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1 IntrodutionIn mathematial modelling, sensitivity analysis (SA) studies variations in theoutput of a model (numerial or other) with regards to some inputs. There aretwo ategories of methods for SA: loal sensitivity analysis and global sensitiv-ity analysis. Loal sensitivity analysis is interested on the loal variation of themodel with the inputs using gradients methods, while global sensitivity anal-ysis deals with global variations in the output due to the unertainties on the
∗ Corresponding author. T. Crestaux, DM2S-SFME, Centre d'Etude de Salay, F-91 191 Gif sur Yvette, Frane. Tel: 33-169-08-9978; Fax: 1-169-08-9999.Email addresses: thierry.restaux�ea.fr (Thierry Crestaux), olm�limsi.fr(Olivier Le Maître), jean-mar.martinez�ea.fr (Jean-Mar Martinez).Preprint submitted to Elsevier Siene September 5, 2008



inputs. Moreover SA is usually said to be qualitative when it lassi�es the in-puts aording to their respetive impats on the output variations and quan-titatively when it gives a measure of these impats. Generally a quantitativelySA is also qualitative. SA had been largely studied and many approahes havebeen proposed. In this artile we are interested in global sensitivity analysisusing Sobol's indies [1℄ to determine input variables (or groups of variables)mostly responsible both qualitatively and quantitatively of the unertainty inthe model output [2℄. Indeed in unertainty quanti�ation (UQ) it is impor-tant too to determine the unertain inputs whih have the largest impat onthe variability of the model output. The Sobol's indies are obtained from theANOVA deomposition of the output. Several methods had been developedto ompute these indies diretly through sampling using Monte-Carlo andQuasi-Monte-Carlo methods or by building a meta-model to approximate theANOVA deomposition and then ompute the indies from the meta-modelwith less model evaluations. The work presented in this artile belong to themeta-modeling approah using Polynomial Chaos expansions to approximatethe model output.Polynomial Chaos (PC) expansions [3℄ have been used for UQ in a large vari-ety of domains (e.g. in solid mehanis, �uid �ows, thermal sienes,. . . ). PCexpansions is a probabilisti method onsisting in the projetion of the modeloutput on a basis of orthogonal stohasti polynomials in the random inputs.The stohasti projetion provides a ompat and onvenient representation ofthe model output variability with regards to the inputs. We show in this paperthat the Sobol's sensitivity indies [1℄ (and even more the ANOVA deompo-sition) (or Sobol's deomposition) of the model output) an be immediatelydedued from the PC expansion of the model output.We an see this PC approah to ompute Sobol's indies as one HDMR (HighDimensional model representation) method, indeed HDMR methods onsist inapproximating the omponent funtions, fu, of a �nite hierarhial orrelationfuntion expansion,
f(ξ) =

∑

u⊆{1,2,...,d}
fu(ξu). (1)We will show that the PC expansion of the model output diretly providesone of these funtional deompositions. RS-HDMR and ut-HDMR (see [4℄,[5℄and [6℄) are other HDMR approahes. RS-HDMR uses sampling tehniques toompute approximations of the omponent funtions of the ANOVA deom-position (whih is the same that we ompute using PC expansion) while theut-HDMR uses interpolation through the model values on lines, planes andhyperplanes passing through a ut enter point. One essential di�erene withthe PC expansion based approah of lassial HDMR methods is that theylimit themselves to the determination of only the low order omponents ofthe funtional deomposition. This is based on the assumption that for mostphysial systems only low order orrelations of the inputs will have impat on2



the output. However the RS-HDMR an use the same orthonormal polyno-mial basis than the PC expansion. So in a ertain way the RS-HDMR withorthonormal polynomials (see [4℄) is similar to PC expansion restrited to loworder orrelations polynomials with the oe�ients omputed by Monte-Carloapproximation of the projetions. Monte-Carlo approximation is less preisefor smooth funtions than the projetion by Smolyak's ubature exposed inthis artile when the dimension is not too high. Speaking of quadrature teh-niques for numerial integration, in [5℄ the authors propose to ompute theANOVA deomposition using quadrature and omputing the points on theut-HDMR expansion. Nevertheless they don't use the Smolyak's ubature.These meta-modeling methods have been widely used for SA, espeially withnonparametri tehniques whih have shown their e�ieny in SA using vari-ables seletion approahes for a qualitatively SA (see [7℄) or approximationof the ANOVA deomposition for quantitatively SA (see [8℄). It has beenshown that these meta-modeling methods an be muh more e�ient thanthe sampling method for the omputation of the Sobol's indies, by relying ona signi�antly lower number of model evaluations. However, the e�ieny ofthe meta-modeling methods highly depends on the struture and omplexityof the onsidered model, whih make their general omparison di�ult. There-fore, the e�ieny of the proposed PC expansion for SA and determination ofthe Sobol's indies is here only ontrasted with sampling methods (LHS andQMC). Future works will fous on the omparison of the PC approah withalternative meta-modeling methods and also with the Bayesian approah (see[9℄). It is also important to note that the PC expansion of the model outputan be obtained by means of Galerkin projetion shemes when the model isa set of equations (see for instane [3℄) with potential omputational savingsompared to the integration approah used in this work.The paper is organized as follow. In Setion 2, we provide a brief summaryof Wiener's Homogeneous Chaos theory [10℄ and of the PC representations.We reall the priniples of the solution methods used for the determinationthe PC expansion of a model output. We emphasize on the so alled nonintrusive spetral projetion (NISP) and ubature tehniques, whih we use inthe numerial examples. Setion 3 reviews Sobol's funtional deompositionand de�ne the Sobol sensitivity indies. In Setion 4, we provide details onthe pratial omputation of the Sobol's indies via Monte-Carlo samplingstrategies, emphasizing on the omputational omplexity. We then make theonnetion between the Sobol funtional deomposition and the PC expansionof the model output. This onnetion naturally leads to exat expressions forthe Sobol sensitivity indies in terms of the PC expansion oe�ients. InSetion 5, we present three numerial examples to illustrate the e�ienyand the limitations of the omputation of Sobol's sensitivity indies from PCexpansions. The e�ieny of the PC approah is ompared and ontrastedwith the Monte-Carlo and Quasi-Monte-Carlo sampling strategies. Finally, in3



