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Abstract

A technique for the construction of robust orthogonal flow bases, to be used for
model reduction and flow control, is proposed. The construction accounts for the
dependence of the flow structures with the control and variability in the flow condi-
tions. Numerical examples, for the two-dimensional flow around a circular cylinder
in laminar regime, are provided to demonstrate the robust character of the result-
ing reduced basis. The control of the flow is then considered with the objective of
reducing the body drag in a full information framework, by blowing/suction at the
cylinder surface. Different control strategies are considered, some being also robust
in the sense that they incorporate a variability in the flow conditions (Reynolds
number). The improvements brought by the robust basis and robust control strate-
gies is evidenced for the control of the reduced model and, more important, when
the control laws determined for the reduced model are applied to the fully detailed
flow model (DNS).

Key words: robust control, POD, reduced model, uncertainty propagation, adjoint
formulation.

1 Introduction

Today’s course on performance and efficiency in all areas of human activities
finds a particular resonance in the field of fluid mechanics where optimiza-
tion and control has been the subject of a continuous research effort since
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the beginning. In addition to the experimental approach, engineers now also
rely on numerical simulations of sophisticated physical models and numeri-
cal methods. Though now more accurate and reliable, the simulations and/or
experiments still require a significant time to run and the control process
remains a difficult part. One thus has to make a compromise between the
available computational power or experimental facilities and the required ac-
curacy in the control law derivation process. Among different approaches to
achieve a good compromise, the model reduction is one of the most popular. It
basically consists in projecting the original system onto low-dimensional mani-
folds while retaining the essential features required for fidelity of the dynamics
and reliably optimizing. While there exists different strategies for reducing the
original problem, the Proper Orthogonal Decomposition (POD) first proposed
by Lumley [17] is one of the most widely used. Its most appealing feature is
that the resulting orthogonal basis is optimal for the energy in the ergodic
sense: it is the best (highest convergence rate) representation to capture the
flow energy which makes it a very attractive ingredient for the derivation of
reduced-order dynamical models, see [12] among many others. The initial large
scale problem is thus restricted to a low number of variables allowing for a
fast and easy handling and making this approach a good candidate for flow
control applications.

To make the numerical model reduction accurate and realistic enough to be
reliably applied to a real-world configuration, one has to account for the un-
modelled perturbations to the ideal system considered. More specifically, the
real system is likely to have a slightly different dynamics and to experience
different conditions from the ones considered for the reduced basis derivation.
This leads to the need for a robust model reduction as well as a robust con-
trol of the resulting dynamical system. Just as the reduced model has to be
robust against non-modelled dynamics and boundary conditions, the control
must account for poorly known operating parameters to remain efficient when
applied to a real system subjected to uncertain parameters and perturbations.
Both these issues are addressed in this paper for the flow around a circular
cylinder in cross-flow at low Reynolds numbers . Specifically, the control of
the flow in a full information framework is considered with the objective of
body drag reduction by blowing/suction at the cylinder surface.

The manuscript is organized as follows: the context of the model reduction is
presented in Section 2 and the emphasis is put on the derivation of a reduced
basis which remains consistent and as accurate as possible throughout the a
range of control process and flow conditions. The flow model is presented in
Section 3 together with the performance of the robust reduced basis. After a
theoretical presentation, the application of the adjoint-based robust reduced
model in the context of optimal and robust control is addressed in Section 4
and 5 respectively.
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2 Construction of robust bases

2.1 Robust bases

In a controlled reduced model perspective, it is important to ensure that the
state space spanned by the reduced model is representative of the state space
in which the controlled flow evolves. In other words, it is required that the basis
derived from the model reduction technique remains appropriate throughout
the control process of the flow. Since the control law is not known a priori, a
robust, extended, reduced basis for the flow is needed in the sense that it must
remains valid for any control law belonging to a prescribed range, the control
space. The relevance of the reduced model basis to flow control applications has
long been identified as a difficulty and received attention from many authors.
While the POD basis constructed from the non-controlled flow may still be
relevant in certain controlled configurations, this remains limited to a narrow
control parameter range and to mild changes in the flow structure. To widen
the field of application of reduced models to larger control ranges and having
a deeper impact on the flow structure and dynamics, [29] and [11] proposed
to use the spatial modes of the non-controlled flow POD basis, but to correct
their dynamics using information extracted from the actual controlled flow
field. Other techniques include the so-called shift modes [22] which complement
the non-controlled flow POD basis to achieve a better representation of the
controlled flow dynamics. These shift modes are derived from the difference
between the time-averaged flow at prescribed constant control conditions and
the corresponding steady flow solution, and are subsequently orthogonalized
with regard to the POD modes of the non-controlled flow. In [6, 9] and more
recently in [21, 22] this shift mode technique has been used successfully for
flow control.

Another approach consists in defining a trust-region in the control parame-
ter space over which the reduced model is deemed representative of the flow
dynamics. See [7] for a comprehensive introduction to the trust-region ideas.
Whenever the control parameter leaves the trust region, a new reduced model
is constructed to better account for the flow dynamics in the actual range of
operating conditions.

Reduced bases interpolation is another mean to construct a reduced model
valid over the whole control range. In [3] cubic polynomials are used to in-
terpolate the flow dynamics for different control parameter and subsequently
construct a local POD basis and reduced model. A strategy based on the
interpolation of flow correlation matrices, corresponding to different control
parameter values, was proposed in [8] and successfully applied to control the
instabilities in the wake of a square cylinder.
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While reasonably efficient, these techniques either stand on heuristic grounds
or require additional on-the-fly calculations as the flow dynamics is affected by
the control. Because performing significant calculations as the flow is modified
by control may not be desirable, in particular in the real-time control context,
a truly robust a priori reduced model is required. Such model would involve
a POD basis that need not to be updated as the control is applied and that
should thus remain relevant for the controlled as well as for the non-controlled
flow dynamics. Different works have investigated this issue with the common
idea to enrich the set of uncontrolled flow fields (snapshots) used to derive
the POD basis by incorporating snapshots corresponding to different control
parameter values. Specifically, the POD modes must be extracted from the
richest and most representative set of flow dynamics possible within the control
range. In [24] as well as in [28], a series of snapshots of the uncontrolled flow
is combined with another series of snapshots of the flow submitted to the
largest control intensity attainable. They assume that the flow dynamics
for intermediate control intensity are naturally encompassed. Similarly, [18]
uses two sets of snapshots for the lowest and highest value of their control
parameter and successfully simulates the flow for intermediate control values.
In a similar spirit, some authors have applied a prescribed time-dependent
control during the snapshots acquisition sequence to trigger some additional
frequencies and add control-induced transients in the flow dynamics (see [32]
and [1] among others).

