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Abstract

This paper tackles the issue of the computational load encountered in seismic imaging by Bayesian traveltime
inversion. In Bayesian inference, the exploration of the posterior distribution of the velocity model parame-
ters requires extensive sampling. The computational cost of this sampling step can be prohibitive when the
first arrival traveltime prediction involves the resolution of an expensive number of forward models based on
the eikonal equation. We propose to rely on polynomial chaos surrogates of the traveltimes between sources
and receivers to alleviate the computational burden of solving the eikonal equation during the sampling
stage. In an offline stage, the approach builds a functional approximation of the traveltimes from a set of
solutions of the eikonal equation corresponding to a few values of the velocity model parameters selected in
their prior range. These surrogates then substitute the eikonal-based predictions in the posterior evaluation,
enabling very efficient extensive sampling of Bayesian posterior, for instance, by a Markov Chain Monte
Carlo (MCMC) algorithm. We demonstrate the potential of the approach using numerical experiments on
the inference of two-dimensional domains with layered velocity models and different acquisition geometries
(microseismic and seismic refraction contexts). The results show that, in our experiments, the number of
eikonal model evaluations required to construct accurate surrogates of the traveltimes is low. Further, an
accurate and complete characterization of the posterior distribution of the velocity model is possible, thanks
to the generation of large sample sets at a low cost. Finally, we discuss the extension of the current approach
to more realistic velocity models and operational situations.
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1. Introduction

The present article focuses on seismic tomography, a method broadly used for imaging the seismic velocity
structure of the Earth’s subsurface. In traveltime tomography (see [55] for a review) with active sources,
a set of sources generates seismic waves propagating in the subsurface and the observations used to infer
the velocity model parameters are a set of traveltimes recorded at a network of receivers. The Bayesian
inference (see, for instance, [64]) is a robust technique for this type of parameter estimation problem.
Previous works on inverse problems in seismic tomography have considered Bayesian inference, see among
others [51, 44, 6, 7]. The Bayesian approach estimates the (posterior) distribution of the velocity model
parameters by comparing a set of informative observations (measured traveltimes) with the predictions of a
forward model, consisting of an eikonal solver in our case.

Compared to an inversion solved with an optimization technique generally based on the computation of
the gradient of a misfit function, the advantage of sampling the posterior distribution is threefold. First, it
provides detailed information in the form of the full posterior distribution of the velocity model parameters,
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therefore quantifying the posterior uncertainty in the estimated parameters and subsequent predictions based
on this model. In contrast, maximum likelihood, maximum a posteriori, and generic best-fit estimators
entirely disregard this information and focus on a single optimal velocity model without characterizing its
robustness. Second, Bayesian methods often have intuitive priors that produce physically admissible prior
ranges, whereas alternative inverse methods often require ad hoc regularization techniques that have no
rigorous justifications. Finally, deterministic inverse methods often lead to the resolution of complex non-
convex minimization problems, which can be challenging with computed estimators that are sub-optimal as
a result. By aiming at producing the whole posterior distribution, the Bayesian inference is, in practice,
computationally much more robust in these situations.

Despite these advantages, the Bayesian approach has to deal with a substantial computational cost to
correctly estimate the posterior distributions of the model parameters. The posterior distribution estimation
relies on sampling, typically using a Markov-Chain Monte-Carlo (MCMC) method such as the Metropolis-
Hastings algorithm [49, 28]. The MCMC methods form a flexible and robust family of algorithms designed to
sample distribution, but they suffer from slow convergence, in particular when the parameters of the chains
are not well-tuned. The slow convergence requires to run long chains with, as a consequence, multiple
evaluations of the forward model and a high computational cost. Several samplers have then been proposed
to improve the convergence of MCMC methods (see section 2.3 for more details). Rather than improving
the sampling strategy itself, we develop an alternative approach in this paper that directly considers the
reduction of the complexity source, the computational cost of the forward model, by relying on surrogate
models following [45]. In our context, the surrogate approach consists of building functional approximations
of the first arrival traveltimes dependences on the model parameters, that are easy to evaluate but faithful,
in order to replace the forward model during the MCMC sampling of the posterior. More precisely, we
first construct Polynomial Chaos (PC) surrogates of the traveltimes, which have negligible evaluation cost,
and use them in the MCMC algorithm in place of the solution of the eikonal equation. The substitution is
innocuous, provided that the surrogate error is small [46].

Uncertainty quantification methods routinely use surrogate models to emulate complex forward models
and enable their extensive sampling in order to characterize the impact of parametric uncertainties and
perform global sensitivity analysis. Many works over the last decades focused on the development of accurate
surrogate models from minimal size ensemble of model simulations, and these advances have triggered
new application domains, such as the surrogate-based resolution of optimization, calibration, and inverse
problems. In this work, we consider Polynomial Chaos (PC) expansions to approximate the functional
dependencies between a quantity of interest and the random parameters [24, 39]. The PC expansions have
been successfully applied to multiple problems in many application areas and found particularly effective
for situations where the quantity of interest has smooth dependencies. Previous examples of applications in
geoscience of PC expansions are, for instance, in [22, 32, 41, 61] (uncertainty quantification) and [20, 25, 52,
14] (inverse or calibration problems). To our knowledge, the use of PC surrogates for seismic tomography is
new to the present work, but we stress that alternative surrogate construction could be employed [56, 17].

The structure of the paper is as follows. Section 2 presents the inversion framework with the Bayesian
formulation of the problem, the discrepancy model, and the eikonal solver. Section 3 describes the polynomial
chaos expansions used to construct the surrogates of the traveltimes. We assess the methodology for different
problems with layered velocity models and different acquisition geometries: Section 4 concerns microseismic
acquisition while Section 5 considers seismic refraction acquisition. Discussion and conclusion of the present
work are reported in Section 6.

2. Framework

One crucial question faced in seismic tomography concerns the representation of the wave-velocity fields,
which typically are infinite-dimensional. In this respect, one can distinguish two distinct approaches. The
first set of approaches uses an explicit discretization of the velocity model with a fixed and finite number of
parameters. In contrast, the second set avoids the explicit specification of the velocity model and imbeds
the identification of its form within the inference process.
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Explicit parametrizations are well suited to simple situations where the model is naturally specified using
a limited number of unknown parameters, as considered below. More general situations, such as smooth
velocity models, use truncated optimal decomposition of the a priori velocity model. We mention, in par-
ticular, the Karhunen-Loeve (KL) decomposition [35, 42] (also known as Principal Component Analysis, or
Principal Orthogonal Decomposition). The inference problem using explicit finite parametrizations is recast
in terms of the posterior distribution of these parameters, leading to the sampling of a finite-dimensional
joint-distribution.

Alternative approaches do not specify a priori the structure of the velocity model, which evolves along
the inference process. An example of these approaches is the so-called transdimensional method that can be
applied with different parametrizations such as Voronoi cells [6], Delaunay tesselations [29], Johnson–Mehl
tesselations [3] and wavelets [30]. The number of centroids, their location velocity value, are jointly evolving
during the posterior sampling. These approaches are appropriate in situations corresponding to velocity
models with complex structures hardly amenable to a simple parametrization.