Setion 6 we summarize the main �ndings of this work and we provide somereommendations for future improvements of the method.2 Polynomial Chaos Expansions2.1 Hermite Polynomial ChaosPolynomial Chaos expansions, introdued by Wiener in [10℄, approximate anywell behaved random variable (e.g. a seond order one) by a series of poly-nomials in entered normalized Gaussian variables. In the following we usethe notations of [3℄. Let Ω be the spae of random events and Θ the spaeof funtions whih assoiate to the elements ω ∈ Ω a value in R. A funtion
θ : ω ∈ Ω 7−→ R is a random variable. Let {ξi}∞i=1 be an in�nite but ountableset of independent normalized Gaussian random variables. We de�ne:
• Γ̂p the spae of all polynomials of degree less or equal to p in {ξi(ω)}∞i=1,
• Γp the set of polynomials of Γ̂p whih are orthogonal to Γ̂p−1,
• Γ̃p the spae generated by Γp:

Γ̂p = Γ̂p−1 ⊕ Γ̃p, Θ =
∞⊕

i=0

Γ̃i. (2)The sub-spae Γ̃p of Θ is alled the p-th Homogeneous Chaos and Γp is alledPolynomial Chaos of order p. In fat, the Polynomial Chaos of order p is theset of all polynomials of degree p in all possible ombinations of the randomvariables in {ξi(ω)}∞i=1. The Polynomial Chaos expansion of a seond orderrandom variable θ(ω) is
θ(ω)= a0Γ0 +

∞∑

i1=1

ai1Γ1(ξi1(ω))

+
∞∑

i1=1

i1∑

i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ai1i2i3i4Γ4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + ... (3)Cameron and Martin have shown in [11℄ that this expression is onvergent inthe L2-sense. To simplify the notations and to ease the formal manipulation4



of PC expansions, we de�ne an univoal relation between funtionals Γ() andnew funtionals Ψ(), and rewrite the PC expansion as:
θ(ω) =

∞∑

k=0

θkΨk(ξ(ω)), ξ = {ξ1, ξ2, ...}. (4)We shall adopt in the following the lassial onvention onsisting in taking
Ψ0 as the zero order polynomial: Ψ0 = 1. In Eq. (4), θk are deterministioe�ients, namely the PC oe�ients of the expansion of the random variable
θ, while the Ψk are random polynomials, orthogonal in the L2-spae, withregards to the inner produt, denoted 〈, 〉, based on the Gaussian measure:
〈Ψi, Ψj〉 ≡

∫
Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij 〈Ψi, Ψi〉 , p(ξ) =

∏

l

exp[−ξ2
l /2]√

2π
. (5)In fat, the Ψi are multivariate Hermite polynomials (the produt of univariateHermite polynomials).For pratial alulations, a �nite number d of Gaussian variables are to beused, leading to �nite dimensional Polynomial Chaos expansions:

θ(ξ1, ξ2, ..., ξd) =
∞∑

k=0

θkΨk(ξ1, ξ2, ..., ξd). (6)This is not a limitation, sine most physial problems we are fousing oninvolve a �nite number of random inputs (parametri unertainty). Moreoverthe expansion is onvergent, as we work in a �nite dimensional Hilbert spaeand Hermite polynomials form an Hilbert basis. Also for pratial reasons, PCexpansions have to be trunated in terms of polynomial degree. Let p denotethe order of the PC expansion. The �nite dimensional and �nite order PCexpansion of a random variable θ is �nally
θ(ξ) ≈

P∑

k=0

θkΨk(ξ), ξ = {ξ1, . . . , ξd}, (7)where the basis dimension is related to d and p by
P + 1 =

(p + d)!

p! d!
. (8)2.2 Generalized Polynomial ChaosIn [12℄, Xiu and Karniadakis used the Askey sheme to generalize Wiener'sPolynomial Chaos expansion to ommon non-Gaussian measures. This gener-alization an be useful to improve the expansion onvergene for non-Gaussian5



random variables. Table 1 reports the orrespondene between the randomvariable distribution and orthogonal polynomial family. The polynomials areorthogonal in the Hilbert spae orresponding to the support and the densityfuntion of the random variable; they form an Hilbert basis of the respetivespae. Type Random variable Orthogonal polynomial Supportdistribution familyContinuous Gaussian Hermite (−∞,∞)Gamma Laguerre [0,∞)Beta Jaobi [a, b]Uniform Legendre [a, b]Disrete Poisson Charlier {0, 1, 2, .....}Binomial Krawthouk {0, 1, 2, ...,N}Table 1Relation (Askey-sheme) between the random variable distribution and orthogonalpolynomial family [12℄.Denoting {φk}∞k=0 the one-dimensional orthogonal polynomials from the Askey-sheme, and assuming the random variables to be independent, the muti-dimensional Generalized Polynomial Chaos (GPC) basis {Ψi} is onstrutedby tensor produts of the orresponding one dimensional polynomials,
Ψi(ξ1, ξ2, ..., ξd) =

d∏

k=1

φαi

k

(ξk), |αi| ≡
d∑

k=1

αi
k ≤ p, i = 0, . . . , P. (9)2.3 Determination of PC-oe�ientsWe are interested in the unertainty quanti�ation and analysis for some out-put quantity y, whih depends on some random input D(ω). We assume thatthe unertain input is parameterized using a �nite set of d independent randomvariables ξ = {ξ1, . . . , ξd} with known densities p(ξ), i.e. D(ω) ≡ D(ξ(ω)).Clearly, the output y being a funtional of the random input it is also randomand we an write

y(D(ξ)) = y(ξ). (10)Let {Ψi} be an Hilbert basis of L2(ξ, p(ξ)) the spae of seond order randomvariables spanned by ξ. Assuming that y ∈ L2(ξ, p(ξ)), it has a onvergentPC expansion that we write as
y(ξ) =