The question which then arises is how to select the control values to enrich
the flow dynamics to be reduced? Most authors used control values evenly dis-
tributed in the control parameter range while [4] used the Voronoi tessellation
to derive a strategy for choosing the control parameter values when construct-
ing the reduced basis. This method essentially consists in defining local trust
regions in the sense that the originally large snapshots set is “coarsened” to
retained only snapshots representative of the flow dynamics in some neigh-
borhood of the control range. The naive image would be to retain every few
snapshots and assume the selected ones are representative enough of the dis-
carded ones. The Voronoi tessellation has a more rigorous basis as it leads to
retain the most representative (centroidal) information within a region of the
control parameter range, which size is set from a suitable norm. In practice,
it leads to retain a coarsened set of snapshots to be orthogonalized, while the
POD method retains the largest eigenvectors of the auto-correlation matrix
of the whole set of snapshots.

2.2 Proposed method

To construct the robust basis, we propose to treat the control as a random
quantity. To this end, we denote µ the random control vector and introduce
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an abstract probability space (Θ,B, dP ), Θ being the set of elementary out-
comes θ, B the σ-algebra of the events and dP a probability measure. We
denote L2(Θ, dP ) the space of second order random variables defined on the
probability space. The random control µ(θ) acts on the flow which is thus
dependent on the outcome θ. In the following, we seek for a reduced robust
basis for the representation of the vorticity field of a two dimensional flow.
The method can however be extended to the three-dimensional case and the
representation of flow velocity fields.

We denote ω the vorticity field of the flow:

ω : (x, t, θ) ∈ (Ωx × Tw ×Θ) 7→ ω(x, t, θ) ∈ R, (1)

where Ωx is the flow domain and Tw the time-interval of the analysis. We
assume ω(x, t, θ) ∈ L2(Θ, dP ) for all x ∈ Ωx and t ∈ Tw. We define the inner
product on L2(Ωx),

(f ; g)Ωx
≡
∫

Ωx

f(x) g∗(x) dx = (g; f)∗Ωx
, (2)

where ∗ denotes the complex conjugate, and the ensemble average over the
time interval Tw

〈f(x, t, θ)〉Tw
≡

1

Tw

∫

Tw

∫

Θ

f(x, t, θ) dP (θ) dt. (3)

The vorticity field can be decomposed into a mean and fluctuating fields:

ω(x, t, θ) = ω(x) + ω′(x, t, θ), (4)

where
ω(x) = 〈ω(x, t, θ)〉Tw

, 〈ω′(x, t, θ)〉Tw
= 0. (5)

Following [12], an optimal basis, in the energy sense, for the representation
of the stochastic process u, is the set of functions ϕi : x ∈ Ωx 7→ ϕi(x) ∈ R

satisfying:

ϕ | ǫ =
〈| (ω′;ϕ)

Ωx
|2〉

Tw

‖ϕ‖2
= maxϕ{ǫ}, ϕi ∈ L2(Ωx), (6)

with ‖ · ‖ the usual norm on L2(Ωx). The basis vectors are subjected to nor-
malization: ‖ϕi‖ = 1.

It is convenient to rewrite the problem under a non-constrained form by in-
troducing the Lagrangian operator L ,

L (ϕ) ≡
〈

| (ω′;ϕ)
Ωx
|
2
〉

Tw

− λ
(

‖ϕ‖2 − 1
)

, (7)
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where λ is a Lagrange multiplier of the normalization constraint. The La-
grangian has to be maximized for ϕ, that is dL (ϕ)/dϕ = 0, which expresses
under a Fréchet derivative form as

dL (ϕ+ δφ)

dδ

∣

∣

∣

∣

∣

δ=0

= 0, δ ∈ R, ∀φ ∈ L2(Ωx). (8)

This guarantees that whatever δ tending to zero, the derivative vanishes, yield-
ing

d

dδ

[

〈

| (ω′;ϕ+ δφ)
Ωx
|
2
〉

Tw

− λ
(

‖ϕ+ δφ‖2 − 1
)

]

∣

∣

∣

∣

∣

δ=0

= 0, (9)

so

d

dδ

[

〈

(ω′;ϕ+ δφ)
Ωx

(ϕ+ δφ;ω′)
Ωx

〉

Tw

− λ ((ϕ+ δφ)(ϕ+ δφ)− 1)
]

∣

∣

∣

∣

∣

δ=0

= 0,

(10)
which simplifies in

〈(ω′;φ)Ωx
(ϕ;ω′)Ωx

〉Tw
− λ(ϕ;φ)Ωx

= 0, ∀φ ∈ L2(Ωx). (11)

As φ is arbitrary, this equation can be rearranged in

〈∫

Ωx

ω′(x, t, θ) ϕ(x′) ω′∗(x′, t, θ) dx′
〉

Tw

− λ ϕ(x) = 0. (12)

Let R : ϕ ∈ L2(Ωx) 7→ Rϕ ∈ L2(Ωx) be the operator defined as:

R ϕ(x) =
〈∫

Ωx

ω′(x, t, θ) ω′∗(x′, t, θ) ϕ(x′) dx′
〉

Tw

(13)

Eq. (12) now simplifies to:

R ϕ(x) = λ ϕ(x). (14)

It can be shown that:

(R ϕ(x);φ(x))
Ωx

= (ϕ(x);R φ(x))
Ωx
, ∀ϕ, φ ∈ L2(Ωx). (15)

The operator R is thus linear, self-adjoint and positive on L2(Ωx). R being
self-adjoint, its eigen-functions are real vectors and form an orthogonal set:

∫

Ωx

ϕi(x) ϕj(x) dx = ‖ϕ‖2 δij = δij (16)

where δij is the Kronecker delta. Further, the eigen-functions define a basis
onto which the vorticity ω can be decomposed:

ω(x, t, θ) = ω(x) +
∞
∑

i=1

ai(t, θ) ϕi(x) (17)
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where
ai(t, θ) =

∫

Ωx

ω′(x, t, θ) ϕi(x) dx. (18)

Identifying ω in Eq. (12) with its expansion, it follows:

〈ai(t, θ) ω
′(x, t, θ)〉Tw

− λi ϕi(x) = 0. (19)

Multiplying both side of this equation by the ω′(x, t, θ) and integrating over
Ωx, it comes:

∫

Ωx

ω′(x, t, θ) 〈ai(t
′, θ′) ω′(x, t′, θ′)〉Tw

dx

=
∫

Ωx

ω′(x, t, θ)
[

1

Tw

∫

Tw

∫

Θ

ai(t
′, θ′) ω′(x, t′, θ′) dP (θ′) dt′

]

dx

=
1

Tw

∫

Tw

∫

Θ

(∫

Ωx

ω′(x, t, θ) ω′(x, t′, θ′) dx
)

ai(t
′, θ′) dP (θ′) dt′

= λi

∫

Ωx

ω′(x, t, θ) ϕi(x) dx

= λi ai(t, θ). (20)

We define the random operator R : (t, θ; t′, θ′) ∈ (Ωx × Tw × Θ)2 7→
L2(Θ, dP ;Tw) as

R(t, θ; t′, θ′) ≡
∫

Ωx

ω′(x, t′, θ′) ω′(x, t, θ) dx, (21)

so we end up with the generalized stochastic eigen-problem for the random
functions ai(t, θ):

〈R(t, θ; t′, θ′) ai(t
′, θ′)〉Tw

= λi ai(t, θ). (22)

Remarking that R(t, θ; t′, θ′) = R(t′, θ′; t, θ), the eigenvalues in Eq. (22) are
all real and positive, and the eigenvectors ai(t, θ) form an orthogonal set in
the ensemble average sense:

〈ai; aj〉 = 〈ai(t, θ) aj(t, θ)〉Tw
= λi δij. (23)

Finally, the basis functions can then be determined from:

ϕi(x) = 〈ai(t, θ) ω
′(x, t, θ)〉Tw

. (24)

2.3 Implementation

The derivation of the basis just presented above can in fact be extended to
situations where not only the control µ is considered as random but also some
operating conditions. Specifically, in designing a control strategy for a fluid
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flow, one must bear in mind that external conditions applied to the system
are not always very well characterized and are likely to fluctuate. The control
strategy and the model reduction must hence account for this variability of
what can be considered as external parameters of the system. In this paper,
the major operating parameter is the Reynolds number Re of the flow. The
previous methodology can accommodate with uncertainty in operating condi-
tions, by considering them random as well. Consequently, we denote χ(θ) the
random control vector augmented of the random flow parameters.

