and stiffen the gradients.
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4.2 Validation of the method
Unless specified otherwise, the computation of this section uses L “ 0.1 and a finite element
mesh having Ne “ 16,441 triangular quadratic elements and Nn “ 32,747 unknowns.

4.2.1 Solution samples

We first verify that the proposed method with PC approximation of the condensed problem
approximates the MC samples obtained with the original approach described in Section 2.2.2.
To this extent, we refer to our approach as the DD-PC method and denote ûpηiq a corresponding
finite element solution sample, while upηiq is a finite element solution sample for the direct-
sampling method. For fairness, when comparing two solution samples of û and u we use the
same approximation of the random field κ̂pηiq, so their difference u´ û is solely due to the PC
approximation error of the condensed problem.

First, we look at three different realizations of κpηiq corresponding to different variances for
the underlying Gaussian process G. The realizations of κ are shown in the top row of Figure 1.
The second row of Figure 1 shows the difference between upηiq and the corresponding mean,
E rus, which enables us to highlight the complexity and length-scales in the solution samples.
(The means, E rus, are depicted in the top row of Figure 2). Finally, the third row of Figure 1
depicts the differences between the realizations computed with the DD-PC and the direct method.
Here, the DD-PC solutions are computed using PC approximations with order No “ 2 for all the
3 variances of G.

Focusing on the case with lowest variance, σ2 “ 0.05 (left column), the realization upθiq is
seen to be rather smooth, with differences less than 6ˆ10´4 between u and û. As σ2 is increased
to 0.20 (center column) the realization has now steeper gradients whereas the error level is now
as high as 2ˆ10´3, roughly 1% of the maximum of E rus. For the largest variance σ2 “ 0.50, the
solution presents even steeper gradients and the peak error is as high as 10% of the maximum of
E rus. These observations are expected, because with increasing σ2 a higher PC order No would
be needed to achieve a certain relative accuracy in the local condensed problem. This is verified
in the following.

4.2.2 Convergence with PC order

We now analyze the behavior of the DD-PC method, starting from the Monte Carlo error in
the estimation of the mean of the finite element solution, namely E rûs ´ E rus. These errors are
reported in Figure 2; shown are the mean fields (E rus, top row) and error fields for two expansion
orders (No “ 2 in the middle row and No “ 6 in the bottom row) for the DD-PP method and
the three variances σ2 as before. Again, a total of D “ 480 subdomains is used. Focusing first
on the lower order case, No “ 2, we observe that the error increases with σ2, with higher values
in Ω where E rus is larger. This indicates that the DD-PC method is biased. Note also that
in the case with σ2 “ 0.05, when the error on the mean is the lowest, the field E rûs ´ E rus
appears noisy. This is due to the finite number of samples used in the Monte Carlo estimate of
the expectations (M “ 500,000) which induces a sampling error that is significant compared to
the true (M “ 8) value of error on the mean solution. Increasing the PC order to No “ 6 is seen
to reduce by several orders of magnitude the error in mean of the DD-PC method. In fact, with
No “ 6 the error is so low that even for the largest σ2 the MC sampling error remains significant
and visible, whereas for the smallest σ2 it is completely dominant.

To better understand the impact of No on the bias in the DD-PC method, we define the
normalized L2 error on the mean, εmean, according to:

ε2mean “
}E rûs ´ E rus}2L2pΩq

}E rus}2L2pΩq

, }u}L2pΩq
.
“

ż

Ω

|upxq|2dx. (50)

In practice the mean solutions E rûs and E rus are estimated by their empirical averages using M
Monte Carlo samples. We report in Figure 3 the evolution with M of the estimate of εmean for
the different values of No and σ2. We observe that for small values of M the error norm εmean is
overestimated because of the sampling error. The sampling error decreases as M increases, and
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σ2 “ 0.05 σ2 “ 0.20 σ2 “ 0.50

κ
px
,η

iq
u
px
,η

iq
´
E
ru
px
,¨
qs

û
px
,η

iq
´
u
px
,η

iq

Figure 1: Realizations of κ (top row), deviation to the mean, u ´ E rus, of the direct solution
(middle row) and differences between DD-PC and direct solutions (bottom row). The columns
correspond to different realizations of κ drawn at random using Gaussian fields with increasing
variance: σ2 “ 0.05, 0.2 and 0.5 from left to right. The DD-PC solutions use No “ 2, and
D “ 480 (the subdomains partition is shown in all the figures).

forM large enough we see that εmean converges to a non-zero value, reflecting the bias in the DD-
PC method. Moreover, as we saw before, the bias depends on both σ and No. Specifically, higher
values of σ result in higher errors on the mean, and higher values of No increase the accuracy of
the PC expansion and reduce the bias. An important remark is that for high polynomial orders
the sampling error will be dominant unless a large number of samples is used in estimating any
desired statistic. Thus, there is not point in using a large polynomial order for a small sample
size.

