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eAbstra
tIn this paper, the 
omputation of Sobol's sensitivity indi
es from the PolynomialChaos expansion of a model output involving un
ertain inputs is investigated. It isshown that when the model output is smooth with regards to the inputs, a spe
-tral 
onvergen
e of the 
omputed sensitivity indi
es is a
hieved. However, even forsmooth outputs the method is limited to a moderate number of inputs, say 10 to20, as it be
omes 
omputationally too demanding to rea
h the 
onvergen
e domain.Alternative methods (su
h as sampling strategies) are then more attra
tive. Themethod is also 
hallenged when the output is non-smooth even when the number ofinputs is limited.Key words: Sensitivity analysis, Sobol's de
omposition, Polynomial Chaos,Un
ertainty Quanti�
ation
1 Introdu
tionIn mathemati
al modelling, sensitivity analysis (SA) studies variations in theoutput of a model (numeri
al or other) with regards to some inputs. There aretwo 
ategories of methods for SA: lo
al sensitivity analysis and global sensitiv-ity analysis. Lo
al sensitivity analysis is interested on the lo
al variation of themodel with the inputs using gradients methods, while global sensitivity anal-ysis deals with global variations in the output due to the un
ertainties on the
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inputs. Moreover SA is usually said to be qualitative when it 
lassi�es the in-puts a

ording to their respe
tive impa
ts on the output variations and quan-titatively when it gives a measure of these impa
ts. Generally a quantitativelySA is also qualitative. SA had been largely studied and many approa
hes havebeen proposed. In this arti
le we are interested in global sensitivity analysisusing Sobol's indi
es [1℄ to determine input variables (or groups of variables)mostly responsible both qualitatively and quantitatively of the un
ertainty inthe model output [2℄. Indeed in un
ertainty quanti�
ation (UQ) it is impor-tant too to determine the un
ertain inputs whi
h have the largest impa
t onthe variability of the model output. The Sobol's indi
es are obtained from theANOVA de
omposition of the output. Several methods had been developedto 
ompute these indi
es dire
tly through sampling using Monte-Carlo andQuasi-Monte-Carlo methods or by building a meta-model to approximate theANOVA de
omposition and then 
ompute the indi
es from the meta-modelwith less model evaluations. The work presented in this arti
le belong to themeta-modeling approa
h using Polynomial Chaos expansions to approximatethe model output.Polynomial Chaos (PC) expansions [3℄ have been used for UQ in a large vari-ety of domains (e.g. in solid me
hani
s, �uid �ows, thermal s
ien
es,. . . ). PCexpansions is a probabilisti
 method 
onsisting in the proje
tion of the modeloutput on a basis of orthogonal sto
hasti
 polynomials in the random inputs.The sto
hasti
 proje
tion provides a 
ompa
t and 
onvenient representation ofthe model output variability with regards to the inputs. We show in this paperthat the Sobol's sensitivity indi
es [1℄ (and even more the ANOVA de
ompo-sition) (or Sobol's de
omposition) of the model output) 
an be immediatelydedu
ed from the PC expansion of the model output.We 
an see this PC approa
h to 
ompute Sobol's indi
es as one HDMR (HighDimensional model representation) method, indeed HDMR methods 
onsist inapproximating the 
omponent fun
tions, fu, of a �nite hierar
hi
al 
orrelationfun
tion expansion,
f(ξ) =

∑

u⊆{1,2,...,d}
fu(ξu). (1)We will show that the PC expansion of the model output dire
tly providesone of these fun
tional de
ompositions. RS-HDMR and 
ut-HDMR (see [4℄,[5℄and [6℄) are other HDMR approa
hes. RS-HDMR uses sampling te
hniques to
ompute approximations of the 
omponent fun
tions of the ANOVA de
om-position (whi
h is the same that we 
ompute using PC expansion) while the
ut-HDMR uses interpolation through the model values on lines, planes andhyperplanes passing through a 
ut 
enter point. One essential di�eren
e withthe PC expansion based approa
h of 
lassi
al HDMR methods is that theylimit themselves to the determination of only the low order 
omponents ofthe fun
tional de
omposition. This is based on the assumption that for mostphysi
al systems only low order 
orrelations of the inputs will have impa
t on2



the output. However the RS-HDMR 
an use the same orthonormal polyno-mial basis than the PC expansion. So in a 
ertain way the RS-HDMR withorthonormal polynomials (see [4℄) is similar to PC expansion restri
ted to loworder 
orrelations polynomials with the 
oe�
ients 
omputed by Monte-Carloapproximation of the proje
tions. Monte-Carlo approximation is less pre
isefor smooth fun
tions than the proje
tion by Smolyak's 
ubature exposed inthis arti
le when the dimension is not too high. Speaking of quadrature te
h-niques for numeri
al integration, in [5℄ the authors propose to 
ompute theANOVA de
omposition using quadrature and 
omputing the points on the
ut-HDMR expansion. Nevertheless they don't use the Smolyak's 
ubature.These meta-modeling methods have been widely used for SA, espe
ially withnonparametri
 te
hniques whi
h have shown their e�
ien
y in SA using vari-ables sele
tion approa
hes for a qualitatively SA (see [7℄) or approximationof the ANOVA de
omposition for quantitatively SA (see [8℄). It has beenshown that these meta-modeling methods 
an be mu
h more e�
ient thanthe sampling method for the 
omputation of the Sobol's indi
es, by relying ona signi�
antly lower number of model evaluations. However, the e�
ien
y ofthe meta-modeling methods highly depends on the stru
ture and 
omplexityof the 
onsidered model, whi
h make their general 
omparison di�
ult. There-fore, the e�
ien
y of the proposed PC expansion for SA and determination ofthe Sobol's indi
es is here only 
ontrasted with sampling methods (LHS andQMC). Future works will fo
us on the 
omparison of the PC approa
h withalternative meta-modeling methods and also with the Bayesian approa
h (see[9℄). It is also important to note that the PC expansion of the model output
an be obtained by means of Galerkin proje
tion s
hemes when the model isa set of equations (see for instan
e [3℄) with potential 
omputational savings
ompared to the integration approa
h used in this work.The paper is organized as follow. In Se
tion 2, we provide a brief summaryof Wiener's Homogeneous Chaos theory [10℄ and of the PC representations.We re
all the prin
iples of the solution methods used for the determinationthe PC expansion of a model output. We emphasize on the so 
alled nonintrusive spe
tral proje
tion (NISP) and 
ubature te
hniques, whi
h we use inthe numeri
al examples. Se
tion 3 reviews Sobol's fun
tional de
ompositionand de�ne the Sobol sensitivity indi
es. In Se
tion 4, we provide details onthe pra
ti
al 
omputation of the Sobol's indi
es via Monte-Carlo samplingstrategies, emphasizing on the 
omputational 
omplexity. We then make the
onne
tion between the Sobol fun
tional de
omposition and the PC expansionof the model output. This 
onne
tion naturally leads to exa
t expressions forthe Sobol sensitivity indi
es in terms of the PC expansion 
oe�
ients. InSe
tion 5, we present three numeri
al examples to illustrate the e�
ien
yand the limitations of the 
omputation of Sobol's sensitivity indi
es from PCexpansions. The e�
ien
y of the PC approa
h is 
ompared and 
ontrastedwith the Monte-Carlo and Quasi-Monte-Carlo sampling strategies. Finally, in3



