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Abstract

This paper concerns the analysis of random second order linear differential equations. Usually,
solving these equations consists of computing the first statistics of the response process, and that
task has been an essential goal in the literature. A more ambitious objective is the computation
of the solution probability density function. We present advances on these two aspects in the
case of general random non-autonomous second order linear differential equations with analytic
data processes. The Fröbenius method is employed to obtain the stochastic solution in the form
of a mean square convergent power series. We demonstrate that the convergence requires the
boundedness of the random input coefficients. Further, the mean square error of the Fröbenius
method is proved to decrease exponentially with the number of terms in the series, although not
uniformly in time. Regarding the probability density function of the solution at a given time,
we rely on the law of total probability to express it in closed-form as an expectation. For the
computation of this expectation, a sequence of approximating density functions is constructed by
reducing the dimensionality of the problem using the truncated power series of the fundamental
set. We prove several theoretical results regarding the pointwise convergence of the sequence of
density functions and the convergence in total variation. The pointwise convergence turns out to
be exponential under a Lipschitz hypothesis. As the density functions are expressed in terms of
expectations, we propose a symbolic Monte Carlo sampling algorithm for their estimation. This
algorithm is implemented and applied on several numerical examples designed to illustrate the
theoretical findings of the paper.
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1. Introduction

Random differential equations are ordinary differential equations whose input coefficients are
random quantities, in the form of random variables or stochastic processes (not to be confused
with Itô’s stochastic differential equations, which are differential equations driven by Wiener
noise). In this setting, there is a complete abstract probability space (Ω,F ,P), where Ω is the
sample space defined as the set of outcomes ω ∈ Ω, F ⊆ 2Ω is the σ-algebra of events, and P is
the probability measure.

The stochastic solution may be considered in two senses. One approach considers the ran-
dom calculus that arises from the Lebesgue space (Lp(Ω), ‖ · ‖p), 1 ≤ p ≤ ∞, where the norms
are defined as ‖X‖p = E[|X|p]1/p for p < ∞, and ‖X‖∞ = inf{C > 0 : |X| ≤ C almost surely}
(essential supremum), where E denotes the expectation operator defined as E[X] =

∫
Ω

X dP. The
limits in the definitions of continuity, differentiability, and Riemann integrability are considered
in the topology of Lp(Ω). The space (Lp(Ω), ‖ · ‖p), 1 ≤ p ≤ ∞, is a Banach space. Of partic-
ular importance is the case p = 2, which gives rise to the Hilbert space (L2(Ω), 〈·, ·〉) of random
variables with finite variance, whose inner product is defined as 〈X,Y〉 = E[XY], X,Y ∈ L2(Ω).
The calculus in L2(Ω) is referred to as the mean square calculus. A key feature of L2(Ω) is that
mean square convergence ensures convergence of the expectation and the variance. An alterna-
tive strategy to tackle random differential equations is the sample path approach, which considers
the trajectories of the solution process by fixing each outcome ω ∈ Ω. An interesting result that
links Lp(Ω) and sample path calculus states that every Lp(Ω) solution is also a sample path so-
lution. For theoretical discussions on random differential equations and the types of stochastic
solutions, we refer the reader to [1, 2, 3, 4].

Understanding the inherent stochastic nature of the solution is of primary importance. This
is the focus of uncertainty quantification [5]. The most common strategies for uncertainty quan-
tification are Monte Carlo simulation [6], PC (polynomial chaos) expansions [7, 8, 9], and
perturbation methods [1, 8, 10]. Some studies of different random differential equation prob-
lems providing a fair overview of the state-of-the-art literature can be found, for instance, in
[11, 12, 13, 14, 15, 16].

In the case of random second order linear differential equations, important advances have
been achieved for the computation of the first moments of the solution, via mean square calculus
and the so-called Fröbenius method. The Fröbenius method consists in finding a mean square
convergent power series solution, in analogy to the deterministic theory of ordinary differential
equations. The general stochastic system is given byẌ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,

X(t0) = Y0, Ẋ(t0) = Y1.
(1)

Here, A(t) and B(t) are stochastic processes and Y0 and Y1 are random variables on (Ω,F ,P).
The stochastic process X(t) is the solution. We will assume that A(t) and B(t) are analytic
stochastic processes on (t0 − r, t0 + r), for r > 0 fixed, in the mean square sense [1, p. 99]:
A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0 Bn(t − t0)n are two random power series in L2(Ω),

where A0, A1, . . ., B0, B1, . . . are second order random variables. The expansions coincide with
the Taylor series of A(t) and B(t).

Airy, Hermite and Legendre differential equations are particular instances of (1), which rep-
resent important stochastic models of Mathematical Physics. The rigorous analysis and construc-
tion of mean square solutions to these particular equations, using random power series, can be
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found in [17, 18, 19]. We have proposed a generalization of these contributions to the general
system (1) in [20, 21].

In the recent paper [22], we investigated the resolution of random second order linear differ-
ential equations with PC-based methods. In [23], the authors proposed a homotopy technique
to solve some particular random differential equations pertaining to the class given in (1). Other
solution techniques include variational iteration [24] and Adomian decomposition [25]. Finally,
a technique, analogous to the Fröbenius method but relying on the concept of differential trans-
form, is proposed in [26, 27].

A more ambitious objective is the computation of the probability density function of X(t),
denoted hereafter as fX(t)(x) =

d(P◦X(t)−1)(x)
dx . The probability density function is defined as a

non-negative Borel measurable function characterized by P[X(t) ∈ C] =
∫
C

fX(t)(x) dx. Random
variables having a probability density function are called absolutely continuous, meaning that
their probability law is absolutely continuous with respect to the Lebesgue measure. The density
function allows calculating general statistics (expectation, variance, skewness, kurtosis, median,
quantiles, mode, etc.) and confidence intervals via integration.

In [28], the authors constructed approximations of the probability density functions of the
solution to (1) when A(t) and B(t) do not vary stochastically in time, that is, when A(t) = A
and B(t) = B are actually absolutely continuous random variables (autonomous case). A recent
paper, [29], presents the approximation of the probability density function of X(t) when A(t) =

p(t; D) and B(t) = q(t; D), that is to say, when both A(t) and B(t) depend on a unique absolutely
continuous random variable D. This approach does not extend to the general problem (1) and
certain theoretical points from that contribution are unclear.

In this work, we provide an analysis of (1) via the Fröbenius method. The solution is ex-
pressed in the form of a mean square convergent power series, under L∞(Ω) convergence of
A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0 Bn(t − t0)n and mean square integrability of the initial

data Y0 and Y1. The boundedness of the coefficients A0, A1, . . ., B0, B1, . . . is necessary, as shown
in examples of the paper. Truncation of unbounded supports of random coefficients can be car-
ried out to assure the required boundedness. The bias error of the Fröbenius method is proved to
decrease exponentially with the number of terms in the series. Therefore rapid approximations
of the statistical moments of X(t) can be derived. However, the exponential convergence is not
uniform in time, and it may deteriorate as we move away from the initial instant t0. Section 2
considers these issues. An additional issue is the computation of the probability density function
of X(t). Theoretically, it is given by a closed-form expression in terms of an expectation derived
from the law of total probability and by exploiting the linearity of the problem. However, to
evaluate it in practice, a dimensionality reduction of the problem is required. By truncating the
power series, we construct a sequence of probability density functions that, under certain as-
sumptions regarding Nemytskii operators, converges to the target density function pointwise. In
this setting, the pointwise convergence of the densities implies convergence in L1(R) (total vari-
ation distance), and in fact, in Lp(R), for 1 ≤ p < ∞. The pointwise convergence rate is proved
to be exponential under a certain Lipschitz condition, albeit being again not uniform in time.
This theoretical analysis on the approximation of the probability density function is presented
in Section 3. As each approximating density function is expressed in terms of an expectation,
they can be estimated via a Monte Carlo sampling strategy. The procedure is implemented in
the form of a symbolic algorithm, whose computational aspects are detailed in Section 4. The
proposed algorithm is tested on several numerical examples in Section 5, to verify the theoretical
findings of the paper and to illustrate computational aspects. Finally, Section 6 draws the main
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conclusions and points out potential lines of research for the future.

2. Stochastic solution

The initial value problem (1) was previously studied in the mean square sense. We start
by recalling the mean square existence and uniqueness theorem proved in our recent contribu-
tions [20, 21]. The proof uses fundamental results from deterministic power series extended to
the random scenario, together with the basics of difference equations.

Theorem 2.1. [21, Th. 2] Let A(t) =
∑∞

n=0 An(t − t0)n and B(t) =
∑∞

n=0 Bn(t − t0)n be two random
series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0 finite and fixed. Assume that the
initial conditions Y0 and Y1 belong to L2(Ω). Then the stochastic process X(t) =

∑∞
n=0 Xn(t− t0)n,

t ∈ (t0−r, t0+r), where X0 = Y0, X1 = Y1 and for n ≥ 0, Xn+2 = −1
(n+2)(n+1)

∑n
m=0[(m+1)An−mXm+1+

Bn−mXm], is an analytic solution to the random initial value problem (1) in the mean square sense.
Moreover, it is unique. Furthermore, by [20, Subsection 3.4], if Y0 and Y1 are bounded random
variables, then X(t) is an analytic L∞(Ω) solution to (1).