The main difficulty of the proposed method is the estimation of ensemble aver-
ages. To this end, we assume that the random control and operating conditions
vector χ is parameterized by a finite set of independent real-value random vari-
ables {ξi, i = 1, . . . , N} with prescribed probability density functions:

χ(θ) = χ(ξ1(θ), . . . , ξN(θ)). (25)

We denote pi(ξi) the probability density function of ξi. Due to the indepen-
dence of the ξi their joint density is

pξ(ξ1, . . . , ξN) =
N
∏

i=1

pi(ξi), (26)

and we denote (Ωξ,Bξ, pξ) the associated probability space where Ωξ is the
range of ξ. On the image space, we have for any random variable f(θ) =
f(ξ(θ)). Consequently, the ensemble average has for expression in the image
space

〈f(t, θ)〉Tw
=

1

Tw

∫

Tw

∫

Θ

f(t, ξ1(θ), . . . , ξN(θ)) dP (θ) dt

=
1

Tw

∫

Tw

∫

Ωξ

f(t, ξ1, . . . , ξN) pξ(ξ1, . . . , ξN) dξ dt. (27)

The N -dimensional integration over Ωξ can be performed by different means
(e.g. sampling techniques, Monte Carlo, . . . ). Here we rely on coarse quadra-
ture schemes, i.e. cubature schemes, based on the Smolyak formula [23,25,31].
These formulas are obtained by a coarse tensorization of 1-D Gauss’ quadra-
ture formulas for the integration with weights pi. Denoting Nq the number of
quadrature points ξq = (ξq

1, . . . , ξ
q
N) and wq the associated weights, Eq.(27)

becomes

〈f(t, θ)〉Tw
≈

Nq
∑

q=1

wq

1

Tw

∫

Tw

f(t, ξq) dt (28)
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This cubature rule is used to compute the mean vorticity field, while the
eigenvalue problem is written on the set of integration points: ∀k = 1, . . . , Nq,

Nq
∑

q=1

wq

1

Tw

∫

Tw

R(t, ξk; t′, ξq) ai(t
′, ξq) dt′ = λi ai(t, ξ

k), (29)

where

R(t, ξi; t′, ξj) =
∫

Ωx

ω′(x′, t′, ξi) ω′(x′, t, ξj) dx′. (30)

In the previous expression, ω′(x, t, ξi) is the deterministic vorticity field for
the deterministic operating and control conditions χ = χ(ξi). Finally, the
eigen-modes are given by

ϕi(x) =
Nq
∑

q=1

wq

λi Tw

∫

Tw

ai(t, ξ
q) ω′(x, t, ξq) dt. (31)

3 Example of robust basis

3.1 Flow solver

The model reduction technique is now applied to a fluid flow to investigate
its performance and accuracy. The 2-D incompressible flow around a circular
cylinder of diameter D submitted to a uniform incident flow with constant ve-
locity U∞ is considered at a nominal Reynolds number Re0 = U∞ D/ν = 200
with ν the kinematic viscosity. For this Reynolds number, the wake of the
uncontrolled flow exhibits a periodic vortex shedding pattern. The Reynolds
number is assumed to be uniformly distributed in the ΩRe = [180; 220]-range.
The control is also considered and it is achieved by uniformly injecting or as-
pirating some fluid through the porous cylinder surface, hence introducing a
non-zero normal velocity at its surface. In this section of the paper the blow-
ing/suction intensity, denoted µ is time-independent and is given a uniform
probability hypothesis onto the range Ωµ = [−0.2; 0].

The flow is simulated by solving the Navier-Stokes equations, here considered
in their dimensionless ψ - ω form (stream function - vorticity) [13]. For any
{µ,Re} ∈ Ωµ × ΩRe, we solve:
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∂ω

∂t
+ u · ∇ω =

1

Re
∇2ω, (a)

∇2ψ = −ω, (b)

u = ∇∧ (ψez), (c)

ωez = ∇∧ u, (d)

(32)

together with the boundary conditions on the cylinder surface:

u · τ = 0,

u · n=µ. (33)

with u the fluid velocity, ez the direction normal to the 2-D {x, y} plane of
the flow. Vectors τ and n are the tangential and normal vector to the cylinder
surface respectively.

The O-type numerical domain is 30D in diameter around the cylinder, com-
prising 180 cells both in the radial and the azimuthal directions, leading to a
180 × 180-cell grid. The governing equations are solved using a second-order
centered finite-difference scheme for the linear terms while the non-linear terms
(convection) are discretized with a fourth-order up-winded scheme. The time
stepping is carried-out through second order Euler scheme and the generation
of snapshots covers several vortex-shedding periods (of about 9 time units):
Tw = 200.

3.2 Robust basis characterization

To allow comparisons with the modes issued from standard POD, the first
POD modes of the robust basis are plotted in figure 1. While most of them
exhibit usual patterns, qualitatively corresponding to the well-known POD
modes for this flow configuration, some modes are unfamiliar. In particular,
mode 1 and 4 have a near cylinder-flow focused pattern and do not seem
to have a major contribution to the rest of the flow. Those modes actually
correspond to some “correction” accounting for the change of flow structure
when the incident flow Reynolds number and/or the applied control intensity
through the cylinder surface vary. For a particular value of {Re, µ}, time-
evolution of those modes is not zero-centered but rather provide a constant
“correction” to the base flow while the remaining modes account for the time-
varying flow and provide the vortex-shedding pattern. However, their ensem-
ble average 〈·〉Tw

is indeed close to zero. Those modes are very similar to the
so-called “shift modes” described in [6], [9] [22], though derived from a very
different procedure. No post Gram-Schmidt orthogonalization procedure is
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Fig. 1. First POD modes of the vorticity field ω′, computed with the robust basis
method and Re ∈ [180; 220]. Modes are sorted by decreasing eigen values (see
spectrum in Fig. 2).
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Fig. 2. Spectrum of eigenvalues for robust and non-robust POD bases.

necessary here as the modes are altogether determined from a unique general-
ized eigen-problem. Further, they are not specific of a particular shift between
the reference flow and the flow of interest but they rather are adapted, in
the mean sense, to the full control and Reynolds range, making the proposed
method more self-contained.

