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Abstract

This work deals with the inference of catalytic recombination parameters from plasma wind tunnel experiments for
reusable thermal protection materials. One of the critical factors affecting the performance of such materials is the
contribution to the heat flux of the exothermic recombination reactions at the vehicle surface. The main objective of
this work is to develop a dedicated Bayesian framework that allows us to compare uncertain measurements with model
predictions which depend on the catalytic parameter values. Our framework accounts for uncertainties involved in
the model definition and incorporates all measured variables with their respective uncertainties. The physical model
used for the estimation consists of a 1D boundary layer solver along the stagnation line. The chemical production
term included in the surface mass balance depends on the catalytic recombination efficiency. As not all the different
quantities needed to simulate a reacting boundary layer can be measured or known (such as the flow enthalpy at the
inlet boundary), we propose an optimization procedure built on the construction of the likelihood function to determine
their most likely values based on the available experimental data. This procedure avoids the need to introduce any a
priori estimates on the nuisance quantities, namely, the boundary layer edge enthalpy, wall temperatures, static and
dynamic pressures, which would entail the use of very wide priors. Furthermore, we substitute the optimal likelihood
of the experimental measurements with a surrogate model to make the inference procedure both faster and more robust.
We show that the resulting Bayesian formulation yields meaningful and accurate posterior probability distributions of
the catalytic parameters with a reduction of more than 20% of the standard deviation with respect to previous works.
We also study the implications of an extension of the experimental procedure on the improvement of the quality of
the inference.

Keywords: Uncertainty Quantification, Bayesian Inference, Plasma Flows, Catalysis, Thermal Protection Systems,
Surrogate Model, Markov Chain Monte Carlo

1. Introduction

Space travel, since its beginnings in Low Earth Orbit (LEO) to the exploration of our Solar System, has led to
countless scientific advancements in what it is one of the most challenging undertakings of humankind. Venturing
into Space requires large amounts of kinetic and potential energy to reach orbital and interplanetary velocities. All
this energy is dissipated when a space vehicle enters dense planetary atmospheres [1]. The bulk of this energy is
exchanged during the entry phase by converting the kinetic energy of the vehicle into thermal energy in the surrounding
atmosphere through the formation of a strong bow shock ahead of the vehicle [2]. The interaction between the
dissociated gas and a reusable protection system is governed by the material behavior which acts as a catalyst for
recombination reactions of the atomic species in the surrounding gas mixture [3]. The determination of the catalytic
properties of thermal protection materials is a complex task subjected to experimental and model uncertainties, and
the design and performance of reusable atmospheric entry vehicles must account for these uncertain characterizations.
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It is relatively common when dealing with complex physical phenomena to resort to simple, non-intrusive a priori
forward uncertainty propagation techniques [4, 5]. These techniques assume a priori probability distributions for the
main model parameters. Sensitivity analyses are then performed to discriminate the important ones. They also assume
that the exact value is sufficiently well known and within the considered uncertainty range. These methods do not use
any experimental observation to calibrate such parameters. The interest of using experimental information is that it
leads to objective uncertainty levels and provides likely values rather than a priori guesses, achieving better and more
reliable predictions.

In the present work, we explore the possibility of exploiting experimental data resulting from measurements in
[6] for the purpose of inferring surface recombination efficiencies. These parameters play an important role in the
prediction of the thermal response of selected protection materials, such as ceramic matrix composites. The inference
focuses on a Bayesian approach that has the advantage of providing a complete characterization of the parameters’
uncertainty through their resulting posterior distribution. While conceptually simple, performing a Bayesian inference
raises several computational and practical difficulties at every one of its constitutive steps [7, 8]. The main issue in our
problem is related to the appearance of nuisance parameters within the model, such as pressures, wall temperatures
and the boundary layer edge enthalpy. These particular parameters are needed to perform the inference but we are not
explicitly interested in getting their distributions, nor we can measure all of them. Traditional Bayesian approaches
deal with this problem by prescribing prior distributions on such parameters at the expense of some of the observations
consumed to evaluate these nuisance parameter posteriors. Consequently, it is important to remark their impact on the
quality of the inference [9].

Particularly, knowing how the experimental procedure is carried out is fundamental for the efficient formulation of
the inference method. Testing for the characterization of a given protection material requires the use of an additional
material which assists in the testing (referred to as reference material) and whose catalytic properties are better known.
The Thermal Protection System (TPS) material in question and the reference material are then tested under the same
experimental conditions. The basis of this experimental approach lays in the fact that we can have accurate knowledge
about the inlet boundary condition if we immerse a well-characterized material in it for which the response, that it is
directly measured, is dependent on those inlet conditions. This knowledge is then used to assess the properties of the
TPS material, main objective of the experiment.

The inversion problem for the catalytic properties was first proposed in [10]. In it, Sanson et al. point out that
the parameter for the reference material is not always perfectly known, and the testing conditions are subjected to
uncertainties. These conditions are consequently treated as nuisance parameters in the inference problem by prescrib-
ing their priors. We highlight difficulties faced in this past work and propose a new methodology. Our formulation
involves a particular treatment of the nuisance parameters, whose uncertainty is reduced by solving an auxiliary max-
imum likelihood problem. This maximum likelihood problem alleviates the need to sample the nuisance parameters,
and can then improve the computational efficiency of the inference, providing more consistent and accurate poste-
rior distributions. Solving this auxiliary problem and sampling the posterior distribution is expensive, as it requires
multiple evaluations of the boundary layer equations. To mitigate this issue, we use a surrogate model of the optimal
likelihood function, making the whole inference process faster and allowing for extensive exploration of the posterior
distribution. The use of this methodology, novel in the field of TPS characterization, leads to an improved exploitation
of the experimental measurements with, as a result, a better estimation of the catalytic parameters for a wide range
of conditions. Further, the developments proposed in this paper have the potential of quantitatively assessing several
ways in which to improve the experimental procedure and achieve a better understanding of the catalytic phenomena.