From this fundamental theorem we can extend the theory to a more general convergence
measure, by considering Lp(Ω) convergence, 1 ≤ p ≤ ∞: if A(t) and B(t) are two random power
series with convergence in L∞(Ω), for t ∈ (t0 − r, t0 + r), and the initial conditions Y0 and Y1
belong to Lp(Ω), then the stochastic process X(t) =

∑∞
n=0 Xn(t − t0)n is the Lp(Ω) solution to (1)

on (t0 − r, t0 + r).
Regarding the rapidity of convergence of the power series X(t) =

∑∞
n=0 Xn(t − t0)n introduced

in Theorem 2.1, some theoretical estimates were obtained in [20, Subsection 3.6], although no
rate of convergence was derived. Fixed r > 0 finite, given ρ B |t − t0| < r and given an arbitrary
s such that ρ < s < r, the following estimate holds:

‖XN(t) − X(t)‖2 ≤ K
(
r, s, {‖Ai‖∞}

∞
i=1, {‖Bi‖∞}

∞
i=1, ‖Y0‖2, ‖Y1‖2

)
·

(ρ/s)N+1

1 − ρ/s
.

In general, the estimate holds for p-norms. The constant K can be constructed as follows
(see [20]):

Step 1. Given u = (r+ s)/2 ∈ (s, r), choose a constant Cu > 0 such that ‖Ai‖∞ ≤ Cu/ui and ‖Bi‖∞ ≤

Cu/ui, i ≥ 0. Such a constant Cu exists because
∑∞

i=0 ‖Ai‖∞ui < ∞ and
∑∞

i=0 ‖Bi‖∞ui < ∞.

Step 2. Pick an integer n ≥ 0 such that ns
(n+2)u + Cu s

n+2 + Cu s2

(n+2)(n+1) < 1.
Step 3. Take K = max0≤m≤n Hmsm, where {Hm}

∞
m=0 satisfies the recursive equation: H0 = ‖Y0‖2,

H1 = ‖Y1‖2 and for m ≥ 0, Hm+2 =
(

m
(m+2)u + Cu

m+2

)
Hm+1 + Cu

(m+2)(m+1) Hm.

From the constructed K and given a target error ε > 0, a truncation order N satisfying N >
log(ε−1K(1− ρ/s)−1)/ log(s/ρ)− 1 = O(log(ε−1)) guarantees a mean square error ‖XN(t)− X(t)‖2
less than ε. The number s is arbitrary in (ρ, r). Unfortunately, we are not aware of any method to
choose the optimal s ∈ (ρ, r) minimizing N = log(ε−1K(1 − ρ/s)−1)/ log(s/ρ).

We stress several new consequences from these estimates. First, the rate of convergence of
{XN(t)}∞N=0 towards X(t) as N → ∞ is exponential, for t ∈ (t0− r, t0 + r), because it is proportional
to (ρ/s)N . Second, the convergence rate may deteriorate severely for large ρ = |t − t0| and large
norms of the random input coefficients. Indeed, K is growing with s > ρ and the norms.
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The fact that the convergence rate deteriorates for large |t − t0| is clear. Assume that we have∑∞
n=N ‖Xn‖2|t − t0|n < ε, for some target error ε > 0. As |t − t0|n increases when |t − t0| grows, a

larger N is needed to achieve a mean square error less than ε. This fact may especially occur for
|t − t0| ≥ 1, as in this case |t − t0|n does not tend to 0 when n→ ∞, therefore a faster decay of the
coefficients ‖Xn‖2 is needed to assure convergence.

The numerical experiments presented in [20] also permitted analyzing the behavior of con-
vergence. As theoretically expected by our exposition, the most important phenomenon observed
was that the convergence rate deteriorates severely when the distance |t − t0| increases, therefore
making the Fröbenius method computationally intractable. This issue also occurs with PC-type
methods, which require large orders for long-time integration [30]. Nonetheless, for not too large
|t − t0| (this “not too large” is problem-dependent), the Fröbenius method works very well.

Having analyzed the convergence rate of the Fröbenius method, let us focus now on the as-
sumptions of Theorem 2.1. In [21], the following open problem was raised: “If there exists a
point t1 ∈ (t0 − r, t0 + r) such that A(t1) < L∞(Ω) or B(t1) < L∞(Ω), then there exist two initial
conditions Y0,Y1 ∈ L2(Ω) such that (1) has no mean square solution on (t0 − r, t0 + r)”. This
problem implies that the hypotheses used in Theorem 2.1 are sharp, in the sense that counterex-
amples exist if any of them is relaxed. The following two examples of (1) with an unbounded
input coefficient have no mean square solution X(t). The arguments to prove that these examples
have no solution follow the reasoning of [3, Example, pp. 541–542].

Example 2.2 (Non-existence of mean square solution X(t)). Consider the initial value prob-
lem (1) with A(t) = 0, B(t) = Z and the initial conditions X(t0 = 0) = Y0 and Ẋ(t0 = 0) = 0. Let
Z < 0 be an unbounded random variable (for example, Z = −U, where U follows an Exponen-
tial, Gamma, Poisson, etc. distribution). Suppose that for any initial condition Y0 ∈ L2(Ω) there
is a mean square solution X(t). By [3, Th. 3(a)], every mean square solution to a random differ-
ential equation problem is a sample path solution. More specifically, there exists an equivalent
stochastic process, product measurable, whose sample paths solve the deterministic counterpart
of the problem almost surely. Therefore X(t) is a sample path solution (we choose the appropriate
representative of the equivalence class), with X(t) = Y0 cosh(

√
−Z t) for all t ∈ R, almost surely.

Fix t , 0. Consider the random variable T = cosh(
√
−Z t). Notice that ‖T‖∞ = ∞. Consider the

operator ∆ : L2(Ω) → L2(Ω), ∆(Y) = YT . This operator is linear and continuous, as a conse-
quence of the closed graph theorem. Hence, there is a constant C > 0 such that ‖YT‖2 ≤ C‖Y‖2,
for all Y ∈ L2(Ω). In fact, this inequality holds for any random variable Y (since, if Y < L2(Ω),
then ‖Y‖2 = ∞). Let Y = T m. We have ‖T m+1‖2 ≤ C‖T m‖2, which yields ‖T m‖2 ≤ Cm. That is,
‖T‖2m ≤ C. Hence, ‖T‖∞ = limm→∞ ‖T‖2m ≤ C, but this is a contradiction. Thus, we conclude
that there must exist an initial condition Y0 ∈ L2(Ω) such that the stochastic problem has no mean
square solution.

The case in which Z > 0 is unbounded (let us suppose that Z is Gamma distributed) may be
tackled analogously, although with a subtlety. Proceeding again by contradiction, let us suppose
that for any initial condition Y0 ∈ L2(Ω) there exists a mean square solution X(t). By [3, Th. 3(a)],
X(t) = Y0 cos(

√
Z t) for all t ∈ R, almost surely. In contrast with the previous case, now cos(

√
Z t)

is bounded. As X(t) is mean square differentiable, its mean square derivative must be given by
Ẋ(t) = −Y0

√
Z sin(

√
Z t) [31, p. 536]. Fix t , 0 and let T = −

√
Z sin(

√
Z t). Now we do have that

‖T‖∞ = ∞, so the previous reasoning based on the closed graph theorem can be applied to deduce
that there exists an initial condition Y0 ∈ L2(Ω) such that Ẋ < L2(Ω). This is a contradiction.

The general case, in which Z is an unbounded random variable, is easily addressed now (this
includes, for instance, the case of Gaussian random variables). If Z is unbounded, then it must
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be unbounded on the positive or negative axis. Let us suppose it unbounded on the positive axis
(the other case is completely analogous). Take Ω̃ ⊆ Ω such that P[Ω̃] > 0 and Z(ω) > 0 for each
ω ∈ Ω̃. Consider the new probability subspace (Ω̃,FΩ̃ = F ∩ 2Ω̃,PΩ̃ = P|FΩ̃

). We restate the
random differential equation problem on this new probability space, where Z > 0 is unbounded.
The previous case thus applies. Therefore we are done since every mean square solution on Ω

must also be a mean square solution on Ω̃. This analysis terminates the example.

Example 2.3 (Non-existence of mean square solution X(t)). Let us consider now problem (1)
with A(t) = Z, B(t) = 0 and the initial conditions X(t0 = 0) = 0, Ẋ(t0 = 0) = Y1. Let Z be any
unbounded random variable. Suppose that for any initial condition Y1, there exists a mean square
solution X(t). Let Y(t) = Ẋ(t), which satisfies Ẏ(t) + ZY(t) = 0, Y(t0 = 0) = Y1. By [3, Th. 3(a)],
Y(t) = Y1e−Zt for all t ∈ R, almost surely. Fix t , 0 and let T = e−Zt. The random variable T
is unbounded. Hence, the same reasoning from Example 2.2 based on the closed graph theorem
applies again. We conclude that there must exist Y1 ∈ L2(Ω) such that Y(t) < L2(Ω), which is a
contradiction, and we are done with this example.

