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Abstract An ensemble-based approach is developed to conduct optimal path plan-
ning in unsteady ocean currents under uncertainty. We focus our attention on two-
dimensional steady and unsteady uncertain flows, and adopt a sampling methodol-
ogy that is well suited to operational forecasts, where an ensemble of deterministic
predictions is used to model and quantify uncertainty. In an operational setting,
much about dynamics, topography and forcing of the ocean environment is un-
certain. To address this uncertainty, the flow field is parametrized using a finite
number of independent canonical random variables with known densities, and the
ensemble is generated by sampling these variables. For each of the resulting re-
alizations of the uncertain current field, we predict the path that minimizes the
travel time by solving a boundary value problem (BVP), based on the Pontrya-
gin maximum principle. A family of backward-in-time trajectories starting at the
end position is used to generate suitable initial values for the BVP solver. This
allows us to examine and analyze the performance of the sampling strategy, and
to develop insight into extensions dealing with general circulation ocean models.
In particular, the ensemble method enables us to perform a statistical analysis of
travel times, and consequently develop a path planning approach that accounts
for these statistics. The proposed methodology is tested for a number of scenarios.
We first validate our algorithms by reproducing simple canonical solutions, and
then demonstrate our approach in more complex flow fields, including idealized,
steady and unsteady double-gyre flows.
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1 Introduction

Autonomous vehicles, including unmanned air vehicles (UAVs), autonomous un-
derwater vehicles (AUVs), and autonomous surface (ASVs) vehicles, are playing an
increasingly important role in both industrial and military applications, with the
capability of executing complex search, rescue, surveillance or monitoring missions
with minimal operator supervision. In this paper, we focus on AUVs, which are
providing key capabilities for ocean monitoring and sampling as well as optimizing
the exploitation of marine resources (Adhami-Mirhosseini et al. 2014; Bovio et al.
2006; Marani et al. 2009; Marino et al. 2015; Smith and Huynh 2014; Wang et al.
2009).

One of the main limitations facing the deployments of autonomous vehicles
concerns their endurance, due to the limited fuel or battery that they can carry.
On the other hand, significant energy is available from the environment mainly
through vertical flow motion and spatial velocity gradients in the ocean currents
or atmosphere. If these energy sources can be exploited effectively, the speed and
range of vehicles would be greatly improved and the mission duration be increased.
Path planning aims at using available information about the environment in order
ensure optimal utilization of available resources. For instance, the planning may
attempt to execute a path in such a way as to reach a target destination as quickly
as possible. The cost during the movement of the vehicle depends on the prevailing
currents, and is generally variable in space and time. In the underwater scenario,
the local conditions can vary appreciably over relatively short periods of time
and over short spatial scales (Isern-González et al. 2012). A particular concern
arises during “strong currents,” characterized by velocities that are comparable
to or even greater than the speed of vehicles. In these situations, one must avoid
or minimize the risk of the vehicles becoming trapped or overwhelmed by the
current. A variety of path planning approaches have been developed to address
these challenges (Garau et al. 2005; Kothari and Postlethwaite 2013; Lermusiaux
et al. 2014; Lolla et al. 2012, 2014a,b; Pétrès et al. 2007; Rao 2009; Rhoads et al.
2010, 2013; Soulignac 2011). Traditionally, most of the literature has assumed that
the local topography is known and that an accurate current forecast is available.
An overview of existing methods falling in this framework is given in Section 2.

However, oceans are extremely complex dynamic systems, and much about the
dynamics and topography is uncertain. There are inevitable differences between
the actual values (unknown) and the models of physical fields and properties,
which compound fundamental limitations on the predictability for nonlinear dy-
namics (Lermusiaux et al. 2006). In extremely strong currents that are subject to
large uncertainty, the predicted fastest path may become unrealizable, that is, the
vehicle can not be hold on the path regardless of the control or navigation laws uti-
lized. Conversely, less optimal paths could carry lower risk. One must consequently
seek a balance between optimality and level of certainty (Lermusiaux et al. 2014).
So far, path planning in spatially complex, strong, time-varying ocean currents
under uncertainty has received comparatively less attention than in deterministic
settings.

Motivated by the challenges outlined above, we address the path planning
problem in an idealized setting, nonetheless involving spatially complex, strong,
time-varying ocean currents under uncertainty. Due to the uncertainties in both
current direction and magnitude, a single path produced by a model simulation
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has limited utility. To overcome this limitation, we follow an approach inspired by
operational forecasts, which rely on a finite-size ensemble to quantify uncertainty.
Specifically, we follow a methodology based on the generation of multiple optimal
paths corresponding to individual realizations of an uncertain current field. The
latter is parametrized using a finite number of independent canonical random
variables with known densities, and the ensemble is generated by sampling these
variables. This enables us to perform a statistical analysis of travel times, and
consequently develop a path planning approach that accounts for these statistics.

Due to the limited experience in path planning through realistically complex
time-dependent flow fields with uncertainty, we focus our attention on a simplified
2D setting, and restrict our analysis to a well-established path planning method-
ology. Specifically, we consider a finite-size ensemble of flow realizations, and for
each member of the ensemble we solve a boundary value problem (BVP) to deter-
mine the corresponding time-optimal path. The formulation of the BVP is based
on the Pontryagin maximum principle. A family of backward-in-time trajectories
starting at the end position is used to generate suitable initial values for the BVP
solver. The present approach readily yields an ensemble of deterministic paths,
whose suitability is subsequently examined based on a statistical analysis. Be-
cause the individual paths are determined based on deterministic realizations of
the flow, this approach enables us to avoid fundamental questions regarding the
realizability of the current representation, and consequently focus on analyzing the
performance of the sampling strategy, and on developing experiences for follow-on
studies dealing with operational general circulation ocean models.

This paper is organized as follows. In section 2, we review prior results on
robotic and underwater path planning and briefly discuss control strategies. Sec-
tion 3 outlines our approach to the determination of a time-optimal path in a
deterministic setting, i.e. for an individual realization of the uncertain flow. Sec-
tion 4 discusses the representation of the uncertainty of flow field, and introduces
the ensemble approach to the generation of statistical distributions of the travel
time of realizable paths. Application of the methodology is illustrated in section 5,
based on simulations of canonical steady and unsteady flows, including weak and
strong currents. Major conclusions are summarized in section 6.

2 Background

A variety of strategies have been developed to plan safe and optimal paths for
general robots, including indirect and direct approaches. In an indirect approach,
techniques of calculus of variations (Liberzon 2012) are employed to determine the
first-order optimality conditions of the original optimal problem based on the Pon-
tryagin maximum principle. Introducing the Lagrange multipliers (costates) leads
to a 2n-dimensional two-point BVP, involving n state variables and n costate vari-
ables. The optimal trajectories are determined by solving this problem subject to
suitable end conditions. The main difficulty with this approach is to find a first
estimate of the unspecified conditions at one end that produces a solution reason-
ably close to the specified conditions at the other end. The reason for this peculiar
difficulty is that the optimal solutions are often very sensitive to small changes in
the unspecified boundary conditions, i.e., the values of initial costates (Bryson and
Ho 1975; Betts 1998). As a result, when the indirect approach is considered, the
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initial value for costates should be well chosen. By solving a dynamic Hamilton
Jacobi Bellman (HJB) partial differential equation (PDE) for the time-varying
optimal time-to-go function and the associated optimal control law, Rhoads et al.
(2010, 2013) obtain globally optimal trajectories for fixed speed AUVs in known,
2D, spatially complex, time-dependent flow fields. For a constant-speed UAV flying
at constant altitude in steady uniform winds, Techy and Woolsey (2009) provide
a simple analytical solution for a subset of candidate extremal paths.