In this work, we restrict ourselves to explicit parametrizations because the fixed form is essential to the
practical construction of surrogate models. This paper considers only situations with trivial parametrizations
in order to assess the potentiality of the approach. It should be mentioned that such layered velocity models
are often used in the context of microseismic monitoring of hydraulic fracturing projects where they are are
constructed from a sonic log, which is then usually calibrated with perforation shots from known locations
[19, 47]. We delay to future work the extension of the approach to more complex situations requiring larger
(higher-dimensional) parametrizations, and possibly the introduction of hyper-parameters [62].

2.1. Bayesian formulation
2.1.1. Bayes’ rule

The velocity model is assumed to be described by a random vector ofM independent parameters denoted
m ∈ L2 (RM). In the case of a layered planar geological structure, m contains the velocities and the depths
of the layer boundaries. We denote tobs ∈ L2 (RN+ ) the vector of N measured traveltimes used to infer m
using the Bayes’ rule [2]. In its simplest form, the Bayes’ rule reads

π(m|tobs) = L(tobs|m)πm(m)
L(tobs)

, (1)

where πm(m) is the prior distribution of the parameters, L(tobs|m) the likelihood of the measured travel-
times, π(m|tobs) the posterior distribution of m, and L(tobs) the marginal likelihood (or evidence) of the
observations. In practice, the evidence is just a normalization constant, ensuring that the posterior is a
density, and it can remain undetermined, writing the proportionality between the posterior and the product
of the likelihood of the observations and the prior of m. The likelihood L(tobs|m) gives the probability of
the observed traveltimes given a particular value m of the model parameters. It is classically a function of
the discrepancies between measurements and the model predictions. Its derivation is now detailed.

2.1.2. Likelihood function
In the following we denote t(m) the vector of traveltimes predicted for the velocity model with parameters

m. The differences between the measured and predicted traveltimes has two contributions,

tobs − t(m) = emod + eobs, (2)

the model error emod and the measurement (or observation) error eobs. The error emod is rooted in the
simplifications of physics and the various misspecifications of the numerical model while, in the tomography
context, the measurement errors typically arise from the manual picking of the traveltimes ([5]). As discussed
in the introduction, we shall substitute the forward model predictions of the traveltimes t(m) with surrogate
approximations t̃(m), introducing another source of discrepancy esur, leading to

tobs = t̃(m) + ε, (3)
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where ε = eobs +emod +esur is the discrepancy vector between the observations and the surrogate predictions.
In practice, the discrepancy vector is unknown, and one needs to rely on a statistical model. Hereafter we

assume that the observation error eobs dominates the other sources of uncertainty. In that case, ε amounts
to the manual picking errors which can be considered unbiased and independent from an observation to
another. In the numerical experiments below, we rely on synthetic observations consisting of eikonal solutions
corrupted by centred independent Gaussian noise with diagonal covariance matrix Cobs ∈ RN,N defined as

[Cobs(α)]i,j =
{

(αti)2 if i = j,

0 if i , j,
(4)

where ti denotes the ith travel time and α ∈ R+ controls the noise level. In other words, the manual picking
error is Gaussian with a variance proportional to the true traveltime. We shall assume that the noise level
is not known and we extend the the Bayes’ rule to

π(m,α|tobs) ∝ L(tobs|m,α)πm(m)πα(α), (5)

where πα is the prior of the hyper-parameter α. Neglecting the surrogates and model error contributions,
the misfist function χ(m, α|tobs) corresponds to the (squared) Mahalanobis distance,

χ(m, α) =
(

tobs − t̃(m)
)>

Cobs(α)−1 (tobs − t̃(m)
)
. (6)

Finally, the Gaussian likelihood function of the Bayes’ rule is expressed as

L(tobs|m, α) = 1√
(2π)N |Cobs(α)|

exp
(
−χ(m, α)

2

)
. (7)

where |Cobs| denotes the determinant of Cobs. Using the likelihood function (7), the maximum likelihood
estimator of m corresponds to the solution of the (weighted) least-squares fit problem, minimizing ‖tobs −
t̃(m)‖C−1

obs
(the norm induced by the inverse of Cobs).

The observation noise distribution will be unknown in real-life applications for which the model error
is not necessarily negligible. In such a case, one has to introduce an appropriate treatment of model error
(see for instance [36]) and identify the likelihood structure involving possibly several hyper-parameters. For
instance, symmetric or asymmetric Laplace distributions may be more representative of the operator errors in
the picking process [67], while more general covariance matrix Cobs with a limited number nα � N of hyper-
parameters to be inferred can better fit for the discrepancy between the predictions and the observations.

The Bayesian inference result depends on the choice or the likelihood [8] and the approach proposed here
is no exception. However, a key advantage of our surrogates approach is that one can use the surrogates
to test different forms of likelihood. Indeed, the construction of the surrogates will demand most of the
computational effort, while subsequent MCMC sampling has a low computational cost. As a result, our
approach is suitable to compare several likelihoods and determine the best ones from objective criteria
such as Bayes factors. Similarly, the capacity to sample at a low computational cost the posterior enables
advanced analyses such as for the posterior sensitivity on the priors [40].

2.1.3. Prior distributions
We assume that the velocity model parameters are a priori independent, such that the prior πm(m)

factorizes to

πm(m) =
M∏
i=1

πi(mi), (8)

where πi(mi) is the prior of the parameter mi. The particular form of these priors will be detailed in the
test cases sections. Regarding the hyper-parameter α of the covariance matrix, we rely on a Jeffreys’ prior,

πα(α) ∝
{
α−1 if α > 0,
0 if α ≤ 0.

(9)
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The Jeffreys prior [33, 34] is adapted to situations with no a priori information on the scale (order of
magnitude) of the parameter, since it is invariant under any monotone transformation (or re-parametrization
through change of coordinates). By using Eq. (4) to Eq. (9), the posterior distribution finally reads

π(m, α|tobs) ∝
1

(2π)N/2αN+1

N∏
i=1

1
|tobs,i|

exp

−1
2

(
tobs,i − t̃i(m)

αtobs,i

)2
 . (10)

2.2. Eikonal solver
As explained below, we shall rely on a non-intrusive method to construct the surrogates t̃(m) of the N

traveltimes. This step requires the computation of the forward model t(m) at selected points m within the
a priori range. The ith component ti(m) of t(m) corresponds to the first arrival traveltime from the source
point xsrc,i to reach the receiver point xrec,i. The two points are in a domain Ω ⊆ Rd where d is the spatial
dimension of the domain. The velocity model v(x|m) ∈ R+ describes the wave propagation velocity at all
x ∈ Ω. With this notation, we define the eikonal problem associated to the ith source point by‖∇τi(x|m)‖22 = 1

v(x|m)2 , ∀x ∈ Ω,

τi(x|m) = 0, for x = xsrc,i.