The convergence with No of the DD-PC method is not restricted to the mean solution but
can be expected for other quantities of interest derived from u, albeit possibly with different
rates. For instance, we report in Figure 4 the convergence of the error in the standard deviation
of u, namely Std rûpxqs ´ Std rupxqs for No “ 2 and No “ 6, and the 3 values of the variance σ2.
The plots show a similar trend as for the mean solution, although the spatial structure of the
standard deviation error appears to depend more heavily on No.

4.3 L2-error norm
We now consider the more generic error measure as the full (or stochastic) L2-norm of the
difference ûpx, θq ´ upx, θq and define the relative stochastic error norm as

ε2u “
E
”

}û´ u}2L2pΩq

ı

E
”

}u}2L2pΩq

ı . (51)
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σ2 “ 0.05 σ2 “ 0.20 σ2 “ 0.50

E
ru
px
,¨
qs

E
rû
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2
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Figure 2: Mean fieds E rupx, ¨qs (top row), and DD-PC error on the mean E rûpx, ¨qs ´E rupx, ¨qs
for No “ 3 (middle row) and No “ 3 (bottom row), and three values of σ2, as indicated, from left
to right. The computations use M “ 500,000 Monte Carlo samples to estimate the expectations
and D “ 480 subdomains.
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(a) Error on the mean, No “ 2
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(b) Error on the mean, No “ 6

Figure 3: Monte Carlo estimates of the norm of the error on the mean εmean as a function of the
number of MC samples M for different σ2 as indicated and PC order No “ 2 (left) and No “ 6
(right).

Figure 5 reports εu as a function of the PC order No. Shown are plots for different values of σ2

and curves for different D . The relative error on the mean, εmean, is also shown for comparison.
For σ2 “ 0.05 (left plot) we notice that the behavior of both errors is very similar, decaying
monotonically with No, with the relative stochastic error higher than the relative error on the
mean. Further, the number of subdomains D is seen to have negligible effect on the two errors.
These observations are in sharp contrast with the high variability case, σ2 “ 0.5, shown in the
right plot of Figure 5, where the error decay with No is no longer monotonic over the reported
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Figure 4: Standard deviation fields Std rupx, ¨qs (top row), and DD-PC error in the standard
deviation Std rûpx, ¨qs ´ Std rupx, ¨qs for No “ 3 (middle row) and No “ 3 (bottom row), and
three values of σ2, as indicated, from left to right. The computations use M “ 500,000 Monte
Carlo samples to estimate the expectations and D “ 480 subdomains.

range. In fact, the convergence curves highlight an even-odd effect with a smaller error for even
order No “ 2n than for the next odd order No “ 2n ` 1. In addition, the relative stochastic
error reaches dramatically large levels for odd values of No and has much more severe and non
trivial dependences on D. We should remark that the case with σ2 “ 0.5 leads to a very high
variability in κ and can be considered as an extreme case. In the following, we proceed to analyze
the stochastic error in this large variability case.
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(b) σ2
“ 0.5

Figure 5: Relative stochastic error εu and relative error on the mean εm as functions of the PC
order No, for different values of D as indicated and σ2 “ 0.05 (left plot) and 0.5 (right plot).

To better understand the error mechanism, we first reduce the computational cost of this

17



analysis, namely by increasing the correlation length of G to L “ 1 but keeping σ2 “ 0.5. The
increased L allows to consider a coarser finite element mesh (with Ne “ 1,630 elements and
Nn “ 3,204 unknowns), owing to the increased length scales in the solution u. However, this
change does not affect the odd-even order effects just discussed, as shown by the convergence
curves reported in Figure 6 which are similar to the previous case (Figure 5, left plot). Note
that due to the coarser nature of the mesh, we also considered different values for the number of
subdomains; D “ 120, 240, and 480, instead of D “ 240, 480, and 960.
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Figure 6: Relative stochastic error εu and relative norm of error on the mean εm as functions of
the PC order No, for different values of D as indicated. The random field G uses σ2 “ 0.5 with
L “ 1.