Se
tion 6 we summarize the main �ndings of this work and we provide somere
ommendations for future improvements of the method.2 Polynomial Chaos Expansions2.1 Hermite Polynomial ChaosPolynomial Chaos expansions, introdu
ed by Wiener in [10℄, approximate anywell behaved random variable (e.g. a se
ond order one) by a series of poly-nomials in 
entered normalized Gaussian variables. In the following we usethe notations of [3℄. Let Ω be the spa
e of random events and Θ the spa
eof fun
tions whi
h asso
iate to the elements ω ∈ Ω a value in R. A fun
tion
θ : ω ∈ Ω 7−→ R is a random variable. Let {ξi}∞i=1 be an in�nite but 
ountableset of independent normalized Gaussian random variables. We de�ne:
• Γ̂p the spa
e of all polynomials of degree less or equal to p in {ξi(ω)}∞i=1,
• Γp the set of polynomials of Γ̂p whi
h are orthogonal to Γ̂p−1,
• Γ̃p the spa
e generated by Γp:

Γ̂p = Γ̂p−1 ⊕ Γ̃p, Θ =
∞⊕

i=0

Γ̃i. (2)The sub-spa
e Γ̃p of Θ is 
alled the p-th Homogeneous Chaos and Γp is 
alledPolynomial Chaos of order p. In fa
t, the Polynomial Chaos of order p is theset of all polynomials of degree p in all possible 
ombinations of the randomvariables in {ξi(ω)}∞i=1. The Polynomial Chaos expansion of a se
ond orderrandom variable θ(ω) is
θ(ω)= a0Γ0 +

∞∑

i1=1

ai1Γ1(ξi1(ω))

+
∞∑

i1=1

i1∑

i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ai1i2i3i4Γ4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + ... (3)Cameron and Martin have shown in [11℄ that this expression is 
onvergent inthe L2-sense. To simplify the notations and to ease the formal manipulation4



of PC expansions, we de�ne an univo
al relation between fun
tionals Γ() andnew fun
tionals Ψ(), and rewrite the PC expansion as:
θ(ω) =

∞∑

k=0

θkΨk(ξ(ω)), ξ = {ξ1, ξ2, ...}. (4)We shall adopt in the following the 
lassi
al 
onvention 
onsisting in taking
Ψ0 as the zero order polynomial: Ψ0 = 1. In Eq. (4), θk are deterministi

oe�
ients, namely the PC 
oe�
ients of the expansion of the random variable
θ, while the Ψk are random polynomials, orthogonal in the L2-spa
e, withregards to the inner produ
t, denoted 〈, 〉, based on the Gaussian measure:
〈Ψi, Ψj〉 ≡

∫
Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij 〈Ψi, Ψi〉 , p(ξ) =

∏

l

exp[−ξ2
l /2]√

2π
. (5)In fa
t, the Ψi are multivariate Hermite polynomials (the produ
t of univariateHermite polynomials).For pra
ti
al 
al
ulations, a �nite number d of Gaussian variables are to beused, leading to �nite dimensional Polynomial Chaos expansions:

θ(ξ1, ξ2, ..., ξd) =
∞∑

k=0

θkΨk(ξ1, ξ2, ..., ξd). (6)This is not a limitation, sin
e most physi
al problems we are fo
using oninvolve a �nite number of random inputs (parametri
 un
ertainty). Moreoverthe expansion is 
onvergent, as we work in a �nite dimensional Hilbert spa
eand Hermite polynomials form an Hilbert basis. Also for pra
ti
al reasons, PCexpansions have to be trun
ated in terms of polynomial degree. Let p denotethe order of the PC expansion. The �nite dimensional and �nite order PCexpansion of a random variable θ is �nally
θ(ξ) ≈

P∑

k=0

θkΨk(ξ), ξ = {ξ1, . . . , ξd}, (7)where the basis dimension is related to d and p by
P + 1 =

(p + d)!

p! d!
. (8)2.2 Generalized Polynomial ChaosIn [12℄, Xiu and Karniadakis used the Askey s
heme to generalize Wiener'sPolynomial Chaos expansion to 
ommon non-Gaussian measures. This gener-alization 
an be useful to improve the expansion 
onvergen
e for non-Gaussian5



random variables. Table 1 reports the 
orresponden
e between the randomvariable distribution and orthogonal polynomial family. The polynomials areorthogonal in the Hilbert spa
e 
orresponding to the support and the densityfun
tion of the random variable; they form an Hilbert basis of the respe
tivespa
e. Type Random variable Orthogonal polynomial Supportdistribution familyContinuous Gaussian Hermite (−∞,∞)Gamma Laguerre [0,∞)Beta Ja
obi [a, b]Uniform Legendre [a, b]Dis
rete Poisson Charlier {0, 1, 2, .....}Binomial Krawt
houk {0, 1, 2, ...,N}Table 1Relation (Askey-s
heme) between the random variable distribution and orthogonalpolynomial family [12℄.Denoting {φk}∞k=0 the one-dimensional orthogonal polynomials from the Askey-s
heme, and assuming the random variables to be independent, the muti-dimensional Generalized Polynomial Chaos (GPC) basis {Ψi} is 
onstru
tedby tensor produ
ts of the 
orresponding one dimensional polynomials,
Ψi(ξ1, ξ2, ..., ξd) =

d∏

k=1

φαi

k

(ξk), |αi| ≡
d∑

k=1

αi
k ≤ p, i = 0, . . . , P. (9)2.3 Determination of PC-
oe�
ientsWe are interested in the un
ertainty quanti�
ation and analysis for some out-put quantity y, whi
h depends on some random input D(ω). We assume thatthe un
ertain input is parameterized using a �nite set of d independent randomvariables ξ = {ξ1, . . . , ξd} with known densities p(ξ), i.e. D(ω) ≡ D(ξ(ω)).Clearly, the output y being a fun
tional of the random input it is also randomand we 
an write

y(D(ξ)) = y(ξ). (10)Let {Ψi} be an Hilbert basis of L2(ξ, p(ξ)) the spa
e of se
ond order randomvariables spanned by ξ. Assuming that y ∈ L2(ξ, p(ξ)), it has a 
onvergentPC expansion that we write as
y(ξ) =