(11)

(12)

The solution τi gives the time it takes for the wave with source xsrc,i to reach any point x ∈ Ω in a medium
with velocity v(·|m), The traveltime to the receiver is then simply given by ti(m) = τi(xrec,i|m).

The first-order nonlinear partial differential equation (11) can be numerically solved by different ap-
proaches, including finite difference schemes [65], fast marching method [58], fast sweeping method [68], and
discontinuous Galerkin scheme [38]. In this paper, we employ a numerical method combining a spherical
wave approximation in the source neighborhood and a plane wave approximation farther away [53]. More
precisely, the approach uses several local finite difference operators and a global fast sweeping method. This
approach allows treating velocity models with sharp vertical and horizontal contrasts accurately. Naturally,
when the domain of interest is instrumented with a set of Ns sources and Np receivers, the eikonal equa-
tion is solved min(Ns, Np) times (using the principal of traveltime reciprocity if Ns > Np to reduce the
computational cost).

2.3. MCMC sampling
The posterior distribution in (10) does not have a closed-form expression and must be sampled. The

MCMC algorithms are efficient to draw samples from complicated distributions. From the original Metropolis-
Hasting (MH) algorithm [28], several improvements have been introduced over the years. These improve-
ments include, in particular, the Hamiltonian (or hybrid) MC [16, 21], the Langevin MC [4], the adaptive
MCMC [26, 57], and the parallel MC methods [66]. All of these methods can be applied to our surrogate-
based approach, retaining all of its computational benefits. Our surrogates being differentiable, it is well
suited to the Hamiltonian and Langevin MC methods which use the gradient of the posterior when the
estimation of the gradients of the traveltimes may be delicate and costly to compute using the forward
model (eikonal equation) only.

For the sake of simplicity, we restrict here the exposition to the MH algorithm and denote (m, α)k the
current state of the chain. At each step, the same procedure is repeated. First, a new state (m, α)∗ is
proposed at random from a transition probability πtr((m, α)∗|(m, α)k). Second, the new state is accepted
with a probability r given by

r = min
(

1, π(m∗, α∗|tobs)πtr((m, α)∗|(m, α)k)
π(mk, αk|tobs)πtr((m, α)k|(m, α)∗)

)
. (13)

If the new state is accepted, we set (m, α)k+1 = (m, α)∗, otherwise (m, α)k+1 = (m, α)k. When the transition
probability is symmetric, the proposed state is always accepted if it yields a higher posterior, while accepting
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a state with a much lower posterior value is unlikely. Using this simple random rule, (m, α)k follows
asymptotically for k → ∞ the posterior distribution. Therefore, the successive states of the chain, after
large enough k, form samples set drawn from the posterior. The improvement listed below aims at improving
the mixing properties and minimizing the chain’s correlation. Indeed, determining an (explicit or implicit)
transition probability function πtr is critical to obtain an effective MCMCmethod. Without loss of generality,
we use an adaptive Metropolis algorithm with symmetric Gaussian proposal distributions,

πtr((m, α)∗|(m, α)k) = · · ·
1

|2πCtr|1/2
exp

(
−1

2(mk − m∗, αk − α∗)>C−1
tr (mk − m∗, αk − α∗)

)
, (14)

where the transition covariance Ctr is sequentially updated during the initial burn-in stage of the chain,
using information from previous steps of the chain [26].

The computational time associated with the MCMC procedure is proportional to the (averaged) com-
putational time of the forward model with the length M of the chain necessary for the exploration of the
posterior. The actual value of M depends on the problem considered and the particular MCMC method
employed. However, we expect M to vary from 104 to 106, or even more than that for very challenging
problems. Consequently, MCMC is feasible only if the forward model is fast enough. If the eikonal solver
is used to make all predictions, with average computational cost Teik, the resulting computational times
M× Teik is quickly prohibitive. In contrast, using the surrogates’ prediction, the sampling time becomes
M× Tsur where Tsur � Teik. The complete complexity analysis has to account for the cost of construct-
ing the surrogates. As discussed below, the construction time is proportional to the number of Nq of the
eikonal solutions involved in the procedure, so the computational complexity of the surrogate approach is
Nq × Teik +M× Tsur, which remains much less than the cost of the model-based approach provided that
Nq � M. The latter condition will be satisfied if the dependencies with m of the traveltimes are not too
complex, and the dimensionality of m is not too high.

3. Surrogate Models

In this section, we introduce the PC expansions of the traveltimes t(m). We rely on non-intrusive
methods, meaning that the construction of the PC expansions uses a set of deterministic solutions of the
eikonal equation for selected velocity models with parameters m. In the following, we denote Ξ ⊆ RM the
a priori range of m. As mentioned before, we restrict ourselves to the case where the parameters in m are
mutually independent, such that their prior can be factorized to (8). Similarly, the range Ξ is the product
of the ranges Ξi of each velocity parameter mi.

3.1. Polynomial Chaos expansion
For notational convenience, let f(m) be one of the traveltime to be approximated. We assume that

f(m) ∈ L2(Ξ, πm), where L2(Ξ, πm) is the space of second order functions in m:

f(m) ∈ L2(Ξ, πm) ⇔ E
(
f2) =

∫
Ξ
f2(m)πm(m)dm <∞. (15)

We shall equip L2(Ξ, πm) with the inner product coinciding with the correlation and denoted with brackets:

〈f, f ′〉 .= E (f(m)f ′(m)) =
∫

Ξ
f(m)f ′(m)πm(m)dm. (16)

Following [9], any second-order random function in m has a convergent spectral expansion of the form

f(m) =
∑
k

fkΨk(m), (17)
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where the fk ∈ R are the expansion coefficients or stochastic modes of f , and {Ψk} is a complete orthogonal
set constituting a basis of L2(Ξ, πm). Generalized PC expansions result when selecting random polynomials
in m for the basis of L2(Ξ, πm). To construct this basis, we denote for i = 1, . . . ,M the orthonormal set
of uni-variate polynomials {φik(mi), k = 0, 1, 2, . . . }, where φik is a polynomial of degree k in mi. The
orthonormal character implies that

E
(
φikφ

i
l

)
=
∫

Ξi

φik(mi)φil(mi)πi(mi)dmi = δk,l, (18)

when mi has a uniform (resp. Gaussian) distribution, the φik are scaled Legendre (resp. Hermite) polyno-
mials [1].

Then, introducing the integer-valued multi-index k = (k1, . . . , kM ) ∈ NM , we define the M -variate
polynomial Ψk(m) by

Ψk(m) = ΠM
i=1φ

i
ki

(mi). (19)

One can easily check that the polynomials Ψk(m) are orthonormal:

〈Ψk,Ψl〉 =
∫

Ξ
Ψk(m)Ψl(m)πm(m)dm = ΠM

i=1

∫
Ξi

φiki
(mi)φli(mi)πi(mi)dmi = δk,l. (20)

The total degree of the multi-variate polynomial Ψk is ‖k‖1 while the maximum degree is ‖k‖∞.
The truncated PC expansion of f is then defined using a finite set K of multi-indices in the expansion:

f(m) ≈ fK(m) :=
∑
k∈K

fkΨk(m), (21)

In the following, we denote |K| the size of the PC basis. The truncation error f(m)− fK(m) depends on the
truncation strategy and decreases when K ⊂ NM increases. In fact, we have

E
(
|f − fK|2

)
=

∑
k∈NM\K

f2
k . (22)

In practice, a convergence analysis is mandatory to verify that the truncation error is sufficiently small.