For the purpose of the analysis, we compute 100,000 samples of the solutions ûpηiq and upηiq,
using the two approaches, and retrieve the corresponding samples of error norm, }û ´ u}L2pΩq,
norm of the DD-PC samples solution, }ûpηiq}L2pΩq, Frobenius norm of the error on the condensed
problem operator, }ĄrAspηiq ´yrAspηiq}F , and finally condition number of its PC approximation,
cond ĄrAspηiq. These samples are used to estimate the statistics of these quantities, which are
summarized in Figure 7 using histograms in log-log scale, contrasting the cases of No “ 2, 3 and
9 for the PC approximation of the condensed problem.

First, the statistics of the error norms }û´ u}, depicted in Figure 7(a), are seen to be more
spread for No “ 3 than for No “ 2 with a much longer tail towards the high error side: extreme
samples for No “ 3 are standing more than 3 orders of magnitude away from the extreme samples
for No “ 2. The presence of very large error samples induces the average-error behavior shown
in Figure 6, even though the mode of the histogram for No “ 3 is at a lower error level compared
to the mode for No “ 2. On the contrary, the error distribution for even order No “ 2 does not
exhibit a long tail towards higher error values. In addition, increasing the PC order to No “ 9
results in a distribution of the error that remains quite broad (in the logscale) with broad right-
tail but shifted to the low error values compared to No “ 3. Overall the error samples for No “ 9
remain lower than for No “ 2. One can conclude that the large stochastic error for odd orders
is caused by a fraction of samples having abnormally very high error compared to their median
error, but with a probability that decreases with increasing order.

Comparing the statistics of the error on the condensed operator }ĄrAs ´ yrAs}F at different
orders, shown in Figure 7(b), we observe a monotonic shift of the histograms when No increases
with similar tails for both odd and even orders. This is expected as one globally improves
the PC approximation with increasing No. This distribution of the operator error must be
contrasted with the statistics of the condensed operator condition number cond ĄrAs reported in
Figure 7(c): the histogram for No “ 3 is seen to exceed by several orders of magnitude the
highest values for No “ 2 and No “ 9. In fact, the histogram for No “ 3 reveals samples with
poorly conditioned systems. Since the error on the operator itself behaves well, one can suspect
the PC approximation of ĄrAs to induce error on the lowest part of the spectrum, that is the
smallest eigenvalues and eigenfunctions of yrAs (recall that yrAs is symmetric positive definite).

To evidence the role of the condition number and error on the lowest eigen values of ĄrAs

on the error, we present in Figure 8 samples of the condition number of ĄrAspηiq as a function
of the corresponding samples of the error }u ´ û}L2pΩq for different PC orders No. The sample
points have also been colored by the sign of the smallest eigenvalue of ĄrAspηiq: in blue for a
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Figure 7: Log-Histograms of the error norm }u´ û}L2pΩq (left), of the approximation error on
condensed operator }yrAs ´ĄrAs}F (center), and of the condition number of the approximate
system cond

´

ĄrAs
¯

(right) for PC orders No “ 2, 3, 9. Case of G with σ2 “ 0.5 and L “ 1.

positive value and in green for a negative value. Focusing first in the case No “ 2 reported
in Figure 8(a), we observe that the error tends to be correlated with the condition number of
the system. In particular, the minimal error increases when cond ĄrAs increases. The case of
No “ 3 in Figure 8(b) appears to have an even more pronounced correlation of the error with
the condition number with additional events associated to large condition number and high error
level. The color clearly highlights the fact that the highest errors and condition number events
are associated with a loss of positivity in ĄrAs. In fact, the error distribution is somehow bimodal,
with one or the other mode depending highly ĄrAs having negative eigenvalues. On the contrary,
we report no sample with negative eigenvalues in our experiments for No “ 2 (and also for
No “ 4, 6, and 8; not shown for brevity). Further, increasing the order to No “ 5 and No “ 9 in
Figure 8(c) and 8(d) we observe the reduction of the probability of loss of positivity events (which
is not at all observed in the whole sample set with No “ 9), and correspondingly a reduction
of the resulting solution error. As a closing remark, detection of the loss of positivity in the
samples of ĄrAs would be a good indicator of an insufficient PC order in the approximation. In
our experiments, we found that checking for the positivity of the diagonal elements of ĄrAspηiq,
a necessary condition for the positivity of the sample, was sufficient for this purpose.

5 Performance Analysis
In Section 5.1 we provide a brief analysis of the computational complexity and memory re-
quirements of the DD-PC method. A few alternative parallel implementations are discussed in
Section 5.2, and subsequently compared in Section 5.3.

5.1 Complexity analysis
As highlighted in Algorithm 1, the proposed method has two distinct stages: a preprocessing
stage during which the PC approximation of the condensed problem is computed, and a sampling
stage where approximate samples of the solution are computed.