The boundedness of the random input coefficients is crucial to obtain the Lipschitz condition
demanded by the general existence and uniqueness theorem for random differential equations
[1, pp. 118–119], [3], [21, Th. 4]. In practice, to satisfy this mandatory boundedness, one may
truncate the support to a large but bounded interval.

3. Computation of the probability density function

We now turn to the computation of the probability density function of X(t). Having clarified
the conditions for the existence of the solution, we start by rewriting X(t) in an alternative form.

Theorem 3.1. Let A(t) =
∑∞

n=0 An(t − t0)n and B(t) =
∑∞

n=0 Bn(t − t0)n be two random series in
the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0 finite and fixed. Assume that the initial
conditions Y0 and Y1 belong to L2(Ω). Then the mean square analytic solution X(t) can be
expressed as X(t) = Y0S 0(t)+Y1S 1(t), t ∈ (t0− r, t0 + r), where S 0(t) and S 1(t) are random power
series solutions to (1) in L∞(Ω) for the deterministic initial conditions S 0(t0) = 1, Ṡ 0(t0) = 0,
and S 1(t0) = 0, Ṡ 1(t0) = 1, respectively.

Notice that we write X(t) as a linear combination of the fundamental set {S 0(t), S 1(t)}. This
expression exploits the linearity of the problem. The processes S 0(t) and S 1(t) are random power
series in L∞(Ω), S 0(t) =

∑∞
n=0 S 0,n(t − t0)n, S 1(t) =

∑∞
n=0 S 1,n(t − t0)n, whose coefficients satisfy

a difference equation as in Theorem 2.1; for S 0(t) it comes S 0,0 = 1, S 0,1 = 0, and for n ≥ 0,
S 0,n+2 = −1

(n+2)(n+1)
∑n

m=0[(m + 1)An−mS 0,m+1 + Bn−mS 0,m], while for S 1(t) we have S 1,0 = 0,
S 1,1 = 1, and S 1,n+2 = −1

(n+2)(n+1)
∑n

m=0[(m + 1)An−mS 1,m+1 + Bn−mS 1,m], for n ≥ 0.
The following lemma is necessary to compute the probability density function fX(t)(x). Its

proof is a consequence of the law of total probability [32, Ch. 6], [33, Def. 7.11].

Lemma 3.2. Let U be an absolutely continuous random variable, independent of the random
vector (Z1,Z2), where Z1 , 0 almost surely. Then Z1U +Z2 is absolutely continuous, with density
function fZ1U+Z2 (z) = E[ fU((z − Z2)/Z1)/|Z1|].
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This lemma provides an alternative to the random variable transformation method [29, Th. 1],
in the case of affine mappings. It does not require that the random quantities have an absolutely
continuous probability law, a fact that presents advantages from the practical perspective. The
drawback is that we need independence between U and (Z1,Z2) to represent the probability
density function as an expectation. The expectation can be approximated via sampling-based
statistical methods, as discussed later on. The following theorem, which derives the probability
density function of X(t), is a straightforward consequence of Lemma 3.2.

Theorem 3.3. Let A(t) =
∑∞

n=0 An(t − t0)n and B(t) =
∑∞

n=0 Bn(t − t0)n be two random series in
the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0 finite and fixed. Suppose that the initial
conditions Y0 and Y1 belong to L2(Ω). If S 0(t) , 0 almost surely, if Y0 is absolutely continuous,
with density function fY0 , and it is independent of the rest of random input parameters of (1),
then the mean square solution X(t) has for probability density function

fX(t)(x) = E
[

fY0

(
x − Y1S 1(t)

S 0(t)

)
1
|S 0(t)|

]
. (2)

An important issue with expression (2) is that S 0(t) and S 1(t) are given by infinite series, there-
fore truncated approximations are needed. We have to justify that it is legitimate to reduce
dimensionality and use truncated random power series for S 0(t) and S 1(t). In what follows, we
denote by S N

0 (t) and S N
1 (t) the N-th partial sums of S 0(t) and S 1(t), respectively, which converge

in L∞(Ω) for each t. Let XN(t) = Y0S N
0 (t) + Y1S N

1 (t) be a truncation of the solution X(t), which
converges in the mean square sense for each time t.

In the study of random differential equation problems with no closed-form expression of
the solution process but only an infinite expansion, one usually constructs an approximating se-
quence of stochastic processes with reduced dimensionality and computable probability density
function. One thus obtains an approximating sequence of probability density functions, which
hopefully presents rapid convergence to the target density function. Moreover, the discontinuity
and non-differentiability points of the target density function are captured with no difficulty. In
the literature, one may find applications of this type of strategy with power series and Karhunen-
Loève developments [15, 34], finite difference schemes [12], and PC expansions [35].

If S N
0 (t) , 0 almost surely, the probability density function of XN(t) is

fXN (t)(x) = E
 fY0

 x − Y1S N
1 (t)

S N
0 (t)

 1
|S N

0 (t)|

 . (3)

This expression involves a maximum of 2N + 3 random variables (Y1, S 0,n and S 1,n for 0 ≤
n ≤ N). Thus, the expectation can be computed by numerical integration (in the case of abso-
lutely continuous random input coefficients), or by a Monte Carlo procedure [8, pp. 53–54], by
sampling realizations of Y1, S N

0 (t) and S N
1 (t). This is the same strategy as the one followed in

our recent paper [15]. The approach based on numerical integration would be feasible only in
the case of small N and A(t) = p(t; D), B(t) = q(t; D) (D random), as in [29], otherwise it is
impractical. This is because the integration dimension relies on the dimension of the random
space (the total number of input random variables). The Monte Carlo strategy can cope with
high uncertainty dimension and large N, albeit at the expense of introducing a statistical error
due to sampling, in addition to the bias error. The sampling error is reduced as the number of
realizations increases, but at the cost of higher computational burden.
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We need to justify that, for each t, limN→∞ fXN (t)(x) = fX(t)(x), for x ∈ R. This is a strong
mode of convergence. Indeed, as we are working with density functions, almost everywhere con-
vergence on R implies convergence in L1(R): ‖ fX(t) − fXN (t)‖L1(R) =

∫
R | fX(t)(x)− fXN (t)(x)| dx→ 0

as N → ∞. This is due to Scheffé’s lemma [36, p. 55], [37]. Convergence in L1(R) is also re-
ferred to as convergence in total variation [38, p. 41]: ‖(P ◦ (XN(t))−1) − (P ◦ (X(t))−1)‖TV B
sup{|P[XN(t) ∈ F] − P[X(t) ∈ F]| : F ∈ F } = 1

2‖ fXN (t) − fX(t)‖L1(R). It is also equiva-
lent to convergence in terms of the Hellinger distance [39], H(P ◦ (XN(t))−1,P ◦ (X(t))−1) B
(1/
√

2)‖ f 1/2
XN (t) − f 1/2

X(t)‖L2(R), via the elementary inequalities H2 ≤ ‖ · ‖TV ≤
√

2 H.
In fact, convergence in L1(R) may be generalized to convergence in Lp(R), for 1 < p < ∞,

by imposing boundedness on R of fY0 . Indeed, in this case, taking a constant C > 0 such that
| fXN (t)(x)| ≤ C and | fX(t)(x)| ≤ C, for N ≥ 0, t and x ∈ R, the mean value theorem leads to
|‖ fXN (t)‖

p
Lp(R) − ‖ fX(t)‖

p
Lp(R)| ≤ p Cp−1‖ fXN (t) − fX(t)‖L1(R), therefore ‖ fXN (t)‖Lp(R) → ‖ fX(t)‖Lp(R) as

N → ∞. By Scheffé’s lemma, there is convergence in Lp(R): ‖ fX(t) − fXN (t)‖Lp(R) = (
∫
R | fX(t)(x) −

fXN (t)(x)|p dx)1/p → 0 as N → ∞.
The pointwise convergence is the object of the following important Theorem 3.7. The result

is proved in the spirit of our contribution [15], by utilizing the concept of Nemytskii operator
[15, Remark 2.6], [40, pp. 15–17], [41, pp. 154–163].

Lemma 3.4. Let {VN}
∞
N=1 be a sequence of random variables that converges to V in L2(Ω). If

P[V ∈ D fY0
] = 0, where D fY0

is the set of discontinuity points of fY0 , and if fY0 (y) ≤ α + βy2, for
certain constants α, β ≥ 0, then fY0 (VN)→ fY0 (V) as N → ∞ in L1(Ω).

Proof 3.5. It suffices to prove that, for every subsequence {VNk }
∞
k=1, there exists a subsequence

{VNkl
}∞l=1 such that liml→∞ fY0 (VNkl

) = fY0 (V) in L1(Ω). Fix any subsequence {VNk }
∞
k=1. Since

limk→∞ VNk = V in L2(Ω), by [42, Th. 4.9] there exist a subsequence {VNkl
}∞l=1 and a random

variable V ∈ L2(Ω) such that liml→∞ VNkl
(ω) = V(ω) and |VNkl

(ω)| ≤ V(ω) almost surely.
Since P[V ∈ D fY0

] = 0, the continuous mapping theorem [43, p. 7, Th. 2.3] guarantees that
liml→∞ fY0 (VNkl

(ω)) = fY0 (V(ω)) almost surely. As fY0 (VNkl
(ω)) ≤ α + β(VNkl

(ω))2 ≤ α +

β(V(ω))2 ∈ L1(Ω), we can apply the dominated convergence theorem to conclude that the desired
limit holds: liml→∞ fY0 (VNkl

) = fY0 (V) in L1(Ω).