The construction of the robust basis does not take advantage of the flow
periodicity and the resulting POD modes are hence not exactly symmetric
/ antisymmetric with respect to the symmetry axis of the flow. Indeed, the
vortex shedding frequency varies both with the Reynolds number and the
control intensity and no unique, well defined, flow period can thus be identified
over the range of parameters.

Figure 2 shows the first eigenvalues for the robust (Re ∈ [180; 220], µ ∈
[−0.2; 0]) and the classical POD basis constructed on the flow for Re =
200, µ = −0.1. It is observed that the robust basis has eigen-values converg-
ing with essentially the same rate as the classical POD basis (non robust).
One can further appreciate that, except the “correction” modes, the robust
and classical POD bases exhibit the familiar pattern of pairs of eigenvalues,
characteristic of propagating flow fields. Note also that the fast decay of the
eigenvalues (λ1/λ10 ≃ 200) allows to retain only a limited numberNR of modes
to construct a reduced model, while accounting for almost all the flow energy.
In fact, for NR = 12, one retains

∑NR

i=1 λi/
∑

∞

i=1 λi ≃ 99.6 % of the flow energy.
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3.3 Application to a reduced model

3.4 Reduced basis performance

The performance of the robust basis derived in section 2 is investigated through
comparisons with non-robust classical POD modes. The performance is mea-
sured in terms of amount of flow energy accounted for by the modes for both
a controlled and non-controlled flow. The “error” Eω due to the reduced basis
is quantified according to:

E2
ω =
‖ωDNS − ωPOD‖

2

‖ωPOD‖2
(34)

where ωDNS denotes the vorticity field computed by Direct Numerical Sim-
ulation (DNS), and ωPOD its truncated projection on the robust POD basis.
Specifically, we have

ωDNS = ω(x) +
∞
∑

i=1

ai(t) ϕi(x) (35)

while

ωPOD = ω(x) +
NR
∑

i=1

ai(t) ϕi(x) (36)

with NR the number of modes retained in the series. Replacing the vorticity
in the expression of Eω and making use of the orthonormality of the basis
vectors yields:

E2
ω =

∑

∞

i=NR+1 a
2
i (t)

∑NR

i=1 a
2
i (t)

. (37)

This represents the fraction of the flow energy which is not represented by the
reduced basis, compared to the flow energy in the basis. When the basis is
poorly representative of the flow, this measure can then be larger than one,
meaning that the reduced basis accounts for less than 50 % of the whole flow
energy.

To assess the performance of the robust basis in representing the flow in the
range of Reynolds number and control parameter µ, we provide in Figure 3 the
evolutions of Eω for two flow conditions: flow-1, corresponding to the actual
values Re = 200, µ = 0.0, and flow-2, corresponding to the actual values
Re = 210, µ = −0.2. These flows correspond respectively to the left and right
plots in Figure 3. In addition, for a better appreciation of the robust basis
performance, the errors are also reported for classical POD bases constructed
on deterministic values of Re and µ. Characteristics of these different POD
bases are listed in Table 1.
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POD type Reynolds Control

Basis i Classical Re = 200 µ = 0.0

Basis ii Classical Re = 210 µ = −0.2

Basis iii Classical Re = 200 µ = −0.2

Basis iv Classical Re = 210 µ = 0.0

Basis v Robust Re ∈ [180, 200] µ ∈ [−0.2, 0]

Table 1
Different POD bases tested. For the robust POD basis, a uniform distribution of
Re and µ over their respective range is assumed.
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E
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Re = 200, µ = -0.0-adapted basis
Re = 200, µ = -0.2-adapted basis
Re = 210, µ = -0.0-adapted basis
Re = 210, µ = -0.2-adapted basis

Robust basis
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Re = 200, µ = -0.0-adapted basis
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Re = 210, µ = -0.2-adapted basis

Robust basis

Fig. 3. Representation error Eω as the wake develops in time from its time-averaged
state. Left: Re = 200 flow. Right: Re = 210 flow. Triangles: Re = 200-flow basis;
circles: Re = 210-flow basis. Open symbols are for a no-blowing flow (µ = 0) while
solid symbols are for a maximum suction flow (µ = −0.2). Results from the robust
basis are plotted as a solid line.

The representation error is quantified for the different bases and for dynamics
off and out of the flow limit-cycle as the basis must be able to represent the flow
in a wide range of configurations. Transients as well as asymptotic dynamics
are thus considered. The flow is initialized with the time-averaged field and
the flow is then let free to develop. At each time step, the flow is projected
onto the truncated bases to quantify the energy loss of the different bases. We
use NR = 10 modes for the projection.

Figure 3 shows that for all bases and flow, the errors are initially large before
the wake fully develops. This is not a surprise are all the bases are constructed
from fully developed flow fields. For the classical POD basis consistent with
the actual flow, the error is seen to almost vanish once the wake has fully
developed, i.e. for t ≃ 100. For instance, the classical POD basis constructed
for Re = 200 and µ = 0 yields a very low error for t > 100 when the simulated
flow indeed corresponds to these conditions (Re = 200, µ = 0) (see Left plot in
Figure 3). However, when a classical POD bases is used to project a flow with
conditions different than the one use to construct the basis, the error is seen to
remain significant even when the flow has developed. For instance, basis i does
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a poor job representing flow-2, the error stabilizing around 0.5 as t increases.
This clearly illustrates the issue of using non robust POD basis to represent
flows in conditions departing to these used for the basis construction.

In contrast, the robust POD basis is seen to achieved acceptable level of error
for the two flows (and actually for all flow within the range of Re and µ
considered). Specifically, during the transient stage the error for the robust
basis is comparable to the errors of the classical POD basis. When the fully
developed regime is reach, the error for the robust basis is seen to decrease
and level off to a low value. Though larger than the errors for the classical
POD bases constructed on the actual flow conditions, the errors for the robust
basis are seen to be significantly lower than for inappropriate classical POD
bases, and to reach an asymptotic value about 0.15, for all flow conditions.
This demonstrate the ability of the robust method to represent flows over a
whole range of conditions by relying on a unique basis and without requiring
any costly correction or updating procedure.

4 Optimal control using a robust reduced model

4.1 Optimal control basics

We now turn to the control problem, where one seeks for the minimization of
the cylinder total drag FD, while restraining the control intensity µ(t), and
thus the operating cost, from getting too large to remain consistent with real
life problems. The control problem is illustrated in Figure 4.

ω(x,t,Re,  )µ
µ (t)Control law

Uncertain inflow

(Reynolds)

Fig. 4. Sketch of the control problem. The goal is to determine the deterministic
control law µ(t) (uniform blowing/suction at the cylinder boundary) to minimize
the cylinder drag for inflows with uncertain characteristic Reynolds numbers.

This objective is formulated under a cost function form, defined over a time-
horizon of length Tw. In the rest of the paper, we typically considers Tw cor-
responding to about 20 vortex-shedding periods of the uncontrolled flow. The
control law is a set of time-dependent variables, here considered as vectors. As
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the control is the blowing intensity at each time t, it is however simply noted
µ(t).