For the first stage, one has to solve on each subdomain a stochastic problem for a set of N
pdq
Γ

distinct boundary conditions; this discretized stochastic problem has N
pdq
in unknowns expanded on

a Ppdq dimensional PC basis. Eventually, the storage of the PC approximation for the subdomain

contributions ĄrAs
pdq

and rb
pdq

has a memory requirement of N
pdq
Γ ˆpN

pdq
Γ `1qˆPpdq. Clearly, N

pdq
in ,

N
pdq
Γ and Ppdq are the parameters driving of the computational complexity of the preprocessing

stage on a subdomain, and we illustrate their evolutions when one considers an increasing number
D of subdomains to partition a fixed mesh (Ne “ 163,272) on the previous problem with L “ 0.1,
σ2 “ 0.2 and εG “ 0.01. Note that the underlying unstructured mesh is essentially isotropic with
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(a) No “ 2 (b) No “ 3

(c) No “ 5 (d) No “ 9

Figure 8: Samples of the error in the solution }u´ û}L2pΩq as a function of the condition number
cond ĄrAs. The samples are colored according to the sign of the smallest eigenvalue of ĄrAs.
Different PC orders as indicated.

uniform refinement. The Metis software [18] is employed here to partition the domain; several
examples are shown in Figure 9.

(a) D “ 15. (b) D “ 60. (c) D “ 960.

Figure 9: Partitions of the computational mesh into different numbers of subdomains D as
indicated.

The results are reported in Table 1. The second column shows the evolution with D of the
condensed problem dimension NΓ. The third and fourth columns report the corresponding values
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of N
pdq
Γ and N

pdq
in (rounded averages over the set of subdomains, with ˘ RMS values). It is seen

that while N
pdq
in „ 1{D, the decay of N

pdq
Γ is slower denoting the number of interfaces increasing

with D (see Figure 9). Similarly, the number of local random variables N
pdq
κ decreases at a sub-

linear rate with respect to 1{D and would tend asymptotically to 1 for D Ñ Ne (see the discussion
in [10]). The decay behavior of N

pdq
κ induces an extremely fast decay rate of the local polynomial

basis dimensions Ppdq with D as reported in the last two rows of Table 1, corresponding to PC
degrees No “ 2 and 6 respectively. For instance, when No “ 6 the local PC basis dimension is
10,000 times smaller for D “ 480 than for D “ 8. However, when D becomes too large, N

pdq
κ

levels off and so does the dimension of the local PC bases.

D NΓ N
pdq
Γ N

pdq
in N

pdq
κ

Ppdq

No “ 2 No “ 6
8 2,233 752˘ 93 40,477˘ 91 28.0˘ 0.0 p4.35˘ 0.00q ˆ 102 p1.34˘ 0.00q ˆ 106

15 3,337 549˘ 66 21,514˘ 62 17.0˘ 0.0 p1.71˘ 0.00q ˆ 102 p1.01˘ 0.00q ˆ 105

30 5,258 404˘ 48 10,693˘ 41 10.7˘ 0.4 p7.48˘ 0.53q ˆ 101 p1.12˘ 0.19q ˆ 104

60 7,582 280˘ 26 5,308˘ 23 7.0˘ 0.2 p3.57˘ 0.14q ˆ 101 p1.70˘ 0.14q ˆ 103

120 11,205 201˘ 17 2,624˘ 14 5.0˘ 0.0 p2.10˘ 0.00q ˆ 101 p4.62˘ 0.00q ˆ 102

240 15,921 141˘ 11 1,292˘ 9 3.2˘ 0.4 p1.11˘ 0.21q ˆ 101 p1.11˘ 0.52q ˆ 102

480 22,726 100˘ 8 632˘ 6 3.0˘ 0.0 p1.00˘ 0.00q ˆ 101 p8.40˘ 0.00q ˆ 101

960 32,618 72˘ 6 306˘ 4 2.8˘ 0.4 p9.23˘ 1.58q ˆ 100 p7.32˘ 2.21q ˆ 101

1920 46,047 51˘ 5 146˘ 3 2.0˘ 0.0 p6.00˘ 0.09q ˆ 100 p2.80˘ 0.13q ˆ 101

Table 1: Evolutions with the number of subdomains D of the dimension of the condensed problem
(NΓ), (averaged) numbers of local unknowns (NpdqΓ and N

pdq
in ), local random variables (Npdqκ ) and

local PC basis dimension Ppdq for No “ 2 and 6.

