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Abstract

The simulation of complex multi-physics phenomena often relies on a System of Solvers (SoS), which
we define here as a set of interdependent solvers where the output of an upstream solver is the input
of downstream solvers. Constructing a surrogate model of a SoS presents a clear interest when
multiple evaluations of the system are needed, for instance to perform uncertainty quantification
and global sensitivity analyses, the resolution of optimization or control problems, and generally any
task based on fast query evaluations. In this work, we develop an original mathematical framework,
based on Gaussian Process (GP) models, to construct a global surrogate model of the directed SoS,
(i.e., only featuring one-way dependencies between solvers). The two central ideas of the proposed
approach are, first, to determine a local GP model for each solver constituting the SoS and, second,
to define the prediction as the composition of the individual GP models constituting a system of
GP models (SoGP). We further propose different adaptive sampling strategies for the construction
of the SoGP. These strategies use the decomposition of the SoGP prediction variance into individual
contributions of the constitutive GP models and on extensions to SoGP of the Maximum Mean
Square Predictive Error criterion. We finally assess the performance of the SoGP framework on
several SoS involving different numbers of solvers and structures of input dependencies. The results
show that the SoGP framework is very flexible and can handle different types of SoS, with a
significantly reduced construction cost (measured by the number of training samples) compared to
constructing a unique GP model of the SoS.

Keywords: Surrogate Model, Gaussian Process, System of solvers, Variance Decomposition,
Adaptive sampling

1. Introduction

Many engineering problems involve a multiphysics environment requiring the resolution of
multiple physical phenomena. The global solution to these problems is generally obtained by
coupling different solvers, each one devoted to a specific aspect of the problem. Examples of
multiphysics problems can be found in nuclear safety application, weather forecast, and space object
reentry. In the latest domain, for instance, the following phenomena have to be modeled: fluid flow,
structural mechanics, ablation, trajectory propagation, material behavior, thermodynamics, etc.
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The prediction and the modeling of all the phenomena involved in the reentry of a space object, from
the de-orbiting manoeuver to the ground impact, present a great challenge due to the complexity
and the diversity of the physics involved. In practice, dedicated solvers developed individually by
teams of experts on each aspect of the physics (aero-thermo-chemistry, trajectory propagation, tank
thermodynamics, . . . ) are subsequently coupled to form what we call in this work a system of
solvers (SoS). Formally, we define a SoS as a set of interdependent solvers. The composing solvers
are connected by their inputs and outputs such as the output of a solver may be the input of another
one. We say that a SoS is directed if the information can only be transferred forward in the system :
with respect to a particular solver, the outputs of its downstream solvers cannot be inputs of any of
its upstream solvers. On the contrary, in a strongly coupled SoS the inputs of a solver can be the
outputs of a downstream solver.

In this work, we restrict ourselves to the case of directed SoS. A schematic representation of
such a SoS is provided in Fig. 1. This modular aspect of SoS makes them flexible for industrial
applications. However, running a SoS to produce a prediction can be very challenging: besides
the computational cost of the constitutive solvers, the sequential execution of the different solvers
may cause additional difficulties with the need to transfer information and data from one solver
to another. The availability of a global reduced model of the SoS is therefore highly desirable, in
particular in view of performing subsequently simulation-based tasks demanding multiple evaluations
of the SoS. For Uncertainty Quantification (UQ), which is our main motivation in the present work,
several methods have been proposed to build surrogate models. These methods include for instance
functional and low-rank approximations (see e.g., [29]). If these methods can be applied for the direct
construction of global SoS surrogate, they are limited in practice to systems with moderately large
numbers of inputs, because of the curse of dimensionality. Further, by disregarding the structure
of the underlying SoS, a direct surrogate model approach is missing opportunities to reduce the
computational complexity of its construction. In this work, we propose an approach that exploits the
structure of the SoS to construct its surrogate. Although we are principally interested in performing
Uncertainty Quantification (UQ) in SoS, other applications could benefit from the developments
presented in this work. These applications include, but are not limited to, optimization, control,
fast query evaluation,. . .

Two approaches are classically used in the industry to build surrogate models of SoS: the
black-box approach and the fragmented approach. In the first approach, the SoS is seen as a
whole, and the structure of the SoS along with its internal solvers is not taken into account in the
construction. A surrogate model is built in order to create a direct mapping between the global
inputs and the quantities of interest (global outputs). Within this approach, Polynomial Chaos
expansions [29, 50, 49, 7], GP models [6, 34, 48], low rank approximations [11, 26] are possible
alternatives to construct a global surrogate. One major drawback of these alternatives is their
computational cost that can dramatically increase with the number of (global) uncertain inputs,
commonly referred to as Curse of Dimensionality [4]. Further, these methods can be challenged by
the highly non-linear dependences between the global inputs and outputs induced by the structure
of the SoS.

An alternative approach called the fragmented approach in the following, consists of building a
surrogate model for each solver. In the fragmented approach, each surrogate relates the inputs of a
solver to its outputs, and a prediction of the global outputs is obtained by substituting each solver
with its surrogate model. This approach is common and particularly suited in situations where the
individual solvers are developed, maintained and run by distinct teams. The fragmented approach
has a clear advantage compared to the global black box approach when the inputs dimensionality of
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each solver is lower than the dimensionality of the global inputs. In this situation, it can be more
effective to construct several low dimensional surrogate models, rather than constructing a single
high-dimensional global one, therefore mitigating the curse of dimensionality. Besides, the individual
solvers may exhibit simple mappings from inputs to outputs, where their composition may yield
complex dependencies. On the other hand, the definition of the inputs probability measures to be
used when constructing the individual surrogates represents a significant drawback of the fragmented
approach. The probability measure of an input that is the output of an upstream solver is unknown
a priori. One solution to this issue consists in assuming an a priori distribution for these inputs.
However, proposing a distribution a priori is a difficult task: being too conservative (e.g. considering
large input ranges) can be detrimental to the overall efficiency, when disregarding possible input
values can result in large prediction errors. A possibility to overcome the difficulties in defining the
input distributions is to rely on training sets resulting from a global run of entire SoS corresponding
to a sample set of the global inputs. This approach ensures the consistency between the sample sets
of inputs for the individual solvers. However, this approach, by relying on the sequential nature
of the directed SoS, prevents the possibility of performing parallel runs of a solver and to focus
the computational resources on particular solvers demanding larger training sets to construct their
surrogate models.

Recently, systems of solvers have received interest from the community trying to develop efficient
UQ methods for SoS. In [1], the authors proposed a method based on importance sampling to
decouple the uncertainty propagation process of individual solvers in order to gain flexibility. Other
recent works focused on adapting Global Polynomial Chaos (gPC) based methods to SoS, with the
challenge of deriving efficient quadrature rules on intermediate inputs with unknown distributions.
Using the structure of SoS, the authors of [12] proposed a method for propagating uncertainty in a
composite function by adapting the quadrature rule of intermediate inputs in the SoS, thus limiting
the number of quadrature points compared to a global black box approach. This work used the
recursive formula for orthogonal polynomials and Lanczos algorithms. The same authors generalized
this idea in [13] to a full SoS. Their approach relies on Galerkin projection methods at intermediate
layers of the SoS. By solving an optimization problem, they proposed a quadrature rule for latent
variables, regularized in order to promote sparsity in the weights, thus reducing the number of
quadrature points. In [2], the authors tackled the problem of strongly coupled systems. Their main
idea is that the dimension of the coupling variables and the amount of information transferred from
one solver to another is not as high as the actual inputs dimensionality. Consequently, they use
Karhunen–Loève expansions to reduce the inputs space of each solver at each iteration, therefore
lowering the computational cost, when propagating the uncertainty through the coupled system.
This idea further is used in [18], where a hybrid decomposition of the random output field is proposed.
This decomposition is used to construct surrogate models of a system of solvers and perform a
Bayesian optimization [19]. In [9], the authors proposed a framework for uncertainty propagation
for directed SoS. Their framework applies to intrusive and non-intrusive methods such as Monte
Carlo, non-intrusive polynomial chaos and Galerkin method. In [32] the framework presented in [9]
is generalized to non-directed systems. Their approach relies on restriction and expansion operators
adjusted to the dimension of the intermediate inputs. The UQ methods rely on a global polynomial
approximation but with quadrature rules adapted to the local problems. Hence, the local quadrature
rules are improved compared to the global black-box approach. From a Bayesian perspective, the
authors of [41] proposed a UQ propagation framework in SoS for data assimilation in multiphysics
problems.