The article is organized as follows. Section 2 describes the experimental set-up together with the model-based
simulations. In Section 3, the Bayesian framework is presented in detail. Section 4 looks into a case study with
real experimental data to assess the validity of the Bayesian approach and study the different surrogate models for
the log-likelihood approximation. Section 5 extends the methodology to other experimental cases to assess what the
Bayesian method can bring to the problem of testing catalytic materials. Finally, Section 6 summarizes the outcomes
of the analyses and discusses the possible perspectives of the presented approach.

2. Experimental set-up and theoretical models

In this section, we briefly discuss the theoretical model and recall the experiments and measured quantities con-
sidered in this work. As a simple model of TPS material, we define the catalytic coefficient γ as the ratio of the
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number of atoms that recombine on the material surface over the total number of atoms that hit it. We assume the
same recombination probability for the nitrogen and oxygen species constituting the air plasma, leading to just one
single catalytic parameter to characterize the material under atmospheric entry conditions. Model-based numerical
simulations include this parameter to account for catalytic effects in the prediction of relevant quantities. The esti-
mation of γ also requires performing experiments in conditions relevant and similar to the environment faced during
atmospheric entry so that this information can be fed to the model-based simulations to provide boundary conditions
and closure. In all this sophisticated machinery, experiments and models are intertwined in a complex fashion, and it
is essential to carefully assess the effect of possible uncertainties on the inferred quantities.

2.1. Experimental set-up

We consider the experimental set-up of the Plasmatron facility at the von Karman Institute (VKI), a Inductively-
Coupled Plasma (ICP) wind tunnel powered by a high-frequency, high-power, high-voltage (400 kHz, 1.2 MW, 2 kV)
generator [11]. Figure 1 schematizes the Plasmatron and its instrumentation for catalytic property determination.

The plasma flow is generated by the induction of electromagnetic currents within the testing gas in the plasma
torch (right part of the scheme in Fig. 1); this process creates a high-purity plasma flow which leaves the testing
chamber through the exhaust (left side of the scheme). In a typical experiment, one sequentially exposes two probes
to the plasma flow: a reference probe made of a well-known material (copper), having a catalytic coefficient γref , and
a test probe which holds a sample of the TPS material with the unknown catalytic coefficient, γTPS, to be inferred. The
following instruments equip the Plasmatron. For pressures, a water-cooled Pitot probe measures the dynamic pressure
Pd within the plasma jet, and an absolute pressure transducer records the static pressure Ps in the Plasmatron chamber.
The reference probe is an hemispherical device (25 mm radius) equipped with a water-cooled copper calorimeter at
the center of its front face. The calorimeter has a cooling water system that maintains the surface temperature of the
reference probe T ref

w . The heat flux qref
w is deduced from the mass flow (controlled by a calibrated rotameter) circulating

in the cooling system and the inlet/outlet water temperature difference measured by thermocouples as a result of the
exposure to the plasma flow. For the test probe, we measure directly the heat flux qTPS

w and surface temperature T TPS
w .

The determination of the heat flux assumes a radiative equilibrium at the surface, with the relation qTPS
w = σεT TPS

w
4,

where σ is the Stefan-Boltzmann constant, ε is the emissivity measured with an infrared radiometer, and T TPS
w is the

wall temperature which is measured using a pyrometer. More details on how these measuring devices work can be
found in [12].

The underlying idea of the experimental procedure is to perform first measurements of the wall temperature T ref
w ,

heat flux qref
w and pressures Pd and Ps with the reference probe set in the plasma jet. As these measurements depend on

the state of the free stream flow, in particular on the enthalpy Hδ at the boundary layer edge, the free stream conditions
can be deduced if one knows the catalytic coefficient γref of the reference probe. Then, in a second stage, the test
probe is set in place of the reference probe in the plasma jet. The corresponding steady state wall temperature T TPS

w
and heat flux qTPS

w are measured and, assuming that the free stream flow conditions have not changed, the catalytic
coefficient γTPS of the test probe can be inferred.

2.2. Model-based simulations: the Boundary Layer code

To identify the TPS catalytic properties γTPS, we simulate the chemically reacting boundary layer in the vicinity
of the probe stagnation point [2]. The Boundary Layer (BL) code solves the full Navier-Stokes equations along the
stagnation line. To solve the system, we need closure models for the thermodynamic and transport properties as well
as the chemical production terms of the different species. Transport fluxes are derived from kinetic theory using the
Chapman-Enskog method for the solution of the Boltzmann equation [13, 14]. Diffusion fluxes are computed through
the generalized Stefan-Maxwell equations, an approach which by derivation is exactly equivalent to a description
based on the multicomponent diffusion matrix [15, 16, 17], therefore providing equivalent solutions for the diffusion
fluxes. For the homogeneous chemistry in the gas phase, the Law of Mass Action is used to compute production rates
as proportional to the product of the reactant densities raised to their stoichiometric coefficients [18]. A 7-species air
mixture and chemical rates from Dunn and Kang [19] in the form of modified Arrhenius laws are considered. The
thermodynamic properties, such as the enthalpy, are derived from statistical mechanics [2, 20] for a reacting mixture
of perfect gases, assuming thermal equilibrium and chemical non-equilibrium. Apart from the closure models, the
parabolic nature of the BL equations requires the imposition of two boundary conditions: the external flow conditions
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Figure 1: Schematic view of the experimental set-up for the Plasmatron facility.