Remark 3.6. As S 0(t0) = 1 and S 0(t) is continuous in L∞(Ω), we can find a neighborhood of t0,
say (t0 − δ, t0 + δ) for certain δ > 0, such that ‖S 0(t)− 1‖∞ < 1/4 for all t ∈ (t0 − δ, t0 + δ). Hence,
S 0(t) > 3/4 > 0 almost surely, for t ∈ (t0 − δ, t0 + δ). Notice that δ might not be equal to ∞; for
instance, the deterministic function X(t) = sin t satisfies Ẍ(t) + X(t) = 0, X(t0 = π/2) = 1 and
Ẋ(t0 = π/2) = 0.

For t ∈ (t0 − δ, t0 + δ) fixed, there exists an integer Nt > 0 such that ‖S N
0 (t) − S 0(t)‖∞ < 1/4,

for all N ≥ Nt. Then ‖S N
0 (t) − 1‖∞ ≤ ‖S N

0 (t) − S 0(t)‖∞ + ‖S 0(t) − 1‖∞ < 1/2. This implies that
S N

0 (t) > 1/2 almost surely, N ≥ Nt. From now on, we will work with t ∈ (t0 − δ, t0 + δ).

Theorem 3.7. Suppose the conditions of Theorem 3.3. If fY0 is continuous on R and fY0 (y) ≤
α+βy2, for certain constants α, β ≥ 0, then limN→∞ fXN (t)(x) = fX(t)(x), for each t ∈ (t0−δ, t0 +δ)
and for every x ∈ R.

Proof 3.8. Fix t ∈ (t0 − δ, t0 + δ) and x ∈ R. Let

VN =
x − Y1S N

1 (t)

S N
0 (t)

, V =
x − Y1S 1(t)

S 0(t)
(4)
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(here we drop the explicit dependencies of VN and V on t and x). First, notice that VN → V as
N → ∞ in L2(Ω), as an easy consequence of the following facts: S N

0 (t) > 1/2 almost surely, for
all N ≥ Nt, S N

0 (t)→ S 0(t) and S N
1 (t)→ S 1(t) as N → ∞ in L∞(Ω), and Y1 ∈ L2(Ω).

The conditions imposed on fY0 imply that the Nemytskii operator V 7→ fY0 (V) is continu-
ous from L2(Ω) to L1(Ω), by Lemma 3.4. Hence, limN→∞ fY0 (VN) → fY0 (V) in L1(Ω). Since
S N

0 (t) > 1/2 almost surely, for all N ≥ Nt, and limN→∞ S N
0 (t) → S 0(t) in L∞(Ω), we deduce that

fY0 (VN)/S N
0 (t)→ fY0 (V)/S 0(t) as N → ∞ in L1(Ω).

In particular, the sequence of expectations, fXN (t)(x) = E[ fY0 (VN)/S N
0 (t)], converges to the

density fX(t)(x) = E[ fY0 (V)/S 0(t)], which completes the proof.

In Section 5, the application of Theorem 3.7 will be illustrated numerically on Examples 5.1–
5.2.

Remark 3.9. Having limN→∞ fY0 (VN)/S N
0 (t) = fY0 (V)/S 0(t) in L1(Ω) assures the convergence

of the expectations. If convergence of the variances is also needed, one needs to extend the
convergence to L2(Ω). In this case, the boundedness condition on fY0 should be fY0 (y) ≤ α + β|y|
(apply an analogous proof to Lemma 3.4).

Remark 3.10 (Rate of convergence of the approximating density functions). Notice that, un-
der the conditions of Theorem 3.3, if fY0 is Lipschitz continuous on R (this assumption is stronger
than the hypotheses of Theorem 3.7), then fXN (t)(x) converges with N exponentially to fX(t)(x),
for t ∈ (t0 − δ, t0 + δ) and x ∈ R. This is because the Lipschitz condition allows estimating
| fXN (t)(x) − fX(t)(x)| via the following inequality:

| fXN (t)(x) − fX(t)(x)| ≤ Ct

(
(|x| + 1)‖S N

0 (t) − S 0(t)‖∞ + ‖Y1‖2‖S N
1 (t) − S 1(t)‖∞

)
,

and as discussed in Section 2, the Fröbenius method converges exponentially. In the previous
expression, Ct is a constant depending on t. Unfortunately, the exponential convergence rate is
not uniform with t and x. As |t− t0| grows, one needs to increase N to maintain the accuracy. The
same occurs with |x|, which increases the bias error ‖S N

0 (t) − S 0(t)‖∞ linearly.
In general, if fY0 is γ-Hölder continuous on R with exponent 0 < γ ≤ 1 (the case γ = 1

corresponds to Lipschitz continuity), then

| fXN (t)(x) − fX(t)(x)| ≤ Ct

{
‖S N

0 (t) − S 0(t)‖∞ +
(
|x|‖S N

0 (t) − S 0(t)‖∞ + ‖Y1‖2‖S N
1 (t) − S 1(t)‖∞

)γ}
.

The same conclusion on the convergence holds in this case.

Notice that the regularity of fXN (t)(x) is inherited from fY0 (y). These ideas are formalized in
the following theorem:

Theorem 3.11. Under the assumptions of Theorem 3.7, if fY0 is C1(R) with bounded derivative
on R, then fXN (t)(x) and fX(t)(x) are C1(R), with bounded derivatives, and f ′XN (t)(x) → f ′X(t)(x) as
N → ∞, for each t ∈ (t0 − δ, t0 + δ) and for every x ∈ R.

Proof 3.12. Fix t ∈ (t0 − δ, t0 + δ). The following facts permit differentiating under the expec-
tation operator that defines fXN (t)(x) and fX(t)(x) [44, p. 142]: fY0 is differentiable with bounded
derivative, and S N

0 (t) > 1/2 almost surely for all N ≥ Nt. Hence,

f ′XN (t)(x) = E

 f ′Y0

 x − Y1S N
1 (t)

S N
0 (t)

 1(
S N

0 (t)
)2

 , f ′X(t)(x) = E
[

f ′Y0

(
x − Y1S 1(t)

S 0(t)

)
1

(S 0(t))2

]
.
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The continuity and boundedness conditions imposed on f ′Y0
entail that the Nemytskii operator

V 7→ f ′Y0
(V) is continuous from L2(Ω) to L1(Ω), by Lemma 3.4. Thereby, as in the proof of

Theorem 3.7, we deduce that limN→∞ f ′XN (t)(x) = f ′X(t)(x), x ∈ R.

Remark 3.13. It is important to realize that the previous theory works exchanging the role of Y1
and Y0. Indeed, even though S 1(t0) = 0, in contrast with S 0(t0) = 1, we do have that Ṡ 1(t0) = 1.
We may choose a neighborhood of t0, say (t0 − µ, t0 + µ) for certain µ > 0, such that Ṡ 1(t) > 3/4
almost surely, for t ∈ (t0 − µ, t0 + µ). We know that, in the sense of L∞(Ω), S 1(t) =

∫ t
t0

Ṡ 1(r) dr.
Then |S 1(t)| > 3

4 |t − t0| = mt almost surely, for t ∈ (t0 − µ, t0 + µ). In particular, as mt > 0 for
t ∈ (t0 − µ, t0 + µ)\{t0}, the previous proofs work with Y1 in lieu of Y0. The previous theoretical
results may be restated in a completely analogous fashion, as

fX(t)(x) = E
[

fY1

(
x − Y0S 0(t)

S 1(t)

)
1
|S 1(t)|

]
, fXN (t)(x) = E

 fY1

 x − Y0S N
0 (t)

S N
1 (t)

 1
|S N

1 (t)|

 ,
for t ∈ (t0 − µ, t0 + µ)\{t0}. In this case, one requires Y1 to have an absolutely continuous
probability law, with density function fY1 , and to be independent of the rest of the random in-
put parameters in (1). For convergence, one imposes continuity for fY1 on R and boundedness
fY1 (y) ≤ α + βy2, for certain constants α, β ≥ 0. If fY1 is Lipschitz continuous on R, then an
exponential convergence holds. Finally, if fY1 is also C1(R) with bounded derivative on R, then
both fXN (t)(x) and fX(t)(x) are C1(R), with bounded derivative, and the sequence of derivatives
converges. These cases are considered in Example 5.3.