3.2. Computation of the spectral coefficients
Several methods are available to compute the spectral coefficients of the PC expansion. In this work, we

use two non-intrusive approaches in order to exploit their respective advantages depending on the situation.
The first method, the sparse pseudo-spectral projection, is very efficient for smooth functions but suffers
in the presence of localized features (such as loss of differentiability, discontinuity or plateau) that tend
to plague the whole approximation. In contrast, the least-squares regression is usually less accurate for
the same computational complexity, but is more robust and offers more flexibility in the selection of the
evaluation points. Indeed, the sample set of the projection approach consists of nested sparse grids whereas
the least-squares regression can rely on more general set of points.

3.2.1. Pseudo-Spectral Projection
A direct consequence of the orthogonal expansion in (21) is that the deterministic expansion coefficients

fk are defined by
fk = 〈f,Ψk〉, ∀k ∈ NM . (23)

Using (23), the non-intrusive spectral projection method approximates the M -dimensional integral involved
in the inner-product definition (see (16)) by a deterministic quadrature formula with Nq points,

fk ≈ QNq
(fφk) =

Nq∑
q=1

w(q)f(m(q))Ψk(m(q)),
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where m(q) ∈ Ξ and w(q) are the quadrature nodes and weights of the formula. We denote X = {m(q), q =
1, . . . , Nq} the set of nodes. The quadrature rule must be accurate enough to provide a correct estimate of
the expansion coefficients. An important condition that is generally required is that QNq

yields the discrete
orthogonality of the polynomials, that is

QNq
(ΨkΨl) = δk,l, ∀k, l ∈ K. (24)

This condition ensures a projection which is free of any internal aliasing.
A straightforward approach to constructing such quadrature rules consists of the tensorization of high-

order one-dimensional quadrature formulas adapted to the measure πi. Typical examples are the Gauss and
Clenshaw–Curtis formulas for Gaussian and uniform distributions. For the first test case (see section 4), we
use Féjèr’s quadrature formula with nodes corresponding to the zeroes of the Chebyshev polynomials. Full
tensorization of the one-dimensional formulas is usually not an option as the number Nq of quadrature nodes
would increase exponentially with the dimension M of the integration. Sparse tensorizations following the
Smolyak’s formula [59] are necessary if M exceeds few units, leading to so-called Sparse Grid Quadrature
(SGQ) methods [23]. One drawback of the SGQ is that some of the weights are negative. Moreover, using
the same SGQ for the projection on all polynomials Ψk, k ∈ K is not optimal, and adapting the quadrature
rule to each mode yields better results. The Pseudo-Spectral Projection (PSP) method [12, 11] achieves this
adaptation by applying the Smolyak’s formula on sequences on nested projection operators, rather than on
sequences of quadrature rules. The PSP procedure results in mode dependent weights in the quadrature
formulas for the coefficients, which can be recast in

fk ≈
Nq(`)∑
q=1

w
(q)
k f(m(q))Ψk(m(q)). (25)

For the same sparse grid, the PSP method leads to a larger multi-index set K satisfying (24), compared to
the SGQ method. In practice, the PSP method uses a level index ` ∈ N+ to control the size Nq(`) of the
sparse grid X (`). The corresponding set K(`) of polynomial multi-indices satisfying (24) is explicitly fixed
by the construction. In the remainder of the paper, we rely on nested quadrature rules which ensure nested
sparse grids, X (`) ⊂ X (`+ 1), and multi-index sets, K(`) ⊂ K(`+ 1). Besides the computational complexity
aspect, the nested character of PSP is interesting to monitor the convergence of the PC approximation with
increasing `.

3.2.2. Ordinary Least Squares Regression
As an alternative to the PSP method, we will also use the Ordinary Least Squares (OLS) regression. In

this approach, the expansion coefficients on a prescribed basis are obtained by the resolution of a regression
problem. Let X = {m(1), · · · ,m(Nq)} be a samples set of model parameters, each in Ξ. For example, the
sample set can be generated by Monte Carlo method or Latin Hypercube Sampling [48]. For the second
test case (see section 5), we use a quasi-Monte Carlo method with a standard Halton sequence [50]. In the
OLS, one defines the PC coefficients as the minimizers of the following sum of squares:

LS({fk, k ∈ K}) =
Nq∑
q=1

∣∣∣∣∣f(m(q))−
∑
k∈K

fkΨk(m(q))

∣∣∣∣∣
2

.

Denoting f ∈ R|K| the vector of PC coefficients fk and y ∈ RNq the vector of traveltimes f(m(q)), the LS
solution satisfies the system of normal equations

Z>Z f = Z>y, (26)

where Z ∈ RNq×|K| is the matrix of regressors Ψk(m(q)). Contrary to the PSP case, where K is fixed by
the choice of level, the OLS allows to choose K independently of X . Most often, one fixes K by deciding a
maximal degree d◦ in the polynomial expansion. For the total degree truncation, that is using

K(d◦) = {k ∈ NM ,
∑
i

ki ≤ d◦}, (27)
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the dimension of the basis is
|K(d◦)| = (M + d◦)!

M !d◦! .

However, the choice of d◦ affects the conditioning of system (26), which can degrade if the samples set X is
not rich enough or adapted to K. This is not the case for the present application, but if such a situation is
suspected, one can rely on validation strategies (leave-one-out or k-fold cross-validation) to assess the stability
of the regression problem and to prevent overfitting. Another option to avoid ill-conditioned matrices is to
implement a weighted least squares method with a coherence-optimal sampling [27, 10].

3.3. Statistical information
The spectral expansion on orthonormal bases allows the direct estimation of the first statistical moments

of f and more involved statistics such as the sensitivity indices. For instance, exploiting the orthogonality
of the PCs, the mean E (f) and variance V (f) are estimated by

E (f) ≈ E
(
fK
)

= 〈fK(m), 1〉 = f0, (28)

V (f) ≈ V
(
fK
)

= 〈fK(m)− E
(
fK
)
, fK(m)− E

(
fK
)
〉 =

∑
k∈K\0

f2
k , (29)

where 0 is the multi-index with all its indexes equal to zero.
The decomposition of the variance is another useful information deriving directly from the spectral

expansion that allows useful global sensitivity analyses [63, 13]. Following the Sobol–Hoeffding decomposi-
tion [31], variance-based global sensitivity analysis identifies the contribution of each input parameter in m,
or group of input parameters, to the variance of the outputs through the definition of the so-called sensitivity
indices [60]. The most common indices are the first-order indices, that measure the isolated contribution of
a subset of parameters, and the total order indices that also include possible joint effects with the remain-
ing parameters. As an example, the first-order index Si associated with the ith parameter is given by the
following formula,

Si
(
fK
)

:= VSi

V (fK) =
∑

k∈Ki
f2

k∑
k∈K\0 f

2
k
, (30)

where VSi is the partial variance due to the ith parameter (only) and is computed from the following set
of multi-indices Ki = {k ∈ K, kj=i > 0, kj,i = 0}. In the results section, we shall exploit the first-order
sensitivity indices to interpret and explain the differences in the information gain on the different parameters
of the velocity model.