∑

k

βkΨk(ξ). (11)6



Sine the PC-oe�ients fully determine a seond-order random variable, theknowledge of the βk in the expansion of the output y allows for a ompleteharaterization of the unertainty. It also makes expliit the funtional de-pendenes with regards to the input, a property that will be fully exploitedlater for the determination of the Sobol sensitivity indies.To improve the onvergene of the PC expansion, in situations where theoutput y presents non-smooth or disontinuous depedenes with regards to theunertain inputs, pieewise ontinuous polynomials expansions were reentlyproposed (e.g. using multi-wavelets and multi-resolution shemes [13,14,15℄and multi-element methods [16℄).We thus need e�ient proedures for the determination of the PC oe�ientsof the output y. In the following, we assume that y is the result of a numer-ial simulation, i.e. the output of a numerial ode involving a mathematialmodel. Classially, two lasses of methods are distinguished for the determi-nation of the PC oe�ients: the intrusive and non-intrusive methods.In the intrusive method, a weak solution of the mathematial model involv-ing the random input is sought by means of a Galerkin projetion of themodel equations on the PC basis [3℄. This proedure, shortly desribed inSetion 2.3.1, requires modi�ations of the numerial ode and is therefore in-trusive. On the ontrary, non-intrusive methods require realizations of the de-terministi ode only, for di�erent values of the input. Two suh non-intrusivemethods are desribed below: the least square approximation in Setion 2.3.2,and the non-intrusive spetral projetion (NISP [17℄) in Setion 2.3.3. TheNISP proedure being used in the examples of Setion 5, more details areprovided.2.3.1 Galerkin projetionLet us onsider the mathematial model M relating the random output y tothe input D. We write in a formal way
M(y(ξ); D(ξ)) = 0. (12)Substituting to y its PC expansion Eq. (11), trunated at order p, the modelequation is generally not satis�ed anymore but yields a residual. Imposing theresidual to be orthogonal to the expansion basis, it omes

〈
M

(
P∑

i=0

βiΨi(ξ); D(ξ)

)
, Ψk

〉
= 0, ∀k = 0, . . . , P. (13)It is seen that the Galerkin proedure leads to the resolution of a set of P + 1oupled problems. It usually requires an adaptation of the numerial ode.7



Furthermore, if the mathematial model involves omplex non-linearities, theGalerkin proedure an be a hallenging task and di�ult to implement. Tooverome these di�ulties, non-intrusive methods desribed below are useful.2.3.2 Least square approximationThe PC oe�ients an be estimated by solving a least square problem. Letus denote {ξ(i)} a sample set of the random parameters, and y = {y(i)} theorresponding set of simulation output, suh that
M

(
y(i); D

(
ξ(i)

))
= 0, ∀i. (14)Sine the determination of the output sample set uses the deterministi odeonly, the method is non-intrusive. Denoting β = (β0 . . . βP )T the vetor ofsought PC oe�ients in the trunated expansion of the output y, an approx-imation β̂ of β an be obtained by solving the least square problem

β̂ = arg min
β

n∑

i=1

(
y(i) −

P∑

k=0

βkΨk(ξ
(i))

)2

, (15)where n > P + 1 is the sample set size. Denoting
Z =




Ψ0(ξ
(1)) Ψ1(ξ

(1)) . . . ΨP (ξ(1))

Ψ0(ξ
(2)) Ψ1(ξ

(2)) . . . ΨP (ξ(2))... ... . . . ...
Ψ0(ξ

(n)) Ψ1(ξ
(n)) . . . ΨP (ξ(n))




, (16)
the well known solution of the least square problem is

β̂ = (ZT Z)−1ZTy, (17)where ZT Z is the Fisher matrix. It is to be noted that Least Square doesnot exploit the orthogonality of the polynomials. The sample sets an beonstruted by simple random sampling (SRS), Latin hyperube sampling(LHS), maximin LHS, . . . However, there is yet only empirial results on theway to onstrut the sample sets, and to hoose its size. To prevent over�tting,methods from regression and statistial learning an be used.In [18℄ the authorsonsider three methods to hoose the degree of the polynomial approximationin order to prevent over�tting: Adjusted R2, Early Stopping and WiloxonRank Sum Test. These methods an be used in the PC expansion ontext toprevent over�tting. 8



2.3.3 Non-intrusive spetral projetionOn the ontrary of the least square approximation, the non-intrusive spe-tral projetion (NISP) exploits the orthogonality of the PC basis. Taking theinner produt of the output PC expansion with Ψk and making use of theorthogonality of the basis, it omes
βk =

〈y(ξ), Ψk(ξ)〉
〈Ψk, Ψk〉

, ∀k. (18)Realling the de�nition of the inner produt,
〈f(ξ), g(ξ)〉 =

∫

Ωd

f(ξ)g(ξ)p(ξ)dξ, (19)where we have denoted Ωd the support of ξ and p(ξ) its joined density, it isseen that the determination of the PC oe�ients of the output redues tothe evaluation of (P + 1) d-dimensional integrals:
Ik ≡

∫

Ωd

y(ξ)Ψk(ξ)p(ξ)dξ. (20)In fat, Ik is the orrelation between the output and the k-th PC. Note thatthanks to the polynomial harater of the Ψk, the exat evaluation of 〈Ψk, Ψk〉is immediate.Numerial multi-dimensional integration or quadrature is a lassial problemand many methods have been proposed for this purpose. The numerial inte-gration methods an be reasted in the following generi form,
Ik ≈

n∑

i=1

y(ξ(i))Ψk(ξ
(i))w(i), (21)where ξ(i), w(i) are the integration points and weights respetively while n isthe number integration points. In our appliations, the numerial ost of theintegration sales essentially with n, sine it is dominated by the evaluation (ormodel resolution) of the output y for given ξ(i) using Eq. (14). The integrationmethods have spei� strengths and weaknesses, to be taken into aount whenseleting one of them. Let us reall the main properties of the most ommonintegration methods available:

• Monte-Carlo sampling is robust and onverges for any L2-funtion with aonvergene rate independent of the dimension d; however the asymptotirate is in 1/
√

n only.
• Quasi Monte-Carlo sampling is less robust than Monte-Carlo sampling asit involves some assumptions on the smoothness of the integrand. However,when these assumptions are satis�ed a onvergene rate in log (n)d/n isahieved. 9
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• Full tensorization of 1-d quadrature formula exhibits fast onvergene ratefor smooth integrand, but have a numerial ost saling with d exponen-tially: n = (n1)

d, with n1 the number of quadrature points in the 1-Dformula, see the left plot of Figure 1.
• Composite methods, based on an adaptive partition of the integration do-main, are robust with regards to the smoothness of the integrand, ahievefast onvergene rates, but have a numerial ost that sales exponentiallywith d.
• Cubature formulas based on Smolyak's oarse tensorization (see [19,20℄)have fast onvergene rate for smooth integrand and their numerial ostinreases less quikly than fully tensored formula (see the right plot in Fig-ure 1).In our appliations, the output is expeted to be relatively smooth while thePC are C∞. As a result, the integrand in Ik are expeted to be smooth. In thisontext, the integration formulas based on the Smolyak's partial tensorizationare thought to yield a good trade-o� between auray and numerial ost,for input involving a moderate number of random parameters, say for d < 15,while for higher dimensional problems Monte-Carlo methods are expeted toperform better. However, it is underlined that one usually has no a prioriknowledge on the smoothness of the output, so one has to be autious whenseleting a integration method. In the example setion, the Smolyak's methodwill used to perform the NISP of the output, so we found neessary to providemore details on the onstrution of the method.10



Smolyak's ubatureSmolyak's ubature formulas are based on partial tensorization of one-dimensionalquadrature formulas (see [19,20℄). Let us onsider for l = 0, 1, . . . a sequeneof 1-D integration formulas involving a number of points nl inreasing with l.We all l the level of the formula. The 1-D quadrature formula of level l, withpoints and weights ξ(i,l) and w(i,l) respetively, writes:
∫

Ω
f(ξ)p(ξ)dξ ≃ Q1

l f ≡
nl∑

i=1

w(i,l)f
(
ξ(i,l)

)
. (22)Setting Q1

0f = 0, the di�erene quadrature formula is de�ned as
∆1

k≥1f ≡
(
Q1

k − Q1
k−1

)
f. (23)Using a multi-index k = (k1, . . . , kd), the d-dimensional di�erene formula isthe tensor produt of 1-D di�erene quadrature:

∆kf = (∆1
k1
⊗ · · · ⊗ ∆1

kd
)f. (24)Then, the d-dimensional Smolyak's ubature formula of level l is onstrutedby the sum of tensor produts of di�erene quadratures, over a set of multi-indies k,

∫

Ωd

f(ξ)p(ξ)dξ ≃ Qd
l f =

∑

|k|≤l+d−1

∆kf, with l ∈ N, k ∈ N
d. (25)In pratie, imbedded one-dimensional quadrature formulas are used to min-imize the number of integrand evaluations. The Smolyak's ubature has aonvergene rate whih depends on the smoothness of the integrand. Speif-ially, for 1-D quadrature where nl = O(2l), the theoretial onvergene rateis in O(2−rll(d−1)(r+1)) for integrand f ∈ Wr

d , where
Wr

d :=

{
g : Ωd −→ R,

wwwww
∂|s|g

∂ξs1

1 . . . ∂ξsd

d

wwwww
∞

< ∞, si ≤ r

}
, (26)is the lass of funtions with bounded mixed derivatives of order r. In theappliation setion we shall use the software 1 of K. Petras to ompute thepoints and the weights of the Smolyak's ubature for integration over a d-dimensional unit ube.Projetion errorSimilarly to over-�tting in least square approximation, numerial integrationerrors infer errors on the omputed PC expansion oe�ients that may beome

1 http://www-publi.tu-bs.de:8080/ petras/software.html11



signi�ant if the expansion degree is seleted too high. In fat, the polynomialdegree of the sought PC expansion is an hyper-parameter that need be appro-priately set. Indeed, for a �xed ubature formula it is usually observed thatthe projetion error inreases with the polynomial degree of the PC expansion,and it exists an optimal polynomial degree d yielding the lowest projetion er-ror. This degree d is unknown in general and the projetion error an not beomputed. However, the ubature formula exatly integrates polynomials withknown degree equal or less then d1. A lassial rule of thumb is then to seletan expansion degree ≤ d1/2.3 Global Sensitivity AnalysisWe onsider the lassial variane-based method of the Sobol sensitivity in-dies for sensitivity analysis [1℄. We start by realling the main features ofthe Sobol funtional deomposition (or ANOVA deomposition), and then wede�ne Sobol's sensitivity indies.3.1 The Sobol funtional deompositionFor simpliity, let us onsider vetors of the random input ξ omposed of dindependent identially distributed random variables ξi, with Ωd as range and
p(ξ) as probability density funtion (pdf). We denote the d-dimensional rangeby

Ωd = Ω × · · · × Ω︸ ︷︷ ︸
d times . (27)Sine the ξi are independent, p(ξ) =
∏

i p(ξi). The stohasti output y dependson the random input: y = f(ξ). We assume ξ ∈ Ωd 7−→ f(ξ) ∈ L2(Ωd, p(ξ)).The Sobol funtional deomposition for every funtion f ∈ L2(Ωd, p(ξ)) is
f(ξ) =

∑

u⊆{1,2,...,d}
fu(ξu), (28)where u is a set of integers, ξu = (ξu1

, . . . , ξus
) with s = card(u) = |u| and

f∅ = f0. Eah of the 2d elements fu of the deomposition, exept f0, veri�esfor any ξi ∫

Ω
fu(ξu)p(ξi)dξi = 0, ∀u ∋ i. (29)This result implies the orthogonality of the funtions fu, i.e.