Our approach tackles the problem from a different perspective. We introduce a new predictive
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model called System of Gaussian Processes (SoGP) suitable for directed systems of solvers. In
our approach, a GP model is constructed for each solver of the SoS, and the global prediction is
built by propagating the GPs predictions. Our framework carries similarities with Deep Gaussian
Processes [16] and Multi-step ahead predictions [22], although the objectives and construction differ
in our framework. A similar framework for a two-solvers problem is presented in [30]. A significant
contribution of our work is the formulation of suitable criteria to design efficient adaptive training
strategies. The key ideas are to simultaneously exploit the advantages of a fragmented approach
(low dimensionality, flexibility) when building the surrogate model of a solver, with the use of global
criteria to weight the importance of each solver on the global outputs prediction error. Specifically, a
decomposition of the SoGP prediction variance is presented. It provides a ranking according to the
GP model contribution to the global error that can be used in order to enhance the overall predictive
capabilities of the SoGP. This decomposition leads to efficient training algorithms that identify the
GP model that should be refined in order to improve the prediction of the global outputs.

In Section 2, essential ingredients of Gaussian Processes (GP) modeling are recalled, and the
System of Gaussian Processes (SoGP) approximating the SoS is introduced. Section 3 details the
decomposition of the prediction variance of a SoGP, and discusses some approximations for its
estimation. Section 4 illustrates several strategies for the training of SoGPs, based mainly on the
Maximum Mean Square Predictive Error (MMSPE) criterion, extended to the case of SoGP. We
present in Section 5 several test results to evaluate the performances of the proposed framework.
The test cases contrast different structures of the SoS and dependencies between inputs and outputs
of the solvers. Conclusions and some perspectives are summarized in Section 6.

2. System of Gaussian Processes

In Section 2.1, we discuss the structure of the SoS considered in this work; this structure is
subsequently exploited to construct a system of Gaussian processes (SoGP) approximating the
original SoS. Essential elements of Gaussian Processes (GP) modeling are recalled in Section 2.2. The
System of Gaussian Processes (SoGP) approximating the SoS is discussed in Section 2.3 where we
focus on the definition of the SoGP predictions to elucidate the predictive distribution. This results
will serve as a basis to propose several estimates and decompositions of the predictive variance, in
Section 3, and derive adaptive sampling strategies in Section 4.

2.1. Directed Systems of Solver
Generically, a SoS is an organized ensemble of connected solvers used to compute output values

referred to as the quantities of interest (QoI) or global output in the following. Without loss of
generality, we shall restrict ourselves to the case of global scalar output in the following. The solvers
constituting the systems can be very different in terms of computational cost, inputs dimension and
influence on the global output. They are organized such that outputs of a solver can be inputs of
other solvers. We shall call global inputs, the inputs of the solvers that are not an output of any
solver. In this work, we restrict ourselves to the particular case of directed systems of solvers where
the solvers can be ordered along the upstream to downstream direction. Specifically, an output of a
solver can only be an input of a downstream solver, such that the information (simulation results)
flows in one direction only. Hence, all upstream solvers must have been run before running the
downstream ones. This restriction rules out the case of strongly coupled solvers, which must be
considered as a whole.
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Fig 1 shows an example of such a directed SoS. In the plot, the boxes labeled with letters
represent the constituting solvers; the arrows are used to represent the inputs (arrows coming in) and
outputs (arrows coming out) connecting the solvers. In this example, the solver E is an upstream
solver for the solvers F, G, I and J, and a downstream solver for A, B, C, and D. We remark that the
directed SoS could be also partitioned into non-overlapping blocks with boundaries corresponding
to computational barriers reflecting the structure of the system. Such a block can be composed
of a single or a set of solvers, with outputs of upstream blocks (or global inputs) as inputs, and
outputs being inputs of downstream blocks. A key point is that solvers constituting a block can be
run independently in parallel. The example depicted in Fig 1 illustrates the non-uniqueness of the
partition of the SoS into blocks, which are represented by the dashed lines rectangles in the figure.
Indeed, the solver H, belonging with the solver E to the third block, could have also been attached
to the first or second blocks. In our framework, we construct a surrogate model for each solver, such
that the non-uniqueness of the block decomposition is not a concern.

Figure 1: Example of directed SoS.

2.2. Gaussian Process models
The basic constitutive element of the SoGP are Gaussian process models [14]. GP models are

probabilistic approximations of generic functions f : Ω ⊆ Rn 7→ Rm. For simplicity, we restrict the
presentation to the case of scalar functions f , that is, m = 1. GP models have been widely used
in uncertainty propagation [8], sensitivity analysis [34] and inverse problem [8]. We only provide a
brief overview of the construction of GP models; a complete and detailed introduction to GP models
can be found for instance in the reference book [36].

The GP model of f is obtained by updating a prior distribution over the space of Gaussian
processes. The update uses observations of f , possibly noisy ones, and the resulting model is a
Gaussian process in the sense that any set of model evaluations follows a Gaussian distribution.
Consequently, the GP model is entirely defined by its second order properties, namely its mean and
a covariance functions. We shall consider the most straightforward situation of GP models having
zero mean and covariance function k(x, y) for prior. Then, from a set A of (noise free) observations
of f , consisting in P pairs (xp, yp), with xp ∈ Ω and yp ≡ f(xp), the GP model of f is characterized
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by the posterior mean µ and variance σ2 given respectively by

µ(x) = kA(x)K−1
A yA, (1)

σ2(x) = k(x, x)− kA(x)K−1
A kA(x)T . (2)

In the previous expressions, we have denoted kA(x) = (k(x, x1) · · · k(x, xp))T and KAi,j = k(xi, xj)
the vector and matrix of the prior covariance between the point x, where f is to be predicted, and
the points xp in the observation set A. Similarly, yA = (y1 · · · yP )T is the vector of observed values.

The posterior mean in Eq.(1) is the best prediction (in the mean squared sense) of f(x); in
fact, for the noise free construction above, we have µ(x = xp) = yp for all xp ∈ A. The prediction
variance in Eq.(2)) measures the confidence in the prediction, a characterization constituting the
starting points of many Bayesian optimizations and adaptive design of computer experiments. One
objective of the present work is to extend these concepts to the case of SoGP.

The choice of the covariance function k is critical to obtain high-quality predictions (see for
instance [27]), and it should be made dependent on the observations in A and prior knowledge
about the function to approximate. The covariance often referred to as the kernel in the literature,
is classically selected by fixing some hyper-parameters that span a whole family of functions k. The
selection of the hyper-parameters generally rests on cross-validation procedures or the optimization
of some quantities measuring the approximation quality, e.g., the log-marginal likelihood of A [36].
In the present work, we considered the smooth, isotropic squared exponential kernel,

k(x, y) = σ2
k exp

(
−‖x− y‖

2

2L2

)
, (3)

with hyper-parameters σ2
k, the prior variance, and L, the prior correlation length. The kernel in (3)

yields GP models having infinite smoothness, a characteristic that raises many criticisms (see for
instance [46]); it is, however, appropriate for the examples proposed below. We also note that all
the developments proposed in the following are independent of the particular kernel family used in
the GP models construction.

2.3. SoGP predictions
As discussed above, the SoGP considered in this work is obtained by substituting the solvers of

a directed SoS with GP models. The focus of the present section is to define the SoGP prediction,
as resulting from the composition of the GP models. The composition of GPs has been studied in
machine learning as the GP-based equivalent of Neural Networks (called Deep Gaussian Processes
-DGP- [16]). However, our SoGP case is different from the one usually considered in machine
learning:

• there are no latent variables since all intermediate variables are observed (inputs and outputs
of the constitutive solvers),

• the GPs (layers) are derived from the SoS structure, and their definition is not left to the user
choice (each solver has a corresponding GP).

To illustrate the prediction of SoGP output, we consider the simple system consisting of just two
solvers as illustrated in Fig. 2. The two solvers (f1 and f2 respectively) are substituted with two
GPs (G1 and G2 respectively). Even in this simple situation, the prediction using the SoGP is not
unique; two possibilities can be readily proposed:
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• Given the global input x0, the best prediction of G1 (the mean µ1(x0)) can be used as the
input of G2 to retrieve its best prediction of the QoI. That is, for the SoGP of Fig. 2,

f2 ◦ f1(x0) ≈ µ2(µ1(x0)) = µ2 ◦ µ1(x0).

This approach is easily generalized to more complex SoGP and will be called the composition
of the averages in the following. We remark that this composition of averages provides
a deterministic prediction of the QoI, with no characterization of its uncertainty. However,
it is clear that the manipulation and propagation of deterministic values in the SoGP is
computationally convenient.