The continuity condition on R imposed in Theorem 3.7 is somewhat restrictive, as we do
not allow some common probability distributions for Y0 whose density function possesses dis-
continuity points, such as the Uniform, Exponential or general truncated distributions. Notice
that this assumption in Theorem 3.7 may be relaxed to almost everywhere continuity on R, by
adding absolute continuity on Y1. This fact is a consequence of the continuous mapping theo-
rem [43, p. 7, Th. 2.3]. Indeed, for t ∈ (t0 − min{δ, µ}, t0 + min{δ, µ})\{t0}, as |S 1(t)| > mt > 0
almost surely and Y1 is absolutely continuous, then V =

x−Y1S 1(t)
S 0(t) is absolutely continuous, by

Lemma 3.2. Therefore, the probability that V lies in the discontinuity set of fY0 is 0. This assures
that fY0 (VN)→ fY0 (V) in L1(Ω) as N → ∞, by Lemma 3.4.

The precise restatement of Theorem 3.7 is the following:

Theorem 3.14. Suppose the conditions of Theorem 3.3. If fY0 is almost everywhere continuous
on R, fY0 (y) ≤ α + βy2 for certain constants α, β ≥ 0, Y1 is absolutely continuous, and Y1 is
independent of (A, B), then limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (t0 −min{δ, µ}, t0 + min{δ, µ})\{t0}
and for every x ∈ R.

Theorem 3.14 will be applied in Example 5.4. An alternative version, with Y1 playing the
role of Y0, can be formulated following Remark 3.13. Notice that, nowhere in our theoretical
exposition, we require independence between the coefficients of A(t) and B(t). We do not need
any assumption on their probability distributions either, which might be discrete or continuous
(but always bounded).

The methodology and theory presented in the paper do not cover all situations. For instance,
let us study (1) involving discrete uncertainties. Other situations could be analogously analyzed.
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Theorem 3.15. Suppose the conditions of Theorem 3.3. Assume that the coefficients A0, A1, . . .,
B0, B1, . . . are deterministic constants. If fY0 has at most a countable number of discontinuities
on R, fY0 (y) ≤ α + βy2 for certain constants α, β ≥ 0, and Y1 is a discrete random variable, then
limN→∞ fXN (t)(x) = fX(t)(x) for almost every x ∈ R, for each t ∈ (t0 − δ, t0 + δ).

Proof 3.16. Fix t ∈ (t0 − δ, t0 + δ). Let VN(x) = (x − Y1S N
1 (t))/S N

0 (t), V(x) = (x − Y1S 1(t))/S 0(t)
(now we make the dependence of VN and V on x explicit). We know that VN(x) → V(x) in
L2(Ω) as N → ∞, for all x ∈ R. Given the discontinuity set of fY0 , D fY0

, we need to justify that
P[V(x) ∈ D fY0

] = 0, for almost every x ∈ R. In this case, fY0 (VN(x)) → fY0 (V(x)) in L1(Ω) as
N → ∞, for almost every x ∈ R.

Write D fY0
= {d1, d2, d3, . . .}. As Y1 is a discrete random variable, its support may be ex-

pressed as SY1 = {y1
1, y

2
1, y

3
1, . . .}. Then the support of V(x) is SV(x) = {(x − y j

1S 1(t))/S 0(t) : j =

1, 2, 3, . . .}. The problematic x’s are those such that x = y j
1S 1(t) + dkS 0(t). Let Λ = {y j

1S 1(t) +

dkS 0(t) : j, k = 1, 2, 3, . . .}, which is a countable set. For every x < Λ, P[V(x) ∈ D fY0
] = 0.

As a consequence, limN→∞ fY0 (VN(x)) = fY0 (V(x)) in L1(Ω), x < Λ, by Lemma 3.4. This gives
limN→∞ fXN (t)(x) = fX(t)(x), x < Λ, and we are done.

Once again, one can state a similar version with Y1 playing the role of Y0 (see Remark 3.13)
and working on (t0 − µ, t0 + µ)\{t0}, instead. Example 5.5 covers this situation.

4. Computational aspects

We recast the proposed methodology in the form of Algorithm 1, which corresponds to the
case of Y0 having a density, see (2); following Remark 3.13, one can exchange the role of Y0 and
Y1 in Algorithm 1, provided that Y1 has a density.

By judiciously exploiting its expression in (3), fXN (t)(x) can be approximated via a Monte
Carlo procedure [8, pp. 53–54] to evaluate the expectation: using M randomly generated real-
izations of Y1, S N

0 (t) and S N
1 (t), we compute the sample average of VN(x, t) in (4). Algorithm 1

corresponds to symbolic computations with symbolic variables x and t [45]; it computes a func-
tion f N,M

X (x, t), which is a complex closed-form expression approximating fX(t)(x). To speed up
the execution of the algorithm, numerical values of t and/or x may be provided.

The estimation error can be split into two contributions: fX(t)(x) − f N,M
X (x, t) = θN(x, t) +

EN,M(x, t). The first contribution, θN(x, t) = fX(t)(x) − fXN (t)(x), is the bias error caused by
the truncation order N in the Fröbenius method. It is deterministic and decays exponentially
as N → ∞ for each t and x by Remark 3.10. The second contribution is the sampling error
EN,M(x, t) = fXN (t)(x) − f N,M

X (x, t), due to using a finite number M of samples (statistical error).
This contribution is random and EN,M(x, t) → 0 with M almost surely, as a consequence of the
law of large numbers. If the variance

σ2
N(x, t) B V

 fY0

 x − Y1S N
1 (t)

S N
0 (t)

 1
S N

0 (t)

 (5)

is finite, then the asymptotic probability distribution of EN,M(x, t) as M → ∞ is, by the central
limit theorem, Normal(0, σ2

N(x, t)/M). The variance σ2
N(x, t) tends, as N → ∞, to σ2(x, t) B

V[ fY0 ( x−Y1S 1(t)
S 0(t) ) 1

S 0(t) ] (see Remark 3.9). In this case, we say that the sampling error is of order

1/
√

M, and write O(1/
√

M). On the contrary, if σ2
N(x, t) = ∞, then the almost sure conver-

gence EN,M(x, t) → 0 with M remains valid, although it might be much slower and affect the
11



Algorithm 1 Estimation of fXN (t)(x) via a classical Monte Carlo procedure.
Inputs: t0; N; fY0 ; probability distribution of A0, . . . , AN , B0, . . . , BN , Y1; and number M of
realizations in the classical Monte Carlo procedure. Here, t and x will be symbolic variables.
Required: Hypotheses of Theorem 3.7 or Theorem 3.14.

1: S 0,0 ← 1, S 0,1 ← 0, S 1,0 ← 0, S 1,1 ← 1 . Initial conditions
2: Σ← 0 . Initialize the samples sum
3: for i = 1, . . . ,M do . Monte Carlo loop
4: Draw randomly a realization of (A0, . . . , AN−2, B0, . . . , BN−2) and Y1
5: for n = 0, . . . ,N − 2 do
6: S 0,n+2 ←

−1
(n+2)(n+1)

∑n
m=0[(m + 1)An−mS 0,m+1 + Bn−mS 0,m]

7: S 1,n+2 ←
−1

(n+2)(n+1)
∑n

m=0[(m + 1)An−mS 1,m+1 + Bn−mS 1,m]
8: end for
9: S N

0 (t)← 1 +
∑N

n=1 S 0,n(t − t0)n . Realization of S N
0 (t)

10: S N
1 (t)←

∑N
n=1 S 1,n(t − t0)n . Realization of S N

1 (t)

11: Σ← Σ + fY0

(
x−Y1S N

1 (t)
S N

0 (t)

)
1

|S N
0 (t)| . Update the samples sum

12: end for
13: f N,M

X (x, t)← Σ/M . Set sample average
14: Return f N,M

X (x, t) . Approximation of fXN (t)(x)

approximation to fXN (t)(x) severely. See the forthcoming Example 5.3 for an illustration of this
issue.

Even though the bias error decays very fast, the sampling error is inevitable. In numerical
computations, for fixed M, there is usually an index N from which the global error does not go
down anymore because the sampling error O(1/

√
M) becomes dominant.

Within the main loop of Algorithm 1 (loop over the samples), we first generate one realiza-
tion for each random variable A0, . . . , AN−2, B0, . . . , BN−2 and Y1; these realizations are used to
compute by recursion the corresponding realizations of S N

0 (t) and S N
1 (t). In our implementation,

this procedure is more effective than expressing first S N
0 (t) and S N

1 (t) recursively in terms of
symbolic variables A0, . . . , AN−2, B0, . . . , BN−2 and Y1, and then evaluate for the realizations of
A0, . . . , AN−2, B0, . . . , BN−2 and Y1. This is due to the excessive complexity of the symbolic ex-
pressions of S N

0 (t) and S N
1 (t), which makes the computational time of their evaluation for specific

realizations prohibitively large.
The computational complexity of Algorithm 1 is at most O(MN2) (the nested loop over n

demands
∑N−2

n=0 O(n) = O(N2) operations in general). As we show in the following Section 5, the
implemented algorithm is certainly applicable and suitable for stochastic computations.

By taking M = O(1/ε2), the variance of the statistical error is V[EN,M(x, t)] = O(ε2) (as-
suming the variance in (5) finite). Under exponential convergence of the bias, by picking N =

O(log(1/ε))+O(1) the bias error is |θN(x, t)| = O(ε). Then the mean square error of the algorithm
is ‖ fX(t)(x) − f N,M

X (x, t)‖2 =
√
θN(x, t)2 + V[EN,M(x, t)] = O(ε), with a computational complexity

O(MN2) = O
(
ε−2 log2 ε

)
.