∑

k

βkΨk(ξ). (11)6



Sin
e the PC-
oe�
ients fully determine a se
ond-order random variable, theknowledge of the βk in the expansion of the output y allows for a 
omplete
hara
terization of the un
ertainty. It also makes expli
it the fun
tional de-penden
es with regards to the input, a property that will be fully exploitedlater for the determination of the Sobol sensitivity indi
es.To improve the 
onvergen
e of the PC expansion, in situations where theoutput y presents non-smooth or dis
ontinuous depeden
es with regards to theun
ertain inputs, pie
ewise 
ontinuous polynomials expansions were re
entlyproposed (e.g. using multi-wavelets and multi-resolution s
hemes [13,14,15℄and multi-element methods [16℄).We thus need e�
ient pro
edures for the determination of the PC 
oe�
ientsof the output y. In the following, we assume that y is the result of a numer-i
al simulation, i.e. the output of a numeri
al 
ode involving a mathemati
almodel. Classi
ally, two 
lasses of methods are distinguished for the determi-nation of the PC 
oe�
ients: the intrusive and non-intrusive methods.In the intrusive method, a weak solution of the mathemati
al model involv-ing the random input is sought by means of a Galerkin proje
tion of themodel equations on the PC basis [3℄. This pro
edure, shortly des
ribed inSe
tion 2.3.1, requires modi�
ations of the numeri
al 
ode and is therefore in-trusive. On the 
ontrary, non-intrusive methods require realizations of the de-terministi
 
ode only, for di�erent values of the input. Two su
h non-intrusivemethods are des
ribed below: the least square approximation in Se
tion 2.3.2,and the non-intrusive spe
tral proje
tion (NISP [17℄) in Se
tion 2.3.3. TheNISP pro
edure being used in the examples of Se
tion 5, more details areprovided.2.3.1 Galerkin proje
tionLet us 
onsider the mathemati
al model M relating the random output y tothe input D. We write in a formal way
M(y(ξ); D(ξ)) = 0. (12)Substituting to y its PC expansion Eq. (11), trun
ated at order p, the modelequation is generally not satis�ed anymore but yields a residual. Imposing theresidual to be orthogonal to the expansion basis, it 
omes

〈
M

(
P∑

i=0

βiΨi(ξ); D(ξ)

)
, Ψk

〉
= 0, ∀k = 0, . . . , P. (13)It is seen that the Galerkin pro
edure leads to the resolution of a set of P + 1
oupled problems. It usually requires an adaptation of the numeri
al 
ode.7



Furthermore, if the mathemati
al model involves 
omplex non-linearities, theGalerkin pro
edure 
an be a 
hallenging task and di�
ult to implement. Toover
ome these di�
ulties, non-intrusive methods des
ribed below are useful.2.3.2 Least square approximationThe PC 
oe�
ients 
an be estimated by solving a least square problem. Letus denote {ξ(i)} a sample set of the random parameters, and y = {y(i)} the
orresponding set of simulation output, su
h that
M

(
y(i); D

(
ξ(i)

))
= 0, ∀i. (14)Sin
e the determination of the output sample set uses the deterministi
 
odeonly, the method is non-intrusive. Denoting β = (β0 . . . βP )T the ve
tor ofsought PC 
oe�
ients in the trun
ated expansion of the output y, an approx-imation β̂ of β 
an be obtained by solving the least square problem

β̂ = arg min
β

n∑

i=1

(
y(i) −

P∑

k=0

βkΨk(ξ
(i))

)2

, (15)where n > P + 1 is the sample set size. Denoting
Z =




Ψ0(ξ
(1)) Ψ1(ξ

(1)) . . . ΨP (ξ(1))

Ψ0(ξ
(2)) Ψ1(ξ

(2)) . . . ΨP (ξ(2))... ... . . . ...
Ψ0(ξ

(n)) Ψ1(ξ
(n)) . . . ΨP (ξ(n))




, (16)
the well known solution of the least square problem is

β̂ = (ZT Z)−1ZTy, (17)where ZT Z is the Fisher matrix. It is to be noted that Least Square doesnot exploit the orthogonality of the polynomials. The sample sets 
an be
onstru
ted by simple random sampling (SRS), Latin hyper
ube sampling(LHS), maximin LHS, . . . However, there is yet only empiri
al results on theway to 
onstru
t the sample sets, and to 
hoose its size. To prevent over�tting,methods from regression and statisti
al learning 
an be used.In [18℄ the authors
onsider three methods to 
hoose the degree of the polynomial approximationin order to prevent over�tting: Adjusted R2, Early Stopping and Wil
oxonRank Sum Test. These methods 
an be used in the PC expansion 
ontext toprevent over�tting. 8



2.3.3 Non-intrusive spe
tral proje
tionOn the 
ontrary of the least square approximation, the non-intrusive spe
-tral proje
tion (NISP) exploits the orthogonality of the PC basis. Taking theinner produ
t of the output PC expansion with Ψk and making use of theorthogonality of the basis, it 
omes
βk =

〈y(ξ), Ψk(ξ)〉
〈Ψk, Ψk〉

, ∀k. (18)Re
alling the de�nition of the inner produ
t,
〈f(ξ), g(ξ)〉 =

∫

Ωd

f(ξ)g(ξ)p(ξ)dξ, (19)where we have denoted Ωd the support of ξ and p(ξ) its joined density, it isseen that the determination of the PC 
oe�
ients of the output redu
es tothe evaluation of (P + 1) d-dimensional integrals:
Ik ≡

∫

Ωd

y(ξ)Ψk(ξ)p(ξ)dξ. (20)In fa
t, Ik is the 
orrelation between the output and the k-th PC. Note thatthanks to the polynomial 
hara
ter of the Ψk, the exa
t evaluation of 〈Ψk, Ψk〉is immediate.Numeri
al multi-dimensional integration or quadrature is a 
lassi
al problemand many methods have been proposed for this purpose. The numeri
al inte-gration methods 
an be re
asted in the following generi
 form,
Ik ≈

n∑

i=1

y(ξ(i))Ψk(ξ
(i))w(i), (21)where ξ(i), w(i) are the integration points and weights respe
tively while n isthe number integration points. In our appli
ations, the numeri
al 
ost of theintegration s
ales essentially with n, sin
e it is dominated by the evaluation (ormodel resolution) of the output y for given ξ(i) using Eq. (14). The integrationmethods have spe
i�
 strengths and weaknesses, to be taken into a

ount whensele
ting one of them. Let us re
all the main properties of the most 
ommonintegration methods available:

• Monte-Carlo sampling is robust and 
onverges for any L2-fun
tion with a
onvergen
e rate independent of the dimension d; however the asymptoti
rate is in 1/
√

n only.
• Quasi Monte-Carlo sampling is less robust than Monte-Carlo sampling asit involves some assumptions on the smoothness of the integrand. However,when these assumptions are satis�ed a 
onvergen
e rate in log (n)d/n isa
hieved. 9
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tness for polynomial integrand.
• Full tensorization of 1-d quadrature formula exhibits fast 
onvergen
e ratefor smooth integrand, but have a numeri
al 
ost s
aling with d exponen-tially: n = (n1)

d, with n1 the number of quadrature points in the 1-Dformula, see the left plot of Figure 1.
• Composite methods, based on an adaptive partition of the integration do-main, are robust with regards to the smoothness of the integrand, a
hievefast 
onvergen
e rates, but have a numeri
al 
ost that s
ales exponentiallywith d.
• Cubature formulas based on Smolyak's 
oarse tensorization (see [19,20℄)have fast 
onvergen
e rate for smooth integrand and their numeri
al 
ostin
reases less qui
kly than fully tensored formula (see the right plot in Fig-ure 1).In our appli
ations, the output is expe
ted to be relatively smooth while thePC are C∞. As a result, the integrand in Ik are expe
ted to be smooth. In this
ontext, the integration formulas based on the Smolyak's partial tensorizationare thought to yield a good trade-o� between a

ura
y and numeri
al 
ost,for input involving a moderate number of random parameters, say for d < 15,while for higher dimensional problems Monte-Carlo methods are expe
ted toperform better. However, it is underlined that one usually has no a prioriknowledge on the smoothness of the output, so one has to be 
autious whensele
ting a integration method. In the example se
tion, the Smolyak's methodwill used to perform the NISP of the output, so we found ne
essary to providemore details on the 
onstru
tion of the method.10



Smolyak's 
ubatureSmolyak's 
ubature formulas are based on partial tensorization of one-dimensionalquadrature formulas (see [19,20℄). Let us 
onsider for l = 0, 1, . . . a sequen
eof 1-D integration formulas involving a number of points nl in
reasing with l.We 
all l the level of the formula. The 1-D quadrature formula of level l, withpoints and weights ξ(i,l) and w(i,l) respe
tively, writes:
∫

Ω
f(ξ)p(ξ)dξ ≃ Q1

l f ≡
nl∑

i=1

w(i,l)f
(
ξ(i,l)

)
. (22)Setting Q1

0f = 0, the di�eren
e quadrature formula is de�ned as
∆1

k≥1f ≡
(
Q1

k − Q1
k−1

)
f. (23)Using a multi-index k = (k1, . . . , kd), the d-dimensional di�eren
e formula isthe tensor produ
t of 1-D di�eren
e quadrature:

∆kf = (∆1
k1
⊗ · · · ⊗ ∆1

kd
)f. (24)Then, the d-dimensional Smolyak's 
ubature formula of level l is 
onstru
tedby the sum of tensor produ
ts of di�eren
e quadratures, over a set of multi-indi
es k,

∫

Ωd

f(ξ)p(ξ)dξ ≃ Qd
l f =

∑

|k|≤l+d−1

∆kf, with l ∈ N, k ∈ N
d. (25)In pra
ti
e, imbedded one-dimensional quadrature formulas are used to min-imize the number of integrand evaluations. The Smolyak's 
ubature has a
onvergen
e rate whi
h depends on the smoothness of the integrand. Spe
if-i
ally, for 1-D quadrature where nl = O(2l), the theoreti
al 
onvergen
e rateis in O(2−rll(d−1)(r+1)) for integrand f ∈ Wr

d , where
Wr

d :=

{
g : Ωd −→ R,

wwwww
∂|s|g

∂ξs1

1 . . . ∂ξsd

d

wwwww
∞

< ∞, si ≤ r

}
, (26)is the 
lass of fun
tions with bounded mixed derivatives of order r. In theappli
ation se
tion we shall use the software 1 of K. Petras to 
ompute thepoints and the weights of the Smolyak's 
ubature for integration over a d-dimensional unit 
ube.Proje
tion errorSimilarly to over-�tting in least square approximation, numeri
al integrationerrors infer errors on the 
omputed PC expansion 
oe�
ients that may be
ome

1 http://www-publi
.tu-bs.de:8080/ petras/software.html11



signi�
ant if the expansion degree is sele
ted too high. In fa
t, the polynomialdegree of the sought PC expansion is an hyper-parameter that need be appro-priately set. Indeed, for a �xed 
ubature formula it is usually observed thatthe proje
tion error in
reases with the polynomial degree of the PC expansion,and it exists an optimal polynomial degree d yielding the lowest proje
tion er-ror. This degree d is unknown in general and the proje
tion error 
an not be
omputed. However, the 
ubature formula exa
tly integrates polynomials withknown degree equal or less then d1. A 
lassi
al rule of thumb is then to sele
tan expansion degree ≤ d1/2.3 Global Sensitivity AnalysisWe 
onsider the 
lassi
al varian
e-based method of the Sobol sensitivity in-di
es for sensitivity analysis [1℄. We start by re
alling the main features ofthe Sobol fun
tional de
omposition (or ANOVA de
omposition), and then wede�ne Sobol's sensitivity indi
es.3.1 The Sobol fun
tional de
ompositionFor simpli
ity, let us 
onsider ve
tors of the random input ξ 
omposed of dindependent identi
ally distributed random variables ξi, with Ωd as range and
p(ξ) as probability density fun
tion (pdf). We denote the d-dimensional rangeby

Ωd = Ω × · · · × Ω︸ ︷︷ ︸
d times . (27)Sin
e the ξi are independent, p(ξ) =
∏

i p(ξi). The sto
hasti
 output y dependson the random input: y = f(ξ). We assume ξ ∈ Ωd 7−→ f(ξ) ∈ L2(Ωd, p(ξ)).The Sobol fun
tional de
omposition for every fun
tion f ∈ L2(Ωd, p(ξ)) is
f(ξ) =

∑

u⊆{1,2,...,d}
fu(ξu), (28)where u is a set of integers, ξu = (ξu1

, . . . , ξus
) with s = card(u) = |u| and

f∅ = f0. Ea
h of the 2d elements fu of the de
omposition, ex
ept f0, veri�esfor any ξi ∫

Ω
fu(ξu)p(ξi)dξi = 0, ∀u ∋ i. (29)This result implies the orthogonality of the fun
tions fu, i.e.

