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Abstract

In this paper, the computation of Sobol’s sensitivity indices from the Polynomial
Chaos expansion of a model output involving uncertain inputs is investigated. It is
shown that when the model output is smooth with regards to the inputs, a spec-
tral convergence of the computed sensitivity indices is achieved. However, even for
smooth outputs the method is limited to a moderate number of inputs, say 10 to
20, as it becomes computationally too demanding to reach the convergence domain.
Alternative methods (such as sampling strategies) are then more attractive. The
method is also challenged when the output is non-smooth even when the number of
inputs is limited.
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Uncertainty Quantification

1 Introduction

In mathematical modelling, sensitivity analysis (SA) studies variations in the
output of a model (numerical or other) with regards to some inputs. There are
two categories of methods for SA: local sensitivity analysis and global sensitiv-
ity analysis. Local sensitivity analysis is interested on the local variation of the
model with the inputs using gradients methods, while global sensitivity anal-
ysis deals with global variations in the output due to the uncertainties on the
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inputs. Moreover SA is usually said to be qualitative when it classifies the in-
puts according to their respective impacts on the output variations and quan-
titatively when it gives a measure of these impacts. Generally a quantitatively
SA is also qualitative. SA had been largely studied and many approaches have
been proposed. In this article we are interested in global sensitivity analysis
using Sobol’s indices [1]| to determine input variables (or groups of variables)
mostly responsible both qualitatively and quantitatively of the uncertainty in
the model output [2]. Indeed in uncertainty quantification (UQ) it is impor-
tant too to determine the uncertain inputs which have the largest impact on
the variability of the model output. The Sobol’s indices are obtained from the
ANOVA decomposition of the output. Several methods had been developed
to compute these indices directly through sampling using Monte-Carlo and
Quasi-Monte-Carlo methods or by building a meta-model to approximate the
ANOVA decomposition and then compute the indices from the meta-model
with less model evaluations. The work presented in this article belong to the
meta-modeling approach using Polynomial Chaos expansions to approximate
the model output.

Polynomial Chaos (PC) expansions [3| have been used for UQ in a large vari-
ety of domains (e.g. in solid mechanics, fluid flows, thermal sciences,...). PC
expansions is a probabilistic method consisting in the projection of the model
output on a basis of orthogonal stochastic polynomials in the random inputs.
The stochastic projection provides a compact and convenient representation of
the model output variability with regards to the inputs. We show in this paper
that the Sobol’s sensitivity indices |1] (and even more the ANOVA decompo-
sition) (or Sobol’s decomposition) of the model output) can be immediately
deduced from the PC expansion of the model output.

We can see this PC approach to compute Sobol’s indices as one HDMR. (High
Dimensional model representation) method, indeed HDMR methods consist in
approximating the component functions, f,, of a finite hierarchical correlation
function expansion,

GED SR AN (1)

uC{1,2,...,d}

We will show that the PC expansion of the model output directly provides
one of these functional decompositions. RS-HDMR and cut-HDMR (see [4],[5]
and [6]) are other HDMR approaches. RS-HDMR uses sampling techniques to
compute approximations of the component functions of the ANOVA decom-
position (which is the same that we compute using PC expansion) while the
cut-HDMR uses interpolation through the model values on lines, planes and
hyperplanes passing through a cut center point. One essential difference with
the PC expansion based approach of classical HDMR methods is that they
limit themselves to the determination of only the low order components of
the functional decomposition. This is based on the assumption that for most
physical systems only low order correlations of the inputs will have impact on



the output. However the RS-HDMR can use the same orthonormal polyno-
mial basis than the PC expansion. So in a certain way the RS-HDMR with
orthonormal polynomials (see [4]) is similar to PC expansion restricted to low
order correlations polynomials with the coefficients computed by Monte-Carlo
approximation of the projections. Monte-Carlo approximation is less precise
for smooth functions than the projection by Smolyak’s cubature exposed in
this article when the dimension is not too high. Speaking of quadrature tech-
niques for numerical integration, in [5| the authors propose to compute the
ANOVA decomposition using quadrature and computing the points on the
cut-HDMR expansion. Nevertheless they don’t use the Smolyak’s cubature.