at the boundary layer edge, namely pressure, temperature and velocity, and the conditions at the material surface. A
mass balance is imposed to account for the production and depletion of species as a consequence of their interactions
with the material surface. Recombination reactions can be triggered depending on the catalytic activity of such
material [21]. We impose a no slip condition at the wall for the momentum equation and impose a wall temperature
for the energy flux. More details about the derivation, coordinate transformations and numerical implementation of
the BL code are available in the work of Barbante [22]. In summary, the predictive quantity of the code is the wall
heat flux

qw = qw

(
γ,Tw, Pδ,Hδ, δ,

∂uδ
∂x

, vδ
∂

∂y

(
∂uδ
∂x

))
, (1)

which depends on the free stream conditions (subscript δ), the thickness of the boundary layer δ, the catalytic param-
eter of the material γ and the surface temperature Tw. An auxiliary magnetohydrodynamic axisymmetric simulation
assuming Local Thermodynamic Equilibrium (LTE) is performed to simulate the flow in the torch and chamber of
the wind tunnel [23]. Relaying on the knowledge of the operating conditions of the Plasmatron, such as electric
power, injected mass flow, static pressure and probe geometry, this 2D simulation lets us compute non-dimensional
parameters that define the momentum influx to the boundary layer (interested reader is directed to [24]). To derive the
computation of the velocity derivative ∂uδ/∂x needed as input in Eq. 1, we need also to incorporate the measurement
of the dynamic pressure Pd along with the non-dimensional parameters. The prediction we are seeking to match the
experimental data is now recast as

qw = qw (γ,Tw, Pδ,Hδ, Pd,Π1,Π2,Π3) , (2)

where Π1,Π2,Π3 are the non-dimensional parameters and Pδ is taken as the chamber static pressure Ps. These
parameters, together with the dynamic pressure Pd, define the boundary layer thickness, velocity and derivatives at
the edge. Even though the number of input parameters is larger in Eq. 2, this formulation is more useful given that we
have replaced three unknown and not easily measurable quantities by a quantity that can be directly measured (Pd)
and three parameters that do not depend on the local flow conditions and can be taken as known constants for each
condition for the purpose of our Bayesian formulation [25].

The typical procedure to retrieve the catalytic parameter γ is the following. In the first step, for given non-
dimensional parameters Π1,Π2,Π3, measured wall temperature T ref

w , static pressure Ps, dynamic pressure Pd and
reference catalytic parameter γref , the enthalpy Hδ that matches the heat flux observed qref

w is iteratively determined.
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When the enthalpy Hδ is determined, the code can be used, in a second step, to find the value of the catalytic parameter
γTPS that yields the observed heat flux qTPS

w for the measured wall temperature T TPS
w , pressures Ps and Pd and rebuilt

enthalpy Hδ obtained in the previous step.

3. Bayesian framework

In this section we derive the Bayesian formulation of the inference problem in subsection 3.1. We then discuss
in subsection 3.2 the construction of a surrogate model to approximate the likelihood function, and finally, briefly
describe the procedure used to sample the posterior distribution in subsection 3.3.

3.1. Bayesian formulation of the inference problem

The inference of the model parameters uses the Bayes formula which can be generically formulated as

P(Q|M) =
L(M|Q) P(Q)

PM(M)
. (3)

In (3), we have denoted Q the vector of model parameters to be inferred, M the vector of measurements or observa-
tions, P(Q) the prior distribution of the parameters, L(M|Q) the likelihood of the measurements, P(Q|M) the posterior
distribution of Q, and PM the evidence or marginal likelihood, that is, the probability that the measurements are ob-
tained under the considered model. In our context, we have M = (Pmeas

s , Pmeas
d , qref,meas

w , qTPS,meas
w ,T ref,meas

w ,T TPS,meas
w ).

Classically, the likelihood measures the discrepancies between the measurements in M and the corresponding model
predictions. The issue here is that the model predictions are not just functions of the catalytic coefficients γ =

(γref , γTPS), but also depends on all the inputs of the BL code: the pressures Ps, Pd, wall temperatures T ref
w ,T TPS

w and
boundary layer edge enthalpy Hδ. The pressures and wall temperatures are measured in the experiment, but only
with limited precision, while the enthalpy Hδ is simply not known. Consequently, there may be zero, or multiple,
boundary layer edge conditions consistent with the measurements. Since the boundary layer edge conditions can not
be completely characterized, the remaining uncertainty should be accounted for when inferring the test probe catalytic
coefficients.

One possibility to handle this issue is to consider the whole set of uncertain quantities, not just the quantities of
interest γref and γTPS, but also the so-called nuisance parameters. In that case, we define the vector of model parameters
Q = (γref , γTPS,T ref

w ,T TPS
w , Ps, Pd,Hδ) in the inference problem. The introduction of the nuisance parameters induces

several difficulties related to the necessity to specify their prior distributions, the increased dimensionality of the
inference space, and the consumption of information for the inference of the nuisance parameters. This last issue
is detrimental to learning the parameters of interest. In [10] non-informative priors were used for all the nuisance
parameters. This approach only approximates the posterior of Q including the nuisance parameters, and the influence
of the (unknown) prior densities of these parameters is unclear. Not only that but the ability to effectively learn from
these experimental data is lost. In the following, we derive an alternative formulation for the joint inference of the two
catalytic coefficients γ = (γref , γTPS). Specifically, we consider the following Bayes formula

P(γ|M) =
L(M|γ) P(γ)

P(M)
, (4)

as before, L(M|γ) refers to the likelihood of the measurements in M. This formulation only depends on the two
catalytic coefficients (γref , γTPS) and not on the other nuisance parameters. As a result, only the prior P(γ) is needed.

3.1.1. Likelihood function
Our objective is to design a reduced likelihood function which does not involve any nuisance parameters. As stated

before, the prediction of the heat fluxes involves not only the catalytic coefficients γref , γTPS, but also Ps, Pd,T ref
w ,T TPS

w
and Hδ. Assuming independent unbiased Gaussian measurement errors, with magnitude σ, the full likelihood of M
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with the nuisance parameters would read as

L(M|Q) = exp

− (
Pmeas

s − Ps
)2

2σ2
Ps

 × exp

−
(
Pmeas

d − Pd

)2

2σ2
Pd

×
×

∏
i∈{ref,TPS}

exp

−
(
qi,meas

w − qi
w(Hδ, Ps, Pd,T i

w, γi)
)2

2σ2
qw

−

(
T i,meas

w − T i
w

)2

2σ2
Tw

 .
(5)

In this likelihood, the dependencies on γref and γTPS are implicitly contained in the heat flux terms. To reduce the
dependencies of the likelihood to just the parameter γ, we propose to set the nuisance parameters Q \ γ to the values
that maximize the likelihood (5). In the following, we denote Hopt

δ , Popt
s , Popt

d ,T i,opt
w , the maximizers of (5). Note

that these optima are functions of the catalytic coefficients. We shall also denote qi,opt
w (γ) the corresponding model

predictions of the heat fluxes for each probe. With these optimal values for the nuisance parameters, we define the
optimal likelihood as