4. Microseismic test case

4.1. Test case description
We first consider an idealized two dimensional medium, Ω = [0, 500]× [0, 450] m2, with three horizontal

geological layers having constant wave propagation velocities. The velocity model has M = 5 parameters:
the velocities in the top (v1), central (v2) and bottom (v3) layers as well as the locations z12 and z23 of the
interfaces between the layers,

m = (v1, v2, v3, z12, z23). (31)

The observations stem from a microseismic acquisition geometry with five sources and ten receivers as
represented in the left plot of Fig. 1. In total, the inference will use N = 5 × 10 = 50 traveltimes. We
generate synthetic observations solving the eikonal equation for particular values of the parameters referred
to as mtrue. These numerical traveltimes are subsequently corrupted, adding independent Gaussian noise
to simulate the measurement errors. Therefore, the inference problem involves no model error but only the
surrogate errors and measurement noise. Regarding the prior distribution of m, we consider independent
uniform distributions for all the parameters, with ranges encompassing mtrue. Table 1 reports the prior range
for m and the values of mtrue, while Figure 1 depicts the prior and true velocity models. For the eikonal
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(a) Sources and receivers layout and a priori
ranges of the interface locations.

(b) A priori velocity ranges and true interface
location z12 and z23.

Figure 1: Schematical description of the microseismic test case.

Parameter v1 (m/s) v2 (m/s) v3 (m/s) z12 (m) z23 (m)
Prior range [3, 5]× 103 [2, 4]× 103 [3, 5]× 103 [200, 250] [300, 350]
True value 3, 900 3, 100 4, 250 240 320

Table 1: Microseismic test case: a priori ranges and true values of the velocity model parameters.

equation, the solver uses a resolution of 1 meter, leading to a mesh with 225, 000 square cells. This mesh is
not conforming with the (uncertain) interfaces between the layers. The velocity of cells intersecting with an
interface is defined as the average velocity equal to the average slowness using a logarithmic transformation
of the variable.

4.2. Surrogates analysis
4.2.1. PC surrogates validation

For this test case, the PSP method (see section 3.2.1) is used to construct the PC expansions of the
traveltimes. Table 2 reports the number Nq of PSP points (corresponding to the number of eikonal solver
evaluations) and the dimension of the PC basis P , for the PSP levels ` = 2, 4 and 6. Before substituting
the eikonal solver with the surrogates of the traveltimes in the Bayesian inference, we assess the PC ap-
proximations’ accuracy and predictive capability. To estimate the surrogates’ error, we randomly generate
a validation set of Nv = 500 velocity model parameters m(k) ∈ Ξ, relying on a Latin Hypercube Sampling
(LHS) method. For each pair of source and receiver, we measure the error in the traveltime approximation
tK by the Root Mean Squared Relative Error (RMSRE),

RMSRE :=

√√√√ 1
Nv

Nv∑
k=1

(
t(m(k))− tK(m(k))

t(m(k))

)2

, (32)

where t(m(k)) denotes the traveltime computed from the eikonal solver with velocity model given by m(k).
Figure 2 reports the RMSRE of the 50 traveltimes for different PSP levels. The traveltimes are grouped by
receivers (10 groups), each containing the five sources. The plot shows that RMSRE decreases with ` (note
the logarithmic scale on the error). At a given PSP level, the errors depend on the considered receiver. For
instance, for ` = 2 and source 1, the PSP error is 3.22 × 10−3 to receiver 1 and 1.54 × 10−2 to receiver 6.
These differences are not due to the normalization of the errors as all the traveltimes have a comparable
magnitude. The magnitude and uncertainty level in the traveltimes can be appreciated from Fig. 3, which
reports the mean and standard deviation of the traveltimes PSP estimates at level ` = 6. The significant
differences between the RMSRE associated with different couples of source and receiver come from the
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PSP level (`) 2 4 6
SG points (Nq) 71 1471 18943

PC basis dimension (P ) 26 321 2972
Maximum total degree (d◦) 3 15 63

Table 2: Characteristics of the PSP method for different levels. Isotropic SG in 5 dimensions.
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Figure 2: Microseismic case: RMSRE of the PSP approxima-
tion of the traveltimes at level ` = 2, 4 and 6.
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Figure 3: Microseismic case: mean and standard deviation of
PC estimates of the traveltimes. PSP with level ` = 6.

different complexities in the dependencies of the traveltimes on the parameters of the velocity model, as
further analyzed in the next section.

4.2.2. One-at-a-time dependencies
Figure 4 depicts the One-At-a-Time (OAT) variations with the components of m, of the traveltimes from

source 1 to receivers 1 and 6. The objective is to illustrate the complexity of the dependencies and the
regularity of the traveltimes. The OAT variations are anchored at the mid-interval value of m (a priori mean
value). Figure 4a shows that the traveltime to receiver 1 depends smoothly on the five parameters of the
velocity model. This smoothness ensures a high convergence rate of the PC approximation with the PSP
level. In contrast, when the location of the interface z12 varies, the receiver 6 is either in the first or in the
second layer. Also for high v1, the faster raypath corresponds to the refracted wave travelling along v1 before
reaching the receiver located in the second layer. Consequently, the traveltime from source 1 is independent
of z12 and v1 over much of their prior range and presents localized singularities. The non-differentiable points
are visible in Fig. 4b for v1 at 90% and z12 at 60% of their respective prior range. Non-smooth dependencies
deteriorate the convergence rate of the PC expansions. However, their impact is not too severe in the present
example, with RMSRE much lower than 10−2 for PSP levels 4 and 6. This error level should be compared
to the precision of the observed traveltimes, and the influence of the PC error on the Bayesian inference
results is further analyzed below.

4.2.3. A priori global sensitivity analysis
Before proceeding with the Bayesian inference, we present the a priori global sensitivity analysis of the

traveltimes using the PC surrogates. Figure 5 reports the first-order indices (30) of the traveltimes. The
first-order indices differ significantly depending on the considered receiver. For instance, v1 has no impact
on the traveltimes to receivers 6-10 but explains roughly 20% of the traveltimes’ variability to receivers 1
and 2. Similarly, v2 is the most influencing parameter for receivers 1-8, while it is v3 for others. Finally,
the uncertainties in the interface locations have limited impact on the traveltimes uncertainty, z12 alone
inducing no variance on the traveltimes to receivers 7-10. Also, the sum of the first-order sensitivity indices,
which is close to 1 for all source and receiver couples, indicates that interaction effects are weak (less than
5% of the global variance over the prior range). The impacts of the uncertain parameters on the traveltimes
are consistent with the sources-receivers configuration shown in Fig. 1a. We can already anticipate that
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Figure 4: Microseismic case: One-At-a-Time (OAT) variations of traveltimes.
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Figure 5: Microseismic case: first-order sensitivity indices estimated with PSP at level 6.

the interface locations will be more difficult to infer than the velocities, as they have a lower impact on the
traveltimes.