∫

Ωd

fu(ξu)fv(ξv)p(ξ)dξ = 0, ∀u 6= v. (30)12



Furthermore, the Sobol deomposition is unique. The Sobol funtions an beomputed using the relation
fu(ξu) =

∫

Ωd−|u|
f(ξ)p(ξ∼u)dξ∼u −

∑

v⊂u
v 6=u

fv(ξv), (31)where ξ∼u is the vetor ξ without the elements of u. For example
ξ∼{i} = (ξ1, . . . , ξi−1, ξi+1, . . . , ξd). (32)3.2 The Sobol sensitivity indiesWe start by de�ning the variane of the output y = f(ξ), denoted D andthe varianes Du, often alled onditional varianes in the litterature, of thefuntions fu of the Sobol deomposition:

D =
∫

Ωd

f 2(ξ)p(ξ)dξ − f 2
0 , (33)

Du =
∫

Ω|u|
f 2

u(ξu)p(ξu)dξu. (34)
Du an be expressed as a ombination of onditional varianes:

Du = V (E[y|ξu]) −
∑

v⊂u
v 6=u
v 6=∅

Dv, (35)where E and V denote the probabilisti expetation and variane operators.Thanks to the orthogonality of the deomposition, the sum of the varianes
Du is the variane of y, i.e.

D =
∑

u⊆{1,2,...,d}
u 6=∅

Du. (36)The Sobol sensitivity indies are de�ned by,
Su ≡ Du

D
, (37)so that ∑

u⊆{1,2,...,d}
u 6=∅

Su = 1. (38)
Su is alled an s-order sensitivity index if |u| = s. Eah of the Sobol sensitivityindies, Su, measures the sensitivity of the variane of y due to the interationbetween the variables ξu, without taking into aount the e�et of the variables13



in ξv for v ⊂ u and v 6= u. For example the seond order sensitivity index
S{i,j}, expresses the sensitivity of the variane of y with regards to ξi and ξj,without taking into aount the e�et of eah variables separately (whih arein turns measured by Si and Sj).There are 2d−1 Sobol's sensitivity indies. This number beomes quikly largewhen d inreases. To ease the interpretation and analysis when d inreases,Homma and Saltelli [2℄ have introdued the total indies, noted STi

, whihexpress the total sensitivity of the variane of y due to a variable ξi, i.e. itssensitivity with ξi alone and all its interations with the others variables:
STi

≡
∑

u∋i

Su. (39)For example for d = 3, we have,
ST1

= S{1} + S{1,2} + S{1,3} + S{1,2,3}. (40)We an also express the total indies using the probabilisti form:
STi

=
E[V (y|ξ∼{i})]

V (y)
. (41)A useful property, to be used in the next setion for the omputation of thetotal indies, is

1 =
V (E[y|ξ∼{i}])

V (y)
+

E[V (y|ξ∼{i})]

V (y)
︸ ︷︷ ︸

STi

. (42)
4 Computation of Sobol's indies4.1 Computation of the indies by a Monte-Carlo samplingLet us onsider a sample set of n realizations of the input variables {ξ(i)}n

i=1.The sample estimates of the average, E[y] = f0, and the variane, D = (E[y2]−
E[y]2), are

f̂0 =
1

n

n∑

i=1

f
(
ξ(i)

)
, (43)

D̂ =
1

n

n∑

i=1

f 2
(
ξ(i)

)
− D̂∅, (44)14



where D̂∅ ≡ f̂0

2. To ompute Du from Eq. (35), we have to estimate the on-ditional variane V (E[y|ξu]). The sample estimate of the onditional varianeis
V (E[y|ξu]) = E[E[y|ξu]

2] − E[E[y|ξu]]
2 = E[E[y|ξu]

2] − E[y]2

≈ 1

n

n∑

i=1



 1

n

n∑

j=1

f(ξ(j)
∼u, ξ

(i)
u )




2

− f 2
0 . (45)The omputational ost of this estimate is in O(n2), and is too expensive tobe used in pratie. Sobol [1℄ proposed a less expensive method to approxi-mate the indies by Monte-Carlo sampling. This method omputes the terms

E[E[y|ξu]
2] as a unique integral. This is ahieved by making use of two inde-pendent sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1. Using these two sample sets, theonditional variane an be reasted in

E[E[y|ξu]
2] = E[E[y|ξu] E[y|ξu]]

=
∫ (∫

f(ξ∼u, ξu)p(ξ∼u)dξ∼u

)(∫
f(ξ∼u, ξu)p(ξ∼u)dξ∼u

)
p(ξu)dξu

=
∫ ∫ ∫

f(ξ)f(η∼u, ξu)p(ξ)p(η∼u)dξdη∼u. (46)Using this formula, and after some manipulations, the sample estimate of Dubeomes:
D̂u =

1

n

∑

i=1

f
(
ξ(i)

)
f
(
ζ(i)

u

)
−
∑

v⊂u
v 6=u

D̂v, (47)where
(ζj)

(i)
u =





ξ
(i)
j if j ∈ u,

η
(i)
j otherwise.For example, if u = {j} we have

D̂{j} =
1

n

∑

i=1

f
(
ξ

(i)
1 , . . . , ξ

(i)
d

)
f
(
η

(i)
1 , . . . , η

(i)
j−1, ξ

(i)
j , η

(i)
j+1, . . . , η

(i)
d

)
− D̂∅.Finally the estimate of the Sobol sensitivity indies are given by Eq. (37):

Ŝu =
D̂u

D̂
. (48)It is seen that the numerial ost (i.e. the total number of funtion evalu-ations) for the estimation of E[E[y|ξu]

2] is in O(2n). Therefore, using thesame sample sets to ompute all the indies, the method requires a total of
n×(ard({v ⊂ u, v 6= ∅}) + 1) funtion evaluations to estimate Ŝu. As a result,15



the evaluation of all the (2d − 1) sensitivity indies requires O(n2d) evalua-tions of f . This omplexity an be greatly redued if one is interested in thetotal indies only. In fat, expressing the total indies from the onditionalvarianes (see Eq. (42)),
STi

= 1 −
V (E[y|ξ∼{i}])