The results in Table 1 enable us to quantify the reduction in the local stochastic problem
complexity and memory requirements to store ĄrAs and rb. This is illustrated in Figure 10 which
shows the evolution of the local complexity measured by the (averaged) value of pNpdqin q

2 ˆ Ppdq

is reported for No “ 2 and 6 (left plot). We do not report here the consolidated computational
complexity, or the sum of local complexities, as the solves at the preprocessing stage are fully
independent over the subdomains and can be carried out in parallel. Instead, we remark that in
the case of No “ 6, small values of D yield too many local variables N

pdq
κ with large local PC bases

and prohibitive complexities: increasing D makes the local solves tractable. Similarly, increasing
D reduces the memory requirements for storing each local contribution to the condensed operator,
as depicted in the right plot of Figure 10. The plot shows both the local memory requirement,
measured by (averaged) pNpdqΓ q2 ˆ Ppdq, and the global memory requirement defined as the sum
of the local ones. It is seen that the local requirements have essentially the same evolution with
D as the complexity. However, the reduction in the global requirement tends to level off as D

becomes large, as it could be expected from the behavior of N
pdq
Γ and N

pdq
κ shown in Table 1.

These findings support the use of the largest possible number of subdomains to reduce the
computational complexity and memory requirements of the preprocessing stage. However, we
might not want to make D as large as possible because NΓ, the size of the condensed problem,
increases as D increases (see the second column of Table 1). The cost of solving the reduced
problem at the sampling stage, therefore, increases as the number of subdomains increases. Thus,
as it is typically the case for methods involving domain decomposition, the best value for D will
depend on the specific problem at hand and the available computational resources.

5.2 Implementation details
In this section, we discuss choices for the design and implementation of sampling stage algorithms.
As described in Section 3.4 and shown in Algorithm 1, the computation of a sample with index
i, in the loop starting at line 11 (Algorithm 1), involves four main steps. For a given realization,
i.e. for one particular index i in these steps can be summarized as follows. First, generate
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Figure 10: Local complexity (left plot) and local and global memory requirements (right plot),
as a function of the number of subdomains D and for two PC degree No “ 2 and No “ 6. Note
that both plots use a log-log scale.

a joint random sample of the local random variables (line 12); second, evaluate the subdomain
contributions to the condensed problem (40) (line 13), which amounts to evaluating polynomials;
third, solve the sample domain decomposition problem (40) (line 16); and finally, if desired,
recompute the solution inside selected subdomains (line 17). The parallelization of the first and
second steps is trivial, as well as the solution of the local problems in the fourth stage when the
boundary data are known; see (42). For the latter step, our PC approach can even bypass the
final local solves if the local PC approximations ũ

pdq
in,n of the elementary solutions u

pdq
in,n can be

stored (see Section 3.2.2).
In contrast, different strategies can be envisioned to solve the sampled condensed problem,

as further discussed below.

5.2.1 Strategies for solving the condensed problem

Our PC-based sampling approach aims at accelerating direct MC sampling. As discussed earlier
in Sections 2.1.1 and 2.2.2, such direct MC methods are usually based on matrix-free iterative
solvers where the realizations of the condensed operator and corresponding right-hand side in (28)
are never explicitly assembled. Instead, using a CG algorithm, the application of the condensed
operator to successive conjugate vectors is implicitly performed in a matrix-free manner by
computing residuals from local PDE solutions at the subdomain level. This approach will be
referred to as Dir-loc-CG and will serve as a reference. It will be compared with different PC-
based strategies, also relying on the CG method to solve the condensed problems, and using the
same stopping criterion in order to ensure the fairness of the comparisons.

In our PC-based approach, we investigate two main strategies for solving of the condensed
problem (40). The first strategy mimics the reference Dir-loc-CG above, in that it never as-
sembles the full condensed problem (40). Inside the CG iterations, the subdomain contribution
to the residual of the successive conjugate vectors is computed locally, by matrix multiplication

with the sample value of ĄrAs
pdq

instead of solving a local PDE problem. This approach will be
referred to as PC-loc-(P)CG, where the optional P indicates whether or not a preconditioner is
involved in the CG method (see Section 5.2.3 below). The second strategy, on the contrary, is
based on assembling for each sample the corresponding full condensed operator and right-hand
side. The condensed problem (40) is still solved using CG, leading to the approach referred to
as PC-glo-(P)CG in the following. Note that PC-loc-(P)CG and PC-glo-(P)CG are equivalent,
as they solve the same problem, but are expected to have different parallel efficiencies as they
will have different communication patterns as discussed in the following.
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5.2.2 Parallelism

For PC-loc-(P)CG, the realizations are processed sequentially, as in the reference method. For
each sample, the solution of the condensed problem is performed in parallel, in a fashion following
closely the Dir-loc-CG strategy. Specifically, each MPI process is in charge of computing the
local contributions to the residual of the set of subdomains handled by the process. We will refer
to this strategy as parallelism across subdomains because the workload is distributed among
the MPI processes according to the spatial domain decomposition. An overview of this parallel
implementation is given in the schematic Algorithm 2.