4.3. Inference
We start the inference with synthetic observations corrupted with an additive Gaussian noise following

the structure of the discrepancy model, with 2% noise level: eobs ∼ N (0,Cobs(0.02)) where Cobs is defined
in (4) with tobs,i substituted with ti(mtrue).

4.3.1. MCMC validation
In all subsequent analyses, the reported results use Nc = 106 steps in the MCMC sampler, after the

proposal covariance adaptation and burn-in phase. We recall that the chains use the PC surrogates of the
traveltimes, such that dealing with long chains is not a problem. We have systematically performed complete
assessments of the mixing and convergence of the MCMC chains for all inference results presented in the
paper; we only detail the diagnostics in this section in the case of the PSP surrogate at level ` = 6 (results are
similar for lower levels). Figure 6 details a typical chain of the MH algorithm after the covariance adaptation
and burn-in. The left plots show the whole chain for the five parameters of the velocity model and noise
level (α). Consistently with the results of the a priori sensitivity analysis, the chain explores most of the
prior range for the interface locations (z12 and z23) and only a limited part of the velocity prior ranges. The
right plots focus on a subset of 500 steps to appreciate the chain’s mixing rate, which has an acceptance
rate of about 26%. Figure 7 shows the autocorrelation functions of the chain for a quantitative assessment
of its mixing properties. The figure reports the autocorrelation ρ(k), where k is the lag expressed in the
number of steps. The autocorrelations of the sampled parameters decay quickly and become negligible after
k ≈ 75 steps. Following [37], the effective sample size incurring to the correlation between the steps can be
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Figure 6: Microseismic case: MCMC chains for PSP surrogates at level 6. The ranges of the y-axis correspond to the prior
ranges of the velocity model parameters.
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Figure 7: Microseismic case: autocorrelation functions for the PSP surrogates at level 6.

estimated as ESS := Nc/(1 + 2
∑∞
k=1 ρ(k)). Table 3 reports the effective fraction of samples ESS/Nc of the

parameters for the present case. The table shows that the effective fraction is & 3%, a value that is quite
satisfying.

Additionally, we have compared our results with those directly obtained from the eikonal solver. Figure 8
plots the misfit function obtained with the PC surrogates of the traveltimes versus the exact misfit function
for a thousand samples of m drawn from the MCMC chain. These so-called Q-Q plots confirm the convergence
of the PC approximation with the PSP level and display a good agreement for the level 6 surrogates. This
agreement, in turn, ensures that the posterior distribution based on the PC surrogates is close to the posterior
obtained with the original eikonal solver. The eikonal solver’s marginal posteriors were also successfully
contrasted with their PC-based counterparts (not shown).

4.3.2. Marginal distributions
Figure 9 plots the marginals of the posterior distributions obtained for three PSP levels. The marginals

in Fig. 9 are estimated with a standard Kernel Density Estimation (KDE) method [54]. The plots also show
the maximum (over the MCMC chains) a posteriori (MAP) estimates of m and the true model parameters
mtrue. We observe a significant concentration of the marginals around the true values for the velocities,
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Parameter v1 v2 v3 z12 z23 α

ESS/Nc (%) 3.58 3.52 3.10 2.99 3.27 3.55

Table 3: Microseismic case: fraction of effective samples for the PSP surrogates at level 6.
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Figure 8: Microseismic case: true misfit function versus approximated PC misfit function plotted for 1, 000 independent values
for m extracted from the MCMC sampling.

especially for v1 and v2. In contrast, the shapes of the posterior marginals of the two interface locations
cover the whole prior range, reflecting the weak influence of z12 and z23 on the traveltimes (see Fig. 5). We
also see that the MAP over the chains may not always converge to the true model parameters with respect
to the maximum PC total degree whereas the MAP of the marginals are closer to the true values. The
parameter α is correctly estimated, and the inference results are robust to the selected SG level, except for
the interface z12, which seems to be more sensitive to `.

4.3.3. Two-dimensional marginals
Figure 10 shows, for ` = 6, KDE approximations of two-dimensional posterior marginals to analyze

the correlations between the inferred velocity model parameters. Concerning the wave velocities, we found
very weak correlations with estimated coefficients of determination R2(v1, v2) = 0, R2(v1, v3) = 5%, and
R2(v2, v3) = 3%. We also notice some correlations between the interface locations and the velocities in the
layers. The first interface location is correlated with the velocities of layers 1 and 2 (R2(z12, v1) = 25%,
R2(z12, v2) = 38%, while R2(z12, v3) = 2%). The second interface location, on the contrary, is correlated
with the velocities of layers 2 and 3 (R2(z23, v2) = 26%, and R2(z23, v3) = 83%), but not with the first
layer velocity (R2(z23, v1) = 3%). Finally and unsurprisingly, the noise parameter α is not correlated
with the velocity model parameters (the coefficients of determination are lower than 3% for the five model
parameters).

4.4. Decreasing of measurement errors
To better understand the effect of the surrogates error and its impact depending on the observation

noise, we repeat the previous inference problem using synthetic observations generated with a noise level
set to 0.01%. This situation corresponds to observations with unrealistically low in situ measurement error.
As a result, the surrogates’ error dominates the discrepancy model in the likelihood. Figure 11 shows the
posterior marginals of v1, z12, z23, and α for PSP levels ` = 2, 4 and 6 (the two other velocities’ marginals
behave as for v1). Compared to the previous test, we first observe the substantial reductions in the supports
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(a) Velocity v1 (b) Interface z12

(c) Velocity v2 (d) Interface z23

(e) Velocity v3 (f) Noise level α

Figure 9: Microseismic case: priors and posterior marginals inferred with SG levels ` = 2 (gray curves), ` = 4 (black curves)
and ` = 6 (blue curves). The noise level of the synthetic observations is 2%.
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Figure 10: Microseismic case: two dimensional posterior marginals of the model and noise parameters. KDE estimation with
PSP level 4. The noise level of the synthetic observations is 2%.

of the marginals (note the change of ranges compared to Fig. 9), which denote a much narrower posterior.
Further, the marginals shrink as ` increases and the estimate of α reduces. This behavior is consistent with
the reduction of the surrogates’ error as ` increases. As shown in Fig. 11d, the Bayesian inference assimilates
the surrogates’ error as observations’ error, leading to an overestimation of α and an artificially increased
posterior uncertainty for the other parameters.