V (y)
, (49)and using

V (E[y|ξ∼{i}]) =E[E[y|ξ∼{i}]
2] − E[E[y|ξ∼{i}]]

2 = E[E[y|ξ∼{i}]
2] − f 2

0

=
∫ ∫ ∫

f(ξ)f(ξ∼{i}, η{i})p(ξ)p(η{i})dξdη{i} − f 2
0 , (50)one obtains the sample estimates of the total indies

STi
= 1 − 1

D̂

(
1

n

∑

l=1

f
(
ξ(l)

)
f
(
ζ

(l)
{i}
)
− D̂∅

)
, (51)where

(ζj)
(l)
{i} =






η
(l)
j if j = i,

ξ
(l)
j otherwise.Using Eq. (51), the omputational ost for the omputation of the d totalindies is redued to O(n(d+1)). In the appliation setion, we shall use LHStehniques [21℄ to onstrut the sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1.4.2 Computation of the indies by a Quasi Monte-Carlo methodOne may also use Quasi Monte-Carlo (QMC) sequenes (see [22℄) to generatethe sample sets {ξ(i)}n

i=1 and {η(i)}n
i=1 to be used in Eqs. (47,51). In theexample Setion 5, we used QMC sequenes based on Sobol's sequenes (seeGSL - GNU Sienti� library 2 ). We are well aware that the sample sets have tobe independent to estimate the onditional varianes involved in Eqs. (47,51).In pratie, we generate a unique sample set, of size n, but with 2d dimensionsas in [2℄. The �rst d dimensions are a�eted to {ξ(i)}, while the remaining ddimensions are a�eted to {η(i)}. Numerial tests (see below) have shown asigni�ant improvement of the onvergene of the sensitivity index estimateusing the sample sets generated from QMC sequenes, ompared to the LHSsampling. Still, further explanations and analysis are required to understandand fully justify the use of QMC sequenes with Eqs. (47,51).

2 http://www.gnu.org/software/gsl/ 16



4.3 Computation of Sobol's indies using PCFor f ∈ L2(Ωd, p(ξ)), we denote g its PC expansion trunated at order p:
f(ξ) ≈ g(ξ) =

P∑

k=0

βkΨk(ξ), P + 1 =
(p + d)!

p!d!
. (52)The elements fu of the Sobol deomposition of f are approximated by theelements gu of the deomposition of g:

fu ≈ gu, ∀u. (53)It is also lear that the PC-expansion trunated at order p of an element
fu of the Sobol deomposition of f is equal to the element gu of the Soboldeomposition of g, the PC-expansion trunated at order p of f . Then, theinterest of using an intermediate projetion of f on a PC basis, in view ofthe determination of the sensitivity indies, omes from the fat that theomputation of the Sobol deomposition of a PC expansion is simple andimmediate. Indeed, the expression of an element gu of the Sobol deompositionof the PC-expansion g, is simply expressed by

gu(ξu) =
∑

k∈Ku

βkΨk(ξu), (54)where the set of indies Ku is given by
Ku =



k ∈ {1, . . . , P}|Ψk(ξ) =

|u|∏

i=1

φαk

i

(ξui
), αk

i > 0



 . (55)It is stressed that the indies sets Ku depend only on the PC basis and noton the funtion f . Moreover, thanks to the orthogonality of the PC basis, wehave a simple expression for the variane and onditional varianes:

D̂ ≈
P∑

k=1

β2
k 〈Ψk, Ψk〉 , D̂u ≈

∑

k∈Ku

β2
k 〈Ψk, Ψk〉 . (56)Finally, the Sobol indies of f are approximated by

Su ≈ Ŝu =

∑
k∈Ku

β2
k 〈Ψk, Ψk〉∑P

k=0 β2
k 〈Ψk, Ψk〉

, (57)and Eq. (39) is used to ompute the total indies. The previous expressionsshow that the determination of the Sobol deomposition and sensitivity indiesis immediate as soon as the PC expansion of f is known. Thus, the methodwill be e�ient provided that the omputation of the PC oe�ients is a-urate and not too expensive. In the ontext of non-intrusive methods (see17



Setion 2.3), the omputational ost of the PC expansion essentially saleswith the number of funtion evaluations (or model resolutions) needed to es-timate orretly the PC oe�ients. This number of evaluations is in turnsessentially related to the smoothness of the output with regards to the un-ertain input whih ontrols the expansion order and onvergene rate of thesolution method (e.g. of the ubature formula). Consequently, the projetion ofthe output on a PC basis is expeted to signi�antly redue the omputationalost of the Sobol sensitivity indies, ompared to alternative methods suh asMC and QMC, for smooth output. This laim is veri�ed in the examples ofthe next setion.5 ExamplesWe illustrate the use of PC expansions for the determination of the Sobol sen-sitivity indies on three lassial test funtions, namely the Ishigami funtion,a polynomial funtion and the so-alled g-funtion. These test funtions areseleted to analyze the e�etiveness of the proposed method on smooth andnon-smooth funtions with variable number of unertain input dimensions.For the three test funtions, the unertain inputs have uniform distributions,but we expet the analysis to be independent of the statistial distributionof the unertain inputs. In all the tests, the PC expansions use multi-variateLegendre polynomials (the family of polynomials orthogonal for the uniformmeasure). The PC oe�ients are omputed by means of NISP as desribedin Setion 2.3, using oarse ubature formulas based on Smolyak sheme [19℄and imbedded Féjer's one-dimensional formulas [23℄.The error on the omputed sensitivity indies Su from the PC expansion ofthe output (i.e. using Eq. (57)) is ompared with the estimates obtained us-ing Monte-Carlo (LHS) and Quasi Monte-Carlo methods as desribed in Se-tion 4.1 (i.e. using Eq. (47)). Spei�ally, we ompare the three methods (PC,MC and QMC) for three error riteria: the sum of the L1-error on the 2d − 1indies (noted e), the sum of the L1-error on the d �rst order indies, (noted
ei) and the sum of the L1-error on the d total indies (noted eT ):

e≡
∑

u⊆{1,2,...,d}
u 6=∅

|Su − Ŝu|, (58)
ei ≡

∑

i∈{1,2,...,d}
|S{i} − Ŝ{i}|, (59)

eT ≡
∑

i∈{1,2,...,d}
|STi

− ŜTi
|. (60)18



Note that on the ontrary of PC method, the MC and QMC methods estimatethe total indies STi
from Eq. (51) and not Eq. (39). Also, the estimates beingrandom for the MC method, the errors are averaged over 100 independentrealizations of the LHS sample sets.5.1 Ishigami funtionThe �rst tests use the Ishigami funtion [24℄:

f(ξ) = sin(ξ1) + a sin2(ξ2) + b ξ4
3 sin(ξ1), (61)where ξi ∼ U([−π, π]) for i = 1, 2, 3. This funtion is smooth, non-linear andnon-monotonous. The exat variane and the onditional varianes are