Lopt(M|γ) = exp

−
(
Pmeas

s − Popt
s (γ)

)2

2σ2
Ps

 exp

−
(
Pmeas

d − Popt
d (γ)

)2

2σ2
Pd

×
×

∏
i∈{ref,TPS}

exp

−
(
qi,meas

w − qi,opt
w (γ)

)2

2σ2
qw

−

(
T i,meas

w − T i,opt
w (γ)

)2

2σ2
Tw

 ,
(6)

where the dependence of the optimal values on the two material properties has been made explicit for clarity.
Given M and a value for the couple of catalytic coefficients, the optimal nuisance parameters and associated heat

fluxes are determined using the BL code. The procedure for this optimization is the Nelder-Mead algorithm [26],
which is a gradient-free method requiring only evaluations of the BL model solution. Typically, a few hundreds
resolutions of the BL model are needed to converge to the optimum of (5). The computational cost of the optimization
prevents us from using directly this approach to draw samples of γ from their posterior distribution, and this fact
motivates the approximation of the optimal (log) likelihood in (6) as discussed in Subsection 3.2.

3.1.2. Prior distributions
To complete the Bayesian formulation, we now discuss the selection of the prior for the catalytic coefficients γ.

We start by observing that, although it was assumed that the reference probe is well characterized when designing the
two-probe experiment, the two coefficients γref and γTPS play a similar role in the expression of the likelihood in (6).
In fact, the observations should contribute to learn about both material properties. In other words, the differences in
the knowledge of γ should be reflected by their distinct priors and not in the design of the likelihood. Therefore, it
is important to select priors that fairly account for the initial beliefs in the values of the catalytic coefficients. In this
case, we have to be cautious with our choice. Considering first the catalytic property of the reference calorimeter,
previous works [27, 28, 29, 30, 31, 32, 33, 34, 35, 36] show that the a priori knowledge of γref is actually quite poor:
values proposed in literature vary significantly from one experiment to another. Furthermore, γref has been reported
for a limited number of conditions, leaving us with large prior uncertainties since in our experiment the boundary
layer edge conditions are unknown too. Similarly, the initial knowledge of γTPS is poor. For instance, previous works
(e.g. [6]) show that the value of γTPS can span two orders of magnitude depending on the testing conditions. To
conclude, constructing a sharp prior distribution for γTPS on the basis of previous works is difficult, while assuming a
better knowledge of γref is not realistic. For all these reasons, we decided in this work to consider independent priors
with initial ranges spanning few orders of magnitude, stating bounds on plausible values:

10−4 ≤ γref , γTPS ≤ 1.

The lower and upper bounds were set to encompass values proposed in the literature and to ensure that they contain
the values to be inferred. Based on the proposed bounds, the last step to derive the prior consists on specifying the
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distribution withing the range. Here, instead of using an non-informative prior where any value is as likely as any
other (i.e., a uniform prior), we decided to go for log-uniform distributions,

log10(γTPS), log10(γref) ∼ U(−4, 1),

which are better suited when the priors range over several orders of magnitude.
The theoretical models describing the chemically reacting boundary layer, together with the experimental data

available are integrated in the Bayesian framework for the inference of γ. In the next subsection, we describe how we
reduce the computational complexity inherent to the sampling of the posterior. Specifically, we rely on a surrogate
model for the log-likelihood function to alleviate most of the computational burden.

3.2. Surrogate model for the log-likelihood function
The log-likelihood function must be evaluated multiple times when sampling the posterior distribution using

MCMC methods. Since an evaluation of the log-likelihood requires many resolutions of the reacting boundary layer
model to determine the optimum boundary layer edge conditions, direct sampling strategies based on the full model
would be too costly. To overcome this issue, the logarithm of the likelihood function (6) is approximated by a surrogate
model whose evaluations are computationally cheap.

3.2.1. Parametrization
To construct a surrogate model of the log-likelihood, we first introduce new canonical random variables, ξ =

(ξ1, ξ2), for the parametrization of the catalytic coefficients. We set ξ to be uniformly distributed over the unit square:
ξ ∼ U[0, 1]2. Then, we fix γTPS(ξ1) = 10−4ξ1 and γref(ξ2) = 10−4ξ2 , such that γTPS(ξ) and γref(ξ) are independent,
identically distributed, and follow log-uniform distributions with range [10−4, 1]. The Bayesian inference problem
can finally be recast in terms of the canonical random variables, leading to

P(ξ|M) ∝ Lopt(M|γ(ξ))P(ξ), P(ξ) =

1, ξ ∈ [0, 1]2,

0, otherwise.
(7)

We seek to construct a surrogate of the optimal likelihood Lopt(M|γ(ξ)) with this parametrization. In particular, we
decided to proceed with the log-likelihood instead of the likelihood as it ensures the positivity of the approximation.
More precisely, we aim for a surrogate model of Y(ξ) defined by

Y(ξ) .= log
(
Lopt(M|γ(ξ))

)
.

Below, we propose to use a Gaussian Process (GP) model to approximate Y(ξ).

3.2.2. Gaussian process model
GP models [37] have been widely used in uncertainty propagation, sensitivity analysis, optimization and inverse

problems [38]. Due to their statistical nature, a GP provides a measure of the uncertainty (variance) in the prediction.
The main premises of the GP lay in the assumption that the function to be approximated is the realization of a Gaussian
process characterized by its mean µ(ξ) and two-point covariance CGP(ξ, ξ′) function. Then, from the observation of
the function values Y (i) at the sample points ξ(i), one can derive the posterior distribution of the GP model [37], and
evaluate the GP mean and variance at any new point ξ. The selection of the prior of the GP model is a crucial step. In
this work we tested several zero-mean, stationnary processes with covariance functions from the Matern’s class [39];
we found that the log-likelihood function is well approximated using the standard isotropic squared exponential kernel,
given that both catalytic parameters play the same role in the likelihood. The covariance function then reads

CGP(ξ, ξ′) = σ2
GP exp

− 1
2L2

GP

(ξ − ξ′)T(ξ − ξ′)
 , (8)

where LGP and σ2
GP are the a priori correlation length and variance of the GP. All results presented hereafter use the

covariance function in (8). Denoting Y = (Y (1) · · · Y (p))T the vector of observations, the posterior mean of the GP
model, or the best prediction of Y(ξ) is

E
[
YGP(ξ)

]
= kT(ξ)K−1Y, (9)
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where the vector k(ξ) and matrix K are given by

ki(ξ) = CGP(ξ, ξ(i)), Ki, j = CGP(ξ(i), ξ( j)) + σ2
εδi, j,

where δi, j is the Kronecker symbol. The variance of the prediction is

V
[
YGP(ξ)

]
= CGP(ξ, ξ) − kT(ξ)K−1 k(ξ).