These meta-modeling methods have been widely used for SA, especially with
nonparametric techniques which have shown their efficiency in SA using vari-
ables selection approaches for a qualitatively SA (see [7]) or approximation
of the ANOVA decomposition for quantitatively SA (see [8]). It has been
shown that these meta-modeling methods can be much more efficient than
the sampling method for the computation of the Sobol’s indices, by relying on
a significantly lower number of model evaluations. However, the efficiency of
the meta-modeling methods highly depends on the structure and complexity
of the considered model, which make their general comparison difficult. There-
fore, the efficiency of the proposed PC expansion for SA and determination of
the Sobol’s indices is here only contrasted with sampling methods (LHS and
QMC). Future works will focus on the comparison of the PC approach with
alternative meta-modeling methods and also with the Bayesian approach (see
[9]). Tt is also important to note that the PC expansion of the model output
can be obtained by means of Galerkin projection schemes when the model is
a set of equations (see for instance [3]|) with potential computational savings
compared to the integration approach used in this work.

The paper is organized as follow. In Section 2, we provide a brief summary
of Wiener’'s Homogeneous Chaos theory [10] and of the PC representations.
We recall the principles of the solution methods used for the determination
the PC expansion of a model output. We emphasize on the so called non
intrusive spectral projection (NISP) and cubature techniques, which we use in
the numerical examples. Section 3 reviews Sobol’s functional decomposition
and define the Sobol sensitivity indices. In Section 4, we provide details on
the practical computation of the Sobol’s indices via Monte-Carlo sampling
strategies, emphasizing on the computational complexity. We then make the
connection between the Sobol functional decomposition and the PC expansion
of the model output. This connection naturally leads to exact expressions for
the Sobol sensitivity indices in terms of the PC expansion coefficients. In
Section 5, we present three numerical examples to illustrate the efficiency
and the limitations of the computation of Sobol’s sensitivity indices from PC
expansions. The efficiency of the PC approach is compared and contrasted
with the Monte-Carlo and Quasi-Monte-Carlo sampling strategies. Finally, in



Section 6 we summarize the main findings of this work and we provide some
recommendations for future improvements of the method.

2 Polynomial Chaos Expansions
2.1 Hermite Polynomial Chaos

Polynomial Chaos expansions, introduced by Wiener in [10], approximate any
well behaved random variable (e.g. a second order one) by a series of poly-
nomials in centered normalized Gaussian variables. In the following we use
the notations of [3]. Let © be the space of random events and © the space
of functions which associate to the elements w € {2 a value in R. A function
0 : we Qr— Risarandom variable. Let {£;}3°, be an infinite but countable
set of independent normalized Gaussian random variables. We define:

o)

. F the space of all polynomials of degree less or equal to p in {&;(w)}72,,
° F the set of polynomials of F which are orthogonal to Fp 1,
F the space generated by I'):

r,=0,, @0, 0=@QT. (2)

=0

The sub-space fp of © is called the p-th Homogeneous Chaos and I', is called
Polynomial Chaos of order p. In fact, the Polynomial Chaos of order p is the
set of all polynomials of degree p in all possible combinations of the random
variables in {{;(w)}?°,. The Polynomial Chaos expansion of a second order
random variable §(w) is

O(w)=ael'y + i a;, I't (&, (w))

i1=1

+ Z 21: a"iliQFQ(fil (w)a &2(&)))
i1=112=1

11 2

+ Z Z Z @111213 fll )’ giz (w)>€i3 (w))

11=1142=113=1

i1 i i3

+ Z Z Z Z al112l3l4 621( )’ fiz(w)>€i3(w)’ §i4(w)) + . (3)

i1=11i2=113=1144=1

Cameron and Martin have shown in [11] that this expression is convergent in
the Ls-sense. To simplify the notations and to ease the formal manipulation



of PC expansions, we define an univocal relation between functionals I'() and
new functionals W(), and rewrite the PC expansion as:

:?ﬁﬂ%ﬂ@%ﬁz{&&w}‘ (4)

We shall adopt in the following the classical convention consisting in taking
Uy as the zero order polynomial: Wy = 1. In Eq. (4), 0, are deterministic
coefficients, namely the PC coefficients of the expansion of the random variable
0, while the W, are random polynomials, orthogonal in the Ls-space, with
regards to the inner product, denoted (, ), based on the Gaussian measure:

W0 = [ WOV EpEE =5, (ww). 56 = [[Z2 L

In fact, the W; are multivariate Hermite polynomials (the product of univariate
Hermite polynomials).