The fast marching (FM) methods, very similar to Dijkstra’s method but al-
lowing continuously variable direction of motion, have also been applied to include
the case of underwater path planning. The FM methods solve an Eikonal equa-
tion, a simple case of the HJB PDE, to track a propagating interface, and find
the arrival time function of points in the space at isotropic speed of propagation
(Sethian 1999a; Gómez et al. 2013). Ordered upwind methods (OUMs) general-
ize FM methods from isotropic problem to general anisotropic problem. OUMs
develop methods for approximating the solutions to a wide class of static HJB
PDEs (Sethian and Vladimirsky 2001, 2003). A heuristically guided version of
OUMs referred to the FM* algorithm is developed in Pétrès et al. (2007), es-
pecially for the application of AUVs. Another method to track interface motion
implicitly, introduced by Sethian (1999b), is the Level Set Method; it provides a
straightforward approach to solve initial value PDE for the level set function in
the entire computational space. Lolla et al. (2012, 2014a,b) use level set methods
to predict the time-optimal paths of AUVs navigating in continuous, strong, and
dynamic ocean currents, and predict collision-free and minimum-time trajectories
for swarms of AUVs deployed in the Philippine Archipelago region respectively.
Voronoi diagrams have also been employed to interpret the minimum travel time
problem between two given points in the current (Bakolas and Tsiotras 2010).

In direct methods, either states or controls, or both states and controls are dis-
cretized and the continuous optimal control problem is converted to a nonlinear
parameter optimization problem. While seemingly unrelated, these two approaches
have much in common, and various techniques do not fall squarely into one cat-
egory or another (Rao 2009). Graph search techniques are mostly used in path
planning for both AUVs and UAVs; examples include dynamic programming-based
approaches such as the so-called wavefront expansion and A* method (Eichhorn
2015; Garau et al. 2005; Smith and Huynh 2014; Soulignac 2011; Wu et al. 2011).
These algorithms are commonly criticized for the grid and the discrete state tran-
sitions, which constrain the motion of the vehicle to limited directions. In addition
to this limitation, optimality may be compromised due to graph discretization
alone. In continuous, complex marine environments, the graph search approaches
are computationally expensive and may lead to infeasible paths. Rapidly exploring
random trees (RRTs) randomly build a space-filling tree and then search noncon-
vex, high-dimensional spaces. Their ability to handle problems with obstacles and
different constraints has led to the widespread use in path-planning applications
including ocean cases (Rao and Williams 2009) and wind environment (Kothari
and Postlethwaite 2013).

Once a path has been selected, it is critical that the AUVs be capable to follow
these paths with good accuracy. Path-following approaches are frequently used for
this purpose. Unlike standard trajectory tracking, in a path following approach
no restrictions are placed on the temporal propagation along paths. A fundamen-
tal difference between standard trajectory-tracking and path-following concerns



Path planning in uncertain flow fields using ensemble method 5

performance limitations due to unstable zero-dynamics, which can be removed in
path-following approach (Aguiar et al. 2005, 2008; Aguiar and Hespanha 2007).
Path-following generally aims at controlling the forward speed to track a desired
profile, as well as the orientation of the vehicle to drive it onto the path.

Different controllers are designed to guarantee asymptotic convergence to the
path. Path-following controllers for UAVs have been reported in Kaminer et al.
(2010); Sujit et al. (2014); Xargay et al. (2013). For AUVs, Lapierre and Jouvencel
(2008) derive a kinematic controller first and extend it to cope with vehicle dy-
namics by resorting to backstepping and Lyapunov-based techniques. The resulting
nonlinear adaptive controller yields asymptotic convergence of the vehicle to the
path at a constant speed. Ghabcheloo et al. (2009) address the problem of steering
a group of vehicles along given spatial paths while holding a desired time-varying
geometrical formation pattern. Aguiar and Pascoal (2007) consider the problem
of dynamic positioning and way-point tracking of underactuated AUVs, in the
presence of constant unknown ocean currents and vehicle parametric uncertainty.

In contrast to deterministic settings, prior experiences on path planning in
realistically-complex, time-dependent, uncertain flow fields are limited. Difficul-
ties arise due to chronic undersampling of the oceans, the complexity of ocean
processes that lead to limitations on the accuracy of ocean predictions, the in-
evitable differences between the actual values (unknown) and the measured or
modelled values of physical fields and properties, as well as fundamental restric-
tions on predictability for nonlinear dynamics (Lermusiaux et al. 2006). Thus, the
practical horizon for skillful forecasts that can be used to plan optimal paths is also
limited, and one must seek a balance between optimalilty and risk (Lermusiaux
et al. 2014). Recently, to improve the safety and reliability of AUV operation in
coastal regions, Pereira et al. (2013) propose two stochastic planners, a Minimum
Expected Risk planner and a risk-aware Markov Decision Process, both of which
have the ability to utilize ocean current predictions in a probabilistic manner.

Ensemble forecast has been standard in modelling uncertainties in climate and
ocean simulations (Constantinescu et al. 2011; Leutbecher and Palmer 2008; Mur-
phy et al. 2004; Evensen 2003; Hoteit et al. 2013; Höllt et al. 2015). Dynamically
Orthogonal (DO) stochastic PDEs, generalized polynomial chaos and other tech-
niques have also been used to predict uncertainties in engineering applications and
environmental flows (Le Mâıtre and Knio 2010; Sapsis and Lermusiaux 2009, 2012;
Alexanderian et al. 2012; Sraj et al. 2013, 2014a,b). Wolf et al. (2010) utilized a
Markov decision process to integrate the uncertainty of the wind field in both di-
rection and magnitude components into the wind model and planned probabilistic
motion for Montgolfieré balloons in the atmosphere of Titan to reach a goal lo-
cation through the uncertain wind field in the fastest expected time. Bakolas and
Tsiotras (2012) divided the temporally, spatially varying drift field induced by
local winds/currents into two parts, the one which is perfectly known to the agent
and the other that is unknown and assumed to be a piecewise continuous function
of time. According to the fidelity of the information about the local drift available
to the agent, that is, an aerial or marine vehicle, several navigation schemes are
presented and appropriately tailored.
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3 Time-optimal path planning in a deterministic flow field

Our approach to time-optimal path planning is based on the use of well-established
methodologies that are applied to individual realization of the flow field (Bryson
and Ho 1975; Betts 1998; Fainshil and Margaliot 2012; Laschov and Margaliot
2013; Liberzon 2012; Lifshitz and Weiss 2015; Ohsawa 2015). We specifically rely
on the Pontryagin maximum principle to formulate the problem as a free-time,
fixed-endpoint boundary value problem (BVP). In order to provide reasonable
initial guesses for the BVP solver, a family of backward-in-time trajectories is
computed, starting at the end position but with different headings. This section
outlines these approaches, and summarizes a simplified technique to determine a
path-following control law. We conclude by providing brief highlights of a prelim-
inary computational study focusing on validating the predictions of the solution
algorithm.