Algorithm 2: Schematic algorithm illustrating the parallelism across subdomains for strat-
egy PC-loc-(P)CG.
1 for sample index i “ 1, . . . ,M do // [SEQUENTIAL LOOP]
2 Generate a random sample of ηi “ pη

p1q
i . . .η

pDq
i q

3 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]

4 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

5 end for

// PARALLEL solve (except preconditioning)
6 Solve sampled condensed problem (40) for uΓpθiq using (local) CG iterations

7 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]
8 Solve local problem (42) for the inner unknowns updqin

9 end for
10 end for

Regarding PC-glo-(P)CG, a parallelism across samples is more appropriate because the global
condensed problem is explicitly assembled. In this strategy, the full condensed operator and
right-hand side are assembled in batches of samples, each batch being processed in parallel.
For the sake of simplicity, and without loss of generality, we assume that a batch has as many
samples as the number of MPI processes, NMPI. In a given batch, the first and second steps are
performed sequentially for the NMPI samples, parallelizing the tasks across the subdomains for
each sample element of the batch. To each of the NMPI samples of the batch corresponds a sample
of the condensed problem, which is globally assembled, through collective communications, on
its dedicated MPI process. Once all the samples of the batch have been processed this way, each
MPI process owns one particular sample of the condensed problem, and can then proceed with
its solution. This amounts to a parallelism across samples, in the sense that the current batch of
NMPI samples has been distributed among the NMPI MPI processes and are solved independently.
An overview of this parallel implementation is given in the schematic Algorithm 3. Optionally,
as for the other strategies, the full solutions (step 4) may be retrieved by final local solves using
the solutions of the condensed problem, returning to a parallelization across subdomains.

5.2.3 Preconditioning

One advantage of having an expression of the condensed operator is the possibility to propose
a preconditioner for the CG solver. Classical domain decomposition methods can be precondi-
tioned, in particular using two-levels strategies [13, 33]. Here, we rely on an alternative precon-
ditioner based on the condensed operator’s expectation, E

”

yrAs
ı

, defined as:

ĚrAs
.
“ E

”

yrAs
ı

«

D
ÿ

d“1

E
„

ĄrAs
pdq



“

D
ÿ

d“1

ĄrAs
pdq

0 , (52)

where 0 P NNpdq
κ is the multi-index of the constant polynomial. Hereafter, ĚrAs will be referred

to as the mean condensed operator. It is expected that ĚrAs
´1

ĄrAs remains close to the identity
for all samples so the mean operator can be used as a preconditioner to the full residual iterate
appearing in the CG algorithms. In practice, the LU decomposition of ĚrAs is once precomputed
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Algorithm 3: Schematic algorithm showing the mixed subdomains and samples parallel
processing for the strategy PC-glo-(P)CG.
1 iÐ 0
// While the desired number of samples has not been reached

2 while i ăM do // [SEQUENTIAL LOOP]

// Start a new batch
3 for process index p “ 1, . . . ,NMPI do // [SEQUENTIAL LOOP]
4 iÐ i` 1

5 Generate a random sample of ηi “ pη
p1q
i . . .η

pDq
i q

6 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]
// Each process handles Dp « D{NMPI subdomains

7 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

8 end for
9 Assemble and store the global ĄrAspθiq and rbpθiq on process p

10 end for

// Each process now owns one global realization of the condensed problem
11 for process index p “ 1, . . . ,NMPI do // [PARALLEL LOOP]

// Each process handles 1 realization
12 Solve sampled condensed problem (40) using (global) CG
13 end for

// Optional
14 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]
15 Solve local problem (42) for the inner unknowns updqin

16 end for
17 end while

prior to the sampling stage, and subsequently used to precondition the CG iterations when solving
the condensed problem for different samples. Note that for the (PC-loc-PCG) strategy, where
the full operator is not assembled, further gain may be obtained by parallelizing the application
of the preconditioner, although this direction is not further investigated here.

5.3 Computational behavior
The analysis of the computational behavior of the method is broken down into two parts. First,
we investigate the scalability of the preprocessing stage. Second, we discuss the computational
behavior of the sampling stage, for the different solving strategies described above, and compare it
with the behavior of the classical matrix-free MC sampling approach. Unless specified otherwise,
the computations of this section use σ2 “ 0.2, L “ 0.1, D “ 512 and No “ 2.