∫

Ωd

fu(ξu)fv(ξv)p(ξ)dξ = 0, ∀u 6= v. (30)12



Furthermore, the Sobol de
omposition is unique. The Sobol fun
tions 
an be
omputed using the relation
fu(ξu) =

∫

Ωd−|u|
f(ξ)p(ξ∼u)dξ∼u −

∑

v⊂u
v 6=u

fv(ξv), (31)where ξ∼u is the ve
tor ξ without the elements of u. For example
ξ∼{i} = (ξ1, . . . , ξi−1, ξi+1, . . . , ξd). (32)3.2 The Sobol sensitivity indi
esWe start by de�ning the varian
e of the output y = f(ξ), denoted D andthe varian
es Du, often 
alled 
onditional varian
es in the litterature, of thefun
tions fu of the Sobol de
omposition:

D =
∫

Ωd

f 2(ξ)p(ξ)dξ − f 2
0 , (33)

Du =
∫

Ω|u|
f 2

u(ξu)p(ξu)dξu. (34)
Du 
an be expressed as a 
ombination of 
onditional varian
es:

Du = V (E[y|ξu]) −
∑

v⊂u
v 6=u
v 6=∅

Dv, (35)where E and V denote the probabilisti
 expe
tation and varian
e operators.Thanks to the orthogonality of the de
omposition, the sum of the varian
es
Du is the varian
e of y, i.e.

D =
∑

u⊆{1,2,...,d}
u 6=∅

Du. (36)The Sobol sensitivity indi
es are de�ned by,
Su ≡ Du

D
, (37)so that ∑

u⊆{1,2,...,d}
u 6=∅

Su = 1. (38)
Su is 
alled an s-order sensitivity index if |u| = s. Ea
h of the Sobol sensitivityindi
es, Su, measures the sensitivity of the varian
e of y due to the intera
tionbetween the variables ξu, without taking into a

ount the e�e
t of the variables13



in ξv for v ⊂ u and v 6= u. For example the se
ond order sensitivity index
S{i,j}, expresses the sensitivity of the varian
e of y with regards to ξi and ξj,without taking into a

ount the e�e
t of ea
h variables separately (whi
h arein turns measured by Si and Sj).There are 2d−1 Sobol's sensitivity indi
es. This number be
omes qui
kly largewhen d in
reases. To ease the interpretation and analysis when d in
reases,Homma and Saltelli [2℄ have introdu
ed the total indi
es, noted STi

, whi
hexpress the total sensitivity of the varian
e of y due to a variable ξi, i.e. itssensitivity with ξi alone and all its intera
tions with the others variables:
STi

≡
∑

u∋i

Su. (39)For example for d = 3, we have,
ST1

= S{1} + S{1,2} + S{1,3} + S{1,2,3}. (40)We 
an also express the total indi
es using the probabilisti
 form:
STi

=
E[V (y|ξ∼{i})]

V (y)
. (41)A useful property, to be used in the next se
tion for the 
omputation of thetotal indi
es, is

1 =
V (E[y|ξ∼{i}])

V (y)
+

E[V (y|ξ∼{i})]

V (y)
︸ ︷︷ ︸

STi

. (42)
4 Computation of Sobol's indi
es4.1 Computation of the indi
es by a Monte-Carlo samplingLet us 
onsider a sample set of n realizations of the input variables {ξ(i)}n

i=1.The sample estimates of the average, E[y] = f0, and the varian
e, D = (E[y2]−
E[y]2), are

f̂0 =
1

n

n∑

i=1

f
(
ξ(i)

)
, (43)

D̂ =
1

n

n∑

i=1

f 2
(
ξ(i)

)
− D̂∅, (44)14



where D̂∅ ≡ f̂0

2. To 
ompute Du from Eq. (35), we have to estimate the 
on-ditional varian
e V (E[y|ξu]). The sample estimate of the 
onditional varian
eis
V (E[y|ξu]) = E[E[y|ξu]

2] − E[E[y|ξu]]
2 = E[E[y|ξu]

2] − E[y]2

≈ 1

n

n∑

i=1



 1

n

n∑

j=1

f(ξ(j)
∼u, ξ

(i)
u )




2

− f 2
0 . (45)The 
omputational 
ost of this estimate is in O(n2), and is too expensive tobe used in pra
ti
e. Sobol [1℄ proposed a less expensive method to approxi-mate the indi
es by Monte-Carlo sampling. This method 
omputes the terms

E[E[y|ξu]
2] as a unique integral. This is a
hieved by making use of two inde-pendent sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1. Using these two sample sets, the
onditional varian
e 
an be re
asted in

E[E[y|ξu]
2] = E[E[y|ξu] E[y|ξu]]

=
∫ (∫

f(ξ∼u, ξu)p(ξ∼u)dξ∼u

)(∫
f(ξ∼u, ξu)p(ξ∼u)dξ∼u

)
p(ξu)dξu

=
∫ ∫ ∫

f(ξ)f(η∼u, ξu)p(ξ)p(η∼u)dξdη∼u. (46)Using this formula, and after some manipulations, the sample estimate of Dube
omes:
D̂u =

1

n

∑

i=1

f
(
ξ(i)

)
f
(
ζ(i)

u

)
−
∑

v⊂u
v 6=u

D̂v, (47)where
(ζj)

(i)
u =





ξ
(i)
j if j ∈ u,

η
(i)
j otherwise.For example, if u = {j} we have

D̂{j} =
1

n

∑

i=1

f
(
ξ

(i)
1 , . . . , ξ

(i)
d

)
f
(
η

(i)
1 , . . . , η

(i)
j−1, ξ

(i)
j , η

(i)
j+1, . . . , η

(i)
d

)
− D̂∅.Finally the estimate of the Sobol sensitivity indi
es are given by Eq. (37):

Ŝu =
D̂u

D̂
. (48)It is seen that the numeri
al 
ost (i.e. the total number of fun
tion evalu-ations) for the estimation of E[E[y|ξu]

2] is in O(2n). Therefore, using thesame sample sets to 
ompute all the indi
es, the method requires a total of
n×(
ard({v ⊂ u, v 6= ∅}) + 1) fun
tion evaluations to estimate Ŝu. As a result,15



the evaluation of all the (2d − 1) sensitivity indi
es requires O(n2d) evalua-tions of f . This 
omplexity 
an be greatly redu
ed if one is interested in thetotal indi
es only. In fa
t, expressing the total indi
es from the 
onditionalvarian
es (see Eq. (42)),
STi

= 1 −
V (E[y|ξ∼{i}])

V (y)
, (49)and using

V (E[y|ξ∼{i}]) =E[E[y|ξ∼{i}]
2] − E[E[y|ξ∼{i}]]

2 = E[E[y|ξ∼{i}]
2] − f 2

0

=
∫ ∫ ∫

f(ξ)f(ξ∼{i}, η{i})p(ξ)p(η{i})dξdη{i} − f 2
0 , (50)one obtains the sample estimates of the total indi
es

STi
= 1 − 1

D̂

(
1

n

∑

l=1

f
(
ξ(l)