It is interesting to note a better estimation of the interface locations, which points to the interest of
acquiring data as accurately as possible to infer the least influential parameters. However, Fig. 11b shows
that the PSP level ` = 6 is not enough to correctly estimate z12 since the true value is not squarely within
the support of the posterior marginal. This remark highlights an essential drawback of the inference in the
presence of significant surrogates’ error: it can be possible to find values m , mtrue that fit the observations
significantly better than mtrue. This situation can be detected by checking the convergence with the PSP
level of the inference results. If the convergence is not satisfactory, the surrogates can be refined by increasing
` and exploiting the sparse grid’s nested character. An alternative option consists of reducing the surrogates’
error over the support of the posterior distribution, as opposed to uniformly over the prior, following an
adaptive strategy, as illustrated in the next section.

5. Seismic refraction test case

5.1. Description
The second test case uses the same velocity model structure, with three layers having unknown interface

locations, but it differs from the previous setting by a different acquisition geometry and a computational
domain extended to [0, 10]× [0, 3] km2. The spatial mesh now involves 1,200,000 square cells with 5× 5 m2

size. The sources and receivers are uniformly spaced at the surface, with 100 receivers deployed every
100 m and 5 sources located every 2.4 km; Figure 12a illustrates the acquisition geometry. This acquisition
configuration leads to N = 500 observations of sources to receivers traveltimes. Table 4 presents the uniform
prior ranges for the velocity model parameters, illustrated in Fig. 12, and the true values used to generate
the synthetic observations.

5.2. Surrogate analysis
5.2.1. PC validation

The surrogate construction of the traveltimes uses the least-squares method (see section 3.2.2) on a quasi-
Monte Carlo sample set of Nq = 1, 000 realizations. Recall that the least-squares regression is more flexible
in the choice of the sampling points and less sensitive to local losses of regularity than the spectral projection.
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(a) Velocity v1 (b) Interface z12

(c) Interface z23 (d) Noise level α

Figure 11: Microseismic case: posterior marginals of velocity v1, interface locations z12 and z23, and noise parameter α, for
PSP levels ` = 2 (gray curves), ` = 4 (black curves) and ` = 6 (blue curves). The noise level in the synthetic observations is
0.01%.

(a) Acquisition geometry and interface loca-
tions

(b) Layers’ velocities with the true values of
z12 and z23

Figure 12: Schematic description of the refraction test case

Parameter v1 (m/s) v2 (m/s) v3 (m/s) z12 (m) z23 (m)
Prior ranges [1, 3] × 103 [2, 4] × 103 [3, 5] × 103 [700, 850] [1700, 1900]
True values 2000 2700 4000 750 1800

Table 4: Refraction case: ranges of the uniform prior distributions of the velocity model parameters and true values used for
the synthetic observations.
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Figure 13: Refraction case: RMSRE of the PC surrogates of
the traveltimes for maximum total degree d◦ from 1 to 5.
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Figure 14: Refraction case: first-order sensitivity indices esti-
mated with PC surrogates of maximum total degree d◦ = 5.

The surrogate errors are estimated using an independent LHS of 500 realizations. The RMSRE (32) are
computed for maximum total degree d◦ from 1 to 5 leading to 6, 21, 56, 126, and 252 terms in the PC
expansions, respectively. These numbers have to be compared to the Nq = 1, 000 realizations for the
regression. Figures 13 shows the RMSRE of the 500 predicted traveltimes; the traveltimes are sorted by
increasing source-receiver distance (see labels of the top axis). We observe that the error depends clearly
on the source-receiver distance and two groups are identified. When the distance is less than 1.6 km, the
traveltimes correspond to direct waves and depend only on the inverse of the first layer velocity (slowness)
inducing an exponential convergence rate of the PC surrogates. For larger distances, first arrivals correspond
to refracted waves with traveltimes having more complex dependencies on the uncertain parameters of the
velocity model producing higher surrogate errors. In the subsequent results, we use a maximum total degree
d◦ = 5 for wich the error is around 5.10−4 for the first group and plateaus to 10−2 for the second one.

5.2.2. A priori global sensitivity analysis
Figure 14 reports the first-order indices of the 500 PC traveltimes. As observed previously, the variance

is only due to the uncertainty in the first layer’s velocity for short source-receiver distance. We observe
that the second (resp. third) layer’s velocity influences the traveltimes for source-receiver distances higher
than 2 km (resp. 5 km) corresponding to refracted waves travelling along the interfaces. The first-order
sensitivity indices also indicate that the contribution to the variance of the layers’ velocity decreases with
their depth, suggesting that the inference of v1 will be more precise than for v2 and v3. Also, we remark that
the first-order sensitivity of the interface locations is negligible. Indeed, in the present case, their impact is
limited to interaction effects with the velocities. Thus, one can expect some correlation between the inferred
velocity and the interface locations.

5.3. Inference
We now proceed with the inference problem. We first generate synthetic observations of the 500 trav-

eltimes by corrupting the traveltimes predicted by the model (solving the eikonal equation) using the true
parameter values reported in Table 4. Like the previous section, an additive, centered, Gaussian noise is
considered, with standard deviation amounting to 2% of the computed value (α = 0.02).

5.3.1. Prior-based first step
Figure 15 shows the marginals of the posterior distribution of the velocity model parameters and noise

parameter α, based on the PC surrogates with maximum total degree d◦ = 5. These marginals are estimated
from Nc = 106 steps of chain generated by MCMC, using a Gaussian proposal adapted to yield an acceptance
rate of roughly 30%. The marginals of the first layer velocity v1 in Fig. 15a and noise pararameter α in
Fig. 15f are highly picked around the true values (2, 000 m/s and 0.02 respectively). As expected from the
sensitivity analysis, the second and third layer velocities marginals are less resolved than v1, with increased
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dispersion in their posterior, see Fig. 15c and 15e. Similarly, the observations are clearly less informative on
the second interface location (z23, Fig. 15d) compared to the first one (z12, Fig. 15b).

Comparing the marginals for the two maximum PC total degrees in Fig. 15, we observe significant
dependences on d◦, except for v1 and α. Specifically, the marginals for d◦ = 2 and 5 of v2, v1 and z12
are barely overlapping, while the two marginals of z23 are not agreeing well. Also, the differences in the
retrieved MAP values are significant, and the improvement in the MAP estimates for d◦ = 5 is unclear.

Besides the observations’ limited information on the lowest layers parameters, discussed before, the PC
surrogates explain the poor inference behavior. Indeed, the traveltime from a source to a receiver, sufficiently
distant for the waves to travel in the second (resp. third) layer, depends on 3 (resp. 5) model parameters: v1,
v2 and z12 (plus v3 and z23 resp.). Therefore, PC surrogates with d◦ = 2 that can only account for (linear)
interaction between 2 variables are insufficient for source-receiver couples with high separation. Further,
although PC surrogates with d◦ = 5 have a global error less than 1% (see Fig. 13), the errors are seen
to affect the inference results significantly. A detailed analysis of the surrogates revealed that the isolated
singularities in the traveltimes’ dependencies, which are not differentiable at parameter values corresponding
to bifurcations in the wave path, are the principal source of error. Although localized, these singularities
pollute the whole PC surrogate because of its polynomial nature. Therefore, if increasing the maximum
PC total degree d◦ would improve the inference of the parameters, the improvement with d◦ will be slow.
Further, increasing d◦ would increase the PC basis dimension and the simulations needed to construct the
surrogates.