For practical calculations, a finite number d of Gaussian variables are to be
used, leading to finite dimensional Polynomial Chaos expansions:

0(&1, 60, 80) = D 0k U(&1, &, ooy &a). (6)
k=0

This is not a limitation, since most physical problems we are focusing on
involve a finite number of random inputs (parametric uncertainty). Moreover
the expansion is convergent, as we work in a finite dimensional Hilbert space
and Hermite polynomials form an Hilbert basis. Also for practical reasons, PC
expansions have to be truncated in terms of polynomial degree. Let p denote
the order of the PC expansion. The finite dimensional and finite order PC
expansion of a random variable 6 is finally

P
&~ Y 0,0k(8), €={&,.. L}, (7)
k=0
where the basis dimension is related to d and p by
_(pt+ad)
P+1 o dl (8)

2.2  Generalized Polynomial Chaos

In [12]|, Xiu and Karniadakis used the Askey scheme to generalize Wiener’s
Polynomial Chaos expansion to common non-Gaussian measures. This gener-
alization can be useful to improve the expansion convergence for non-Gaussian



random variables. Table 1 reports the correspondence between the random
variable distribution and orthogonal polynomial family. The polynomials are
orthogonal in the Hilbert space corresponding to the support and the density
function of the random variable; they form an Hilbert basis of the respective

space.

Type Random variable Orthogonal polynomial Support
distribution family
Continuous Gaussian Hermite (—00,00)
Gamma Laguerre [0, 00)
Beta Jacobi [a, b]
Uniform Legendre [a, D]
Discrete Poisson Charlier {0,1,2,....}
Binomial Krawtchouk {0,1,2,..., N}
Table 1

Relation (Askey-scheme) between the random variable distribution and orthogonal
polynomial family [12].

Denoting {¢x }32, the one-dimensional orthogonal polynomials from the Askey-
scheme, and assuming the random variables to be independent, the muti-
dimensional Generalized Polynomial Chaos (GPC) basis {W;} is constructed
by tensor products of the corresponding one dimensional polynomials,

d
&' [=>a;, <p, i=0,....,P. (9
k=1

d
qji(fl?f% "'agd) = H ¢a};(§k)7
k=1

2.3  Determination of PC-coefficients

We are interested in the uncertainty quantification and analysis for some out-
put quantity y, which depends on some random input D(w). We assume that
the uncertain input is parameterized using a finite set of d independent random
variables & = {{,..., &} with known densities p(§), i.e. D(w) = D(&(w)).
Clearly, the output y being a functional of the random input it is also random
and we can write

y(D(§)) = y(§). (10)
Let {¥;} be an Hilbert basis of Ly(&,p(€)) the space of second order random
variables spanned by &€. Assuming that y € Lo(&,p(£€)), it has a convergent
PC expansion that we write as

y(&) =D Bru(). (11)
2



Since the PC-coefficients fully determine a second-order random variable, the
knowledge of the (3, in the expansion of the output y allows for a complete
characterization of the uncertainty. It also makes explicit the functional de-
pendences with regards to the input, a property that will be fully exploited
later for the determination of the Sobol sensitivity indices.

To improve the convergence of the PC expansion, in situations where the
output y presents non-smooth or discontinuous depedences with regards to the
uncertain inputs, piecewise continuous polynomials expansions were recently
proposed (e.g. using multi-wavelets and multi-resolution schemes [13,14,15|
and multi-element methods [16]).

We thus need efficient procedures for the determination of the PC coefficients
of the output y. In the following, we assume that y is the result of a numer-
ical simulation, ¢.e. the output of a numerical code involving a mathematical
model. Classically, two classes of methods are distinguished for the determi-
nation of the PC coefficients: the intrusive and non-intrusive methods.

In the intrusive method, a weak solution of the mathematical model involv-
ing the random input is sought by means of a Galerkin projection of the
model equations on the PC basis [3]. This procedure, shortly described in
Section 2.3.1, requires modifications of the numerical code and is therefore in-
trusive. On the contrary, non-intrusive methods require realizations of the de-
terministic code only, for different values of the input. Two such non-intrusive
methods are described below: the least square approximation in Section 2.3.2,
and the non-intrusive spectral projection (NISP [17]) in Section 2.3.3. The
NISP procedure being used in the examples of Section 5, more details are
provided.

2.3.1 Galerkin projection

Let us consider the mathematical model M relating the random output y to
the input D. We write in a formal way

M(y(€); D(§)) = 0. (12)

Substituting to y its PC expansion Eq. (11), truncated at order p, the model
equation is generally not satisfied anymore but yields a residual. Imposing the
residual to be orthogonal to the expansion basis, it comes

<M @) Bii(€); D(§)> qfk> =0, Vk=0,...,P. (13)

It is seen that the Galerkin procedure leads to the resolution of a set of P41
coupled problems. It usually requires an adaptation of the numerical code.