D =
a2

8
+

bπ4

5
+

b2π8

18
+

1

2
,

D{1} =
bπ4

5
+

b2π8

50
+

1

2
, D{2} =

a2

8
, D{3} = 0,

D{1,2} =0, D{1,3} =
b2π8

18
− b2π8

50
, D{2,3} = 0, D{1,2,3} = 0.We set a = 7 and b = 0.1.To ompute the PC expansion of f , we need �rst to selet an expansion order

p for the NISP. The expansion order has to be seleted in relation with thelevel of the ubature formula. For the Féjer one-dimensional formula seletedin this work, the Smolyak formula of level l is exat for polynomial integrandof degree ≤ 2l. If f was polynomial of degree p, setting l = p would yieldexat PC oe�ients up to order p. However, the Ishigami funtion is notpolynomial and numerial tests are needed to properly selet p given l. Weshow in Figure 2 the errors e for di�erent values of l and �xed p ≤ l (left plot).It is seen that the errors do not derease muh when we inrease the level lfor �xed order p ≤ l. In fat, when we inrease the level l of the formula with
p held �xed, the approximation error on the integrals (so on the expansionoe�ients of f) beomes negligible: the error e on the sensitivity indies isthen dominated by the trunature error of the PC expansion. Consequently,
p = l appears to be a relevant rule for the seletion of the expansion ordergiven l. This is on�rmed by the right plot in Figure 2, whih depits theresulting errors on the sensitivity indies for di�erent relations between p and
l. This plot demonstrates that the same onvergene rates are obtained forthe di�erent rules (provided that p ≤ l), but that the rule p = l is the leastexpensive one in terms of number of funtion evaluations (whih inreaseswith l). 19
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Figure 2. The left plot shows the errors e on the sensitivity indies omputed fromthe PC-expansion using di�erent orders of trunature (p) and levels (l) for the u-bature formula as indiated. The right plot shows the errors e on the sensitivityindies omputed from the PC-expansion using di�erent rules for the seletion ofthe expansion order p at given level l of the ubature formula.Next, the errors on the sensitivity indies, omputed using the rule p = l inthe NISP, are ompared with the errors for the MC and QMC methods. Theomparison is provided in terms of the three errors riteria (e, eT and ei) inFigures (3-5) respetively. The errors are reported as funtions of the numberof funtion evaluations to allow for a diret assessment of the respetive meth-ods e�ienies. It is �rst observed that the onvergene rates of the methodsare essentially the same for the three error riteria. However, the onvergenerates of the three methods are di�erent. Spei�ally, for the PC method aonvergene rate in 1
n6 is reported, while it is only 1

n
for QMC and 1√

n
for MC(averaged over 100 LHS samples).The higher onvergene rate of the errors on the sensitivity indies with thenumber of funtion evaluations reported for the PC method is explained bythe smoothness of the Ishigami funtion: this smoothness ensures a fast on-vergene of both the polynomial approximation and ubature formula. Thisfast onvergene of the PC method is in fat expeted for any smooth fun-tion: for smooth funtions and low to medium dimensional problems, the PCmethod is expeted to exhibit a spetral-like asymptoti onvergene rate.
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Figure 3. Errors e on sensitivity indies omputed from PC expansions, Quasi Mon-te-Carlo sequenes and Monte-Carlo simulations (averaged over 100 LHS samplesets) as a funtion of the number of funtion evaluations.
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Figure 4. Errors eT on total sensitivity indies omputed from PC expansions, QuasiMonte-Carlo sequenes and Monte-Carlo simulations (averaged over 100 LHS samplesets) as a funtion of the number of funtion evaluations.
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Figure 5. Errors ei on �rst order sensitivity indies omputed from PC expansions,Quasi Monte-Carlo sequenes and Monte-Carlo simulations (averaged over 100 LHSsample sets) as a funtion of the number of funtion evaluations.
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5.2 Polynomial funtionsThe fast onvergene of the sensitivity indies for the PC method on theIshigami funtion may have been attributed to the low dimensionality of thetest funtion (d = 3). To support the laim of spetral asymptoti onvergenerates of the PC method for any smooth funtion, we onsider the followingpolynomial funtion,
f(ξ) =

d∏

i=1

2ξi + 1

2
, (62)with ξi ∼ U([0, 1]) for i = 1, . . . , d. The exat Sobol's sensitivity indies andtotal indies of f have for expressions:

Su =
2−|u|

(13
12

)d − 1
, STi

= 1 − (13
12

)d−1 − 1

(13
12

)d − 1
. (63)The polynomial funtion f has a degree equal to d suh that its exat PCprojetion would require a ubature formula with level l = d. For large d, thisresults in a prohibitively large number of ubature points, so the projetionan be only approximated. Furthermore, if we selet an expansion order p < d,it is lear from Eq. (57) that