• Alternatively, one can keep the whole Gaussian distribution of X1 = G1(x0) as the input of
G2, and defines the prediction as the resulting average, namely,

f2 ◦ f1(x0) ≈ E [G2 ◦G1(x0)] ,

where E [·] denotes the expectation operator. In the following, we call this approach the aver-
aged composition of GPs. In general, the full distribution of the prediction is transmitted
from a GP to the next, all along the SoGP. Note that in the case of the system shown in Fig. 2
it comes

f2 ◦ f1(x0) ≈ E [G2 ◦G1(x0)] = 1√
2πσ2

1(x0)

∫
µ2(x1) exp

(
− (x1 − µ1(x0))2

2σ2
1(x0)

)
dx1. (4)

Figure 2: Example of 2 solvers directly chain and the corresponding SoGPs.

It is clear that, in general,

E [G2 ◦G1(x0)] 6= µ2 ◦ µ1(x0),

so that the composition of averages and the averaged composition of GPs are not equivalent. While
the composition of the averages is computationally the fastest and the easiest to implement, the
predictive distribution is lost because of the intermediate averaging of the GP outputs. On the
contrary, the averaged composition of GPs propagates the full predictive distribution through the
SoGP, therefore allowing to estimate the confidence in the predicted QoI. The main issue with
this second approach is that even for just two chained solvers, the distribution of G2 ◦G1(x0) is in
general not Gaussian [16, 22], preventing the derivation of explicit formulas (such as in (4)) for the
corresponding prediction. The loss of Gaussianity when composing the GPs is due to the nonlinear
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character of the mapping between the inputs and outputs of a GP model. It is thus tempting to
recover a Gaussian prediction using local linearizations of the GPs, around the inputs mean value,
as proposed in [22]. For instance, the example would lead to the Gaussian approximation of the
composition

G2 ◦G1(x0) ≈ N(µ2(µ1(x0)), σ2
2 + |µ′2(µ1(x0))|2σ2

1(x0)),
where µ′2 is the derivative of µ2(x1), and N(µ, σ2) denotes the normal variable with mean µ and
variance σ2. We remark that the mean prediction for the linearized approach coincides with the
prediction using the composition of the averages. In fact, the linearization can be seen as an
approximated approach to propagate variances of the outputs along the SoGP and come-up with a
Gaussian prediction of the QoI. This idea is further exploited in section 3.

The distribution of the averaged composition of GPs prediction can also be recast in a (high
dimensional) integral of conditional probabilities. For instance, the case of the system with four
solvers shown in Fig. 3 leads to

p(x4|x0) =
∫

x1

∫
x2

∫
x3

p(x4, x3, x2, x1|x0)dx1dx2dx3 (5)

=
∫

x1

∫
x2

∫
x3

p(x4, x3, x2|x1)p(x1|x0)dx1dx2dx3 (6)

=
∫

x1

∫
x2

∫
x3

p(x4|x3)p(x3|x2)p(x2|x1)p(x1|x0)dx1dx2dx3. (7)

In the previous expressions, the elementary conditional densities p(xi|xi−1) are all Gaussian; specifi-
cally

p(xi|xi−1) = 1√
2πσ2

i (xi−1)
exp

[
− (xi − µi(xi−1))2)

2σ2
i (xi−1)

]
. (8)

Figure 3: Example of SoGP (block view).

This expression of p(x4|x0) and the Gaussian nature of the conditional densities (8) show that,
in principle, one can accurately evaluate the averaged composition of GPs employing tensorized
Gaussian quadrature rules. However, the computational cost of tensorized quadrature rules would
increase exponentially with the number of chained GPs and inputs, limiting its applicability to
simple trivial systems. Sparse quadrature rules could be employed to estimate at a reduced cost
the high dimensional integrals, but we found more effective to proceed by Monte Carlo sampling in
the present work. Indeed Monte Carlo methods are insensitive to dimensionality and can be easily
applied to SoGPs with complex structures. Specifically, for the example of Fig. 3, one generates
randomly joint samples of (X1, X2, X3, X4), using the elementary Gaussian conditional probabilities
in (8), in order to estimate the averaged composition of GPs prediction E [X4]. Note that these
Monte Carlo samples can also be used to estimate the variance and (non-Gaussian) density of any of
the intermediate output Xi of the SoGP, and assess their respective uncertainty as further discussed
in the following.
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3. Decomposition of the predictive variance

In this section, we present the decomposition of the prediction variance of a SoGP. For simplicity,
we restrict ourselves to the case of n Gaussian models Gi, directly chained one after the other,
with the output of Gi being the (only) input of Gi+1. We shall denote x0 ∈ Ω0 the global input of
G1. Further, to alleviate the notational burden, we shall consider that Gi : R 7→ R, although the
derivations below can be easily extended to more complex situations with higher dimensional inputs
and outputs (see also discussion in Section 3.3).

Our objective is to decompose the SoGP prediction variance into individual contributions Vi

related to the model Gi and rank the importance of the GP models in view of improving the overall
predictive capabilities of the SoGP. The decomposition of the SoGP prediction variance is exploited
in the next section to propose dedicated training strategies. In the following, we first define the
elements Vi of the decomposition (Section 3.1) and discuss their practical estimation (Section 3.2).
Two approximations of the estimator of Vi, differing in their computational cost and accuracy, are
subsequently proposed in Sections 3.2.2 and 3.2.3. Finally, we discuss the decomposition of the
variance in the case of directed SoGPs having more general structures in Section 3.3.

3.1. Variance Decomposition
For convenience, we set

Gj 7→i := Gi ◦ · · · ◦Gj , 1 ≤ j < i ≤ n. (9)

With this notation, the predictive variance associated to x0 ∈ Ω0 is V [G1 7→n(x0)]. To access the
contributions of different solvers onto the predictive variance, we define V1 7→i(x0) as variance of the
expected prediction conditioned on G1 7→i(x0), that is

V1 7→i(x0) := V [E [G1 7→n | G1 7→i(x0)]] , i = 1, . . . , n. (10)

The variance V1 7→i is interpreted as the variance in the (final) prediction of the global output caused by
the predictive variability of G1 7→i, that is the SoGP up to the i-th solver. Setting V1 7→0(x0) := 0, we
note that {V1 7→i}i=n

i=0 forms an increasing sequence from V1 7→0(x0) := 0 to V1 7→n(x0) = V [G1 7→n(x0)],
such that V1 7→j(x0) ≤ V1 7→i(x0) for 0 ≤ j ≤ i ≤ n and ∀x0 ∈ Ω0. Therefore, we define the predictive
variance incurring to the Gi as

Vi(x0) := V1 7→i(x0)− V1 7→i−1(x0) ≥ 0, i = 1, . . . , n. (11)

Observing that E [E [G1 7→n | G1 7→i(x0)]] = E [G1 7→n(x0)], Eq. (10) becomes

V1 7→i(x0) = E
[
E [G1 7→n | G1 7→i(x0)]2

]
− E [G1 7→n(x0)]2 ,

and the expression of Vi can be recast to

Vi(x0) = V1 7→i(x0)− V1 7→i−1(x0)

= E
[
E [G1 7→n | G1 7→i(x0)]2

]
− E

[
E [G1 7→n | G1 7→i−1(x0)]2

]
, (12)

setting E [G1 7→n | G1 7→0(x0)] := x0.
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3.2. Practical estimation
3.2.1. Monte Carlo estimation

To estimate the partial variances Vi at a given x0 ∈ Ω0, one could consider computing first the
variances V1 7→i using (10), that is through the estimation of the variance of conditional expectations.
This approach would lead to a stratified Monte Carlo (MC) method with nested loops on samples.
Although the computations would involve low-cost SoGP evaluations, and would not rely on the
original solvers, the stratified MC is known to be inefficient in this situation [40]. For computational
efficiency, we propose to use an MC sampling strategy inspired by [39]. In view of (12), the
computation of the Vi(x0) amounts to the computation of expected value of the squared conditional
expectations E [G1 7→n | G1 7→i(x0)]2,called E1 7→i(x0) hereafter. The expectation E1 7→i(x0) can be
rewritten as:

E1 7→i(x0) = E [E [G1 7→n | G1 7→i(x0)]E [G1 7→n | G1 7→i(x0)]] , (13)

leading to the (unbiased) MC estimate

E1 7→i(x0) ≈ 1
M

M∑
j=1

YjY
′

j , (14)

where Yj , Y ′j are two independent random samples of Gi+1 7→n ◦Xj where Xj is a random sample of
G1 7→i(x0). The estimation of the E1 7→i at given x0 ∈ Ω0 can be performed in parallel for different GP
model i, and can eventually reuse samples Xj from one level i to another. Using the same number
M of samples for all the E1 7→i, and recycling samples, the estimation of the n partial variance Vi

has a computational cost of the order of O(Mn).
As we shall see later, the training strategy may require the evaluations of the partial variances

Vi(x0) at multiple input points x0 ∈ Ω0. In this case, the estimator in (14) may be too expensive,
in particular if the variance of E [G1 7→n | G1 7→i(x0)] is large and high accuracy on E1 7→i(x0) is
demanded. We then propose in the following two approximations of E1 7→i aiming at reducing the
computational cost of computing the Vi.