The complexity of Algorithm 1 is significantly reduced if A(t) and B(t) are random polyno-
mials, instead of infinite series. Suppose for instance that A j = 0 and B j = 0, for j ≥ N0 − 1.
Then, within the nested loop over n, we actually sum N0 terms, instead of n terms. Therefore, the
nested loop demands N0O(N) = O(N) operations. The whole algorithm then requires O(MN)
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operations only. If we take M = O(1/ε2) and N = O(log(1/ε)) + O(1) to ensure a mean square
error of order ε, the computational complexity becomes O(MN) = O(ε−2 log(ε−1)).

In the case in which A(t) and B(t) are deterministic expansions, the loop over n and the as-
signments for S N

0 (t) and S N
1 (t) may be run once for all at the beginning of the algorithm and

before the loop over the samples. The computational complexity then reduces even more to
O(M) + O(N2) operations and the global cost is generally dominated by the sampling. To guar-
antee a global mean square error of order ε with M = O(1/ε2) and N = O(log(1/ε)) + O(1), the
computational complexity becomes O(ε−2) + O(log2 ε) = O(ε−2). This scenario allows increas-
ing M and obtaining more accurate results by improving the statistical convergence. If A(t) and
B(t) are simply deterministic polynomials, then the overall cost reduces further to O(M) + O(N)
operations, which yields in the end O(ε−2) calculations.

In the view of computational applications, an important drawback of our exposition is the
lack of awareness on the specific values of δ and µ, which are necessary to prove the theoretical
convergence. Given any t, one can apply Algorithm 1 and check the convergence of the estimator
with M and N. The results can be validated using other stochastic methods and using statistics
based on the estimated density. Notice that, in Algorithm 1, we have put |S N

0 (t)| instead of S N
0 (t).

Even though we assume that S N
0 (t) > 0 almost surely, for t ∈ (t0 − δ, t0 + δ) and N ≥ Nt, the

absolute value ensures positiveness in numerical applications even if |t − t0| ≥ δ.

5. Numerical examples

In this section, we numerically illustrate our theoretical findings, using Algorithm 1 to esti-
mate the density of the solution to (1). Several cases, differing by the probability distributions
of the random input coefficients, are considered to cover a large class of situations and show the
broad applicability of our theory.

In each of these examples, we first check that the necessary theoretical conditions hold;
we then estimate the density function fXN (t)(x) for several increasing values of N to highlight
the convergence toward fX(t)(x). To this end, we employ the symbolic Monte Carlo sampling
procedure outlined in Algorithm 1.

The theoretical results of Section 3 motivate the structure and the choice of the following
five examples. In Example 5.1, we address the case where A(t) and B(t) are random polyno-
mials; while Example 5.2 concerns infinite expansions and infinite dimensionality. These first
two examples showcase the applicability of Theorem 3.7. Example 5.3 is designed to highlight
Remark 3.13. Up to this example, fY0 or fY1 are continuous on the whole real line. In contrast,
Example 5.4 considers experiments with fY0 possessing discontinuity points, thus evoking The-
orem 3.14. Finally, Example 5.5 considers the case where A(t) and B(t) are deterministic, so that
Theorem 3.15 applies.

The implementations and computations are performed with MathematicaR©, version 11.2 [46],
owing to its capability to handle symbolic computations. In general, Algorithm 1 is applied with
M = 20, 000 samples, as beyond this limit, the computational burden is becoming massive. The
output function f N,M=20,000

X (x, t) is handled symbolically on t and x. To simplify the notations,
we refer to the Monte Carlo estimate f N,M=20,000

X (x, t) as f̂XN (t)(x). We recall that the estimate
f̂XN (t)(x) has two sources of error: bias and sampling. Although the bias error decays very fast
(exponentially under the conditions of Remark 3.10), the sampling error is unavoidable and at
least of order O(1/

√
M).
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In each one of the following examples, we perform a complete analysis of the errors. As the
exact density function fX(t)(x) is not known, we first analyze differences in consecutive (in N)
estimates, both pointwise, using

δεN(x, t) B | f̂XN+1(t)(x) − f̂XN (t)(x)|, (6)

and globally, using the norm

∆εN(t) B ‖ f̂XN+1(t) − f̂XN (t)‖L1(R). (7)

As successive differences do not directly characterize the error, we also report

EN(t) B ‖ f̂XL(t) − f̂XN (t)‖L1(R) (8)

for some pre-fixed L � 1, selected such that f̂XL(t) plays the role of a bias-free estimate of func-
tion fX(t). We set L = 30 in the following. The L1(R) norms are computed by direct numerical
integration, using a standard quadrature rule (standard NIntegrate routine in MathematicaR©).

Example 5.1. We start with the stochastic problem (1) where both A(t) and B(t) are random
polynomials of degree 1: A(t) = A0+A1t, and B(t) = B0+B1t. We set A0 = 4, A1 ∼ Uniform(0, 1),
B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35), Y0 ∼ Normal(2, 1) and Y1 ∼ Poisson(2), all being
independent random variables. In order for the hypotheses of Theorem 2.1 and Theorem 3.7 to
be satisfied, the Gamma distribution is truncated. For the Gamma distribution with shape and
rate 2, it can be checked that the interval [0, 4] contains approximately 99.7% of the probability,
so we actually consider B0 ∼ Gamma(2, 2)|[0,4].

By Theorem 2.1, the unique mean square solution to the problem can be written as a random
power series X(t) =

∑∞
n=0 Xntn that is mean square convergent for all t ∈ R. With Theorem 3.7,

we approximate pointwise the probability density function fX(t)(x) with f̂XN (t)(x), N ≥ 0, and
use Algorithm 1 taking advantage from the fact that A(t) and B(t) are random polynomials and
not infinite expansions. We consider times t = 0.5, 1 and 1.5. In Figure 1 we present the
graphs of f̂XN (t)(x) at the corresponding times. Observe that the estimates are smooth, due to
the regularity of the initial density fY0 , see Theorem 3.11. Observe also that, as N increases,
the density functions become closer, reflecting the theoretical convergence. The convergence is
made clear in the corresponding successive differences δεN(x, t) (see (6)) reported in Figure 2.
Table 1 presents the L1(R) norms of the successive differences, ∆εN(t) (see (7)).
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Figure 1: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.5 (left), t = 1 (center) and t =

1.5 (right), with orders of truncation N = 1–6, N = 6–11 and N = 11–16, respectively. This figure corresponds to
Example 5.1.
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Figure 2: Differences in consecutive estimates δεN (x, t) (see (6)) at t = 0.5 (left), t = 1 (center) and t = 1.5 (right), with
orders of truncation N = 1–5, N = 6–10 and N = 11–15, respectively. This figure corresponds to Example 5.1.

N = 1 N = 2 N = 3 N = 4 N = 5
t = 0.5 0.903091 0.622968 0.270690 0.0923362 0.0178834

N = 6 N = 7 N = 8 N = 9 N = 10
t = 1 0.691809 0.263246 0.0912177 0.0345686 0.026688

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.348643 0.180075 0.0721679 0.0320314 0.0198364

Table 1: Norm ∆εN (t) of differences in consecutive estimates (see (7)) for different times t and truncation orders N. This
table corresponds to Example 5.1.

The left plot in Figure 3 reports (in log-scale) the error estimate EN(t) (see (8)), for t = 0.5,
t = 1 and t = 1.5. From the plot, it is clear that there is an index N from which the error does not
go down anymore, because of the sampling error (recall that we used a fixed number of samples
M = 20, 000). Notice also that, as |t − t0| = |t| gets larger, a higher order of truncation N is
required to enhance the approximations of fX(t)(x). In the right plot of Figure 3, we report the
error estimate, EN(t), as a function of the consecutive difference, ∆εN(t), for t = 0.5, t = 1 and
t = 1.5. We also plot a regression line through the data to reflect the exponential relationship
between EN(t) and ∆εN(t), at a given t,

log EN(t) ≈ log β(t) + α(t) log ∆εN(t). (9)

There are three regression lines, one for each time t. We observe a strong linear relation with
N between the errors and the successive differences in log-scale, with slope α(t) being approx-
imately 1, at least up to the truncation order at which the sampling error becomes dominant.
This finding suggests that it is possible to estimate the norm of the bias error, ‖θN(·, t)‖L1(R), from
the norm of the successive differences ∆εN(t), provided that M is large enough, and choose N
according to the targeted accuracy.

Example 5.2. In the second example, we consider problem (1) with A(t) and B(t) having infinite
expansions with coefficients An ∼ Beta(11, 15) for n ≥ 0, B0 = 0, Bn = 1/n2 for n ≥ 1, while
Y0 ∼ fY0 (y) =

√
2

π(1+y4) (−∞ < y < ∞) and Y1 ∼ Poisson(2). All these random quantities are
assumed to be independent. The power series of A(t) and B(t) converge on (−1, 1) (that is for
r = 1), so the mean square solution X(t) =

∑∞
n=0 Xntn given by Theorem 2.1 is defined on (−1, 1).