5.3.1 Preprocessing stage

We characterize the scalability with the number NMPI of MPI processes of the preprocessing
stage by the parallel efficiency E, expressed as a percentage:

EpNMPIq
.
“ 100

Tref

NMPI T pNMPIq
, (53)

where Tref and T pNMPIq are the measured CPU times of the tasks execution for a reference
case and the execution using NMPI processes. For the reference, we take the smallest number of
processes tested, NMPI “ 16, and use Tref “ 16T p16q, assuming a perfect parallel efficiency from
1 to 16 processes.

Figure 11 shows the parallel efficiency of the preprocessing stage for 3 meshes of increasing
size. In Fig. 11(a), we observe that the parallel efficiency slightly decreases with NMPI, but
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remains above 80% on 512 processes for all three meshes. It shows that the preprocessing stage
is scaling decently, even using a naive, static, a priori load balancing strategy. The moderate
loss of efficiency can be explained by processes waiting for each other to get to a certain point,
caused by load imbalance. Although the preprocessing stage involves no communication (either
point-to-point or collective) between processes, the preprocessing stage ends when all processes
have terminated leading to a worst case idle-time scenario. In addition, each process p handles
a certain number of subdomains whose indices d are collected in Ip. Note that in the present
tests we used numbers of processes such that D “ 512 is always a multiple of NMPI, and that
the processes handle exactly the same number of subdomains, namely D{NMPI. However, the
subdomains support FE meshes having different sizes, as well as possibly different numbers of
local random variables N

pdq
κ , see Table 1. As a consequence, the number and size of the local

Galerkin problems that a process p has to solve may change slightly from one process to another.
As NMPI increases, fewer subdomains are handled by a process, down to the case of 512 processes
each handling one single subdomain, tending to increase the load imbalance between processes
with a degradation of the parallel efficiency. It is clear than more advanced partitioning and load
balancing techniques can be employed to improve the scaling properties of this stage. As a side
note, we point out that using carefully designed regular structured meshes should theoretically
lead to quasi-ideal scaling. Finally, we observe in Fig. 11(b) that the parallel efficiency is not
affected by the PC degree No.
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(b) Ne “ 82,213.

Figure 11: Parallel efficiency EpNMPIq of the preprocessing stage, see (53), for different meshes
(Fig. 11(a)) and different PC degrees (Fig. 11(b)).

5.3.2 Sampling stage

We now investigate the computational behavior of the sampling stage. In particular, we compare
the different strategies discussed in Section 5.2.

Figure 12 reports the CPU times needed to generate a single sample of the condensed problem
solution, as a function of NMPI. These measurements only include the first three steps of the
sampling procedure, leaving aside the final calculation of the full solution over the subdomains.
Moreover, for PC-glo-PCG and a parallelization over samples, we consider a batch of size M “

D “ 512 and report the average computational time (divided by M) for a fair comparison. In
addition, the CPU times are scaled so that the reported time using PC-glo-PCG on 16 processes
equals 1.

In Fig. 12(a), corresponding to a spatial mesh with Ne “ 163,272 quadratic finite elements,
we observe that the strategy PC-loc-CG outperforms the reference approach Dir-loc-CG with
an acceleration factor of about 3.5 on 16 processes. As the number of processes increases, the
two approaches lose parallel efficiency and seem to converge to the same CPU time. This trend
can be explained by the collective data communication which needs to be performed at each
CG iteration. This communication time does not decrease as NMPI increases, while on the
contrary, the workload of the processes for solving local problems (in Dir-loc-CG) or performing
local matrix-vector products (in PC-loc-CG) decreases, due to a good parallel scaling of these
computations. Eventually, the communication cost becomes comparable to the computational
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(b) Ne “ 327,334.

Figure 12: Scaled CPU times, to generate one sample, as a function of the number of MPI
processes NMPI. The dashed lines represent ideal parallel scaling.

cost of the rest of the CG algorithm (e.g. dot products), which scale poorly, and consequently
the overall sampling cost converges to this flat cost. Concerning PC-loc-PCG, the effect of the
mean preconditioner can be appreciated comparing its computational time with the PC-loc-CG
strategy: for 16 processes, the CPU time is reduced by another factor of about 3.5. This
reduction is due to the improved convergence of the iterative solver, allowing to save many CG
iterations. However, the overall cost of PC-loc-PCG is quickly dominated by the application
of the preconditioner, which is not performed in parallel in the present implementation (see
Section 5.2.3), with a very poor parallel scaling of PC-loc-PCG as a result. Eventually, the
savings of the preconditioner are lost and the overall CPU time converges to that of the non-
preconditioned version.