In the expression of the matrix K above, σε corresponds to the error on the estimation of Y (i). As σε → 0 we have
E

[
YGP(ξ(i))

]
→ Y (i), while V

[
YGP(ξ(i))

]
vanishes at all observation points. In practice σε is set to a small but non-zero

value to ensure that the matrix K is invertible. Concerning the parameters of the covariance function, σ2
GP and LGP,

they are inferred from the observations through the maximization of their resulting joint log marginal likelihood [37].

3.3. Posterior sampling

Sampling the posterior distribution of ξ, and so generate samples of the catalytic coefficients, is made possible
thanks to the construction of a surrogate model which is very cheap to evaluate. To sample from the posterior dis-
tribution we use the Metropolis-Hastings MCMC algorithm. The algorithm consists in a sequence of steps, where
a random move from the current step ξi to ξ∗ is proposed. Denoting r .

= P(γ(ξ∗)|M)/P(γ(ξ)|M) the ratio of the
posteriors, the move is accepted (ξi+1 = ξ∗) with a probability min(1, r), otherwise ξi+1 = ξi. The algorithm used in
the present work relies on Gaussian increments ξ∗ − ξi. The covariance matrix of the proposal distribution is defined
through

CProp = s CPost, (10)

where CPost is the posterior covariance of ξ and s = 2.382/d is a scaling factor dependent on the dimension of the
sampling space (here d = 2). Because the posterior covariance of ξ is not known, it is progressively estimated from the
samples drawn during an initial “burn-in” stage of chain [40]. The scaling factor is selected to ensure an acceptance
rate varying between 20 and 50% by following Roberts et al [41], and ensure a sufficiently fast decorrelation of the
chain. Figure 2 illustrates the different elements constituting our Bayesian framework.

4. Case study

The methodology presented in the previous sections is used for a real case of plasma wind tunnel testing. This
case is used to assess the validity and possible shortcomings of the approach.

4.1. Experimental data and associated uncertainties

The experimental run used for this case study is depicted in Table 1. Uncertainties are involved in two different
processes. The most natural kind of uncertainty that we can characterize is intrinsic to the measurement device and
its accuracy at measuring. On top of this, there is the measuring uncertainty, where, ideally, one could perform a mea-
surement infinite times and perform statistics on that, extracting the relevant parameters of the resulting distribution.
As we do not have infinite time or resources, a t-student distribution is assumed and the sample Gaussian is corrected
by the t-factor. Overall, we account for both sources of uncertainties as the squared sum. It is important to remark
that the quantities considered for both qref

w and qTPS
w are derived from the measurement of the material emissivities as

already explained in Sec. 2.1.

Table 1: Experimental data and uncertainties considered in our case study. Data taken from [6]

Experiment S1 qref
w [kW/m2] T ref

w [K] Ps [Pa] Pd [Pa] qTPS
w [kW/m2] T TPS

w [K]

Mean (µ) 195 350 1300 75 91.7 1200
Std deviation (σ) 6.5 11.7 1.3 1.5 3.05 40
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Figure 2: Bayesian inference framework in a nutshell

4.2. Log-likelihood approximation

We run the optimization algorithm in a uniform grid of 176 points on the space of the log10(γref) and log10(γTPS)
variables. This uniform grid is chosen slightly asymmetric, 11x16 points, repectively. This choice for an initial grid
gives us better refinement on the log10(γTPS) direction. From physical considerations, we expect the variability of
this parameter to be greater on the posterior than log10(γref). Therefore, providing a more refined grid on log10(γTPS)
could produce better approximations for less cost than a squared grid of that size. Fig. 3 shows the log-likelihood
function evaluated at these grid points. These evaluations are then used to construct the surrogate approximation
by transforming the physical variables log10(γref) and log10(γTPS) into their respective canonical counterparts ξ as
explained in Sec. 3.2.

Overall, the shape of the log-likelihood function falls from the compatibility of the given pair of γref and γTPS with
the observed quantities measured in the plasma wind tunnel. In general, for large values of γref , log-likelihood values
tend to be larger. The same happens with γTPS for low values. This is already hinting at the fact that higher catalytic
activity is expected for the reference material than for the protection material in question, for the given boundary layer
edge conditions. On top of that, there is a range of values for γref and γTPS that represent the best agreement with the
experimental data. This set of values have to be interpreted jointly: for high γref values, γTPS can only take values
in a narrow range placed at the middle of its spectrum. For low values of γref (mid-spectrum), γTPS can take down
to the minimum value of 10−4. For large values of γref and low values for γTPS, the heat flux, which is the quantity
in the likelihood sensitive to our choice of catalytic parameters, is not sensitive enough to changes in those specific
ranges. We explore later in Sec. 5 how this limitation set by the physical model can be overcome by modifying the
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Figure 3: Log-likelihood function evaluated on the chosen γref , γTPS grid
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experimental methodology.
As already mentioned previously in Sec. 3.2, we need to properly capture all these features of the log-likelihood

with a surrogate model. We propose to use a GP surrogate. One of the advantages of using GP is that it gives us an
estimation of the predictive variance. Fig. 4 shows the normalized L2 error norm for the GP surrogate on a validation
set with 10% of the available points plotted against the number of training points. We carry out this procedure 1,000
times with different validation sets each time. The results show the mean and the 95% confidence interval of the
computed error. The approximation falls below a 1% error on the validation set as the number of training points gets
closer to 160. In practice, we use all model evaluations (176) to construct our GP, knowing that the approximation is
already good enough. Furthermore, this approximation obtained has a maximum predictive standard deviation of 1%.
Fig. 5 shows the apparent good agreement between the mean value predicted by the GP and the data points computed
for the log-likelihood in Fig. 3.