3.1 Problem Statement

Consider a vehicle (G) moving under the influence of a flow field in an unsteady
ocean current, u (x, t). The problem of interest is to estimate a control law for
G that minimizes the travel time from a given starting position x0 = (x0, y0)
at time t0 to a fixed end position xf = (xf , yf ). We will restrict our attention
to two-dimensional flow fields, and to the situation where the vehicle speed, V ,
with respect to the current is constant. In other words, the goal is to determine a
steering rule that results in the fastest path from x0 to xf .

Given a deterministic flow field, let XT denote a continuous trajectory from
x0 to xf (see Fig. 1). The vehicle motion is composed of two velocity vectors, the
relative motion due to steering and advection induced by the local current. Thus,
the total velocity of G can be expressed as:

dXT

dt
= U (XT , t) = V ĥ(t) + u (XT , t) , (1)

where V is the (fixed) speed of the vehicle, the control input ĥ(t) is the head-
ing (unit) vector, and U (XT , t) is the local velocity of the current. The limiting
conditions on the trajectory XT are

XT (x, t0) = x0, XT (x, tf ) = xf . (2)

In component form, the equation of motion can be expressed as:

dx

dt
= u(x, y, t) + V cos θ(t),

dy

dt
= v(x, y, t) + V sin θ(t), (3)

where u and v are the components of u, and θ(t) is the instantaneous angle asso-
ciated with the heading, i.e. ĥ(t) = (cos θ(t), sin θ(t)).

In the present setting, our goal is to find the optimal control θ∗(t) and the
resulting state trajectory X∗

T subject to kinematic relation (1) and the limiting
conditions (2) that minimize the cost function∫ tf

t0

1 dt = tf − t0. (4)
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3.2 Formulation as BVP

We rely on the Pontryagin maximum principle to obtain the necessary conditions
for a controlled trajectory to be optimal under the stated constraints. To this end,
we introduce the Hamiltonian associated to the kinematic constraint (1) and the
performance measure (4),

H(x, y, t, θ, p1, p2) ≡ 1 + p1
dx

dt
+ p2

dy

dt
, (5)

where p1 ≡ p1(x, y, t) and p2 = p2(x, y, t) are costates. For the present setting,
the optimal state trajectory (x∗, y∗) and costate trajectory (p∗1, p

∗
2) satisfy the

canonical equations (Liberzon 2012):

ẋ∗ = ∂H∗/∂p1, ẏ
∗ = ∂H∗/∂p2, (6)

ṗ∗1 = −∂H∗/∂x, ṗ∗2 = −∂H∗/∂y, (7)

with the boundary conditions (x∗(t0), y∗(t0)) = (x0, y0),
(
x∗(tf ), y∗(tf )

)
=
(
xf , yf

)
.

The state’s and costate’s explicit dependences on the (unknown) final time, tf , can
be removed by introducing the scaled time variable τ ≡ t/tf , so that when nor-
malized accordingly the BVP (Eq. 6 and 7) has to be solved in the unit interval
0 ≤ τ ≤ 1 (Longuski et al. 2014). Thus, tf is treated as a variable, which must be
determined as part of the optimal solution.

On the optimal trajectory X∗
T , the necessary condition for optimality is ex-

pressed as:
∂H∗

∂θ
= 0, (8)

where H∗ ≡ H(x∗, y∗, t, θ∗, p∗1, p
∗
2). Together with the kinematic relation Eq. (3),

this leads to the following relationship between steering law θ∗ and the costates:

−p1 sin θ∗ + p2 cos θ∗ = 0. (9)

In the computations below, we rely on the Matlab solver bvp4c to determine
the optimal solution. The solver requires initial guesses for the travel time, tf , and
the costates p∗1(t0) and p∗2(t0). Starting from these guesses, the solver determines
the optimal solution through iterative updates. The quality of guesses is critical
for a successful computation and for the solver performance. Finding reasonable
guesses is a delicate issue, because the neighbourhood of the initial costates at
the starting position for which the algorithm converges to the optimal solution
is small. To address this issue, a family of backward-in-time trajectories starting
at the end position with different headings is generated in order to determine
reasonable initial guesses for the solver.

3.3 Backward integration

If the vehicle reaches the end position at the (yet unspecified) final time, tf , in
optimal fashion, i.e., X∗

T (x, tf ) = xf , the terminal condition

H(xf , yf , tf , θf , p1,f , p2,f ) = 0 (10)
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must be satisfied. This leads to:

1 + p1,f
(
uf + V cos θf

)
+ p2,f

(
vf + V sin θf

)
= 0, (11)

where (p1,f , p2,f ) is the costate at the final time and end position, i.e., p1,f ≡
p1(xf , yf , tf ) and p2,f ≡ p2(xf , yf , tf ). Letting θf denote the heading of the vehicle
at the end position, uf ≡ u(xf , yf , tf ), vf ≡ v(xf , yf , tf ), using Eq. (9) we obtain:

p1,f sin θf = p2,f cos θf . (12)

Combining the above two equalities results in:

p1,f =
− cos θf

uf cos θf + vf sin θf + V
, p2,f =

− sin θf
uf cos θf + vf sin θf + V

. (13)

Thus, if the heading θf is specified, the above two equations can be used to deter-
mine p1,f and p2,f , and consequently a complete set of initial values is obtained
that is necessary for integrating the coupled system consisting of Eqs. (1) and (7)
backward in time.

In the computations, we generate a family of backward-in-time trajectories
starting at the end position by considering different headings, θf . To this end, we
discretize the interval (0, 2π) using a fine mesh, and consider all admissible head-
ings belonging to the set of discrete nodes. The backward integration is carried out
over a sufficiently large time horizon, Tmax (see Appendix). In the time-dependent
case, because θf and tf are both unknown, one cannot generally guarantee that
the backward trajectory which comes closest to x0 does so at time t0. In addition,
one must provide a guess, t̄f , for the final time so that the backward integra-
tion is suitably initialized. In the computations, we start with the initial guess,
t̄f = t0+Tmax, and then reduce smaller values if the iterations do not lead to suit-
able guesses for the costates. Note that, as in the steady current case, the backward
trajectories only used to generate initial guesses for the costates, and the value
of tf is actually determined as part of the iterative solution of the BVP problem,
and subsequently verified by forward integration. Also note that consideration of
large value of Tmax helps ensure that the collection of backward trajectories can
yield suitable values of initial guesses.

From the resulting family of backward-in-time solutions, we select the trajec-
tory that comes closest to the starting point in order to generate initial guesses for
the BVP solver. First, the point on this trajectory coming closest to the starting
point is selected to draw the initial guess for the costate vector. Then the solution
given by the BVP solver is verified by substituting the resulting control input into
Eqs. (1) and integrating the system forward in time from time t0, and the starting
point x0. The solutions obtained by the BVP solution and by forward integration
are then contrasted. In a case of a large discrepancy, namely greater than a small
threshold distance set to 0.08, neighboring points upstream and downstream of the
initial guess are selected. Additional guesses are generated, as needed, until the
discrepancy drops below the specified threshold. This verification step is helpful
to avoid difficulties when the iterative BVP solver fails to provide a converged
solution or to detect conditions when the solution converges to a local optimum.
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3.4 Path following control law

In addition to determination and verification of optimal paths in a deterministic
flow, one needs to address the question of whether the vehicle is able to follow a
predefined path that does not coincide with the optimal solution.