Theorem 3.7 allows approximating fX(t)(x) with f̂XN (t)(x), N ≥ 0.
Figure 4 shows graphical representations of f̂XN (t)(x) for times t = 0.25, 0.75 and 0.99, with

orders of truncation N = 1–5. The evident regularity of f̂XN (t)(x) is inherited from the smoothness
of the density fY0 , by Theorem 3.11.
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Figure 3: Left: error EN (t) (see (8)), for different times as indicated. Right: relation between log EN (t) and log ∆εN (t),
for t = 0.5, t = 1 and t = 1.5. Also reported are linear regressions. This figure corresponds to Example 5.1.
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Figure 4: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.25 (left), t = 0.75 (center) and t = 0.99
(right), with orders of truncation N as indicated. This figure corresponds to Example 5.2.

To better assess the convergence, Figure 5 shows the successive differences δεN(x, t) de-
fined in (6) at the same times as in Figure 4; these differences are decreasing to 0 pointwise as
theoretically expected, see Theorem 3.7. As pointwise convergence of densities implies L1(R)
convergence, we report in Table 2 the consecutive norms ∆εN(t) defined by (7). The norms de-
cay, albeit not monotonically; for instance, when t = 0.25 the difference is larger for N = 4 than
in N = 3.
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Figure 5: Differences in consecutive estimates δεN (x, t) (see (6)) at t = 0.25 (left), t = 0.75 (center) and t = 0.99 (right),
and for orders of truncation as indicated. The plots correspond to Example 5.2.

Figure 6 reports in the left plot the error estimates log EN(t) defined in (8). We see that the
errors decrease quickly before stagnating because of the sampling error. This example, despite
being more complex than the previous one in Example 5.1, in terms of dimensionality, requires
smaller orders N, since for t ∈ (−1, 1) we have |t− t0| = |t| < 1, which implies |t− t0|n

n→∞
−→ 0. The
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N = 1 N = 2 N = 3 N = 4
t = 0.25 0.0215530 0.00607417 0.000600201 0.00167170
t = 0.75 0.147952 0.0545970 0.0436801 0.00419704
t = 0.99 0.225868 0.0945261 0.127495 0.00985133

Table 2: Norm ∆εN (t) of differences in consecutive estimates (see (7)) for different times t and truncation orders N. This
table corresponds to Example 5.2.

right plot of Figure 6 aims at showing the relation between the errors EN(t) and the successive
differences ∆εN(t). Specifically, for the times t shown, a collinearity is found in log-scale through
the model (9). In other words, the decay pattern of the consecutive differences characterizes the
convergence of the global error as long as the bias error dominates the sampling error.
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Figure 6: Left: error EN (t) in (8), for different times as indicated. Right: relation between log EN (t) and log ∆εN (t), for
t = 0.25, 0.5, 0.75 and 0.99. Also reported are linear regressions. This figure corresponds to Example 5.2.

Example 5.3. In this example, we consider the previous degree one polynomial problem, with
the following independent distributions: A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2)|[0,4],
B1 ∼ Bernoulli(0.35), Y0 ∼ Poisson(2) and Y1 ∼ Normal(2, 1). This example coincides with
Example 5.1, except that Y0 and Y1 have been interchanged: now Y0 is discrete, while Y1 is
absolutely continuous. This exchange puts this example in a different theoretical case compared
to Example 5.1.

By Theorem 2.1, the unique mean square solution is expressible as a random power series
X(t) =

∑∞
n=0 Xntn that is mean square convergent for all t ∈ R. According to Remark 3.13, we

can approximate the probability density function of X(t), fX(t)(x), for t , 0.
Figure 7 reports the approximations f̂XN (t)(x) at times t = 0.5, 1 and 1.5. As N grows,

the graphical representations tend to overlap, denoting the convergence of the expansions. The
densities are all smooth, as expected from the smoothness of fY1 , except for f̂XN=12(t=1.5)(x) whose
estimate presents noisy features.

The noisy features in f̂XN=12(t=1.5)(x) are due to several reasons. First, there is a computational
issue of MathematicaR© caused by numerical overflow-underflow when too small or too large
quantities are involved (for instance exp(z) for |z| � 1). Some sample paths of S N=12

1 (t) are
vanishing near t = 1.5, thus making the denominator S N=12

1 (t) in the definition of VN(t) (in (4)
by for the role of Y0 and Y1 exchanged) very small, with a loss of precision as a result. This
is illustrated in Figure 8, where we show some randomly generated sample paths of S N=12

1 (t).
We also report sample paths for N = 11 and N = 13 for comparison. Second, and not totally
unrelated to the numerical overflow, we have V[1/|S N

1 (t = 1.5)|] = ∞ for N = 12 when it remains
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Figure 7: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.5 (left), t = 1 (center) and t = 1.5
(right), with varying orders of truncation N as indicated. This figure corresponds to Example 5.3.

finite for the other values of N shown. As a result, the variance σ2
N=12 in the Monte Carlo method

(see (5)) is unbounded or very large for N = 12, while it behaves well for other N, as illustrated
in the last panel of Figure 8 (bottom left plot). As a result, for N = 12, the convergence of the
Monte Carlo procedure is slowed down due to the large or infinite variance, the rate O(1/

√
M) is

not obtained (see the discussion from Section 4), and some noisy features plague the estimator.
Luckily, the noise in f̂XN=12(t=1.5)(x) is not present for N > 12. In situations where large or

infinite variance occurs for some N, one should focus on the truncation orders N for which the
approximation f̂XN (t)(x) behaves nicely, without noise. In this manner, correct approximations to
fX(t)(x) are obtained with a feasible number of samples.
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Figure 8: Random trajectories of S N
1 (t) for N = 11, 12 and 13. For N = 12, observe that some trajectories vanish very

close to t = 1.5, while for N , 12 the trajectories remain away from 0. The plot in the bottom right panel shows the
corresponding empirical estimates of σ2

N (x, t = 1.5). This figure corresponds to Example 5.3.

Figure 9 (left and center plots) presents the consecutive differences δεN(x, t) given by (6),
for times t = 1 and 1.5. These consecutive differences are not monotonically decreasing with
N, although a decay pattern towards 0 is perceptible. Further, the impact of the noisy estimate
f̂XN=12(t=1.5)(x) is clearly visible in the reported differences. The plots are entirely consistent with
the theoretical results and Remark 3.13. In Table 3, we report the corresponding L1(R) norms
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∆εN(t) (see (7)) as a summary of Figure 9. The last plot of Figure 9 reports the estimate errors
log EN(t) in (8). Again, the convergence and the sampling error are observed. This example also
emphasizes that the Fröbenius method deteriorates for large times, as N needs to increase with t
to maintain accurate approximations.
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Figure 9: Differences in consecutive estimates δεN (x, t) at t = 1 (left) and t = 1.5 (center), with orders of truncation as
indicated. The last plot presents the errors EN (t) (see (8)), for different times as indicated. This figure corresponds to
Example 5.3.

N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.320171 0.618382 0.333094 0.0893759 0.0291202

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.308293 0.185148 0.0605758 0.0256469 0.0216692

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.301694 0.155185 0.0677696 0.0375570 0.0202081

Table 3: Norm ∆εN (t) of differences in consecutive estimates (see (7)) for different times t and truncation orders N. This
table corresponds to Example 5.3.

Example 5.4. Consider the problem with infinite expansions for A and B, An ∼ Beta(11, 15)
for n ≥ 0, B0 = 0, Bn = 1/n2 for n ≥ 1, Y0 ∼ Uniform(−1, 1) and Y1 ∼ Exponential(2).
These random inputs are again assumed to be independent. In contrast with Example 5.2, the
probability density function of Y0 has now two discontinuity points at y0 = ±1, while Y1 follows
an absolutely continuous law. Hence, Theorem 3.7 cannot be employed here. The mean square
analytic solution X(t) =

∑∞
n=0 Xntn given by Theorem 2.1 is defined on (−1, 1) and we must

apply Theorem 3.14 to approximate fX(t)(x) for t , 0. We compute the approximations at time
t = 0.99 (near the limit 1), with orders of truncation N = 1–5. Figure 10 (left plot) depicts
the graphs of f̂XN (t)(x). Promptly, the successive approximations of the density function tend to
superimpose, thus entailing rapid convergence to the target density function fX(t)(x). In contrast
to Example 5.2, the non-differentiability of the approximated density functions inherited from
fY0 is evident (here one cannot apply Theorem 3.11). Thereby, our method can capture peaks
induced by non-differentiability. This feature is a definite advantage of our method, compared to
classical sample paths approximation methods where a kernel density estimation of the density
would smear-out the approximation at the non-differentiability points.