Figure 4: Normalized L2 error norm of the GP approximation with varying number of training points

4.3. Sampling of the posterior distribution
We perform a MCMC sampling for the choice of GP surrogate. The chains obtained are depicted in Fig. 6. We

can see that the chains present no long-term correlation and mix well.
The posterior samples obtained are shown in Fig. 7. In general, the tendency of the samples is to remain in a

narrow area of the γTPS space when γref takes large values. Once γref starts moving towards lower values this tendency
is reversed and γTPS can take values in a wider range while γref is confined in a narrow region. This joint behavior
falls from the inference framework. The key variable here is the boundary layer edge enthalpy Hδ which is shared
between both materials tested (reference and TPS). When the model takes up large values for γref , a large amount of
the observed heat flux for the reference material is explained in the model through the magnitude of this parameter,
setting low the influence of the enthalpy Hδ. Low enthalpy needs larger γTPS values to account for the observed heat
flux on the protection material surface. The same happens for low values of γref and γTPS. In this case, the values that
lay interior to the shape defined by the posterior samples are not in agreement with observations for the reason just
explained: large γref needs large γTPS. The fact that “large” and “low” are also defined within a range (e.g not more
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GP mean GP mean profile

Figure 5: GP surrogate comparison with the exact log-likelihood values in logarithmic variables

1,000,000 steps 15,000 steps close-up

Figure 6: Chain obtained with 1,000,000 steps and 15,000 steps (right)

than ∼ 10−1.8 for γTPS and not less than ∼ 10−2 for γref) is not imposed by the inference problem setting but by the
physics-based model which makes some assumptions regarding the chemical nature of the flow. Some values of γref
and γTPS could not explain, under the same Hδ, the observations. Overall, this behavior will naturally reflect on the
marginal posterior distributions depicted in the next subsection.

4.4. Discussion on the posterior distribution

The posterior marginals are reported below in Fig. 8. We can observe that the distributions of both γref and γTPS
drop to small values at both ends of the spectrum, reducing the support from the prior distributions proposed. This
satisfying behavior can be explained by the proposed likelihood form, which uses all the available measurements to
access the fitness of the model predictions. As a result, the formulation predicts that the values of Hopt

δ that could
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Figure 7: Joint posterior samples of the MCMC algorithm

explain the whole set of measured fluxes, temperatures and pressures, are actually far away from the maximum
likelihood points when γref � 1 and γTPS reaches large values. It is also important to notice that both distributions
have well-defined peaks for γref ' 0.016 and γTPS ' 0.01. The ranges of values observed in our calibration for both
gammas fit perfectly with the model previously assumed by the experimentalists where the reference parameter takes
higher values than the catalytic parameter of the protection material. It is also important to emphasize the fact that
in this framework no assumptions are made concerning γref , which is estimated along with the protection material
parameter with no differences in their prior knowledge. It can be suggested that a deeper experimental study can
provide more insights to the behavior of the reference material and a different prior can be defined for the same
analysis where differences in knowledge between the two probes can be then accounted for.

The statistics associated with these distributions are gathered in Table 2. The differences between these results
and the outcomes of [10] are clear when looking at the values in the table and the shapes of the distribution functions
obtained. A reduction of almost 20% of the standard deviation and 40% of the Coefficient of Variation (CV) for the
catalytic parameter of the reference material is observed. There is no reporting of the posterior statistics for γTPS in
[10]. The capability of learning γTPS from experimental data is lost without any particular treatment of the nuisance
parameters in the formulation of the inference problem.

Table 2: Comparison of the posterior statistics for experiment S1 with the work of [10]

Experiment S1 Mean (µ) Std dev. (σ) Max. A Posteriori (MAP) CV [σ/µ]

γref 0.060 0.078 0.022 1.3
γTPS 0.0034 0.0047 0.008 1.4

Experiment S1 from [10]
γref 0.042 0.095 0.018 2.3
γTPS - - - -

The distributions of the optimal parameters are also computed. For each of these quantities, a GP surrogate is com-
puted on the same γref , γTPS grid than the log-likelihood. The resulting posterior samples of γref and γTPS are used as
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Figure 8: Posterior marginals obtained for γref and γTPS

input for these surrogates, obtaining the distributions of the optimal parameters shown in Fig. 9. A bimodal distribu-
tion is obtained for the enthalpy Hopt

δ . The shape of this distribution is a direct result from the optimization algorithm
that computes the Hopt

δ , where many of its best points (“best” meaning the ones which maximize the likelihood) fall
into two different group of values, decreasing the probability density among them. To understand this better, first we
need to take a look back at Sec. 2. In that section, we explain the foundations of the physical phenomena behind
this problem. The physical system, represented by the BL code, computes the function qw = qw(Hδ, Ps, Pd,Tw, γ).
For each Ps, Pd,Tw and qw, the system relates the enthalpy Hδ and the catalytic parameter γ through an S-shaped
curve (see Fig.10). During the optimization, the physics allow the S-shaped curves to move when different parameters
change, in this case, the resulting heat flux qw and the wall temperature Tw (Fig.10). The pressure quantities play a
minor role due to their small uncertainties and the fact that both curves move together when these quantities change,
being common for both materials. It is also important to take into account that we have information about all the
nuisance parameters but the enthalpy Hδ which is not measured, therefore, all the other nuisance parameters try to be
close to their measured values as a result of the optimization. The lack of information about Hδ gives more uncertainty
in the resulting Hopt

δ . In turn, we can think of the optimization algorithm as looking for the optimal Hδ while keeping
the other nuisance parameters very close to their measured values (within their prescribed standard deviation).