To address this question, a simplified approach is developed in this section to
assess whether a specified path is realizable in a given velocity field, and in this case
of the time required to travel along this path. Specifically, we seek to determine
the control law θ(t) that guides the vehicle along the specified path XP .

The present approach is based on discretizing the path using a collection of M
points, (xl, yl)

M
l=1, lying on the corresponding curve. The points are indexed using

an approximate arc-length variable, s, defined according to:

sl = sl−1 +
∆l

L
, l = 2, · · · ,M (14)

where s1 = 0, ∆l ≡
√

(xl − xl−1)2 + (yl − yl−1)2, l = 2, · · · ,M , and L =
∑M

i=2∆l.
This parametrization can be readily exploited to define the local tangent, t̂, and
normal, n̂, to the path. Second-order finite differences are used for this purpose.

Let γ denote the angle along t̂ with respect to the x-axis (see Fig. 2). On
the specified path, the total velocity of the vehicle, U(x, t) = (u+ V cos θ(t),
v + V sin θ(t))), must point in the t̂ direction, and the component of total velocity
along n̂ must be zero, i.e.

cos γ (v + V sin θ)− sin γ (u+ V cos θ) = 0,

which results in:
V sin(θ − γ) = u sin γ − v cos γ. (15)

Equation (15) could have no solution, one solution, or two solutions, depending on
the relative velocity of the vehicle with respect to that of the current (see Fig. 3),
or alternatively according to the value of c ≡ (u sin γ − v cos γ)/V . Specifically, we
have:

(a) If |c| > 1, no solution exists. In this case, the specified path is deemed un-
realizable in the local flow field. We characterize this scenario by setting the
arrival time to ∞.

(b) If |c| ≤ 1, θ has one solution or two solutions, given by:

θ = γ + arcsin (c) , (16)

and
θ = γ + π − arcsin (c) , (17)

Note, however, that the total velocity of the vehicle U(x, y, t) must point in
the direction of t̂, i.e., the condition

(u+ V cos θ) cos γ + (v + V sin θ) sin γ ≥ 0 (18)

must be satisfied. Thus, the solutions in (16) and (17) are admissible depending
on whether the condition (18) is satisfied. When two solutions exist, each
branch is maintained until the condition in (18) is no longer satisfied, point
at which switching from one branch to another is considered. This may result
in multiple control laws leading from the starting to end positions. When this
is the case, the solution resulting is the smallest travel time is selected.
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Once a suitable control law, θ(t), is determined, the travel time along the spec-
ified path may be readily required based on θ and the parametrized representation
of the path. Specifically, letting x denote the position of the vehicle and s de-
note a parametrization variable of the path, a straightforward manipulation of the
kinematic relation,

dx

dt
=
dx

ds
· ds
dt
, (19)

results in:
ds

dt
= f(s)

.
=
|dx/dt|
|dx/ds| . (20)

Note that in the definition of f , the numerator is determined once θ is spec-
ified, whereas the denominator can be readily obtained by differentiating the
parametrized representation of the path. As with the tangent vector, second-order
differences are used for estimating ∂x/∂s. Consequently, the total travel time may
be estimated from: ∫ tf

t0

dt =

∫ sM

s1

ds

f(s)
. (21)

A numerical quadrature based on the composite trapezoidal rule is used to estimate
the integral on the right-hand side of Eq. (21).

3.5 Illustration

A variety of scenarios were considered in order to verify the predictions of the core
algorithm. In this section, we provide a brief illustration of one example used in
the numerical study. The selected example specifically focuses on the case of the
time-invariant, spatially double-gyre flow. The current is specified in terms of its
velocity components, namely

u(x, y) = − sin (πx) cos(πy), v(x, y) = cos (πx) sin(πy). (22)

To illustrate our solution procedure, we plot in Fig. 4 a selected subset of
backward in time trajectories. A total of 360 trajectories is computed, but only 24
are shown. This ensemble is determined by varying the final approach angle with a
one degree increment. The point closest to the starting position x0 = (−1,−0.25)
in the entire family is determined; it is identified using a (+) sign in the figure. This
is achieved by monitoring the minimum distance between the starting point and
each of the individual backward-in-time paths, as illustrated in Fig. 5. The local
values of p1, p2 at this point are then used as initial guesses for the bvp solver. If
an optimal solution is not found using these guesses, values at neighboring points
are considered. Once suitable initial guesses for p1, p2 and the travel time are
provided, the bvp solver provides both the optimal trajectory together with the
optimal control law. To verify the predictions, the optimal control law is used to
recompute the trajectory using forward in time integration. Solutions are deemed
acceptable when the peak distance between instantaneous positions falls below the
specified tolerance.

Figure 6 shows three optimal trajectories and the corresponding optimal con-
trol inputs in a close up of the flow field. The problem parameters are the same
as in Rhoads et al. (2013). In all cases, the vehicle starting position at t = 0,
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(x0, y0) = (0.5, 0.5), coincides with the center of a gyre. The vehicle velocity,
V = 0.75, is smaller than the peak current velocity, umax = 1. Three target posi-
tions are considered, namely (2.5, 0.5), (2.25, 1.5), and (1.5, 2.25). On the optimal
trajectory, the vehicle takes advantage of the flow in a way that minimizes the
arrival time. The results predicted by the present algorithm are in close agreement
with those reported in Rhoads et al. (2013). In addition, the trajectories computed
through forward integration of the equations of motion with the control input de-
termined through the solution of the BVP are essentially identical. This provides
confidence in the predictions of the present algorithm.

4 Path planning under uncertainty

We adopt a probabilistic framework to represent uncertainty in the current field. To
this end, variability in the velocity field is represented in terms of a d-dimensional
random vector, ξ, and expressed according to:

u (x, t, ξ) = (u (x, t, ξ) , v (x, t, ξ)) , (23)

where x = (x, y) is the location, and t is time. Without loss of generality, the
components of ξ are assumed to be independent and identically distributed (iid),
with uniform distribution over [−1, 1].

Within this framework, we explore an approximate approach to path planning
in uncertain flows. The development is guided by multiple considerations, includ-
ing a desire to mimic the scenario with operational ocean forecasts, which rely on
computing a finite ensemble of predictions, and on using these predictions to rep-
resent the underlying variability of the ocean current. An additional consideration
concerns our desire to re-use deterministic path planning techniques, and to limit
the full application of the optimal planning algorithm to a manageable number of
current realizations.

Based on the considerations above, the presently explored approach is outlined
as follows. We start by generating a “design” ensemble of current realizations. A
Latin Hypercube Sampling (LHS) strategy is used for this purpose McKay et
al. (1979); Le Mâıtre and Knio (2010). It is implemented by generating pseudo-
random samples of the germ, ξ, and substituting the resulting samples into the
velocity field representation in (23). The size of the initial ensemble thus generated
is denoted Ni. In other words, the starting point in the uncertainty analysis consists
in an ensemble of velocity fields, ui ≡ u(x, t, ξi), i = 1, . . . , Ni.

For each member of the initial current ensemble, the deterministic optimal path
planning algorithm is applied, resulting in an ensemble of paths, pi, i = 1, . . . , Ni.
The next step in the analysis is to determine whether or not these paths remain
realizable when tested against other members of the initial current field ensemble.
To this end, the path following algorithm is applied for each combination of path,
pi, and current, uj , 1 ≤ i, j ≤ Ni. When a path is not realizable for a particular
current sample, it is simply dropped from further analysis. On the other hand,
when a path remains realizable, one readily obtains an estimate of the arrival time
for all members of the ensemble.