3.2.2. Composition of averages
Following the discussion of Section 2.3, the expected value of composed GP models can be

substituted with the composition of the averaged GP predictions. Specifically, we propose to use
the following approximation of the conditional average,

E [G1 7→n | G1 7→i(x0)] ≈ µi+1 7→n ◦G1 7→i(x0), (15)

where we have consistently denoted µj 7→i := µi ◦ · · · ◦ µj . Using this approximation in (12), the
contribution of Gi to the total variance is approximated through

Vi(x0) ≈ V̂i(x0) = E
[
(µi+1 7→n ◦G1 7→i(x0))2 − (µi 7→n ◦G1 7→i−1(x0))2

]
. (16)

Finally, letting Ê1 7→i(x0) = E
[
(µi+1 7→n ◦G1 7→i(x0))2

]
, we use the MC estimate

Ê1 7→i(x0) ≈ 1
M

M∑
j=1

(Yj)2, (17)
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where Yj are independent random samples of µi+1 7→n ◦ G1 7→i(x0). Compared to the previous
estimator, in (14), the composition of averages still calls for a full sampling of the whole SoGP
chain to get all the Vi at given x0. Relying on the composition of averages (µi7→n) instead of the
composition of GP processes (Gi 7→n) reduces the computational cost by reducing the number of
random numbers to be generated and also by reducing, to some extent, the variance of the estimator
with possibly a lower sampling error in the MC estimate for fixed M .

3.2.3. Linearized approximation
The MC estimation of V̂i(x0) is still random and the sampling noise can cause problems when

solving for x0 the optimization problems associated to the training strategies introduced in Section 4.
These optimization problems are non-convex and their resolution requires a large number of accurate
evaluations of the V̂i at multiple x0. This fact has motivated the second approximation of Vi(x0)
that is both fast to estimate and free of sampling noise.

Starting from the expression of V1 7→i in (10), we first use (15) to obtain

V1 7→i(x0) ≈ V [µi+1 7→n ◦G1 7→i(x0)] . (18)

Relying on a local linearization, we have

V [µi+1 7→n ◦G1 7→i(x0)] ≈
(
µ′i+1 7→n(µ1 7→i(x0))

)2 V [G1 7→i(x0)] . (19)

The first order derivative of the composition of averages, µ′i+1 7→n, can be computed by chain rule
differentiation or more generally by finite difference formula. In addition, it is noted that this
derivative is considered at the composition of averages µ1 7→i(x0) rather than at E [G1 7→i(x0)] in order
to avoid having to estimate the average of the composition. At this point, Eq. (19) provides an
approximation of V1 7→i(x0), which, we recall, characterizes the variance induced by the GP models
up to Gi. To single-out the effect of Gi and approximate Vi(x0), we finally consider

Vi(x0) ≈ Ṽi(x0) =
(
µ′i+1 7→n(µ1 7→i(x0))

)2
σ2

i (µ1 7→i−1(x0)) , (20)

where it is recalled that σ2
i is the predictive variance of Gi. By definition, this definition is

deterministic and does not call for any MC computations. Moreover, the approximation Ṽi(x0)
will be accurate provided that the prediction variances σ2

i are small. However, we stress that the
estimate will be used to select new training points and Gaussian models to be improved and from
this perspective, it needs not to be necessarily very accurate.

3.3. Generalization
To close this section, we discuss the generalization of the proposed predictive variance decompo-

sition and its approximations above, in the case of more complex SoGP. First, the MC estimates of
Vi(x0) and V̂i(x0) can be readily extended to the case of chained vector-valued SoGP, provided that
the final prediction remains scalar, that is G1 7→n(x0) ∈ R. The linearized approximation Ṽi(x0) can
also be extended to more general chained SoGP, albeit the introduction of the gradient of µi+1 7→n

and the covariance matrix Σ2
i of the predictions of Gi.

Besides, one can extend the previous concepts of predictive variance decomposition to more
generic SoGP, that is not simply chained one, provided that it remains directed. Specifically, V1 7→i

becomes the variance of the expected final prediction conditioned all GP predictions upstream
of and including Gi, instead of G1 7→i. Identically, the composition of averages and the linearized
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approximations can be derived for more general directed SoGP by substituting the GP predictions
Gj downstream of Gi with their averaged prediction µj . Note that introducing a tree representation
of the SoGP (and SoS) may help to automate the set of GP models appearing in the conditioning of
the variance contribution of a specific GP model. An example of a more complex SoS is provided in
the result section below.

4. Training strategies

In this section, we discuss several strategies for the training of SoGPs. These adaptive training
strategies are based on the classical Maximum Mean Square Predictive Error (MMSPE) reduction,
which we extend to the SoGP case.

For simplicity, we consider as previously the case of n simply chained solvers, with real scalar
inputs and outputs, and global input x0 uniformly distributed in a bounded domain Ω0 ⊂ R. We
denote X0 = {x(l)

0 ∈ Ω0, l = 1, . . . ,m} a uniform sample set of m global input points; for i = 1, . . . , n
let Xi

.= fi(Xi−1) be the images of Xi−1 by the solver fi, such that reusing the notation of the
previous section

x
(l)
i = f1 7→i(x(l)

0 ), i = 1, . . . , n.

The Gaussian Process Gi, approximating fi : Ωi−1 7→ Ωi, can be constructed using the sample sets
Xi−1 and its image Xi by fi. Space-filling techniques, such as Latin Hypercube Sampling (LHS) [31]
and Sobol sequence [44], can be used to generate the driving sample set X0, with very satisfying
results [42]. The direct application of LHS on Ω0 will serve as a reference to be contrasted with
our sampling strategies proposed below. One advantage of considering sample sets Xi that are the
successive images X0, is that they implicitly follow the input distribution induced by f1 7→i, without
having to estimate the distribution of xi ∈ Ωi. As a result, different regions of Ωi are sampled
with a density of training points that reflects their importance. Accounting for the importance is a
desirable property as it will enforce higher accuracy for the Gi in the regions where they are likely
to be queried. However, this sampling method is completely a priori and may not be optimal, in
particular for a limited size sample set, with a dominant error in less likely regions that have not
been sampled sufficiently. In other words, an adaptive sampling of Ω0 can yield an error lower than
for an a priori LHS and for the same computational complexity measured by the size of the samples
set. Also, adapting the input training set Xi to each Gaussian Processes appears as a possible way
to reduce the error while minimizing the computational complexity, possibly by adapting the size of
the samples sets associated to the construction of the different GP models.

4.1. Maximum Mean Square Prediction Error
Given the samples sets Xi, possibly not image of each others and having different sizes, of points

x
(l)
i ∈ Ωi, we denote

Q(X0, . . . ,Xn−1) = max
x0∈Ω0

V [G1 7→n(x0)] , (21)

where the GP model Gi is constructed using the training sets Xi−1 and its image fi(Xi−1). In words,
Q measures the maximum of the global prediction variance for x0 ∈ Ω, given the input samples
sets of each GP model. The prediction variance is classically assumed to be representative of the
model error fi −Gi. Further, the selection of the samples sets Xi in order to minimize Q is known
in the literature as the Maximum Mean Square Prediction Error (MMSPE) criterion [38] or the
minimization of the Mean Square Error (MSE) of the Best Linear Predictor [15]. Clearly, computing
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the Xi such that Q(X0, . . . ,Xn−1) is minimal is a very difficult task even for fixed samples sets size,
search over finite sets of candidates x(l)

i [25], or even reducing the search space in Ω0 and imposing
the samples sets to be the images of one to another.

4.2. Adaptive training strategies
Adaptive training strategies (or active learning methods) intend to approach the solution of the

optimal sampling problem greedily, by progressively enriching the samples sets Xi. The generation
of effective training sets is an active research area, and advanced methods are available, see for
instance [38, 37, 28, 3]. In the present work, we do not aim to develop an original adaptive method,
but rather to propose adaptations of the MMSPE criterion-based method of [38] to systems of GP
models. In the following, we propose three different strategies. They are implemented and compared
in Section 5. As a side note, we remark that in the prediction of a SoGP being non-Gaussian, in
general, the minimization of the MMSPE criterion is not equivalent to entropy minimization.