Fig. 11 shows the inner workings of the optimization procedure in terms of the physical relations. The thick solid
lines represent the S-shaped curves for the reference and TPS material when taking the mean measured values of all
the nuisance parameters and the heat flux. The dashed lines represent a change of heat flux from the values of the
thick solid lines. The thin solid lines represent the final optimal configuration for the given γref and γTPS (vertical
dashed lines) for which a change of wall temperature Tw is added to the change of heat flux, transforming the original
curves (thick solid lines) to the final optimal curves (thin solid ones). At the pair of γref and γTPS where the two thick
S-shaped curves have the same Hδ, the algorithm finds the model to agree perfectly with the experiments. For the pair
of γref and γTPS given in Fig. 11 as an example, the reference and TPS material do not share the same Hδ for their
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Figure 9: Distributions of the optimal nuisance parameters after propagating the posterior of γref and γTPS

corresponding mean measured values (thick S-shaped curves). The optimization algorithm finds an optimum Hopt
δ

which represents a trade-off between the deviations in wall temperatures Tw and heat fluxes qw with respect to their
measured values over their uncertainty range σ. As the deviation needed to find a common Hδ point for both curves
increases, the value of log

(
Lopt(M|γ(ξ))

)
decreases. In turn, the algorithm performs this for every pair of γref and

γTPS in our grid, defining the most likely values for the catalytic parameters in light of the experimental data.
As a result, the points sampled by the MCMC algorithm are shown hereafter in Fig. 12. We can appreciate how

the points which maximize the likelihood are the ones falling in the range where both S-shaped curves coincide in
enthalpy levels. These points represent the best agreement of the system response with respect to the experimental
data. This logic explains the bimodal distribution for the enthalpy and the rest of the optimal parameters.

It is an important exercise to put these results in perspective. We are able to relax some assumptions in our
model (catalytic behavior of the reference material) and propose a new functional relationship through the inference
framework (optimal likelihood function) but there are other assumptions that remain highly uncertain in within the
model. One contributor to such uncertainty is the chemistry of the gas. The chemical state of the gas poses epistemic
uncertainties given that different models exist in the literature and are widely adopted. Specifically, the speed of the
different reactions considered can play a role in the inference, given that a flow in chemical equilibrium or frozen can
produce very different heat fluxes under the same edge conditions. Catalytic activity can also be relegated to be non-
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Figure 10: Change on the S-shaped curves positions due to changes in heat flux (qw) or wall temperature (Tw)

Figure 11: Inner workings of the optimization algorithm in terms of the S-shaped curves

influential in the heat flux experienced by the material if the gas chemistry has already taken all the energy contained
in the flow and this is likely to occur under higher pressure conditions than the case considered. Nevertheless, the
chemistry should be calibrated in dedicated experiments to obtain reliable predictions in the future, as it can impact
whether or not the chosen model can explain the experimental data, and this, in turn, influences the calibrated γTPS
obtained. For gas chemistry calibration, dedicated spectroscopic analyses should be included to have conclusive
results and be able to learn something about the chemistry of the gas. The experimental data considered in this work
would not be enough to make any statement about surface catalysis and chemistry of the gas as it does not provide
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Figure 12: Posterior samples along the S-shaped curves

enough information in itself. The development of this Bayesian framework offers a starting point for future studies
for which the experimental data can be thoroughly exploited.

Coupled with the gas chemistry is another uncertain assumption, the thermodynamic state of the gas. Even though
this assumption has been validated using spectroscopic measurements [42] for the test conditions considered, recent
numerical investigations [43] suggest that LTE may not hold under different conditions (e.g. lower mass flows). A
more extensive use of this framework with dedicated experimental campaigns can help shed light on these issues in
the future.

5. Assessment of experimental methodologies

The developed inference methodology can help underpin the important characteristics of testing for catalytic phe-
nomena in TPS, namely, the conditions and/or configurations that can give the most information by decreasing the
uncertainty to a minimum. We assess the role of the auxiliary material used for testing, referred until now as “refer-
ence” material. As extending the testing methodology to include three different materials is already a possibility [44],
we study the information gain with this methodology with synthetic data. In this section, we discuss how choosing
different auxiliary materials and performing experiments with more probes impact the outcome of the inference.

5.1. Influence of the auxiliary testing material

Apart from the different testing conditions that can be set for a given experiment (power of the facility, static
pressure in the testing chamber, mass flow and probe geometry), we also have the freedom of choosing an auxiliary
material with which to gather information about the boundary layer edge conditions.

As it was explained in previous works [10] and in this work (Sec. 3), one fundamental uncertainty in the way of
rebuilding the TPS catalytic behavior is the fact that the boundary layer edge conditions cannot be estimated accurately
if the auxiliary material behavior is not a priori well-known, which is the present case. We explore an assessment of
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this argument by assuming a high catalytic material (more than the conventional reference of copper) which resembles
the catalytic response of a hypothetical probe made with silver [44]. We devise synthetic data where the heat flux that
the auxiliary material would measure is higher than the previously considered copper, while still keeping the same
wall temperature. This way, the only variable that changes from the case of copper to this synthetic case is the catalytic
activity at the hypothetical auxiliary material surface. Table 3 shows the data used to simulate this particular case.
Results from the inference are depicted in Fig. 13 with the marginal posterior distributions.

The distributions show the same features than the case study (Fig. 8) with reduced support and well-defined peaks.
We can appreciate that both the supports of the synthetic silver and the TPS are further reduced from the one in Fig.
8 giving a slightly better characterization of these properties.