)
f
(
ζ

(l)
{i}
)
− D̂∅

)
, (51)where

(ζj)
(l)
{i} =






η
(l)
j if j = i,

ξ
(l)
j otherwise.Using Eq. (51), the 
omputational 
ost for the 
omputation of the d totalindi
es is redu
ed to O(n(d+1)). In the appli
ation se
tion, we shall use LHSte
hniques [21℄ to 
onstru
t the sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1.4.2 Computation of the indi
es by a Quasi Monte-Carlo methodOne may also use Quasi Monte-Carlo (QMC) sequen
es (see [22℄) to generatethe sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1 to be used in Eqs. (47,51). In theexample Se
tion 5, we used QMC sequen
es based on Sobol's sequen
es (seeGSL - GNU S
ienti�
 library 2 ). We are well aware that the sample sets have tobe independent to estimate the 
onditional varian
es involved in Eqs. (47,51).In pra
ti
e, we generate a unique sample set, of size n, but with 2d dimensionsas in [2℄. The �rst d dimensions are a�e
ted to {ξ(i)}, while the remaining ddimensions are a�e
ted to {η(i)}. Numeri
al tests (see below) have shown asigni�
ant improvement of the 
onvergen
e of the sensitivity index estimateusing the sample sets generated from QMC sequen
es, 
ompared to the LHSsampling. Still, further explanations and analysis are required to understandand fully justify the use of QMC sequen
es with Eqs. (47,51).

2 http://www.gnu.org/software/gsl/ 16



4.3 Computation of Sobol's indi
es using PCFor f ∈ L2(Ωd, p(ξ)), we denote g its PC expansion trun
ated at order p:
f(ξ) ≈ g(ξ) =

P∑

k=0

βkΨk(ξ), P + 1 =
(p + d)!

p!d!
. (52)The elements fu of the Sobol de
omposition of f are approximated by theelements gu of the de
omposition of g:

fu ≈ gu, ∀u. (53)It is also 
lear that the PC-expansion trun
ated at order p of an element
fu of the Sobol de
omposition of f is equal to the element gu of the Sobolde
omposition of g, the PC-expansion trun
ated at order p of f . Then, theinterest of using an intermediate proje
tion of f on a PC basis, in view ofthe determination of the sensitivity indi
es, 
omes from the fa
t that the
omputation of the Sobol de
omposition of a PC expansion is simple andimmediate. Indeed, the expression of an element gu of the Sobol de
ompositionof the PC-expansion g, is simply expressed by

gu(ξu) =
∑

k∈Ku

βkΨk(ξu), (54)where the set of indi
es Ku is given by
Ku =



k ∈ {1, . . . , P}|Ψk(ξ) =

|u|∏

i=1

φαk

i

(ξui
), αk

i > 0



 . (55)It is stressed that the indi
es sets Ku depend only on the PC basis and noton the fun
tion f . Moreover, thanks to the orthogonality of the PC basis, wehave a simple expression for the varian
e and 
onditional varian
es:

D̂ ≈
P∑

k=1

β2
k 〈Ψk, Ψk〉 , D̂u ≈

∑

k∈Ku

β2
k 〈Ψk, Ψk〉 . (56)Finally, the Sobol indi
es of f are approximated by

Su ≈ Ŝu =

∑
k∈Ku

β2
k 〈Ψk, Ψk〉∑P

k=0 β2
k 〈Ψk, Ψk〉

, (57)and Eq. (39) is used to 
ompute the total indi
es. The previous expressionsshow that the determination of the Sobol de
omposition and sensitivity indi
esis immediate as soon as the PC expansion of f is known. Thus, the methodwill be e�
ient provided that the 
omputation of the PC 
oe�
ients is a
-
urate and not too expensive. In the 
ontext of non-intrusive methods (see17



Se
tion 2.3), the 
omputational 
ost of the PC expansion essentially s
aleswith the number of fun
tion evaluations (or model resolutions) needed to es-timate 
orre
tly the PC 
oe�
ients. This number of evaluations is in turnsessentially related to the smoothness of the output with regards to the un-
ertain input whi
h 
ontrols the expansion order and 
onvergen
e rate of thesolution method (e.g. of the 
ubature formula). Consequently, the proje
tion ofthe output on a PC basis is expe
ted to signi�
antly redu
e the 
omputational
ost of the Sobol sensitivity indi
es, 
ompared to alternative methods su
h asMC and QMC, for smooth output. This 
laim is veri�ed in the examples ofthe next se
tion.5 ExamplesWe illustrate the use of PC expansions for the determination of the Sobol sen-sitivity indi
es on three 
lassi
al test fun
tions, namely the Ishigami fun
tion,a polynomial fun
tion and the so-
alled g-fun
tion. These test fun
tions aresele
ted to analyze the e�e
tiveness of the proposed method on smooth andnon-smooth fun
tions with variable number of un
ertain input dimensions.For the three test fun
tions, the un
ertain inputs have uniform distributions,but we expe
t the analysis to be independent of the statisti
al distributionof the un
ertain inputs. In all the tests, the PC expansions use multi-variateLegendre polynomials (the family of polynomials orthogonal for the uniformmeasure). The PC 
oe�
ients are 
omputed by means of NISP as des
ribedin Se
tion 2.3, using 
oarse 
ubature formulas based on Smolyak s
heme [19℄and imbedded Féjer's one-dimensional formulas [23℄.The error on the 
omputed sensitivity indi
es Su from the PC expansion ofthe output (i.e. using Eq. (57)) is 
ompared with the estimates obtained us-ing Monte-Carlo (LHS) and Quasi Monte-Carlo methods as des
ribed in Se
-tion 4.1 (i.e. using Eq. (47)). Spe
i�
ally, we 
ompare the three methods (PC,MC and QMC) for three error 
riteria: the sum of the L1-error on the 2d − 1indi
es (noted e), the sum of the L1-error on the d �rst order indi
es, (noted
ei) and the sum of the L1-error on the d total indi
es (noted eT ):

e≡
∑

u⊆{1,2,...,d}
u 6=∅

|Su − Ŝu|, (58)
ei ≡

∑

i∈{1,2,...,d}
|S{i} − Ŝ{i}|, (59)

eT ≡
∑

i∈{1,2,...,d}
|STi

− ŜTi
|. (60)18



Note that on the 
ontrary of PC method, the MC and QMC methods estimatethe total indi
es STi
from Eq. (51) and not Eq. (39). Also, the estimates beingrandom for the MC method, the errors are averaged over 100 independentrealizations of the LHS sample sets.5.1 Ishigami fun
tionThe �rst tests use the Ishigami fun
tion [24℄:

f(ξ) = sin(ξ1) + a sin2(ξ2) + b ξ4
3 sin(ξ1), (61)where ξi ∼ U([−π, π]) for i = 1, 2, 3. This fun
tion is smooth, non-linear andnon-monotonous. The exa
t varian
e and the 
onditional varian
es are