4.2.1. Global Composition Criterion (GCC)
Following a greedy approach, we propose to select the input point x̃0 ∈ Ω0 presenting the highest

global predictive variance selected to seed the enrichment of the training sets. Specifically, the
seeding point is defined as

x̃ := arg max
x∈Ω0

V [G1 7→n(x)] . (22)

We set X0 ← X0 ∪ x̃ and update the other input samples sets Xi ← Xi ∪ {µ1 7→i(x̃)}, that is using
the successive composed averaged predictions applied to x̃. The update of the training sets for the
GCC strategy is outlined in Algorithm 1. In view of (22), we call the Global Composition Criterion
(GCC) this training strategy.

Algorithm 1 GCC: selection of new training points using the Global Composition Criterion.
1: procedure SelectGCC( {Gi=1,...,n} )
2: Find x̃0 ∈ Ω0 solution of (22)
3: for i = 0, . . . , n− 1 do
4: x̃i+1 = µi(x̃i)
5: return {x̃i=0,...,n−1}

Once the training sets Xi have been enriched, one can proceed with the update of the GP models
Gi using Xi−1 and its image by solver fi. The computational complexity of GCC thus amounts
to one resolution of all the solvers in the system, for every new training point seed x̃. Note that
defining the new training points by successive compositions of averages allows parallelizing the
computation of their images by fi. Defining instead x̃i+1 = fi(x̃i) at line 4 of Algorithm 1 would
result in a sequential update procedure as fi must be solved before proceeding with its composition
with the next solver fi+1. Furthermore, numerical tests have shown that using the composition of
exact images by fi has no significant impact on the efficiency of GCC.

4.2.2. Local Contributions Criteria (LCC)
The strategy GCC is a direct adaption of the classical MMSPE criterion used to train individual

GP models. It misses the chain structure of the SoGP, which can incorporate solvers with very
different complexity and influence on the on the global output. As a result, areas of the GP models
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with large prediction errors may not necessarily correspond to composed images of a single area Ω0.
Therefore, we propose here to select for each GP model Gi the input point x̃i−1 ∈ Ω0 yielding the
highest contribution Vi(x̃i−1). We recall that Vi is the contribution to the global predictive variance
of GP model Gi (see Section 3.1 and Eq. (11)). Specifically, we consider

x̃i−1 = arg max
x∈Ω0

Vi(x), i = 1, . . . , n. (23)

Note that the search space for the x̃i is always Ω0. In the following, we call LCC the training strategy
based on Local Contribution Criteria in (23). Once the input points x̃i ∈ Ω have been determined,
we enrich the respective training sets through Xi ∪ {µ1 7→i(x̃i)} as underlined by the procedure
reported in Algorithm 2. Note that the training point added to Xi is determined by a composition of
averages, µ1 7→i(x̃i), and not using the composition of models, f1 7→i(x̃i), for computational complexity
reduction purposes.

Algorithm 2 LCC: selection of new training points using Local Contribution Criteria.
1: procedure SelectLCC({Gi=1,...,n})
2: for i = 1, . . . , n do
3: Find x̃∗ ∈ Ω0 solution of (23)
4: x̃i−1 = µ1 7→i−1(x̃∗)
5: return {x̃i=0,...,n−1}

Because the initial seed x̃i is changing from a GP model to another, the LCC strategy does
not generate enrichment points that are composed images of one another (neither by fi or µi),
with potentially a better reduction of the MMSPE criterion compared to GCC. Comparing further
GCC and LCC, updating the GP models for the two strategies has the same computational cost
that is one evaluation of every solver in the SoS to compute the image by fi of the new point added
to Xi−1. Finally, note that each seed x̃i in LCC calls for the resolution of a distinct optimization
problem (23), whose complexity is comparable to the unique optimization problem (22) of GCC.
However, these optimization problems in (23) can be carried out in parallel.

4.2.3. Single Model Selection (SMS)
The GCC and LCC strategies require the evaluation of all the solvers and update all the

GP models. In practice, especially for limited size sample sets (e.g. at the start of the adaptive
procedure), the MMSPE V [G1 7→n] can be dominated by the contributions Vi of few GP processes.
In this situation, enriching a single training set Xi, or less aggressively just a few of them may
constitute a more efficient strategy to focus the computational resources on the improvement of
selected GP models, disregarding the update of relatively more accurate ones. To this end, we
propose a strategy called Single Model Selection (SMS), which selects a pair of one seed point and
index of the GP the featuring the largest contribution to global predictive variance. The pair solves
the following optimization problem

(x̃, l̃) = arg max
x∈Ω0

i∈{1,...,n}

Vi(x). (24)

Note again that the optimal point is sought in the global input domain Ω0, so we have to propagate
it to define the new training point of the selected model Gl̃ to be improved. As for the other strategy,
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we enrich the input training set (and its image by fl̃) through Xl̃−1 ∪{x̃l̃−1}, where the new training
point is obtained by the composition of averages x̃l̃−1 := µ1 7→l̃−1(x̃). As a result of the selection
of a single model to be updated, the SMS strategy has training sets Xi with variable sizes and, in
contrast to the other strategies, only the selected GP model Gl̃ needs be updated in SMS. Besides,
because of possible large heterogeneities between solvers, it may be interesting to account for the
computational cost of solving fi when selecting the new training point. To this end we extend the
optimization problem (24) to

(x̃, l̃) = arg max
x∈Ω0

i∈{1,...,n}

Vi(x)− αCi, (25)

where Ci is an estimate of the computational cost of solver i and α > 0 a user defined constant.
The procedure for selecting points in SMS is outlined in Algorithm 3.

Algorithm 3 SMS: selection of a unique new training point by the Single Model Selection.
1: procedure SelectSMS( {Gi=1,...,n},α)
2: Find couple (x̃, l̃) solution of (25)
3: xl̃−1 = µ1 7→l̃−1(x̃)
4: return (xl̃−1, l̃)

We observe that the strategies presented above rely on training sets that are images of one to
another by the true solvers, at least partially (for the members of the initial sets). Ideally, one
would like to construct the surrogates without having to perform any computation of the full SoS. A
fully decoupled construction of the GP models associated to each solver would be possible if their
inputs range and distribution were known a priori. Without this knowledge, one can instead adopt
a sequential construction method where all upstream GP models are constructed with sufficiently
high precision to ensure a correct prediction of the outputs distribution by the composition of
averages. This distribution can then be substituted to the unknown distribution of the inputs of the
downstream solvers to proceed (sequentially) with the construct of their GP models. Our estimates
of prediction variance and error control strategy SMS, applied to the prediction of the upstream
solvers’ outputs, can be employed to that end. However, this sequential construction is likely to result
in a sub-optimal strategy, as it may consume resources to obtain accurate intermediate GP models
that have a weak impact on the prediction variance of the terminal solver. Still, the sequential and
fully decoupled approach just described may present an interest when assembling the whole SoS is
not possible: it can be used to generate an initial coarse SoGP, which can be refined subsequently
using one of our active learning strategies.

4.3. Training algorithm
The three strategies presented above are greedy and add a single training point per samples set

Xi (in all sets for GCC and LCC, in a single set for SMS) before updating the GP model(s). For
parallelization purposes, one may be interested in adding a batch of training points instead of a
single one, in order to run, in parallel, multiple evaluations of the model fi. In the following, we
denote Nadd the number of training points added at a time to reduce the prediction error of the
SoGP. The main difficulty in adding Nadd points at once is that the three strategies above rely on
optimization problems that will produce the same new training points unless the SoGP is updated.
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In other words, these strategies are sequential, and it is necessary to update the SoGP for each new
training point to obtain the next one.

The generation of a batch of training samples, in view of their parallel evaluation, has been initially
proposed [43] in the context of the Bayesian optimization (multi-point expected improvement). This
approach was subsequently extended in [21], and applied to the upper confidence bound algorithm
in [17] and excursion set estimation in [10]. Similarly to these work, we propose here to circumvent
the sequential nature of the strategies by substituting the evaluations of the models fi, at the new
training points, with the current best predictions of the corresponding Gi, that is using µi in place
of fi. Doing so, one does not change the prediction but locally reduces (in the neighborhood of the
new training point) the predictive variance σi. This reduction, in turn, affects the global predictive
variance and its decomposition, such that the next training points will be found at different locations.
Algorithm 4 outlines the procedure for adding a batch of Nadd new training points. The procedure
uses one of the three selection procedures (see line 5) to construct the enrichment X̃i of the initial
training sets, while updating the GP models Gi (see line 7) using the initial training points with
their images by fi and the enrichment points and their prediction with µi. Note that in the case of
the SMS strategy, only Gl̃ needs be updated and that one can keep the hyper-parameters of the GP
models constant during these updates to further reduce the computational load. The procedure in
Algorithm 4 returns the enriched sets to train each model. To this end, the images by the solvers
fi of the Nadd new training points must be computed first, possibly in parallel, as sought by the
approach. Then, the GP models can be recomputed with the exact images and selection of the
hyper-parameters.