5.3.2. Posterior-based second step
Rather than attempting to construct highly accurate surrogates for the whole prior, it is much more

efficient to improve the approximation accuracy in the regions with high posterior density. Focusing the
approximation effort in regions with a posteriori high probability enables lower degree polynomial expansions
and excludes most of the singularities. Of course, the posterior density being unknown, one must rely on
an iterative approach, as discussed in [43]. The results presented below consider surrogates adapted just
once, as subsequent iterations lead to similar inference results (not shown). Our approach thus consists of
two steps. The first step corresponds to the PC surrogates construction, with a maximum total degree d◦,
as performed above. In the second step, a subset of 1, 000 independent values for m is extracted from the
MCMC sampling of the posterior using the first step PC surrogates. The traveltimes associated with the
subset are computed using the eikonal model, providing data to fit with the second step surrogates. Because
the sampled components of m are not independent and have the complex marginals depicted in Fig. 15, an
orthogonal expansion is not considered at this stage. Instead, the sample set is centered and standardized by
diagonalizing the empirical covariance, and we formulate the surrogates in terms of these uncorrelated and
normalized coordinates. We then rely on the OLS method to fit polynomial surrogates in the transformed
coordinates. Here, without loss of generality, we used Hermite polynomial bases with a maximum total
degree d◦2, possibly different than d◦. Figure 16 reports the RMSRE of the 500 predicted traveltimes, for the
first step (d◦ = 2 and 5) and the second step (d◦2 = 2, adapted) surrogates. The estimation of the RMSRE
relies on an additional MCMC sampling of the posterior to draw 1,000 independent samples, distinct from
the sample used for the construction of the adapted surrogates. The Q-Q plots of the corresponding misfit
function in Fig. 17 clearly highlight the improvement brought by the adaptation, which yields satisfactory
results.

Finally, we repeat the inference problem with the new polynomial surrogates substituting the original
PC surrogates of the traveltimes. Figure 18 shows the corresponding posterior’s marginals of v3, z12 and
z23, for d◦ = 5 and d◦2 = 2. The estimation of these marginals uses a chain of Nc = 106 MCMC samples.
The other marginals are identical to those obtained with the initial surrogates with d◦ = 5 (not shown). We
observe that the posterior marginals remain quite broad, reflecting the limited information brought by the
observations. The distance of the MAP values of the interfaces to the true MAP values is appreciable but
consistent with the low sensitivity of the traveltimes on these quantities, making them more susceptible to
the observation noise.

While not in the scope of the present paper, the adaptive approach outlined above can drastically reduce
the computational cost of building the surrogate, while achieving a small error on the posterior of the
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(a) Velocity v1 (b) Interface z12

(c) Velocity v2 (d) Interface z23

(e) Velocity v3 (f) Noise level α

Figure 15: Refraction case: priors and posterior marginals of the velocity model parameters and noise level α, based on the
PC surrogates of maximum total degree d◦ = 2 and 5.
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Figure 16: Refraction case: RMSRE of the PC surrogates of the traveltimes for the two steps of the adaptation strategy.
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Figure 17: Refraction case: true misfit function versus approximated PC misfit function plotted for 1, 000 independent values
for m extracted from the MCMC sampling.
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(a) Velocity v3 (b) Interface z12

(c) Interface z23

Figure 18: Refraction case: priors and posterior marginals of v3, z12 and z23 based on the polynomial surrogate constructed
with d◦

2 = 2 on a sample set of 1, 000 values drawn using the initial PC surrogates of the traveltimes with d◦ = 5.
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parameters compared to a direct Bayesian sampling using the eikonal solver. For instance, the second-
order surrogates (d◦2 = 2) can be estimated from a significantly smaller subset of samples than the one
used in Fig. 18, such that the cost of the second step is just a fraction of the first. Similarly, one may
prefer to start with lower-degree initial PC surrogates, constructed on a coarser sample set, and perform
few adaptation iterations to correct any initial misfit, possibly retaining previous eikonal-based estimations
of the traveltimes.

Future methodological developments could draw upon existing works on advanced strategies in spatial
and parametric domains. For example, the two-stage MCMC [18] reduces the computational cost by pre-
dicting the acceptance of the proposed state using a coarse mesh (or a surrogate model) and relies on a
fine-mesh (or the physical model) computation only if the state is found acceptable. Alternatively, one
could consider using a data-driven posterior-oriented surrogate construction [15], where few samples of the
detailed model correct the surrogate prediction along the MCMC chain.

6. Conclusion

This paper has investigated the use of Polynomial Chaos surrogates in seismic traveltime tomography.
The numerical tests for canonical problems (simple layered media, microseismic and seismic refraction con-
figurations) have illustrated that a moderate number of evaluations of the eikonal solver suffices to build
traveltime surrogates with an error less than the typical observation noise. When constructed, the sur-
rogates of the traveltimes enable the extensive sampling of the posterior distribution with Markov Chain
Monte Carlo methods (even simple ones). Our experiments have shown that the posterior uncertainty in the
velocity model parameters depends on the observations available and the structural dependencies between
the parameters and the traveltimes. We have also demonstrated that the information content of a source-
to-receiver traveltime measurement can be estimated, a priori, using global sensitivity analyses, which are
straightforward to carry from the PC expansions. The last configuration tested (seismic refraction) also
highlighted the potential of relying on advanced surrogate construction methods, suited to the posterior
distribution, through an iterative adaptation. The adaptive approach can drastically improve the precision
of the inference while reducing the overall construction cost [43].

Two methods, the sparse pseudo-spectral projection and the least-squares regression, have been used to
build the surrogates in the numerical experiments but other approaches providing sparse Polynomial Chaos
expansions, such as basis pursuit and matching pursuit, could be implemented in case of a higher number
of model parameters (a few dozen). Although not illustrated in the present work, the resulting surrogates
can serve testing assumptions, without significant computational overhead, and discriminate, for instance,
different likelihood forms (i.e., different observation noise models). This capability may be especially relevant
when in situ measurements can not be well reproduced using the considered velocity model, such that several
discrepancy models must be tested and discriminated to account for model inadequacy [36]. Similarly,
the design of new experiments to optimally reduce the posterior uncertainty and optimize the acquisition
campaigns can exploit the surrogates.

Although the present article has demonstrated the potential of using surrogates in Bayesian traveltime
tomography, many developments remain to apply this technique to the inference of realistic velocity models.
Our researches currently focus on this aspect, including the case of continuous velocity models. Specifically,
we are considering the introduction of parsimonious parametrizations of the velocity field, distinguishing
the treatment of the components informed by the observations from the rest of the field. Another source of
improvement currently explored is the extension of the inference problem to include other attributes, such
as the direction of propagation, amplitude, and energy of the seismic wave at the receiver.
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