D =
a2

8
+

bπ4

5
+

b2π8

18
+

1

2
,

D{1} =
bπ4

5
+

b2π8

50
+

1

2
, D{2} =

a2

8
, D{3} = 0,

D{1,2} =0, D{1,3} =
b2π8

18
− b2π8

50
, D{2,3} = 0, D{1,2,3} = 0.We set a = 7 and b = 0.1.To 
ompute the PC expansion of f , we need �rst to sele
t an expansion order

p for the NISP. The expansion order has to be sele
ted in relation with thelevel of the 
ubature formula. For the Féjer one-dimensional formula sele
tedin this work, the Smolyak formula of level l is exa
t for polynomial integrandof degree ≤ 2l. If f was polynomial of degree p, setting l = p would yieldexa
t PC 
oe�
ients up to order p. However, the Ishigami fun
tion is notpolynomial and numeri
al tests are needed to properly sele
t p given l. Weshow in Figure 2 the errors e for di�erent values of l and �xed p ≤ l (left plot).It is seen that the errors do not de
rease mu
h when we in
rease the level lfor �xed order p ≤ l. In fa
t, when we in
rease the level l of the formula with
p held �xed, the approximation error on the integrals (so on the expansion
oe�
ients of f) be
omes negligible: the error e on the sensitivity indi
es isthen dominated by the trun
ature error of the PC expansion. Consequently,
p = l appears to be a relevant rule for the sele
tion of the expansion ordergiven l. This is 
on�rmed by the right plot in Figure 2, whi
h depi
ts theresulting errors on the sensitivity indi
es for di�erent relations between p and
l. This plot demonstrates that the same 
onvergen
e rates are obtained forthe di�erent rules (provided that p ≤ l), but that the rule p = l is the leastexpensive one in terms of number of fun
tion evaluations (whi
h in
reaseswith l). 19
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Figure 2. The left plot shows the errors e on the sensitivity indi
es 
omputed fromthe PC-expansion using di�erent orders of trun
ature (p) and levels (l) for the 
u-bature formula as indi
ated. The right plot shows the errors e on the sensitivityindi
es 
omputed from the PC-expansion using di�erent rules for the sele
tion ofthe expansion order p at given level l of the 
ubature formula.Next, the errors on the sensitivity indi
es, 
omputed using the rule p = l inthe NISP, are 
ompared with the errors for the MC and QMC methods. The
omparison is provided in terms of the three errors 
riteria (e, eT and ei) inFigures (3-5) respe
tively. The errors are reported as fun
tions of the numberof fun
tion evaluations to allow for a dire
t assessment of the respe
tive meth-ods e�
ien
ies. It is �rst observed that the 
onvergen
e rates of the methodsare essentially the same for the three error 
riteria. However, the 
onvergen
erates of the three methods are di�erent. Spe
i�
ally, for the PC method a
onvergen
e rate in 1
n6 is reported, while it is only 1

n
for QMC and 1√

n
for MC(averaged over 100 LHS samples).The higher 
onvergen
e rate of the errors on the sensitivity indi
es with thenumber of fun
tion evaluations reported for the PC method is explained bythe smoothness of the Ishigami fun
tion: this smoothness ensures a fast 
on-vergen
e of both the polynomial approximation and 
ubature formula. Thisfast 
onvergen
e of the PC method is in fa
t expe
ted for any smooth fun
-tion: for smooth fun
tions and low to medium dimensional problems, the PCmethod is expe
ted to exhibit a spe
tral-like asymptoti
 
onvergen
e rate.

20
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Figure 3. Errors e on sensitivity indi
es 
omputed from PC expansions, Quasi Mon-te-Carlo sequen
es and Monte-Carlo simulations (averaged over 100 LHS samplesets) as a fun
tion of the number of fun
tion evaluations.
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5.2 Polynomial fun
tionsThe fast 
onvergen
e of the sensitivity indi
es for the PC method on theIshigami fun
tion may have been attributed to the low dimensionality of thetest fun
tion (d = 3). To support the 
laim of spe
tral asymptoti
 
onvergen
erates of the PC method for any smooth fun
tion, we 
onsider the followingpolynomial fun
tion,
f(ξ) =

d∏

i=1

2ξi + 1

2
, (62)with ξi ∼ U([0, 1]) for i = 1, . . . , d. The exa
t Sobol's sensitivity indi
es andtotal indi
es of f have for expressions:

Su =
2−|u|

(13
12

)d − 1
, STi

= 1 − (13
12

)d−1 − 1

(13
12

)d − 1
. (63)The polynomial fun
tion f has a degree equal to d su
h that its exa
t PCproje
tion would require a 
ubature formula with level l = d. For large d, thisresults in a prohibitively large number of 
ubature points, so the proje
tion
an be only approximated. Furthermore, if we sele
t an expansion order p < d,it is 
lear from Eq. (57) that

Ŝu = 0, ∀|u| > p. (64)Numeri
al limitations impose l < d for large d, and for the 
onsistan
y of theintegration method we have to sele
t p ≤ l, so we 
an not expe
t to 
omputesensitivity indi
es of order > l. Consequently, the e�e
ts of the PC trun
atureand approximated proje
tion on the 
omputed sensitivity indi
es have to beinvestigated. To do so, we set d = 12. Figure 6 presents the 
onvergen
e withthe number of fun
tion evaluations of the errors eT on the total sensitivityindi
es for PC (with the rule p = l), QMC and MC methods. We re
all that forthe PC method, the total sensitivity indi
es are 
omputed from Eq. (39) andtherefore in
orporate the errors on all the sensitivity indi
es (in
luding thosenegle
ted by the PC trun
ature); on the 
ontrary, QMC and MC methods usethe favorable dire
t estimation based on Eq. (51). Figure 6 shows that even-though the 
ubature formulas used do not allow for an exa
t determinationof the PC 
oe�
ients (we have l < d in all 
ases), the STi

omputed withthe PC method are mu
h more a

urate than for MC and QMC methods.Furthermore, the spe
tral 
onvergen
e of the PC expansion 
an be seen fromthe improvement of the 
onvergen
e rate of the PC method when the numberof evaluation points in
reases (or equivalently when l = p is in
reased). Onthe 
ontrary, the 
onvergen
e rates of MC and QMC methods are found toremain 
onstant.To gain further eviden
e on the spe
tral 
onvergen
e of the PC expansion and23
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Figure 6. Errors eT on total sensitivity indi
es 
omputed from PC expansions, QuasiMonte-Carlo sequen
es and Monte-Carlo simulations (averaged over 100 LHS samplesets) as a fun
tion of the number of fun
tion evaluations.total sensitivity estimates, we have plotted in Figure 7 the errors eT for thePC method only, as a fun
tion of the number n of fun
tion evaluations anddi�erent dimensionality d of the polynomial fun
tion (it is re
alled that for thistest fun
tion, the PC method gives the exa
t sensitivity indi
es for l = d). It isseen that for all the d tested, the 
onvergen
e rates in
rease with the numberof fun
tion evaluations. However, the 
onvergen
e rates and error magnitudesat a given number of fun
tion evaluations (i.e. for a �xed 
omputational 
ost)deteriorate as d in
reases. This trend indi
ates that there is a dimensionality
dmax above whi
h MC and QMC methods are expe
ted to perform better thanthe PC method: for d > dmax a prohibitive number of fun
tion evaluations isne
essary to rea
h the spe
tral 
onvergen
e domain of the PC method.
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Figure 7. Errors eT on total sensitivity indi
es 
omputed by PC expansions fordi�erent numbers of dimension d, as a fun
tion of the number of fun
tion evaluations.24