Algorithm 4 Training algorithm.
1: procedure SelectBatch({Gi=1,...,n}, {Xi=0,...,n−1}, Nadd, [,α])
2: for i = 0, . . . , n− 1 do
3: X̃i = ∅
4: for p = 0, . . . , Nadd do
5: {X̃i=0,...,n} ← {X̃i=0,...,n}∪ SelectStrategy({Gi=1,...,n}[, α]) )
6: for i = 1, . . . , n do
7: Update Gi using (Xi−1, fi(Xi−1)) and (X̃i−1, µi(X̃i−1))
8: return {(Xi ∪ X̃i)i=0,...,n}

As a final note, we observe that the optimization problems in (22)-(25) are nonconvex, in general,
and present many local optima as illustrated in see Section 5.2. Furthermore, depending on the
approximation of global predictive variance or contributions Vi considered, only noisy evaluations of
the objective functions may be available, such that appropriate optimization procedures must be
considered. Fortunately, the precise computation of the optimal points is not critical to the efficiency
of the training procedure, in particular when using a batch of points. In the present work, we relied
on genetic algorithms [47] to approximate the solutions of the optimization problems (22)-(25).

5. Test problems

The proposed SoGP methodology is now applied on several test cases corresponding to different
types of SoS, in terms of dependencies and structure. It is then applied to a realistic engineering
system of solvers in the context of the space object reentry.
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The first test case is a simple SoS with two chained solvers each having a single input. The second
test case consists of four solvers, with eight global inputs. The first three solvers are independent
and have a single output constituting the inputs of the last solver. The third test case is composed
of four solvers directly chained where a solver has for inputs the output of its upstream solver plus
some global inputs (overall 16 global inputs). This structure is representative of many systems of
solvers used in industry.

In order to assess the accuracy and robustness of the proposed framework, a systematic comparison
is performed with a global GP constructed on the whole SoS considered as a black box.

In particular, we compare the following methods:
• BB-LHS : a global GP is built on the whole SoS considered as a black-box, using a LHS-based

sampling;

• BB-MMSPE : a global GP is built on the whole SoS considered as a black-box, using the
MMSPE training strategy;

• SoGP-LHS : a SoGP is built, using a LHS-based sampling;

• GCC, LCC or SMS : a SoGP is built, using the GCC, LCC or SMS training strategy (described
in Section 4), respectively.

In all cases, the performance of the method is evaluated by computing a normalized L2-error
norm on the global output approximation. Denoting y the exact SoS global output and ỹ its
approximation (using one of the proposed methods), the error is estimated using N independent
Monte Carlo samples of the global inputs, as follows:

Err2
L2
≈
∑N

i=1 (ỹ(xi)− y(xi))2∑N
i=1 y(xi)2

, (26)

where the x1≤i≤N are independent Monte Carlo samples of the global inputs.
For each test case and method, the SoGP are initialized using an initial LHS set in the global

input space. In the case of the GCC, LCC, and SMS adaptive strategies, this initial LHS set is
progressively enriched adding a new batch of Nadd training points following the strategy discussed
in Section 4 (see also Algorithm 4). Also, to assess the influence of the random generation of the
initial LHS sample, the numerical experiments are repeated several times. We report the errors by
their values averaged over the repetitions, along with lower and upper bounds corresponding to the
best and the worst errors over the set of repetitions. Since the number of repetitions never exceeds
10, the error bounds shown are not precise estimates of the errors statistics, but constitute a rough
characterization of the method variability. Table 1 summarizes the default parameters used in the
numerical experiments: the initial LHS sample size, batch size Nadd, and the number of repetitions
used in the three test cases presented below. In all cases, the inputs have independent uniform
distributions. We also recall that the training methods do not require the same number of SoS
evaluations: the GCC and LCC methods require the evaluation of the all solvers in the SoS, for
each new training point, whereas the SMS only requires only the evaluation of the selected solver.

5.1. Test Case 1
This first test case consists in the composition of the two univariate functions f1 and f2 presented

in Fig. 4. These functions are defined as follows:

f1 : x 7→ exp
(√
x
)

sin(x) + 6 exp
(
−(x− 2)2)+ 5

2 exp
(
−3(x− 1)2) , (27)
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Test case initial LHS set size batch size Nadd number of repetitions
Test case 1 5 5 10
Test case 2 150 50 5
Test case 3 500 50 5

Table 1: Default parameters for the three test cases.

and
f2 : x 7→ sin(x) + 0.3× x× sin(3.4x+ 0.5) (28)

The global output is defined as f = f1 ◦ f2. The global input is uniformly distributed between 0 and
6.

(a) First solver f1(x) (b) Second solver f2(x) (c) SoS f1 ◦ f2(x)

Figure 4: SoS for the test case 1.

Figure 5 reports the results obtained for test case 1. We observe that the SoGP-based approaches
systematically achieve a lower error than the global (BB) approaches, by at least one order of
magnitude. Several remarks can explain this result. First, the SoGP-based approach is applied
to approximate relatively simple functions, f1 and f2, whereas the global approach works on a
much more complex function f1 ◦ f2, which features a highly multimodal behavior and a plateau.
As a consequence, intuitively, we can expect that the approximation of f1 ◦ f2 should be more
challenging than approximating f1 and f2 solely. In general, as long as the composing functions
are simpler than the final output, it is expected that a SoGP-based approach will perform better.
Second, in the global approach, a part of the information available in the training set is not used
because the evaluations of the first solver are not taken into account. As a general remark, since the
SoGP prediction is the composition of multiple GPs, it generally depends on more hyperparameters,
compared to the global approaches. Having more hyper-parameters to learn could be detrimental to
the computational complexity, but this drawback is compensated by the improved approximation
capabilities brought by the extended set of hyper-parameters and the additional information brought
by the intermediate variables.

Differences in performance between the global (BB) and the SoGP-based approaches are even
more significant for the adaptive strategies. Every adaptive technique formulated in a SoGP-based
framework yields better performances than the MMSPE-BB approach (which is doing slightly better
than the standard LHS-BB approach). Regarding the performance of the SMS method, we stress
that it only requires one solver evaluation per additional training point when the GCC and LCC
methods require the evaluation of the whole SoS for each new training point. As a consequence,
the results reported in Fig. 5 should be cautiously interpreted since the SMS method has a lower
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computational cost compared to the other methods. The computational cost of the solvers must
be considered for a fair comparison. For instance, assuming that the two solvers have the same
computational cost, the computational complexity of SMS is half that of the GCC and LCC methods,
and the SMS efficiency is comparable to the GCC and LCC efficiencies. In fact, in this example,
the SMS method focuses primarily on the second solver and does not add many training points for
learning the first solver which is much easier to approximate.

Figure 5: L2 error norm vs the number of training samples for test case 1.

5.2. Impact of predictive variance prediction
We take advantage of the simplicity of test case 1 to investigate the impact of different forms

proposed in Section 3.1 to approximate the contribution Vi of the GP models to the prediction
variance. Specifically, we compare the use of the MC estimates V1 and V2 given by (17) with the
approximation given by the linearized form in (20).

Figure 6 compares the MC estimate using 100 and 10,000 samples, with the corresponding
linearized estimate, for the contributions of the first (6(a)) and second (6(b)) GP models, at an
early stage of the construction with 25 training points selected with the criteria of SMS. For the first
model, we see that the MC and linearized approximations are in good agreement on most of the
input domain. The linearized form, however, is seen to significantly overestimate the contribution
to the variance in some area where it is the most significant. Regarding the comparison between
the two MC estimates, we remark that they generally agree satisfactorily, except in some localized
areas where the sampling noise is significant when only 100 samples are used. Interestingly, the
areas of the input space where the sampling noise is noticeable correspond to the areas where the
linearized form departs the most from the MC estimates. This finding suggests that the linearized
approximation ceases to be accurate in places where the variance structure calls for a higher sampling
effort. Similar observations hold for the second model, except that the linearized approximation now
underestimates significantly the MC estimates where it is the most subjected to the sampling noise.