The last step of the analysis is based on drawing independent ensembles of
the current field, again using LHS. We consider larger ensembles, namely with
size Nl > Ni. The ensemble of paths pi are tested against members of the larger
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ensembles, potentially leading to further decrease in the number of realizable paths.
The end result consists of an ensemble of paths that are all realizable for all
members of the initial and independent current field ensembles. The realizable
paths are denoted pri , i ∈ J ⊂ {1, . . . , Ni}. The size of the ensemble of realizable
paths is denoted by Nr, with Nr ≤ Ni. In other words, J has cardinality Nr.

This machinery readily yields, for each realizable path pri , a collection of ar-
rival times Ti,j , i ∈ J , j = 1, . . . , Nl. This, in turns, enables us to characterize
the statistics of the corresponding arrival times in the uncertain current. In the
computations below, for each i ∈ J , we estimate the mean,

T̄i =
1

Nl

Nl∑
j=1

Ti,j , (24)

the standard deviation,

σi =

√√√√ 1

Nl

Nl∑
j=1

(Ti,j − T̄i)
2
, (25)

the worst case value,

Tworst
i = max

j=1,...,Nl

(Ti,j) , (26)

and the value at risk based on a 95% probability. The latter is denoted as T 95%,
and is simply estimated by sorting the arrival time values in ascending order, and
selecting the first index that bounds 0.95Nl. Finally, kernel density estimation
is used in conjunction with the discrete predictions to visualize the probability
density function of the arrival time.

4.1 Remarks

One should first note that the methodology outlined above does not necessarily
lead to a global optimum, regardless of the specific metric one aims to minimize.
This is the case because the analysis is based on a finite size ensemble of paths. An
advantage of the present approach, however, is that it only requires availability of
a deterministic path planning algorithm, and that it inherently limits the number
of associated inverse solutions. In contrast, once a candidate path is identified,
evaluation of the corresponding arrival time statistics can be performed in a sys-
tematic and efficient fashion, because the (forward) solutions associated with the
path following algorithm are computationally inexpensive.

Of course, suitability of the present approach hinges on whether the moderate
size ensemble identified in the initial step provides a suitable representation of the
underlying variability of the flow, and that the paths determined as a result of
the evaluation also provide a suitable ensemble. For the canonical flows considered
in the present study, the initial sampling (with Ni = 64) proved suitable in all
cases considered. In general, however, the size of the initial sample may need to be
tuned according to the complexity of the flow, the constraints and capabilities of
the vehicle, and the specifcs of the mission. These questions are outside the scope
of the present study and will be addressed elsewhere.
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5 Results and discussion

In this section, we illustrate our path planning algorithm by means of two cases
studies. The first case study (section 5.1) specifically focuses on a stochastic, time-
invariant, double-gyre flow, with uncertainty in both the direction and magnitude
of the current. This generalizes the deterministic setting considered in section 3.5.
In the second case study (section 5.2), we consider a more complex setting, con-
sisting in an uncertain, time-dependent, double-gyre flow.

5.1 Time-invariant, spatially double-gyre flow field with uncertainty

Let us consider the path-planning problem in the time-invariant, stochastic double
gyre flow specified according to:

u(x, ξ) = −αξ1 sin(π(x+ δξ2)) cos(π(y + δξ3))− sin (πx) cos(πy),

v(x, ξ) = αξ1 cos(π(x+ δξ2)) sin(π(y + δξ3)) + cos (πx) sin(πy), (27)

with parameters 0 < α, δ < 1. Thus, the uncertainty in the flow field is represented
in terms of a three-dimensional random vector, ξ. The components of ξ are assumed
to be independent and uniformly distributed over [−1, 1]. The first coordinate,
ξ1, represents the impact of an uncertain velocity magnitude, whereas ξ2 and ξ3
reflect uncertainty in the location of the gyre. The parameters α and δ quantify the
strength of the velocity magnitude and gyre location uncertainties, respectively.

Below we consider two examples, identified according to the vehicle velocity.
In the first example, V = 0.75, so that the vehicle velocity can fall below the peak
current velocity. In the second example, V = 1.2, so the vehicle is always able
to fight against the current. In both examples, the initial and final locations of
the vehicle are held fixed, respectively (t0, x0, y0) = (0,−1,−0.25) and (xf , yf ) =
(0.5, 0.5). We also set α = 0.5, δ = 0.1. The Hamiltonian and the adjoint equations
are given in Appendix A.

5.1.1 Example 1: small V

In this example, we set V = 0.75, and so the peak magnitude of the current is
almost double the vehicle’s speed. We use a Latin Hypercube Sampling (LHS)
strategy to generate an N-member ensemble of the random variables, ξ1, ξ2, and
ξ3, and accordingly of current realizations. We start by considering a 64-member
ensemble. The mean velocity vector estimated based on the corresponding samples
is shown in Fig. 7. The maximum standard deviation is about 30% of the mean
of the individual current velocity maxima. Thus, the variability of the current
velocity is substantial.

To assess the impact of uncertainty in the current, we determine the trajectories
that minimize the travel time for each member of the ensemble. The deterministic
solution algorithm is used for this purpose. This yields an ensemble of paths, having
the same size as the ensemble of current realizations. For each of these paths, we
then assess the variability of the arrival time with respect to the ensemble of current
realizations. Consequently, we obtain discrete distributions of arrival times, with
one distribution for each path.
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We first note that not all of the individual minimal-time paths can be followed
in the whole current ensemble. When a certain individual path cannot be followed
under another realization of the current field, this path is deemed unrealizable, and
consequently dropped from the subsequent statistical analysis. For the present ex-
ample, and the present sample, Fig. 8(a) shows that there are only 12 realizable
paths in the 64-member ensemble. For all realizable paths, the arrival times com-
puted using the path-following control law (section 3.4) can be readily exploited
to characterize the corresponding arrival-time distribution. We specifically deter-
mine, for each realizable path, (i) the maximum and minimum travel time, Tworst

and T best, where the maximum and minimum are taken over all current realiza-
tions, (ii) the mean travel time, T̄ , again averaging over all current realizations,
and (iii) the value at risk, T 95%. Also plotted are the values lying at ± one standard
deviation around the mean. Fig. 9 shows the result of travel-time characterization
for the 12 realizable paths of the present 64-member current ensemble in Fig. 8(a).

In order to suitably select a path in the uncertain flow field, it is instructive
to first examine the robustness of the computed arrival time distribution with
respect to the ensemble size. We briefly examine this question by computing the
arrival time distribution for the 12 realizable paths in the 64-member current en-
semble, using the independent LHS samples of the current field. Specifically, the 12
realizable paths are re-evaluated using 144-member and 256-member ensembles.
We note that the best worst case (the first path in Fig. 9) is no longer realizable
when the 256-member current ensemble is considered. (Consequently, path 1 is
also deemed unrealizable and is dropped from further consideration.) This indi-
cates that a straightforward “robust optimization” approach, selecting best worst
case based on a limited size ensemble, may not generally be suitable, particularly
because of potential susceptibility to sampling errors.