Table 3: Synthetic data and uncertainties

Experiment SAg qAg
w [kW/m2] T Ag

w [K] Ps [Pa] Pd [Pa] T TPS
w [K] qTPS

w [kW/m2]

Mean (µ) 232 350 1300 75 1200 91.7
Std deviation (σ) 7.7 11.7 1.3 1.5 40 3.05

Figure 13: Marginal posteriors obtained for the TPS material and synthetic silver

To assess the information gain with this particular testing, we need to turn to the enthalpy of the plasma flow and
see if we manage to capture this information better with synthetic silver. Figure 14 shows the distribution for the
optimal enthalpy. In this case, it is easy to spot the benefits of changing the auxiliary material to a higher catalytic
one. The support is greatly reduced when comparing Fig. 9 and Fig. 14. This means that the recovery of the boundary
layer edge information is better in the latter case. More information is contained in that experiment than in our case
study. Still the characterization of the boundary layer edge conditions could be further improved as it should converge
to a unimodal distribution.
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Figure 14: Optimal enthalpy Hopt
δ distribution obtained by propagating the catalytic parameters posterior of the TPS material and synthetic silver

5.2. Extension to a 3-probes testing methodology
The characterization of catalytic behavior can be further studied with a testing methodology that uses two auxiliary

materials instead of one. The information brought by this additional probe is expected to improve the characterization
of the boundary layer edge conditions. For the following case study, the three probes seen in this work (ref, TPS
and synthetic Ag) are used under the same boundary layer edge conditions to infer their catalytic behaviors and the
corresponding enthalpy. This synthetic test case lets us extrapolate the benefits of this methodology to more general
cases, prescribing the best practice to reduce the uncertainty on the characterization of catalytic parameters of TPS
materials.

Fig. 15 shows the marginal posterior distributions obtained. We can observe that both the TPS and synthetic silver
distributions are left almost unchanged from the case where they were tested together (Fig. 13), although the tail of
the synthetic silver distribution shows some growth compared to the previous case. The most notable difference is the
posterior distribution of the reference material. The presence of a higher catalytic material increases the information
obtained for higher values of the catalytic parameters, reducing, as a consequence, the support for high catalytic values
of the reference material. In return, this information gain produces a well-defined peak with a further reduced support.
A better characterization of the copper calorimeter is therefore achieved this way.

Table 4 depicts the summary statistics of the reference copper and TPS parameters. When compared to Table 2
we can see that the mean value for the reference probe is moved towards lower catalytic values as well as the mean
for the TPS. The standard deviation is decreased significantly for the reference probe (−80%) and for the TPS probe
(−45%) while the MAP values have suffered overall less change.

Turning now to the optimal enthalpy, we can see in Fig. 16 that the resulting support is comparable to the one
obtained with just the TPS material and synthetic silver (Fig. 14). We can appreciate a slight shift of the modes due
to the fact that the error on the measurements of the additional probe weighs in to build the optimized log-likelihood,
bringing the optimal enthalpy values closer to the lower plateau where both synthetic silver and copper lay closely

19



Figure 15: Marginal posteriors obtained for the TPS material, reference material and synthetic silver

Table 4: Posterior statistics for the experiment SAg including the reference copper calorimeter

Experiment SAg Mean (µ) Std dev. (σ) MAP CV [σ/µ]

γref 0.041 0.015 0.025 0.36
γTPS 0.0027 0.0026 0.005 0.96

together as seen in Fig. 17. The amount of information contained in this test case, with three different materials and
the previous case with TPS material and synthetic silver is the same and the same support for the optimal enthalpy is
retrieved. The materials laying in the extremes of the catalytic spectrum are the ones carrying the information about
the boundary layer edge conditions. A closer look at Fig. 17 when compared to Fig. 12 reveals the fact that the
material with a catalytic behavior in between the other two is the best characterized using this methodology. In this
regard, the best outcome would be to find a lower catalytic material than the TPS to achieve a better characterization
of the material of interest while using copper or silver as the high catalytic auxiliary material.

6. Concluding remarks and outlook

In this work, we propose a novel Bayesian inference formulation for the calibration of the catalytic parameters
of reusable thermal protection materials. The calibration gives estimates of the material catalytic parameter through
its posterior probability distribution which can be disseminated for uncertainty propagation analysis. In plasma wind
tunnel experiments, the characterization of the reference material behavior plays an important role. In this dedicated
framework we disregard the assumption of having a well-characterized reference material, as proven to be in conflict
with the respective literature in many cases. The Bayesian approach allows for the simultaneous computation of both
materials in the inference process which proves to be more accurate than the conventional sequential approach as
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Figure 16: Optimal enthalpy Hopt
δ distribution obtained by propagating the catalytic parameters posterior of the TPS material, reference material

and synthetic silver

shown by Sanson et al.
Our main contribution is the methodology itself. We derive a likelihood function by considering an optimization

problem in the nuisance parameters space, reducing the dimensionality of the likelihood to just the quantities of
interest γref , γTPS. To cope with this computationally demanding likelihood, we propose the use of a surrogate model.
GP works quite well for this problem yielding good results with low standard deviations on the chain samples, which
represent a good estimation of the error in the surrogate approximation for the posterior samples. In addition, the
approach is robust, in the sense that the MCMC sampling method works smoothly for any given conditions. Overall,
the optimization formulation presented has the impact of improving considerably the inference results by giving more
consistent and accurate posterior distributions of the catalytic parameters when compared with the results of [10]. The
main differences being the reduced support and well-defined peaks of the respective posteriors. A more detailed study
of the posterior distributions for the case study shows a decrease of 20% in the standard deviation with respect to the
previous work. Subsequently, it is possible to say that the catalytic parameters can be effectively learned from the
experimental conditions and under the considered model assumptions.

The study of different testing methodologies shows that different auxiliary materials have an impact on the infor-
mation recovered for the free stream enthalpy. This information gain reduces the standard deviation of the catalytic
parameters posterior. On these lines, we also study a 3-probes testing methodology and show an overall improvement
of the characterization of the reference material up to 80% with respect to the results of the case study. The 3-probes
testing methodology reveals that the ideal possible testing scenario is with three materials where a good characteri-
zation is achieved for the one in the middle of the catalytic spectrum. In general, the results achieved by applying
this framework help in the discussion about the testing methodologies and the experimental conditions. The most
informative testing methodology, combined with the computation of the optimal testing conditions can lead to the
proper design of experiments for such thermal protection system.

In the future, dedicated experimental campaigns, including spectroscopic measurements, can benefit from this
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Figure 17: Posterior samples on the S-shaped curves for the three tested materials

work by exploiting the experimental data more thoroughly and adopting the most informative testing methodology.
This can help shed light on highly uncertain assumptions as the thermo-chemical state of the gas upon which to
improve our model predictions.
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