A richer analysis of the convergence in this example is provided in the centered plot of Fig-
ure 10 and Table 4, which depict consecutive differences δεN(x, t) (see (6)) and their norms ∆εN(t)
(see (7)), respectively. Even though the errors are not decreasing monotonically to 0 (as in the
previous Example 5.3), the convergence is evident and follows from Theorem 3.14. Finally, in
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Figure 10 (last panel) we also plot the error estimate log EN(t) (see (8)), for distinct times. Sim-
ilar to Example 5.2, the plot shows that this example needs small orders N for all t ∈ (−1, 1)
because of the decay of |t|N .
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Figure 10: Graphical representation of the Monte Carlo estimates f̂XN (t)(x) at t = 0.99 (left), with orders of truncation
N = 1–5. Differences in consecutive estimates δεN (x, t) (see (6)) at t = 0.99 (center), with orders of truncation N = 1–4.
Error EN (t) (see (8)), for different times as indicated (right). This figure corresponds to Example 5.4.

N = 1 N = 2 N = 3 N = 4
t = 0.25 0.00666810 0.00482414 0.00169730 0.00275401
t = 0.5 0.0266447 0.0301975 0.00469989 0.00524461
t = 0.75 0.0582143 0.0920184 0.0176119 0.00756466
t = 0.99 0.0947395 0.190933 0.0597380 0.0107980

Table 4: Norm ∆εN (t) of differences in consecutive estimates (see (7)) at different times t and for different truncation
orders N. This table corresponds to Example 5.4.

Example 5.5. In this final example, we deal with discrete uncertainties, under the setting of
Theorem 3.15. Consider again the polynomial problem of Example 5.1, with A0 = 4, A1 = 2,
B0 = 0, B1 = −1, and now Y0 ∼ Bernoulli(0.4) and Y1 ∼ Uniform(−1, 1), being all independent.
By Theorem 2.1, there is a unique mean square solution X(t) =

∑∞
n=0 Xntn on R. For each

t , 0, the random variable X(t) is absolutely continuous, due to the absolute continuity of Y1.
Theorem 3.15, with Y1 playing the role of Y0 (see Remark 3.13) allows approximating fX(t)(x)
by utilizing the convergence limN→∞ fXN (t)(x) = fX(t)(x), which holds for almost every x ∈ R.
In this particular example, Algorithm 1 is used with M = 1, 000, 000 iterations, because the
deterministic values for A(t) and B(t) make the computational load much less demanding (see
the discussion of Section 4). We will thus identify f̂XN (t)(x) = f N,M=1,000,000

X (x, t). For the time
t = 1.5, the numerical estimates f̂XN (t)(x) are displayed in Figure 11 (left plot). Observe that
the computed density functions are completely different to those of the previous examples: they
are discontinuous, in fact step functions, mainly due to the discontinuities in fY1 . This example
highlights the ability of our method to capture discontinuities. The analysis of the convergence is
completed with the centered plot from Figure 11 and Table 5, where the consecutive differences
δεN(x, t) (see (6)) and their norms ∆εN(t) (see (7)) are reported, respectively. Table 5 considers
times t = 0.5, 1 and 1.5. Finally, the last panel from Figure 11 plots log EN(t) (see (8)) as a
function of N. The lower bound for the global error is the sampling error, which is smaller than
in the previous four examples, owing to the larger number of samples considered. Comparing
the last plot from Figure 11 with the corresponding figures from the previous four examples, the
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non-monotonic decay of the error is also more pronounced for the three times. The discontinuity
in the graph of the target distribution fX(t)(x) can explain the highly non-monotonic decay with
the truncation order. Moreover, fY1 is not Lipschitz continuous, so the exponential convergence
rate discussed in Remark 3.10 is not applicable in the present example. Finally, as for the other
examples, the truncation order needed to reduce the error to the sampling contribution increases
as we move away from the origin t0 = 0. This behavior may pose severe challenges for large
times t.

N=15

N=16

N=17

N=18

N=19

N=20

-1 1 2 3 4
x

0.2

0.4

0.6

0.8

1.0

1.2

f

X
N (t=1.5) (x)

N=15

N=16

N=17

N=18

N=19

-1 1 2 3 4
x

0.05

0.10

0.15

0.20

δϵ(x,t=1.5)

t=0.5

t=1

t=1.5

5 10 15 20 25
N

-10

-8

-6

-4

-2

log EN (t)

Figure 11: In the left plot, graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 1.5, with orders of
truncation N as indicated. In the center plot, differences in consecutive estimates δεN (x, t) (see (6)) at t = 1.5. In the last
plot, error EN (t) (see (8)), for different times as indicated. This figure corresponds to Example 5.5.

N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.833333 0.678571 0.140704 0.0280760 0.0190810

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.785425 0.0767401 0.187360 0.0665995 0.00866170

N = 15 N = 16 N = 17 N = 18 N = 19
t = 1.5 0.331941 0.0569325 0.0732120 0.0390644 0.00346696

Table 5: Norm ∆εN (t) of differences in consecutive estimates (see (7)) at different times t and truncation orders N. This
table corresponds to Example 5.5.

6. Conclusions and perspectives

In this paper, we address the analysis of the random non-autonomous second order linear
differential equation. When the data A(t) and B(t) are given by random power series on (t0 −
r, t0 + r) in L∞(Ω), say A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0 Bn(t − t0)n, and the initial

conditions Y0 and Y1 belong to L2(Ω), it is possible to construct a random power series solution
X(t) =

∑∞
n=0 Xn(t − t0)n on (t0 − r, t0 + r) in the mean square sense, whose coefficients satisfy a

random difference equation. This approach is the generalization of the Fröbenius method to the
random setting. The convergence rate of the power series of X(t) is exponential for each time t,
but not uniformly on the whole time domain (t0 − r, t0 + r). For a fixed tolerance on the mean
square error of X(t), the order of truncation of the power series needs to be increased, in general,
when |t − t0| grows.

We proved the existence of solution X(t) when A(t) and B(t) are bounded. In the unbounded
case, we present in this paper two counterexamples of existence. In practice, the hypotheses can
be fulfilled truncating unbounded random coefficients.
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The probability density function of X(t) can be expressed as the expectation of a random
process Z(x, t), fX(t)(x) = E[Z(x, t)], using the law of total probability. A closed-form expression
for Z is derived in terms of the fundamental set by exploiting the linearity of the system. How-
ever, to compute this expectation, one needs to perform a dimension reduction of the problem,
by truncating the series of the fundamental set used to express the solution X(t). Denoting XN(t),
N ≥ 0, the truncation of X(t), we show that fXN (t)(x) converges to fX(t)(x) pointwise as N → ∞
under certain conditions (regarding Nemytskii operators); in some cases, an exponential conver-
gence may be achieved for each t and x. The pointwise convergence also implies convergence in
Lp(R), 1 ≤ p < ∞. In particular, the convergence in L1(R) is equivalent to the convergence in
the total variation and the Hellinger distances, which are instances of f -divergences.

From a numerical standpoint, the expectation defining fXN (t)(x) = E[ZN(x, t)] is computable
via a classical Monte Carlo strategy. We propose an algorithm for that purpose, which estimates
symbolically fXN (t)(x). This algorithm is implemented in the software Mathema–ticaR©, and it
can be used to compute pointwise approximations of the density function fX(t)(x). One key
feature of the algorithm is that it handles discontinuity and non-differentiability points of fX(t)(x)
appropriately, without smoothing them out.

To the best of our knowledge, this paper is the first one to provide such analysis of ran-
dom second order linear differential equations. However, we point out certain limitations of our
methodology, which constitute potential avenues for future developments.

To start with, despite the exponential convergence rate, the approximations substantiated on
the Fröbenius method may deteriorate for large |t − t0|. This fact is inherent to Taylor series-
based methods and also plagues other types of stochastic computations, such as PC expansions.
Following [47], using random time-transformations may help to improve the convergence of the
Fröbenius method and mitigate this issue.

Another point requiring a more in-depth analysis is the ignorance of the specific values of δ
and µ. In particular, we showed that if the truncated processes from the fundamental set vanish
for some trajectories near the time t of interest, the numerical estimate of the density becomes
very noisy (see Example 5.3). This effect is due to the variance of ZN(x, t) that may be very
large or infinite, with a severely deteriorated Monte Carlo convergence in these situations. We
are currently exploring different strategies to sort out this issue, such as the path-wise selection
of the variable (Y0 or Y1) used in the expression of ZN(x, t), in order to control its variance.

Efforts to weaken or modify the theoretical hypotheses and enlarge the applicability of our
method shall also be carried out. As an example, the extension of the method to the case of Y0 and
Y1 not absolutely continuous would also present a valuable achievement. Similarly, an extension
of the present methodology to linear systems of second order random differential equations may
be of great interest, while the application to other stochastic models of our expertise on random
expansions and density approximations could be interesting.

At the computational level, the Monte Carlo estimation of fXN (t)(x) introduces a statistical
error since, in numerical computations, we are restricted to a finite number M of realizations.
Therefore, an error of order 1/

√
M is unavoidable, even for N ≈ ∞. The results presented in the

paper have highlighted the crucial importance of bias and sampling errors. In the future, it would
be beneficial to rely on improved sampling strategies, such as multilevel Monte Carlo [48, 49], to
balance the bias and sampling errors, while reducing the computational cost of the Monte Carlo
estimates of the density. This topic is the focus of our current efforts.
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