On the other hand, the paths labelled 2-12 in Fig. 9 all remain realizable for
both 144-member and 256-member ensembles. Figure 10(a) shows the characteriza-
tion of the travel times for these 11 realizable paths in the 64-member, 144-member
and 256-member ensemble. Plotted are estimates of the mean arrival time, the
corresponding standard deviation, σ, the most likely travel time, and T 95%. We
observe that, as expected, the curves generally exhibit a decreasing trend as the
ensemble size increases. Note, however, that the curves of the most likely arrival
time value obtained using the 144-member and 256-member ensembles intersect,
suggesting that effects of finite sample size are still appreciable. Also note that the
minimum values of the mean arrival time, the most likely arrival time, and T 95%,
are all achieved for path 4. It is consequently identified as the path showing the
optimal overall performance. The travel time distribution for path 4 is shown in
Fig. 10(b). Plotted are curves generated using the 64-member, 144-member, and
256-member ensembles. The results indicate that as the ensemble size increases,
the pdfs appears to converge. Specifically, with 144 and 256 members the distri-
butions are close, but significant differences with the 64-member can be observed.
The present experiences underscore the need to systematically address the impact
of variability in the current field, and to examine the robustness of computed es-
timates with respect to sample size. They also indicate that a reasonable strategy
for path planning in an uncertain flow field can be based on considering a small
set of deterministic optimal trajectories based on a limited current ensemble, and
further examining the arrival time statistics for increasing ensemble sizes. While
this may not result in a global optimum, the approach takes advantage of the
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efficiency of the (forward) path-following solves, namely by limiting the computa-
tional burden of performing (inverse) path determinations over very large current
ensembles.

5.1.2 Example 2: large V

We now consider a higher vehicle speed, V = 1.2. In this case, along most of its
path the vehicle velocity is larger than that of the current, though the peak current
velocity still exceeds that of the vehicle. As in section 5.1.1, a LHS strategy is used
to generate a 64-member current ensemble, and the deterministic optimization
scheme is applied to determine the path that minimizes the travel time for each
realization of the current.

Figure 11 shows the characterization of the travel times along each of the
computed paths. We first note that, due to the larger speed of the vehicles, all
trajectories remain realizable when tested against members of the same current
ensemble. In addition, in the present case the vehicle reaches its target destination
in an appreciably shorter time than in the previous case. In particular, it can be
seen that with V = 0.75, in the worst worst case (path 12 in Fig. 9), the vehicle
needs a time period of about 2 to reach the target, whereas with V = 1.2 in the
worst worst case (path 64 in Fig. 11) the vehicle only requires a period of about
1.25 to complete the corresponding path.

To select a suitable path in the uncertain current field, we first examine the
sensitivity of the arrival time estimates to the ensemble size. To this end, the 64
realizable paths are re-evaluated based on two independent ensembles, comprising
144 members and 256 members. We first note that all 64 paths determined in
the first ensemble remain realizable when tested using the independent larger-
size ensembles. Figure 12(a) shows the characterization of the travel times for
the 64 realizable paths in the 64-member and 144-member ensemble. Plotted are
estimates of the mean arrival time, the corresponding standard deviation, σ, the
most likely travel time, and the value at risk, T 95%. One notes that, because of the
increase in the vehicle’s speed, the variability in the current field has lesser impact
on the travel time than in the case with small V . In addition, we find that the
travel time estimates obtained in 144-member ensemble and 256-member ensemble
are almost identical. Consequently, the travel time estimates obtained using the
256-member ensemble are not plotted.

Based on the results in Fig. 12(a), one observes that path 4 achives the smallest
value at risk, T 95% ' 1.18. The pdf of the arrival time for path 4 is shown in
Fig. 12(b). Plotted are curves obtained using all three ensembles. While the effects
of finite size ensembles are still evident, one notes that in the present case the range
of the distribution is quite small, falling approximately between 1 and 1.25. This is
consistent with previous observations concerning diminished impact of the current
variability when the vehicle speed is large.

5.2 Time-dependent spatially double-gyre flow field with uncertainty

In this section, we consider a more complex case, focusing on unsteady, peri-
odically varying double-gyre flow, which mimics flow patterns observed in the
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ocean(Shadden et al. 2005). Specifically, the uncertain current field is expressed
as:

u(x, t, ξ) = −αξ1 sin (πf (x+ δξ2, t)) cos (π(y + δξ3))− sin (πf(x, t)) cos(πy)

v(x, t, ξ) = αξ1 cos (πf (x+ δξ2, t)) sin (π(y + δξ3)) (2a(t) (x+ δξ2) + b(t))

+ cos (πf(x, t)) sin(πy) (2a(t)x+ b(t)) (28)

where

f(x, t) = a(t)x2 + b(t)x, (29)

a(t) = ε sin(ωt), (30)

b(t) = 1− 2ε sin(ωt). (31)

with fixed parameters, α = 0.5, δ = 0.1, ε = 0.25, and ω = 2π/10. The canonical
random variables ξ1, ξ2 and ξ3 are assumed to be independent, and uniformly
distribution over the interval [−1, 1].

Note that for ε = 0, the flow is steady and one recovers the same formula as
(27). For ε > 0 the flow is time-varying and the gyres undergo a periodic expansion
and contraction in the x-direction, but such that the rectangular region enclosing
the gyres remains fixed. The value of ε determines the amplitude of the left-right
motion of the line separating the gyres (Shadden et al. 2005), T = 2π/ω is the
period of the motion, whereas α and δ quantify the variability in the current
velocity and in the gyre location.

The initial vehicle position and target are set to (t0, x0, y0) = (0,−1, 0.25), and
(xf , yf ) = (0.5, 0.5), respectively. We consider a small vehicle speed, V = 0.75,
leading to a stringent case for the optimization algorithm and statistical analysis.
Consistent with our methodology above, a LHS strategy is used to generate an
initial ensemble of flow realizations, and then rely on independent larger size en-
sembles to further assess the robustness of our estimates. To analyze the effect of
the initial sample selection, we consider two independent 64-member ensembles,
and perform the analysis for individual paths determined in each ensemble.

As in the steady example, we start by analyzing whether individual paths
remain realizable when tested against current realizations belonging to the initial
ensemble. For ensemble 1 we find 13 realizable paths, whereas 12 paths are found
to be realizable in ensemble 2. The initial characterization of the arrival times
are shown in Fig. 13(a) and 14(a), respectively. Plotted are estimates of the mean
arrival time, the corresponding standard deviation, σ, the most likely travel time,
and T 95%. Next, these paths are re-evaluated against two independent LHS of the
current field, comprising 144 and 256 members. For ensemble 1, we find that only
6 of the original 13 paths remain realizable (path 1, 2, 7, 8, 9, 11 in Fig. 13(b)),
where for ensemble 2, we find that in 11 of 12 original paths remain realizable
(path 2-12 in Fig. 14(b)).

To examine the impact of the selected parameters, Fig. 15 shows instantaneous
snapshots of the velocity field, for two realizations of the germ, ξ. The figures
clearly illustrate the large variability in the current field with uncertain inputs,
as well as their large time variation over the vehicle travel time. (Note that the
snapshots span a time period that is comparable to the vehicle travel time.) The
figures also illustrate that the vehicle travel distance and the uncertainty in gyre
location both scale with the mean gyre radius. Due to these large variabilities,
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the individual optimal trajectories, illustrated in Fig. 16(a) and 16(b) for the two
ensembles considered, exhibit wider spread and more pronounced sensitivities to
the random inputs.