The cost function writes:

J =
α

2
〈µ;µ〉Tw

+
β

2
〈〈F 2

D;F 2
D〉〉Tw

, (38)

where the constant α > 0 accounts for the price of the control intensity and
β > 0 for the cost of the drag force, and FD(u, µ) ∼ U2

∞
CD(u, µ) is the drag

force exerted on the cylinder, CD being the instantaneous drag coefficient. The
bracket term 〈·; ·〉Tw

here expresses as

〈f ; g〉Tw
=
∫ t0+Tw

t0

f(t)Q3 g
∗(t) dt+ c.c..

The double-bracket term is

〈〈f ; g〉〉Tw
=
∫ t0+Tw

t0

f(t)Q� g
∗(t) dt+ c.c.,

while c.c. denotes the complex conjugate and ∗ is the transconjugate operator.

Operators Q3 and Q� allow to define the physics one wants to involve in
the cost function of the problem. In the current case, the concern is simply
about the “energy” of the control µ. Further, the drag term is considered in
its quadratic form and the operators Q3 and Q� can hence be chosen as the
identity operators Q3 ≡ I, Q� ≡ I, leading to 〈·; ·〉Tw

= 〈〈·; ·〉〉Tw
.

We consider the expansion of the flow using the truncated projection of the
vorticity field on the robust POD basis {ϕi(x)}

i=NR

i=1 :

ω(x, t) = ω(x) +
NR
∑

i=1

ai(t) ϕi(x). (39)

Denoting a = (a1, . . . , aNR) the POD coefficients of the flow, the reduced
model is governed by a state equation:

F ≡
da

dt
− F (a, µ). (40)

The Lagrangian of the system expresses as

L = J − 〈F ;λ〉Tw
, (41)

where

〈F ;λ〉Tw
=
∫ t0+Tw

t0

(

da

dt
− F (a, µ)

)

λ∗(t, µ) dt+ c.c. (42)

and λ(t, µ) the Lagrange multiplier of the state equation.
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The Lagrangian now expresses as

L =
∫ t0+Tw

t0

(

α

2
µ(t) µ∗(t) +

β

2
F 2

D(a, µ) F 2
D

∗
(a, µ)

)

dt

−
∫ t0+Tw

t0

(

da

dt
− F (a, µ)

)

λ∗(t, µ) dt+ c.c., (43)

where we have substituted the flow field u with its POD coefficients a in the
expression of the drag force.

When the optimum solution is found, one can show that the Lagrangian func-
tion is minimum w.r.t. variations of all the variables and thus locally defines
a null linear form. It can further be shown that the stationary points of the
Lagrangian are the same as those of the cost function J as the term F is
null for those points and it thus leads to solve the system of equations

dL

dλ
= 0 ,

dL

da
= 0 ,

dL

dµ
= 0. (44)

After time discretization, one is left with a discrete control vector µ which
components are the blowing intensity at each time step: µ(i ∆t) = µi. Let
nTw

= Tw/∆t, ∆t being the time step. The dimension of the control vec-
tor µ being nTw

and generally large, it prevents the use of a linear tangent
technique to solve the system (44) and pleads for an adjoint-based approach.
As the problem is intrinsically discrete, the definition of the different vari-
able is carefully addressed. In the following, subscript k denotes the value of
the considered variable at time step k and one uses the following conventions
tk = t0 + (k − 1) ∆t, ∀ k ∈ [1;nTw

]:

ak = a(τ) for τ ∈ [tk; tk+1[,

λk = λ(τ) for τ ∈]tk−1; tk],

µk = µ(τ) for τ ∈ [tk; tk+1[.

The state equation F(a, µ) = 0 is now discrete and is given by

F(a, µ) = ak+1 −M(ak, µk) = 0, k ∈ [1, nTw
], (45)

expressing the evolution of the POD coefficients ak from time tk to time tk+1

through the NR-dimensional mappingM; see [14] for details.

Dropping the complex aspect, as all variables are real, and discretizing the
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integrals in (Eq. 43) using a standard scheme, one finally gets

L =
nTw
∑

k=1

(

α

2
µ2

k +
β

2
F 4

Dk
(ak, µk)− (ak+1 −M(ak, µk)) λk+1

)

∆t. (46)

with λnTw+1 = 0.

Deriving this expression with respect to λk in the Gâteaux sense yields

lim
ε→0

L (a, µ, λ+ ε δλk)−L (a, µ, λ)

ε
= 0, ∀ δλk, k ∈ [1, nTw

], (47)

which reduces to

lim
ε→0
〈δF(a, µ);λk〉Tw

= 0,

so one finally recovers the state equation:

F(a, µ) = 0. (48)

Now expressing the derivative w.r.t. the state variable a gives

lim
ε→0

L (a+ ε δak, µ, λ)−L (a, µ, λ)

ε
= 0 ∀ δak, (49)

which simplifies in

lim
ε→0
∇ak

J (a, µ) δak − 〈λ;∇ak
F(a, µ) δak〉Tw

= 0,

or

β 〈F 2
D(a, µ);∇ak

F 2
D(a, µ) δak〉Tw

− 〈∇ak
F(a, µ) δak;λ〉Tw

= 0,

then

β 〈
(

∇ak
F 2

D(a, µ)
)

F 2
D(a, µ); δak〉Tw

− 〈(∇ak
F(a, µ)) λ; δak〉Tw

= 0.

It finally comes to the so-called adjoint equation:

2 β (∇ak
FDk

) F 3
Dk
− λk + (∇ak

[M(a, µ)])⊤ λk+1 = 0. (50)

A similar technique for the last derivative term leads to the control optimality
equation:

2 α µk + 2 β (∇µk
FDk

) F 3
Dk

+ (∇µk
[M(a, µ)]) λk+1 = 0. (51)

The solution of the system of equations (Eqs. 48, 50 and 51) leads to the
optimal discrete control law µk and to the direct and adjoint flow fields ak and
λk. This non-linear problem is solved using an iterative Newton technique.
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4.2 Optimal control results

The optimal control strategy described above is applied to an “ideal”
perturbation-free flow where no external disturbance is allowed. This is re-
ferred to as the optimal control case. To allow consistent comparisons with
the next section, the robust reduced basis is used for the construct the re-
duced model. That robust basis is derived considering again a Reynolds num-
ber and the control intensity uniformly distributed in the respective ranges
Re ∈ [180; 220] and µ ∈ [−0.2; 0]. The deterministic flow considered for the
optimal control results corresponds to Re = 200. Further, we set the control
parameters to:

α = 4, β = 0.1, nTw
= 180, ∆t = 0.2.

Solving that three-equation system leads to the time-evolution of the optimal
blowing/suction µ(t) which is the optimal control in the cost function sense
(Eq. 38).