Naturally, one can expect the differences between the MC and the linearized estimates to reduce
as the prediction variances of the GP models decrease. Figure 7 confirms this expected trend. It
compares the previous estimates at a later stage of the construction, involving 85 training points.
Note that for a fair comparison, all estimates use the same SoGP construction. Compared to the
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(a) First GP model (b) Second GP model

Figure 6: Estimates of the variance contributions V1 and V2 of the two GP models, at an initial stage of the
construction (involving a total of 25 training points): compared are the linearized approximation (20), and the Monte
Carlo estimates of (17) using 100 and 10,000 samples as indicated.

previous case, the plots confirm that the differences are much less significant; the convergence of the
MC estimates also seems to have improved as much smaller differences between the two MC sample
set sizes are reported. Besides the lower magnitude and the better agreement between the different
estimates, a noticeable evolution between the plots of Figures 6 and 7 is the sharp increase in the
frequency content: the functions V1 and V2 are oscillatory with many zero. The complex structure
of the contributions to the variance highlights the existence of multiple local maximums that, as
mentioned previously, calls for a robust optimization procedure for the selection of the next training
points.

(a) First GP model (b) Second GP model

Figure 7: Estimates of the variance contributions V1 and V2 of the two GP models, at an initial stage of the
construction (involving a total of 85 training points): compared are the linearized approximation (20), and the Monte
Carlo estimates of (17) using 100 and 10,000 samples as indicated.

To complete the analysis of the different estimates of the Vi, we provide in Figure 8 a comparison
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of the resulting global surrogate errors, obtained for the same SMS strategy but based on the
different estimates. We see that, on this experiment, the method selected for the estimation of the
Vi has only a weak influence on the resulting surrogate errors, with differences that are comparable
to the variability bounds of the SMS method shown before in Figure 5. We can conclude that the
linearized estimate is quite robust, on this example, and should be preferred because of its much
lowest computational cost. The MC estimation constitutes a more expensive approach, but it is
perhaps safer, especially at the early stage of the construction when the predictive variance is large.
Regarding the MC estimate, the presented results suggest that it is unnecessary to use a large
number of MC samples. However, an optimization procedure able to deal with noisy evaluations
must be employed to determine the next training point. Such procedure usually comes with a higher
numerical cost, so that the overall interest of using the MC estimate may be limited in practice.

Figure 8: L2 error norm vs. the number of training samples for Test-Case 1 using the SMS criterion with the linearized
approximation of the variance decomposition and the Monte Carlo estimation obtained with 100 samples or 10,000
samples. All cases are initialized with the same training set of 5 points.

5.3. Test Case 2
In this test case, the SoS consists of three independent solvers, with independent global inputs,

and which scalar outputs are the inputs of the downstream solver. Overall, the SoS has four solvers
and eight global inputs as depicted in Fig. 9. As seen from the figure, the SoS of test case 2 has two
blocks consisting of solvers 1-3 and solver 4, respectively. The individual solvers are defined by the
analytical functions below:

f1(x1, x2, x3) = sin(2x1x2) + x2
3, f2(x4, x5, x6) = 3x2

4x
2
5x6,

f3(x7, x8) = 2x7 + x3
8, f4(y1, y2, y3) = y1 + y2

1 sin(y2) cos(y3).

The global inputs have a uniform and independent distribution between 0 and 1.
The training strategies formulated in Section 4 are compared with an additional one. Because of

the SoS structure, two options are possible in the SMS strategy: i) to identify and train the most
unreliable solver (which is the original SMS technique); ii) to use SMS to identify and train the
most unreliable block (solvers 1-3, or solver 4). This last strategy is denoted in the following as
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Figure 9: SoS for test case 2.

SMS-block. For this test case, we compare both approaches together. Figure 10 reports the errors of
the different strategies on this test case. We first observe that for the non adapted methods based
on LHS, the simple SoGP method (SoGP-LHS) does better than the global BB method (BB-LHS),
with an error about 3 to 5 times less. The improvement is not as significant than in the previous test
case. This can be explained by the differences in the structure and functions defining the SoS of the
two test cases. In fact, for the considered range of the global inputs, the complexity of the global
mapping induced by the SoS is not that complex. This can be appreciated from the distribution
of the output of the first block solvers f1,2,3 shown in Fig. 11. In particular, it is seen that the
input range of f4 is not too large, such that there is not as much to gain, compared to the previous
example. In fact, it is reasonable to consider that the improvement is here essentially due to the
reduction of the input spaces owing the SoGP construction.

Figure 10: L2 error norm vs the number of training samples for test case 2.

Focusing on the performances of the training strategies, we observe that the global MMSPE-BB
method performs particularly bad, on this test case, since it brings no improvement compared to
the non-adapted global BB-LHS approach. This effect is a well-known issue of MMSPE adaptivity
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Figure 11: Marginal histograms of the outputs of solver 1, 2 and 3 (from left to right, in arbitrary unit).

in high dimension since, as mentioned in [35, 28], the MMSPE tends to place training points at the
edge of the domain. This behavior deteriorates the performance of the global surrogate model when
the inputs dimension is high. This issue appears to be significantly mitigated for the SoGP methods
with MMSPE-based adaptive strategies (GCC, LCC, and SMS), owing to the reduced dimensionality
of the individual GPs inputs. Fig. 10 shows that the SoGP-based approaches outperform the
global black-box approaches, with errors reduced by up to two orders of magnitudes. Concerning
the relative performances of the SoGP-based adaptive strategies (SMS, SMS-block, LCC, GCC),
GCC and LCC are seen to yield similar performances. This result comes from the SoS specific
structure in which the last solver (f4) contributes the most to the global predictive variance. As
a consequence, the two methods end up selecting the same enrichment point for the second block.
Concerning the SMS-based strategies, SMS and SMS-block perform identically because, again, the
last solver is the hardest to learn. Looking at Figure 10, where the errors are plotted as functions
of the number of training samples, SMS, and SMS-block methods seems to have slightly lower
performance than the LCC and GCC method, as this representation does not reveal differences
in computational cost. In order to highlight the gain in using SMS-based techniques, which are
the most computationally effective techniques for this test case, we report in Fig. 12 the L2 error
with respect to the computational cost, computed here as the number of calls to a solver (assuming
implicitly that each solver has the same evaluation cost).

5.4. Influence of the training batch size Nadd
As discussed previously, the most effective training strategy should consist of adding one training

point at a time and run the SoS in a purely sequential manner, without thereby exploiting the full
potential of parallel computing. By setting Nadd > 1 in algorithm 4, it is possible to evaluate in
parallel a whole set of new training points for the same solver. It remains the question of selecting
the batch size Nadd offering the best trade-off between the cost reduction of the solver evaluation,
thanks to parallelism, and a less effective adaptation due to a non-optimal sequential choice of
the points. In this section, we investigate the influence of the training batch size on the SoGP
performance for the test cases 1 and 2, and using the LCC and SMS strategies respectively, since
they were found to be the most effective ones.
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Figure 12: L2 error norm vs the number of solvers evaluations for test case 2.

Figure 13(a) shows the convergence of the L2 error in test case 1 for different batch sizes
Nadd = 1, 5, 10 and 20, and the LCC method. Each experiment is repeated ten times. In this cases,
the asymptotic performance of the adaptive methods appears to be virtually insensitive to Nadd,
indicating that one can take advantage of the parallelism over multiple samples without affecting
the convergence of the method. This conclusion is also valid for test case 2 when using the SMS
strategy with Nadd = 10 and 50, as shown in Fig. 13(b). This later example also indicates a slightly
greater variability of the error with the initial LHS sample set.

(a) Test case 1 with LCC method (b) Test case 2 with SMS method

Figure 13: L2 error norm2 vs the number of training samples and for different batch size Nadd. Test case and method
as indicated.

In practical applications, one should select Nadd according to the computational budget and the
final number of training samples to be added. It should be as large as possible to exploit parallel
solvers evaluations, but not too large, especially in the first stages of the adaptive procedure, to
avoid amplifying the initial sample variability.
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5.5. Test Case 3
This test case consists of a SoS with 16 global inputs and four solvers organized as depicted in

Fig. 14. The first solver is a Sobol function [45] depending on five parameters, defined as follows:

f1(x1, x2, x3, x4, x5) =
5∏

k=1
gk(xk), (29)

where gk(xk) = |4xk−2|+ak

1+ak
, a = (12, 2, 3, 4, 45).