We next focus on the paths minimizing the value at risk, as estimated based on
T 95%. For ensemble 1, this corresponds to path 1 in Fig. 13(b), while for ensemble
2, this corresponds to path 2 in Fig. 14(b). The pdf of the arrival times for these
two paths are plotted in Fig. 13(c) and Fig. 14(c) respectively. Note that for both
paths, the pdf’s describe ranges that are comparable. Figure 17 contrasts the two
paths resulting from ensembles 1 and 2. Though evidently not identical, the two
paths are quite close to each other. The corresponding estimates of the values at
risk are also comparable, T 95% ' 1.85 for the path selected based on ensemble 1,
and T 95% ' 1.8 for the path selected based on ensemble 2. This indicates that for
the present considered scenario, the size of the initial ensemble is sufficiently large
for selecting a suitable path.

6 Conclusions

We developed an ensemble-based approach for path planning in uncertain flows.
The approach is based on generating a finite-size ensemble of the current field, and
applying well-established deterministic solvers to determine time-optimal paths
corresponding to individual members of the current ensemble. Specifically, for each
realization of the uncertain current field, we rely on a Hamiltonian formalism based
on Pontryagin maximum principle to determine the corresponding optimal path.
This leads to a bvp optimization problem, that is solved iteratively in order to
predict the optimal path and to calculate the corresponding arrival time. Suitable
initial guesses for the bvp solver are generated from a family of backward-in-time
trajectories starting at the end position. The optimal solution predicted by the
bvp solver is finally verified through forward integration using the corresponding
steering law.

A functional representation of the uncertain current field is adopted, namely
in terms of canonical, iid random variables. To mimic the situation of operational
forecasts, a finite size ensemble of current fields is generated through LHS sampling
of these random variables. The optimal paths corresponding to these individual
realizations are then evaluated against members of the same ensemble. A path
following law is used to determine whether an individual path remains realizable for
different members of the current field ensemble, and in this case to characterize the
corresponding travel time. This yields initial estimates of arrival time distribution
for realizable paths, which are then evaluated using independent, larger ensembles.
In particular, this approach readily provides estimates of the mean travel time,
the corresponding standard deviation, the most likely travel time and the value
at risk. The latter is in particular used as metric for path selection in the random
field.

The presently-developed methodology is illustrated through applications to un-
certain, canonical, 2D, steady and unsteady, double-gyre flows. The uncertainty is
represented in terms of a low-dimensional random vector, affecting the direction
and magnitude of the current field. Attention is first focused on the steady-state
case, and two scenarios are considered corresponding to small and large vehicle
speed. In the first scenario, simulations indicate that not all of the paths generated
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by the initial ensemble remain realizable when tested against different members
of the same ensemble. Consideration of larger, independent, current-field ensem-
bles leads to additional elimination of initially realizable paths, including the path
initially achieving by the best worst-case arrival time. This generally highlights
the importance to suitably assess the variability in the current field. For the set
of realizable paths, the analysis indicates that with suitably large ensembles, rel-
evant statistics of the arrival time can be obtained. In particular, for the path
characterized by the smallest value at risk, the arrival time distribution exhibits a
large variability. In contrast, when the vehicle velocity is large, variability in the
current field has essentially no impact on realizability of individual paths, and an
appreciably smaller impact on the variability in arrival times.

The uncertainty analysis is finally applied to the case of a strong, unsteady,
double-gyre flow. In particular, this setup is used to examine the impact of the
selection of the design ensembles. Two independent, equal-size ensembles are se-
lected for this purpose. Systematic application of the methodology indicates that
the paths determined based on both design ensembles are very close, with compa-
rable estimates of the value at risk. This provides confidence in the suitability of
the present approach at least for the present setting.

In the present work, we restricted our attention to canonical, 2D, steady and
unsteady flows, vehicles moving at a constant velocity with respect to the cur-
rent, and relied on a simplified methodology to determine path-following steering
laws. Work is currently underway to generalize the methodology, particularly to
accommodate 3D time-dependent motion, realistic ocean forecasts, and to accom-
modate closed-loop control laws. Whereas the presently-developed, ensemble-based
methodology extends in a straightforward fashion to these complex settings, one
may need to combine it with more elaborate deterministic optimization algorithms
and risk-based path selection schemes. For instance, the presence of coastal re-
gions, islands, and moving obstacles would require inclusion of constraints in the
formulation of the optimization problem, which may favor consideration of alter-
native strategies. An additional hurdle that must be addressed in a complex ocean
settings concerns the possibility that none of individual trajectories remains real-
izable when tested against other members of the ensemble. This would motivate
consideration of more sophisticated risk metrics, particularly to accommodate less
risk-averse planning strategies. Establishment of such capabilities is the focus of
ongoing research that will be reported elsewhere.
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Appendices

A Hamiltonian and adjoint equations for the steady, stochastic double

gyre flow

For the velocity field in section 5.1, the Hamiltonian is expressed as:

H = 1 + p1 (− sin (πx) cos(πy) + V cos θ − αξ1 sin(π(x+ δξ2)) cos(π(y + δξ3)))

+ p2 (cos (πx) sin(πy) + V sin θ + αξ1 cos(π(x+ δξ2)) sin(π(y + δξ3))) . (32)
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and the adjoint equations for the extended system are:

ṗ1 = −
∂H

∂x
= p1π cos(πx) cos(πy) + p1παξ1 cos(π(x+ δξ2)) cos(π(y + δξ3))

+ p2παξ1 sin(π(x+ δξ2)) sin(π(y + δξ3)) + p2π sin(πx) sin(πy),

ṗ2 = −
∂H

∂y
= −p1π sin(πx) sin(πy)− p1παξ1 sin(π(x+ δξ2)) sin(π(y + δξ3))

− p2παξ1 cos(π(x+ δξ2)) cos(π(y + δξ3))− p2π cos(πx) cos(πy). (33)

B Hamiltonian and adjoint equations for the unsteady, stochastic double

gyre flow

For the velocity field in section 5.2, the Hamiltonian is:

H = 1 + p1 (− sin (πf(x, t)) cos(πy) + V cos θ − αξ1 sin (πf (x+ δξ2, t)) cos (π(y + δξ3)))

+ p2 (αξ1 cos (πf (x+ δξ2, t)) sin (π(y + δξ3)) (2a(t) (x+ δξ2) + b(t)) + V sin θ)

+ p2 cos (πf(x, t)) sin(πy) (2a(t)x+ b(t)) (34)

and the costate equations for the extended system are given by:

ṗ1 = −
∂H

∂x
= p1π cos (πf(x, t)) cos(πy) (2a(t)x+ b(t))

+ p1παξ1 cos (πf(x+ δξ2, t)) cos(π(y + δξ3)) (2a(t)(x+ δξ2) + b(t))

+ p2π sin (πf(x, t)) sin(πy) (2a(t)x+ b(t))2 + 2p2a(t) cos (πf(x, t)) sin(πy)

+ p2παξ1 sin (πf(x+ δξ2, t)) sin(π(y + δξ3)) (2a(t)(x+ δξ2) + b(t))2

+ 2p2αξ1a(t) cos (πf (x+ δξ2, t)) sin (π(y + δξ3)) ,

ṗ2 = −
∂H

∂y
= −p1π sin (πf(x, t)) sin(πy)− p1παξ1 sin (πf(x+ δξ2, t)) sin(π(y + δξ3))

− p2π cos (πf(x, t)) cos(πy) (2a(t)x+ b(t))

− p2παξ1 cos (πf(x+ δξ2, t)) cos(π(y + δξ3)) (2a(t) (x+ δξ2) + b(t)) (35)

At the final time, t = t̄f , the velocity components are:

uf = − sin
(
πf(xf , t̄f )

)
cos(πyf )− αξ1 sin

(
πf

(
xf + δξ2, t̄f

))
cos

(
π(yf + δξ3)

)
and

vf = cos
(
πf(xf , t̄f )

)
sin(πyf )

(
2a(t̄f )xf + b(t̄f )

)
+ αξ1 cos

(
πf

(
xf + δξ2, t̄f

))
sin

(
π(yf + δξ3)

) (
2a(t̄f )

(
xf + δξ2

)
+ b(t̄f )

)
.