Ŝu = 0, ∀|u| > p. (64)Numerial limitations impose l < d for large d, and for the onsistany of theintegration method we have to selet p ≤ l, so we an not expet to omputesensitivity indies of order > l. Consequently, the e�ets of the PC trunatureand approximated projetion on the omputed sensitivity indies have to beinvestigated. To do so, we set d = 12. Figure 6 presents the onvergene withthe number of funtion evaluations of the errors eT on the total sensitivityindies for PC (with the rule p = l), QMC and MC methods. We reall that forthe PC method, the total sensitivity indies are omputed from Eq. (39) andtherefore inorporate the errors on all the sensitivity indies (inluding thosenegleted by the PC trunature); on the ontrary, QMC and MC methods usethe favorable diret estimation based on Eq. (51). Figure 6 shows that even-though the ubature formulas used do not allow for an exat determinationof the PC oe�ients (we have l < d in all ases), the STi
omputed withthe PC method are muh more aurate than for MC and QMC methods.Furthermore, the spetral onvergene of the PC expansion an be seen fromthe improvement of the onvergene rate of the PC method when the numberof evaluation points inreases (or equivalently when l = p is inreased). Onthe ontrary, the onvergene rates of MC and QMC methods are found toremain onstant.To gain further evidene on the spetral onvergene of the PC expansion and23



 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100  1000  10000  100000  1e+06

e T
 

n

PC
MC

QMC

O(n−2)

O(n−1/2)
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5.3 G-funtionThe third test funtion is the so-alled g-funtion [25℄:
f(ξ) =

d∏

i=1

|4ξi − 2| + ai

1 + ai
, (65)where ξi ∼ U([0, 1]) for i = 1, . . . , d. This funtion is non-smooth and non-monotonous. The exat variane and the onditional varianes are

D =
d∏

i=1

(D{i} + 1), D{i} =
1

3(1 + ai)2
, Du =

|u|∏

i=1

D{ui}. (66)We set ai = (i − 1)/2 and d = 5. This funtion is a hallenging test for thePC expansion, due to the presene of the absolute value whih �rst preventsthe spetral onvergene of the PC expansion, and seond ompromises theonvergene of the ubature formula (f /∈ W2
5 ). As a onsequene, the se-letion of PC trunature p, for given level l of the ubature formula, is lessstraightforward than for the previous smooth funtions. This is illustrated inthe left plot of Figure 8, where plotted are the evolutions of the errors e for�xed PC order p and inreasing ubature level l. This plot shows that, onthe ontrary of the observations for the smooth funtions (see Figure 2), theerrors do not level-o� when l inreases, denoting that the integration errorsare at least of the same order as the trunature errors. This is not a surpriseonsidering the error estimate given in the end of Setion 2.3.3. Also, the rightplot of Figure 8, where plotted are the evolutions of the errors e with the level

l and di�erent rules for hoosing the expansion order p, learly indiates thatthere is no rule that performs better than the others. Consequently, we makein the following the onservative hoie of using the rule p = l − 4.Figures (9-11) ompare the PC, MC and QMC methods for the di�erent errorriteria on the sensitivity indies. These results show that the onvergenerates of the di�erent errors are essentially the same for PC and QMC methods.On the ontrary of the results for the smooth funtions, the onvergene ratesfor the PC method do not improve when the number of funtion evaluationsinreases. This trend is explained jointly by the loss of spetral onvergenefor the PC expansion, and by the inadequay of Féjer's quadrature formulato approximate integrals of non-smooth funtions. It is however interesting tonote that the PC method remains ompetitive ompared to MC and QMCmethods. 25
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Figure 11. Errors ei on �rst order sensitivity indies omputed from PC expansions,Quasi Monte-Carlo sequenes and Monte-Carlo simulations (averaged over 100 LHSsample sets) as a funtion of the number of funtion evaluations.varianes and Sobol's sensitivity indies. The interest of this approah lies intwo essential points:
• the simple and immediate omputation of the sensitivity indies from thePC-expansion,
• the di�erent methods available for the determination of the PC-expansion(Galerkin projetion, Non-Intrusive Spetral Projetion and least square27



approximation).The appliation of the PC method is entirely onditioned on the availability ofthe PC expansion and its auray. For smooth funtions, where the PC basisallows for spetral onvergene of the PC expansions, the method is expetedto exhibit spetral-like onvergene rates and therefore to outperform the al-ternative methods (Monte-Carlo, Quasi Monte-Carlo). This expetations areveri�ed for the two smooth funtions tested, whih PC expansions were om-puted by means of Non-Intrusive Spetral Projetions involving sparse uba-ture formulas. This proedure allowed for a diret omparison of the methodse�ienies, by omparing the respetive errors on the sensitivity indies as afuntion of the number of funtion evaluations.The examples provided also demonstrate that the proposed method su�ersfrom the usual limitations of the PC expansions. The �rst limitation has fororigin the exponential growth of the basis dimension with the number of inde-pendent unertain inputs. From the omputational point of view, the growthof the basis dimension results in a numerial ost that quikly beomes pro-hibitive (for instane the evolution with d of the number of funtion evalua-tions in the non-intrusive tehniques or �urse of dimensionality�). The seondlimitation is due to the loss of the spetral onvergene of the PC expansionfor non-smooth funtions, as illustrated by the last example of Setion 5. How-ever, reent works and on-going researhes on PC approximations (e.g. multi-resolution analysis [13,14℄ and adaptive ubature tehniques [26,27℄) allow forsome optimism, even-though Monte-Carlo methods will ertainly remain theonly viable alternative for large dimensional problems (say for d > 20). Fi-nally, we would like to mention that PC expansions may be a suitable way toperform sensitivity analysis in situations where the input parameters are notindependent [28℄.Referenes[1℄ I.M. Sobol. Sensitivity estimates for nonlinear mathematial models. Math.Mod. and Comput. Exp., 1(4):407�414, 1993.[2℄ T. Homma and A. Saltelli. Importane measures in global sensitivity analysisof nonlinear models. Reliab. Eng. and Syst. Saf., 52(1):1�17, 1996.[3℄ R.G. Ghanem and S.D. Spanos. Stohasti Finite Elements: A SpetralApproah. Springer Verlag, 1991.[4℄ G. Li, S.W. Wang, and H. Rabitz. Pratial Approahes To Construt RS-HDMR Component Funtions. JOURNAL OF PHYSICAL CHEMISTRY A,106(37):8721�8733, 2002. 28
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