The second solver is the Ishigami function [23] defined as:

f2(x1, x2, x3) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (30)

with a = 7 and b = 0.1. The input x1 of solver f2 is the output of the first solver, i.e. f1. The other
two solvers are products of polynomial functions and trigonometric functions, defined as follows:

f3(x1, x2, x3, x4, x5, x6) = x2
2 arctan(1− x6) + x3x4x

3
5 + 3x1, (31)

where x1 of f3 is the output of the second solver, i.e. f2;

f4 = (x1, x2, x3, x4, x5) 7→ sin(x5)x4 + x1x2 + x3, (32)

where x1 of f4 is the output of the third solver, i.e. f3. The global inputs are uniformly and
independently distributed between 0 and 1.

Figure 14: Test case 3: cascade-like SoS structure with 16 global inputs and 4 solvers.

This SoS differs from the previous ones since each solver has some global inputs in addition to
the output of the upstream solver. This structure is representative of many industrial SoS, such as
the one considered in the following section. Figure 15 presents the results for this test case. Focusing
on the errors as functions of the sample set size, shown in Fig. 15(a), it is seen once more that the
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SoGP framework brings significant gain in accuracy over the global black-box approaches (BB-LHS
and BB-MMSPE). We again explain this gain by the relatively lower dimensionality of individual
solvers inputs, compared to the global SoS. Also, we remark that the individual solvers are complex
functions (in particular the Sobol and Ishigami functions) that yield a very complex output when
composed together.

In this test case, the accuracy gain of adaptive strategies is less significant than in the previous
test cases. In particular, the global BB-MMSPE performs very poorly with a stagnating error
after 1500 samples. As before, this behavior is expected in high dimensional problem [28], as in
the present test case. In contrast, the GCC, LCC and SMS strategies perform much better than
BB-MMSPE, although they have relatively high dimensional inputs. The dimensionality translates
into a slow decay of the error with the number of training samples. As in the previous test cases, a
fair comparison between SMS, GCC and LCC should consider the lower computational cost of the
SMS. This perspective can be appreciated from Fig. 15(b) which depicts the error as a function of
the number of calls to a solver, assuming again that all the solvers have the same cost. The SMS
is seen to yield the lowest error for a given computational cost. The gain of SMS primarily comes
from the identification of the most unreliable solver, here the Sobol function, which is responsible
for most of the predictive variance. As a consequence, focusing the computational effort on this
solver is very efficient and improves the performance of the whole SoS. This example illustrates the
interest in identifying the solver yielding the most of variance in a SoS.

(a) Errors vs training set size. (b) Errors vs number of calls to solvers.

Figure 15: Evolutions of the L2 error norms for the Cascade-like SoS.

5.6. Application to space reentry simulation
We complete this results section by providing an example of application to an engineering

application. The SoGP framework is applied to a SoS developed by ArianeGroup (AG) [20]. This
SoS is used to predict the trajectory of a reentering space object and consists of two solvers: i)
an upper atmosphere trajectory solver; ii) a three degree-of-freedom trajectory solver integrating
a thermal module that provides the temperature of the object [5]. The upper atmosphere solver
computes the trajectory from 120 km to 80 km of altitude, and the second solver propagates the
trajectory from 80 km to 75 km. The output of the first solver is the object position and velocity at
an altitude of 80 km, which are the inputs to the second solver. The final quantity of interest is the
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object temperature at 75 km of altitude, a quantity of interest for the estimation of the breakup
risk. We consider a spherical pressure tank as a reentering object.

The structure of the SoS is illustrated in Fig. 16, where the global inputs are also depicted. These
global inputs are the following: i) 6 inputs for the initial flight conditions (object initial position
and velocity); ii) 2 inputs for the atmospheric temperature and density in the upper atmosphere; iii)
3 inputs for the material thermal and emissivity properties. In total, 11 global inputs are considered
and modeled as random variables with uniform distributions. In this SoS, the two composing solvers
present a very different complexity. The first one is an almost linear mapping between the inputs
and the outputs. It is therefore straightforward to learn. On the contrary, the second solver displays
a more complex behavior and is so harder to emulate. Finally, we mention that the computational
costs of the two solvers are different with an estimated ratio of 86:14 between Solver 1 and Solver 2.

Figure 16: SoS for the space object reentry simulation.

Three approaches are contrasted on this engineering application: the global BB-LHS, the
non-adaptive SoGP-LHS, and the adaptive SMS methods. The global BB-LHS and non-adaptive
SoGP-LHS methods are applied on four samples LHS sample sets of size 200, 300, 500 and 600
respectively, while the SMS strategy is initialized with the LHS set of dimension 500 before selecting,
in batch of size Nadd = 10 new points, till an equivalent of 600 solver evaluations is reached.

The results are summarized in Fig. 17. The figure depicts the L2 error norm as a function of the
computational cost, reported as the number of solver evaluations scaled by their respective relative
costs (0.86 and 0.14 for the upstream and downstream solvers, respectively). In these experiments,
the error is estimated using an independent set of 1000 LHS points. Consistently with the previous
test cases, the SoGP-LHS perform better than the global BB-LHS method. The improvement is
explained by the number of inputs of the solvers which is less than the dimensionality of the global
inputs. Concerning the adaptive strategy, the SMS approach presents an unusual behavior with
an initial dramatic decrease in the error, until a computational cost of around 520 (i.e. for a few
adaptive batches). Beyond this point, the error decays at a much slower rate, although it remains
lower than for the other LHS-based methods. We explain this behavior as follows. Initially, the
SMS strategy adds sample points to improve exclusively the second solver, which cost is only 14
% of the whole SoS chain. As a result, the SMS performs exceptionally well during this phase.
Subsequently, when the contribution of the two solvers to the overall prediction variance is balanced
between the two solvers, the advantage of selecting a particular solver is less critical, and the limits
of the MMSPE-based strategy in high dimension [28, 35] become apparent with a stagnating error
decay as a result.
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Figure 17: L2 error norm vs the computational cost for the space object reentry SoS.

6. Conclusion

In this work, we have proposed a framework for constructing a system of Gaussian Processes
(SoGP) approximating a directed system of solvers (SoS) having uncertain inputs. The SoGP
substitutes GP models to the solvers constituting the SoS. The prediction is then formed from the
composition of the GP models.

We have demonstrated that this approach is potentially more efficient than the direct construction
of a global surrogate of the SoS, in particular when the SoS combines individual solvers with low
dimensional inputs and simple mappings from inputs to outputs. In these situations, a reduction of
orders of magnitudes in the L2 error norm can be achieved for the same number of training samples.
Besides, the SoGP construction involves an extended number of hyperparameters (typically a set of
hyperparameters for each model, instead of a single set for the global mapping from the inputs to
the outputs) with improved approximation capabilities as a result.

By design, our proposed SoGP is well suited to parsimonious active learning strategies. Our
active learning strategy is classically based on algorithms requiring a predictive error estimation.
In this work, the global predictive variance estimations of the SoGP is used to assess the precision
of the prediction. A formal decomposition of the global predictive variance is derived to identify
the contribution of each solver. Different approximations of the solver contributions have been
proposed to improve computational efficiency. These estimates have been used to extend the
MMSPE-based adaptive algorithm, with improved performance compared to non-adaptive strategies
on several test-cases. Specifically, the three training strategies proposed (GCC, LCC, and SMS)
have yielded systematically better results, up to one order of magnitude error reduction, compared
to the non-adapted SoGP-based approach. In particular, the SMS strategy which selects the specific
solver with the highest contribution to the predictive variance is shown to be computationally very
effective, in particular when some GP models of the SoGP have a dominant contribution to the
prediction variance and low evaluation cost.

Each experiment was repeated at least five times for the analytical cases to test the robustness
of the active learning methods to the initial samples randomness. While the number of repetitions
is too low to compute statistically converged error bars, we observed that the variability of each
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technique is influenced by the initial sample set size.
Numerical tests also revealed some limitations of the considered active learning strategies which

call for improvements toward application to engineering problems. These limitations are not related
to our SoGP framework but are rather generic to the MMSPE criteria and its lack of robustness,
in particular for high-dimensional inputs. Potential improvements of this aspect could involve the
extension of the solver (and training point) selection using the integral prediction variance reduction
criteria, which is known to constitute a more effective approach [28, 3]. This extension would,
however, require additional developments to obtain computable estimates of the solver contributions.

Future works could also consider the adaptation of the proposed SoGP framework to task-oriented
problems, such as solving optimization problems by Efficient Global Optimization strategies [24], or
the simulation of rare events [33]. Such developments will require objective oriented active learning
strategies to improve the SoGP predictive capabilities for the input values of interest.
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