Note that in the time-dependent case, the final time tf is not known a priori. For the
purpose of backward integration, the travel time at the end point is required to determine
current. To overcome this difficulty, we introduce a guess t̄f ∈ [t0, t0 +Tmax] for the real travel
time, where Tmax is the maximum time horizon. The guess for the final time is initialized
using t̄f = t0 + Tmax, and then sequentially reduced, as needed, until a convergent solution is
reached.
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Pétrès C, Pailhas Y, Patrón P, Petillot Y, Evans J, Lane D (2007) Path planning for au-

tonomous underwater vehicles. IEEE Trans Robot 23(2):331-341
Rao AV (2009) Survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497-

528
Rao D and Williams SB (2009) Large-scale path planning for Underwater Gliders in ocean

currents. In: Australasian Conference on Robotics and Automation (ACRA)
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Fig. 1: Motion of P in a flow field u ≡ u (x, t). Its trajectory XT connects the start
position, x0, and the end position, xf , and satisfies the kinematic relation (1) as
well as the limiting conditions (2). The total velocity, U ≡ U (XT , t), is the vector
sum of the flow velocity, u, and the steering velocity, V ĥ(t).
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Fig. 2: Schematic showing the components of the local current velocity, (u, v),
the vehicle velocity vector, V ĥ, the vehicle heading, ĥ, the start position (•), the
end position (?), and the unit tangent and normal to the trajectory, t̂ and n̂,
respectively. Also illustrated are the definitions of the angles θ and γ.
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Fig. 3: Schematic showing the possible solutions for θ according to different mag-
nitudes of V .
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Fig. 4: Selected bacward-in-time trajectories starting at the end position (?). A
total of 360 trajectories is computed, but only 24 are shown. The backward in-
tegration is carried out for a time period of 2. The bold line is used to identify
the trajectory that comes closest to the start position (•). The (+) sign is used to
denote the point closest to the start in the whole ensemble.
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Fig. 5: The closest distance between each trajectory in the ensemble and the start
position. The red dot (◦) is used to denote the overall minimum for the ensemble.



28 Tong Wang et al.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

x

y

Start

End
1

End
3

End
2
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sometimes tangential to the flow and sometimes normal.
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uncertain flow field. The local vectors are represented using arrows, whereas the
colour contours reflect the mean velocity magnitude.
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(a) The 64-member ensemble with 12 realizable paths.
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(b) The 144-member ensemble with 26 realizable paths.
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(c) The 256-member ensemble with 31 realizable paths.

Fig. 8: Deterministic trajectories in strong, uncertain flow field. The starting posi-
tion is denoted using (•) and the end position is indicated using (?). The unrealiz-
able trajectories are colored in green. The path having the best worst travel time
is identified using a red, bold line. The path resulting in the longest worst travel
time is plotted using blue, bold line. The remaining realizable paths are plotted
using black lines.
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Fig. 9: Travel times of the realizable paths in strong, uncertain flow field for small
V . Plotted are Tworst(◦), T 95% (�), the mean T̄ (O), the T̄ ± σ estimates (•) and
T best (�). The results are indexed in increasing order of Tworst. Results are shown
based on the 64-member ensemble.
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the 256-member ensemble (•). The most likely travel time corresponds to the x-coordinate of
the peak in pdf of the travel time distribution.
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(b) The pdf of the travel time of the fourth realizable path in different-size ensembles.

Fig. 10: Travel time characterization of realizable paths, and pdf of the arrival
time for the path with optimal T 95%.
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Fig. 11: Travel times of the realizable paths in strong, uncertain flow field for large
V . Plotted are Tworst(◦), T 95% (�), the mean T̄ (O), the T̄ ± σ estimates (•) and
T best (�). The results are indexed in increasing order of Tworst. Results are shown
based on the 64-member ensemble.
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distribution.
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(b) The pdf of the travel time of the fourth realizable path in different-size ensembles.

Fig. 12: Travel time characterization of realizable paths, and pdf of the arrival
time for the path with optimal T 95%.
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(a) Tworst(◦), T 95% (�), T̄ (O), and T̄ ±σ estimates (•) for the unsteady double gyre
flow. The predictions are arranged in increasing order of Tworst.
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(b) Estimates of T 95% for the 6 realizable paths. Plotted are estimates obtained using
independent ensembles as shown in the labels.
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Fig. 13: Travel time characterization of realizable paths, and pdf of the arrival time
for the path with optimal T 95%. Results are based on realizable paths in ensemble
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(a) Tworst(◦), T 95% (�), T̄ (O), and T̄ ±σ estimates (•) for the unsteady double gyre
flow. The predictions are arranged in increasing order of Tworst.
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(b) Estimates of T 95% for the 11 realizable paths. Plotted are estimates obtained using
independent ensembles as shown in the labels.
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(c) Pdf of the travel time of the second realizable path in different-size ensembles.

Fig. 14: Travel time characterization of realizable paths, and pdf of the arrival time
for the path with optimal T 95%. Results are based on realizable paths in ensemble
2.



Path planning in uncertain flow fields using ensemble method 37

Fig. 15: Instantaneous snapshots of the double-gyre current field. The snapshots
are generated at times t = 0, 1, and 2, arranged from top to bottom. Two realiza-
tions of the germ are illustrated; left: ξ1 = −0.2563, ξ2 = 0.5194, and ξ3 = −0.3457,
right: ξ1 = −0.1.8562, ξ2 = −0.1370, and ξ3 = 0.9271. The starting position is in-
dicated using (•) and the end position is indicated using (?). The local velocity
field is represented using arrows, whereas the color contours reflect the velocity
magnitude. Note that the scales differ for the two realizations.
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(b) The 11 realizable paths in ensemble 2.

Fig. 16: Deterministic trajectories in strong, unsteady, and uncertain flow field. The
starting position is denoted using (•) and the end position is indicated using (?).
The unrealizable trajectories are colored in green. The path having the best worst
travel time is identified using a red, bold line. The path resulting in the longest
worst travel time is plotted using a blue, bold line. The remaining realizable paths
are plotted using black lines.
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Fig. 17: The two optimal paths in uncertain time-dependent double-gyre flow. The
starting position is denoted using (•) and the end position is indicated using (?).
The curves correspond to predictions based on ensembles 1 and 2, as indicated.