The reduced model is first integrated up to its asymptotic regime, with a
constant low suction velocity µ = −0.01. The control is then turned-on at
t = 500. Once the control is applied, the blowing/suction velocity is seen to
drop and to converge to negative values, see Figure 5. A negative blowing ve-
locity means suction and tends to postpone the boundary layers separation on
the cylinder surface. As this separation is postponed far beyond the π/2-angle
point (with an angle origin at the upstream time-averaged stagnation point),
the width of the near wake decreases and it leads to a lower shape drag CP .
However, sucked boundary layers also induce higher azimuthal velocity radial
gradients and thus a higher viscous friction Cν . Those two opposite effects
contribute and finally result in a decrease of the total drag. The effect of suc-
tion onto the drag is clearly seen in Figure 6, where the total drag coefficient
(CD = CP + Cν) is plotted in time, both for the reduced model and the DNS
of the flow. For the DNS, the control law computed using the reduced model is
imposed as a boundary condition of the Navier-Stokes solver. Figure 7 shows
the evolution of the viscous and the pressure drag coefficients for DNS. The
optimal control law µ(t) determined with the reduced model is then applied
to a flow simulated through DNS to quantify its performance in a real system.
Quantitative results are gathered in Table 2. While the performance is lower
than predicted by the reduced model, due to additional flow details which can
not be accounted for by the 10 POD modes, the resulting cost function from
in DNS still exhibits a significant decrease, proving that the approach based
on controlling the reduced model with a robust basis is applicable and effi-
cient in a full detail-flow context, despite the shortcomings of the method. As
described above, the pressure drag decreases when a negative blowing velocity
is applied, while the viscous drag increases. Further, while the reduced model
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Fig. 5. Control law µ(t) for the optimal control scheme, and Re = 200. Control is
turn on at t = 500.
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Fig. 6. Total drag history as predicted by the reduced model (labelled MTS) and
from DNS of the flow. Control is turned-on at t = 500.

µ CDRED CDDNS J DNS

Uncontrolled -0.010 1.287 1.382 66.45

Optimal -0.091 1.191 1.226 47.61

Table 2
Optimal control applied to reduced model (RED) and DNS flows. Over-lined vari-
ables denote time-averaged quantities.

is seen to underestimate the amplitude of the time-varying drag oscillations
(see Figure 6, right plot), the suction global effect onto the drag evolution
is still reasonably well simulated when compared with the DNS prediction.
To improve the drag prediction of the reduced model, more modes are to be
considered in the robust basis.

Plotting the time evolution of the cost function J , in Figure 8, the perfor-
mance of the control strategy can conveniently be appreciated: it results in
a drop of about 30% compared to the non-controlled flow. The absolute per-
formance of the control strategy obviously depends on the choice of the ratio
α/β which fix the trade-off between performance and control cost.

The dramatic impact of the control law onto the flow dynamics can best be
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Fig. 8. Objective function J with time. Optimal control.

seen in Figure 9, where the evolutions of the first 8 POD coefficients are
plotted both in controlled and non-controlled flow configurations. All POD
modes dynamics are seen to be affected and to reach a new limit-cycle after a
transient period initiated by the sudden control application. For sake of clarity,
these transient phase portraits are not plotted. Some coefficients are seen to
undergo a dramatic change as they correspond to robust POD modes directly
representative of the flow in the immediate vicinity of the cylinder and are
thus very sensitive to the local boundary condition along the surface.
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flow (solid lines) and optimally controlled flow (dots).
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5 Robust control

As seen in Section 2, one can derive a reduced basis which remains valid over
a range of flows. In Section 4, we have shown the effectiveness of using a
robust basis for the determination of a control strategy in the context of the
optimal control theory. In this section, we go one step further and extend the
control strategy to situations where the flow is not completely characterized
and subjected to external perturbations.

5.1 Extended cost function

The flow around the cylinder is assumed to be subjected to uncertainty in
the Reynolds number and to unknown external perturbations. Consequently,
we seek for a control law that achieves the best performances on average over
the assumed range of Reynolds number and which is robust with regards to
external perturbations. To this end, the cost function in Eq. (38) is extended
to account for unknown perturbations, denoted φ(t), and variability in Re.
Introducing as previously the random Reynolds number of the flow, Re(θ),
defined on the probability space (Θ,B, dP ), the extended cost function now
writes:

J =
α

2
〈µ;µ〉Tw

+
β

2
〈〈F 2

D;F 2
D〉〉Tw

−
γ

2
〈φ;φ〉Tw

, (52)

where the bracket term 〈·; ·〉 is still expressed as

〈f ; g〉Tw
=
∫ t0+Tw

t0

f(t)M3 g
∗(t) dt+ c.c.,

and the double-bracket term is now

〈〈f ; g〉〉Tw
=
∫ t0+Tw

t0

∫

Θ

f(t, Re(θ))M� g
∗(t, Re(θ)) dP (θ) dt+ c.c.,

while c.c. denotes the complex conjugate and ∗ is the transconjugate operator.

Without loss of generality the perturbations are here considered to act onto a
unique mode of the robust basis, such that φ : t 7→ φ(t) ∈ R. The contribution
of the perturbations to the cost function J is weighted by the coefficient γ >
0. For γ → ∞, one recovers an optimal control strategy where perturbations
are not accounted for, but which still account for the randomness in Re. One
is thus left with two optimal parameters µ(t) and φ(t) to be determined. In
the spirit of the H∞ approach (see [2] for a brief introduction), the optimal
perturbation φ leads to the worst-case scenario as it constitutes the most
malevolent perturbation to the flow with regards to the cost function J .
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5.2 Robust approach basics

The Reynolds number of the flow being random, so is the flow for given (de-
terministic) control µ and perturbation φ. As a result, the state vector a of
the reduced system is also random and the state equation is

da

dt
(t, θ) = F (a(t, θ), µ(t), φ(t), Re(θ)) , ∀θ ∈ Θ. (53)

With these notations, the Lagrangian of the control problem is

L =
∫ t0+Tw

t0

[

α

2
µ(t) µ∗(t) −

γ

2
φ(t) φ∗(t)

+
∫

Θ

β

2
F 2

D(a(t, θ), µ(t), φ(t), Re(θ)) F 2
D

∗
(a(t, θ), µ(t), φ(t), Re(θ)) dP (θ)

−
∫

Θ

F(a(t, θ), µ(t), φ(t), Re(θ)) λ∗(t, Re(θ)) dP (θ)
]

dt+ c.c., (54)

where FD is the drag force exerted on the cylinder and state equation

F(a, µ, φ,Re) ≡
da

dt
− F (a, µ, φ,Re). (55)

The null linear form of the Lagrangian expresses as

dL

dλ
= 0 ,

dL

da
= 0 ,

dL

dµ
= 0 ,

dL

dφ
= 0. (56)

As previously, a time discretization of the problem is performed. The dis-
cretized form of the state equation (53) is written as

ak+1(θ) =M(ak(θ), µk, φk, Re(θ)), (57)

where the subscript indexes refers to the time level. For the evaluation of the
expectation operators in the Lagrangian of the problem, Eq. (54), we again
rely on a deterministic cubature formula. Using superscripts to denote the
cubature points with associated weights wq, Eq. (54) can be recast in:

L ≃
nTw
∑

k=1



α µ2
k +

Nq
∑

q=1

wq β F 2
D(aq

k, µk, φk, Re
q) F 2

D

∗
(aq

k, µk, φk, Re
q)

−γ φ2
k −

Nq
∑

q=1

wq
[

aq
k+1 −M(aq

k, µk, φk, Re
q)
] (

λq
k+1

)∗



 ∆t. (58)

with λq
nTw+1 = 0, ∀q ∈ [1;nTw

].
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Finally, and making use of the fact that all variables are real, conditions (56)
leads to the system of equations



















































































aq
k+1 =M(aq

k, µk, φk, Re
q), (a)

2β
(

∇a
q

k
(FD)k,q

)

(F 3
D)k,q − λ

q
k . . .