5.3 G-fun
tionThe third test fun
tion is the so-
alled g-fun
tion [25℄:
f(ξ) =

d∏

i=1

|4ξi − 2| + ai

1 + ai
, (65)where ξi ∼ U([0, 1]) for i = 1, . . . , d. This fun
tion is non-smooth and non-monotonous. The exa
t varian
e and the 
onditional varian
es are

D =
d∏

i=1

(D{i} + 1), D{i} =
1

3(1 + ai)2
, Du =

|u|∏

i=1

D{ui}. (66)We set ai = (i − 1)/2 and d = 5. This fun
tion is a 
hallenging test for thePC expansion, due to the presen
e of the absolute value whi
h �rst preventsthe spe
tral 
onvergen
e of the PC expansion, and se
ond 
ompromises the
onvergen
e of the 
ubature formula (f /∈ W2
5 ). As a 
onsequen
e, the se-le
tion of PC trun
ature p, for given level l of the 
ubature formula, is lessstraightforward than for the previous smooth fun
tions. This is illustrated inthe left plot of Figure 8, where plotted are the evolutions of the errors e for�xed PC order p and in
reasing 
ubature level l. This plot shows that, onthe 
ontrary of the observations for the smooth fun
tions (see Figure 2), theerrors do not level-o� when l in
reases, denoting that the integration errorsare at least of the same order as the trun
ature errors. This is not a surprise
onsidering the error estimate given in the end of Se
tion 2.3.3. Also, the rightplot of Figure 8, where plotted are the evolutions of the errors e with the level

l and di�erent rules for 
hoosing the expansion order p, 
learly indi
ates thatthere is no rule that performs better than the others. Consequently, we makein the following the 
onservative 
hoi
e of using the rule p = l − 4.Figures (9-11) 
ompare the PC, MC and QMC methods for the di�erent error
riteria on the sensitivity indi
es. These results show that the 
onvergen
erates of the di�erent errors are essentially the same for PC and QMC methods.On the 
ontrary of the results for the smooth fun
tions, the 
onvergen
e ratesfor the PC method do not improve when the number of fun
tion evaluationsin
reases. This trend is explained jointly by the loss of spe
tral 
onvergen
efor the PC expansion, and by the inadequa
y of Féjer's quadrature formulato approximate integrals of non-smooth fun
tions. It is however interesting tonote that the PC method remains 
ompetitive 
ompared to MC and QMCmethods. 25
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Figure 8. Errors e on the sensitivity indi
es 
omputed from PC-expansions trun
atedat �xed orders p as a fun
tion of the level l of the 
ubature formula (left plot). Errors
e on the sensitivity indi
es 
omputed from PC-expansions with di�erent the level lof the 
ubature formula and di�erent rules of trun
ature order as indi
ated (rightplot).
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Figure 9. Errors e on sensitivity indi
es 
omputed from PC expansions, Quasi Mon-te-Carlo sequen
es and Monte-Carlo simulations (averaged over 100 LHS samplesets) as a fun
tion of the number of fun
tion evaluations.6 Con
lusionsIn this paper, we have presented a method for the 
omputation of the Sobolsensitivity indi
es of a fun
tion (or model output) involving independent ran-dom input, with known probability distributions. The method uses the poly-nomial 
haos expansion of the fun
tion to dire
tly 
ompute the 
onditional26
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Figure 10. Errors eT on total sensitivity indi
es 
omputed from PC expansions,Quasi Monte-Carlo sequen
es and Monte-Carlo simulations (averaged over 100 LHSsample sets) as a fun
tion of the number of fun
tion evaluations.
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Figure 11. Errors ei on �rst order sensitivity indi
es 
omputed from PC expansions,Quasi Monte-Carlo sequen
es and Monte-Carlo simulations (averaged over 100 LHSsample sets) as a fun
tion of the number of fun
tion evaluations.varian
es and Sobol's sensitivity indi
es. The interest of this approa
h lies intwo essential points:
• the simple and immediate 
omputation of the sensitivity indi
es from thePC-expansion,
• the di�erent methods available for the determination of the PC-expansion(Galerkin proje
tion, Non-Intrusive Spe
tral Proje
tion and least square27



approximation).The appli
ation of the PC method is entirely 
onditioned on the availability ofthe PC expansion and its a

ura
y. For smooth fun
tions, where the PC basisallows for spe
tral 
onvergen
e of the PC expansions, the method is expe
tedto exhibit spe
tral-like 
onvergen
e rates and therefore to outperform the al-ternative methods (Monte-Carlo, Quasi Monte-Carlo). This expe
tations areveri�ed for the two smooth fun
tions tested, whi
h PC expansions were 
om-puted by means of Non-Intrusive Spe
tral Proje
tions involving sparse 
uba-ture formulas. This pro
edure allowed for a dire
t 
omparison of the methodse�
ien
ies, by 
omparing the respe
tive errors on the sensitivity indi
es as afun
tion of the number of fun
tion evaluations.The examples provided also demonstrate that the proposed method su�ersfrom the usual limitations of the PC expansions. The �rst limitation has fororigin the exponential growth of the basis dimension with the number of inde-pendent un
ertain inputs. From the 
omputational point of view, the growthof the basis dimension results in a numeri
al 
ost that qui
kly be
omes pro-hibitive (for instan
e the evolution with d of the number of fun
tion evalua-tions in the non-intrusive te
hniques or �
urse of dimensionality�). The se
ondlimitation is due to the loss of the spe
tral 
onvergen
e of the PC expansionfor non-smooth fun
tions, as illustrated by the last example of Se
tion 5. How-ever, re
ent works and on-going resear
hes on PC approximations (e.g. multi-resolution analysis [13,14℄ and adaptive 
ubature te
hniques [26,27℄) allow forsome optimism, even-though Monte-Carlo methods will 
ertainly remain theonly viable alternative for large dimensional problems (say for d > 20). Fi-nally, we would like to mention that PC expansions may be a suitable way toperform sensitivity analysis in situations where the input parameters are notindependent [28℄.Referen
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