Finally, the strategy PC-glo-PCG, based on the full assembly of the global condensed sys-
tem (40) and using the mean operator as a preconditioner, has a parallel efficiency behavior
similar to that of PC-loc-CG, but with a computational cost up to 16 times less. PC-glo-PCG
outperforms the reference strategy Dir-loc-CG by a factor of about 48 for NMPI “ 16 and re-
mains asymptotically 20 times faster despite its efficiency drop. Again, the drop in efficiency for
PC-glo-PCG is caused by the collective communication needed to assemble the global condensed
system from its local contributions. For the present example, this communication step involves
the exchange of about 4.5 million double precision values between all the NMPI processes. In
addition to being much more efficient than the other strategies, this last approach lends itself to
a task-based parallel framework, where data locality would be preserved and collective commu-
nication would be avoided. Although outside the scope of this paper, it is important to point
out that adopting such a parallel processing paradigm could potentially improve significantly the
parallel scaling of this approach. In any case, having a different treatment of the PC evaluation
(parallelized across subdomains) and of the condensed system solve (parallelized across samples)
clearly allows for more flexibility.

To conclude this analysis, let us mention that the reported trends in the parallel efficiency
for the different methods does not significantly depend on the FE discretization of the problem.
This can be seen comparing the similar evolution of the CPU times in Fig. 12(a) and Fig. 12(b),
the latter corresponding to an FE mesh with twice as many elements as before Ne “ 327,334
elements (leading to computational times roughly twice as long). We also note that for this
refined mesh and 16 processes, PC-glo-PCG is roughly 64 times faster than for the reference
Dir-loc-CG.
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6 Conclusions
We have presented an acceleration strategy for a Monte Carlo sampling-based Stochastic Elliptic
PDE solver. The method employs a domain decomposition technique to partition the compu-
tational domain into smaller non-overlapping subdomains. In a first stage, an approximation
of the local boundary-to-residual map is constructed, independently over each subdomain. This
approximation uses a PC expansion to represent the dependencies of the map on the stochastic
coefficient of the elliptic equation. The cost of computing this local PC approximation is re-
duced owing to the possibly low dimensional representation of the stochastic coefficient over the
considered subdomain, compared to its global representation. These local PC expansions can
be combined together to obtain an approximation of the (global) condensed problem relating
the stochastic solution at the interface of the subdomains. The local PC-based representations
of the condensed problem can be sampled with a low computational cost, amounting to simple
polynomial evaluations. This feature is exploited in a second stage to generate, at a reduced
computational cost, realizations of the stochastic solution via MC sampling.

We validated the accuracy of the proposed approach on a numerical example that also served
to analyze convergence with the polynomial degree of the PC expansion. An important finding
is that, as desired, the domain decomposition allows for significant computational time saving
while having a negligible effect on the approximation error which is essentially driven by the
polynomial degree of the expansion. We also analyzed the performance of different parallel
implementations of the approach. Specifically, we showed that the cost of the preprocessing
stage can be conveniently distributed over multiple processors with a close to ideal parallel
efficiency (higher than 80% in our experiments). Given that we used a naive, static, a priori load
balancing strategy, the scaling properties of the first stage could even be improved by employing
more advanced partitioning and load balancing techniques. Concerning the sampling stage,
all the parallel strategies involving the PC approximation of the condensed problem perform
better than the reference approach. A noticeable degradation in the parallel efficiency is however
reported when the number of MPI processes is increased. Despite this efficiency drop, the best
sampling strategy is found to remain at least 20 times faster than the reference for the largest
number of processes tested (512) when it is up to 60 times faster when only 16 MPI processes
are used. The collective communications involved in the assembly of the condensed problem,
from the local contributions, are responsible for the efficiency drop. A possible way to mitigate
this issue would be to rely on a task-based parallel framework, where data locality would be
preserved and collective communication would be avoided.

In addition to improving parallel efficiency, future works should focus on improved partition-
ing strategies and the determination of the optimal number of subdomains yielding the lowest
computational cost. The latter aspect is non-obvious, but involves several trade-offs between
different steps of the method, and clearly depends on the computational architecture and the
resources available. Another potential route to develop the proposed approach is exploring the
potential interest of considering a hierarchy of FE meshes. This hierarchy could be used to
accelerate the resolution of the condensed problem (as in two-level domain decomposition meth-
ods [13, 33, 26]), on the one hand, and to optimize the computational complexity of the MC
method (as in multilevel MC methods [8, 2]), on the other hand.
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