. . .+
(

∇a
q

k
[M(aq

k, µk, φk, Re
q)]
)⊤

λq
k+1 = 0, (b)

2αµk +
∑Nq

q=1w
q
{

2β
(

∇µk
(FD)n,q

)

(F 3
D)k,q . . .

. . .+ (∇µk
[M(aq

k, µk, φk, Re
q)])λq

k+1

}

= 0, (c)

2αφk +
∑Nq

q=1w
q
{

2β
(

∇φk
(FD)n,q

)

(F 3
D)k,q . . .

. . .+ (∇φk
[M(aq

k, µk, φk, Re
q)])λq

k+1

}

= 0. (d)

(59)

In this equations, we have used the short-hand notation (FD)k,q for
FD(aq

k, µk, φk, Re
q). The resolution of this system of equations yields the dis-

crete Re-averaged optimal (γ →∞) or robust (γ <∞) control law µk, for the
most malevolent perturbation φk.

Below, we provide an outline of the algorithm used for the resolution and
application of the robust control strategy.

(1) Initialize the flow state vector a(t = 0) (i.e set ak=0).
(2) Set guessed control law µk and optimal perturbation φk, for k =

0, . . . , NTw
(for instance solution at previous time-horizon).

(3) For each of the Reynolds values corresponding to the cubature points:
solve for state vector aq

k and adjoint solution λq
k, from (59,a-b) using the

current guessed control law µk, optimal perturbation φk, and same initial
condition aq

k=0 = ak=0, ∀q.
(4) Solve (59,c-d) using previous aq

k and λq
k, to yield new guessed for the

control law µk and optimal perturbation φk, for k = 0, . . . , NTw
.

(5) Check convergence of the guessed control law. If not converged then re-
peat from step (3).

(6) Advance in time the system state vector ak, k = 1, . . . , NTw
using the

state equation (57) with the actual Reynolds number of the flow (Re0)
and the control law obtained at the previous step and null perturbation
φk = 0.

(7) Repeat from step (2), for the next time horizon, using ak=NTw
as the new

initial condition for the state vector: a0 ← aNTw
(Re0).
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6 Results

In this section, we provide a comparison of the respective efficiencies of the
control laws µ(t) obtained for different control strategies and applied to differ-
ent flow conditions, i.e. flow with different Reynolds numbers. All the control
laws are computed on the reduced model using the robust basis, derived by
assuming Re ∈ [180; 220] and µ ∈ [−0.2 : 0] with uniform distribution. Three
control strategies are compared:

• Optimal-200: the control law obtained for the optimal theory and based
on the assumption of Re = 200 for the flow, and no perturbation (γ →∞).
This strategy follows the derivation of Section 4.
• Robust: the control law obtained for the optimal theory (i.e. without ex-

ternal perturbations, γ → ∞) but assuming a Reynolds number uniformly
distributed in the range [180, 220].
• Robust-H∞: the control law obtained assuming a Reynolds number uni-

formly distributed in the range [180, 220] and external perturbation on mode
3 of the robust basis (γ <∞).

Unless otherwise stated, the control parameters are set to

α = 4, β = 0.1, γ = 50, Nq = 7, ∆t = 0.2.

In every experiments, the reduced model is first run for 500 units of time with
actual Reynolds number to obtained an established flow. For a given control
strategy, the control law µ(t) is then computed over the next Tw units of time.
This control law is then applied to the reduced model, for again the actual
value of the Reynolds number of the flow, providing the updated model state.
The procedure is subsequently repeated for the next Tw unit of time and so
on.

The evolutions of the control intensity µ(t) obtained for the three different
strategies and Tw = 36 units of time are plotted in Figure 10. The actual
Reynolds number of the flow is Re = 200. It is seen that, though close, the
robust formulation leads to a larger control intensity compared to the optimal-
200 strategy. Indeed, the drag force exerted onto the cylinder varies in a non-
linear way in the assumed Reynolds range, so the resulting drag force in the
ensemble average sense tends to be higher than the drag force for Re = 200,
with higher control law as a result. In fact, we have:

〈〈FD(a, µ, φ,Re)〉〉Tw
> 〈FD(a, µ, φ,Re = 200)〉Tw

. (60)

When external optimal perturbations φ are considered, they tend to increase
both the drag and the cost function. The control intensity leading to the best

26



-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 450  500  550  600  650  700

µ

Time

Optimal
Robust

Robust H∞

Fig. 10. Control laws for the the different control strategies.

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 350  400  450  500  550  600  650

C
D

Time

Optimal
Robust

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 600  605  610  615  620  625  630

C
D

Time

Optimal
Robust

Robust H∞
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compromise between drag and control intensity is then significantly larger to
counterbalance this adverse effect.

The resulting drag time-evolution of the controlled flow at Re = 200, as es-
timated by the reduced model, is plotted in Figure 11 for the three control
strategies. When the control is applied, the drag time-evolution from the dif-
ferent strategies all show a sharp decrease in their mean value. The lowest drag
is achieved for the robust-H∞ strategy while the optimal control is less effi-
cient. This is consistent with the control laws intensity shown above. Table 3
presents the quantitative results, both from the reduced model estimates and
for the computed control laws applied to the DNS of the flow at Re = 200.
It shows the time-averaged drags as well as the cost function achieved for
the DNS flow. As the flow is deterministic, the performances of the control
is investigated here in terms of Jdet, the objective function evaluated for a
deterministic Reynolds number, i.e. considering 〈〈·〉〉Tw

= 〈·〉Tw
. As in the

preceding section, the control law determined for the reduced model remains
relevant when applied to a (real) DNS flow and achieves a significant decrease
of the drag.
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µ CDRed CDDNS J det,DNS

Uncontrolled - 1.287 1.382 69.45

Optimal-200 -0.097 1.191 1.226 51.01

Robust -0.107 1.178 1.201 49.00

Robust H∞ -0.129 1.151 1.131 44.08

Table 3
Performance of the different control strategies, in terms of mean drag (estimated
form the reduced model CDRed and computed in DNS CDDNS) and cost function
Jdet in DNS assuming the actual value of the Reynolds number Re = 200.

Discontinuities can be observed in the temporal evolution of the control law
and resulting drag in Figures 10 and 11, for instance at t = 536. This oc-
curs at the interface between two successive control laws. It is due to the
re-initialization of the random flow state to the state for the actual flow, i.e.

for Re = 200, before determining the subsequent control laws following the
robust strategies. In other words, the initial condition on the random state
vector a(t, θ) is always reset to the deterministic state at t before treating the
next time span.

6.1 Performance evaluation

To investigate the robust character of the control, its performance for different
Reynolds number flows is plotted in Figure 12. The performance is here mea-
sured against the reduced model, for flows at several actual Reynolds numbers
in the assumed range [180 : 220] and the different control strategies. The per-
formance is measured from the robust objective function at the actual flow
Reynolds. Comparison of efficiency is made for the following control strategies:
robust, robust-H∞, optimal (assuming Re = 200) and optimal-deterministic
(assuming the actual Reynolds number).

As expected, the deterministic control law yields the best performance for
all Re as it is optimal and uses the actual Reynolds number. The optimal
strategy determined assuming Re = 200 performs equally well when the actual
Reynolds is indeed equal to 200, but is significantly less efficient when applied
to flows with actual Reynolds numbers different from 200. The control laws for
the robust strategies, though always less efficient than the deterministic laws,
yield a better efficiency on average over the Reynolds range compared to the
optimal lawRe = 200. For a better appreciation of the respective performances
at the different Reynolds numbers, we have plotted in Figure 13 the differences
in the resulting objective cost functions, relatively to the optimal deterministic
law using the actual Re. It shows the advantage of accounting for a variability
in flow conditions when deriving the control law. When also accounting for
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Fig. 12. Achieved cost functions for different control strategies as a function of
the actual flow Reynolds number. Cost functions are based on the reduced model
estimation.
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Fig. 13. Performance loss, relatively to optimal controls based on the actual Re, of
the different control strategies as a function of the actual flow Reynolds number.
Performances are measured using reduced model estimates of the cost functions.

finite energy external perturbation, the robust-H∞ control leads to trends
similar as the robust control while achieving a more constant performance in
the Re range: it gives poor performance at low Re, achieving an even worse
objective cost than the Re = 200-optimal control, but performs very well for
the larger Re.
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Fig. 14. DNS estimates of the cost function for the different control laws as a function
of the actual Reynolds number of the flow.

JRed ηRed JDNS ηDNS

Deterministic 42.64 0.0 % 49.52 0.0 %

Optimal-200 45.08 5.7 % 51.01 3.0 %

Robust 44.23 3.7 % 49.00 -1.0 %

Robust H∞ 44.28 3.8 % 44.08 -11.0 %

Table 4
Comparison of performance achieved for different control strategies. Robust objec-
tive function J and relative “losses” η (compared to optimal laws for actual Re).
Red and DNS denote measures using the reduced model or the flow DNS.

The previous experiments use the reduce model for both the control law de-
termination and performance measurement. To assess the robustness of the
control laws, they are now applied to the DNS of the flow. Performances,
again in terms of the cost functions but computed from the DNS solutions,
are monitored and plotted in Figure 14. Figure 15 shows the difference in per-
formances with regard to the optimal law determined using the actual flow
Reynolds number. Unlike the prediction of the reduced model, the robust-H∞

control law is here seen to provide the best performance of all strategies when
applied to the DNS flow for all Reynolds numbers. Second in terms of per-
formance is the robust control while the Re = 200-control performs better
than the deterministic control in the lower part of the Reynolds number range
considered. These results stress the importance of the reduced model quality
and the need to account for robustness when designing a control law.
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Fig. 15. DNS estimates of the difference in cost function relatively to optimal con-
trols based on the actual Re, of the different control strategies as a function of the
actual flow Reynolds number.

The performance averaged over the Reynolds range [180; 220] are gathered in
Table 4. For the reduced model, the expected results are obtained: in this
perturbation-free framework, while the deterministic control performs best
and the optimal control performs worst, the robust control achieves a (slightly)
better performance than the robust-H∞ approach which has to account for
potential perturbations. Results are significantly different when the control
laws are applied in the DNS of the flow: the robust-H∞ averaged performance
is much better than that of the robust approach (with no φ perturbation).
Accounting for the most malevolent perturbation in the reduced model thus
increases the control performance determined from a low-fidelity model when
applied to a high-accuracy simulation code. This is believed to be a fundamen-
tal point as it gives rules of thumb for an accurate and consistent application
of the reduced model-based robust control strategy.

6.2 Influence of the time-horizon

As the cost function J is defined over a time-horizon of length Tw, it is
necessary to investigate how the selection of Tws affects the resulting control
performance. Figure 16 shows the control laws derived from nTw

= 90, 180 and
360. Focusing on the nTw

= 360, it is seen to feature large oscillations at the
beginning of the horizon that subsequently decay almost to zero amplitude
for later times. A similar trend is seen for nTw

= 180 while for nTw
= 90,

the time-horizon is too short to observe the decay of the oscillations. This
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Fig. 16. Robust control law for different time-horizons Tw = nTw ∆t. From top to
bottom, nTw = 90, 180 and 360.

J rob,Red ηrob,Red J rob,DNS ηrob,DNS

Deterministic 42.64 0.0 % 49.52 0.0 %

Robust (nTw = 90) 44.42 4.2 % 49.32 -0.4 %

Robust (nTw = 180) 44.23 3.7 % 49.00 -1.0 %

Robust (nTw = 360) 44.20 3.7 % 48.54 -2.0 %

Table 5
Comparison of the performance for different control time-horizons Tw = nTw ∆t.
Robust objective function Jrob and relative “losses” η compared to a deterministic
approach.

behavior is again explained by the re-initialization of the random flow state to
the deterministic actual flow state at the beginning of the time horizon. Still,
when uncertainty in the Reynolds number is accounting for, the random flow
evolves with different phase velocities: while initially in phase, different flow
realizations becomes out of phase after some time. As a result, the Reynolds
average control law loses phase information and tends to become constant as
time advances. However, in terms of performance the longer the time horizon
the better the cost function achieved as may be appreciated from Table 5.
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7 Concluding remarks

In this paper, a new technique for the derivation of a robust POD basis for a
flow has been proposed. The robustness is sought to improve the representation
properties of the basis in a given range of flow parameters. The efficiency of
the robust basis was tested and compared successfully with the classical POD
basis, for the representation of the flow over a circular cylinder in laminar
regime. The robust basis was then used on a reduced model of the flow to
determine the optimal control law for reducing the drag of the cylinder. The
control law derived for the reduced model was then applied to a DNS of the
flow with satisfactory results.

The optimal control strategy was subsequently extended to account for some
uncertainties in the Reynolds number of the flow. The control law is then
sought to achieve the minimum of a cost function on average over a speci-
fied range of flow conditions (Reynolds number). It yields two robust control
strategies depending on the account for some external perturbations. When
applied to the reduced model, these strategies yield control laws that are in-
deed more efficient on average than the optimal strategy based on the expected
flow conditions. Further, when the control laws are used in a DNS of the flow,
the performance of the robust controls are found to be always better than the
deterministic optimal control found for the reduced model for the actual flow
conditions.

These results highlight the importance of using a robust basis in the reduced
model to be able to account for significant changes in the flow structure as
the control law is applied in uncertain flow conditions. The incorporation
of operational uncertainty and external perturbation (to account for model
reduction error) when deriving an open-loop flow control strategy, is seen to
significantly improve the control performance when applied to the non-reduced
system.
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