Furthermore, if the mathematical model involves complex non-linearities, the
Galerkin procedure can be a challenging task and difficult to implement. To
overcome these difficulties, non-intrusive methods described below are useful.

2.3.2  Least square approximation

The PC coefficients can be estimated by solving a least square problem. Let
us denote {£€®} a sample set of the random parameters, and y = {y®} the
corresponding set of simulation output, such that

My D (¢9)) =0, Vi (14)

Since the determination of the output sample set uses the deterministic code
only, the method is non-intrusive. Denoting 8 = (3...03p)" the vector of
sought PC coefficients in the truncated expansion of the output y, an approx-
imation B of 3 can be obtained by solving the least square problem

a3 (4~ 3 A" (1)
k=0

i=1

where n > P + 1 is the sample set size. Denoting

Wo(eW) Wy(eW) ... Tp(eW)
Wo(g®) Wy (g®) ... wp(g?)

Z = , (16)
Wo(£™) Wy (™) ... wp(g™)
the well known solution of the least square problem is
6= (22" 2", (17)

where Z7Z is the Fisher matrix. It is to be noted that Least Square does
not exploit the orthogonality of the polynomials. The sample sets can be
constructed by simple random sampling (SRS), Latin hypercube sampling
(LHS), maximin LHS, ... However, there is yet only empirical results on the
way to construct the sample sets, and to choose its size. To prevent overfitting,
methods from regression and statistical learning can be used.In [18] the authors
consider three methods to choose the degree of the polynomial approximation
in order to prevent overfitting: Adjusted R?, Early Stopping and Wilcozon
Rank Sum Test. These methods can be used in the PC expansion context to
prevent overfitting.



2.3.3 Non-intrusive spectral projection

On the contrary of the least square approximation, the non-intrusive spec-
tral projection (NISP) exploits the orthogonality of the PC basis. Taking the
inner product of the output PC expansion with ¥, and making use of the
orthogonality of the basis, it comes

(y(&), Ve(£))

Ok = W0y VEk. (18)
Recalling the definition of the inner product,
(£(€).9(€) = | F©9(©p(&)de. (19

where we have denoted Q¢ the support of € and p(€) its joined density, it is
seen that the determination of the PC coefficients of the output reduces to
the evaluation of (P + 1) d-dimensional integrals:

L= [y (Ep(€)de. (20)

In fact, I is the correlation between the output and the k-th PC. Note that
thanks to the polynomial character of the Wy, the exact evaluation of (¥, ¥y)
is immediate.

Numerical multi-dimensional integration or quadrature is a classical problem
and many methods have been proposed for this purpose. The numerical inte-
gration methods can be recasted in the following generic form,

n

L= > y(€9) Wy (€9)w™, (21)

i=1

where S(i), w® are the integration points and weights respectively while n is
the number integration points. In our applications, the numerical cost of the
integration scales essentially with n, since it is dominated by the evaluation (or
model resolution) of the output y for given £@ using Eq. (14). The integration
methods have specific strengths and weaknesses, to be taken into account when
selecting one of them. Let us recall the main properties of the most common
integration methods available:

e Monte-Carlo sampling is robust and converges for any L2-function with a
convergence rate independent of the dimension d; however the asymptotic
rate is in 1/4/n only.

e Quasi Monte-Carlo sampling is less robust than Monte-Carlo sampling as
it involves some assumptions on the smoothness of the integrand. However,
when these assumptions are satisfied a convergence rate in log (n)d/n 1s
achieved.
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Figure 1. Quadrature points for the 2-D fully tensored formula (left plot) and 2-D
Smolyak’s partially tensored formula (right plot). Note that the two formulas have
the same degree of exactness for polynomial integrand.

e Full tensorization of 1-d quadrature formula exhibits fast convergence rate
for smooth integrand, but have a numerical cost scaling with d exponen-
tially: n = (nl)d, with n; the number of quadrature points in the 1-D
formula, see the left plot of Figure 1.

e Composite methods, based on an adaptive partition of the integration do-
main, are robust with regards to the smoothness of the integrand, achieve
fast convergence rates, but have a numerical cost that scales exponentially
with d.

e Cubature formulas based on Smolyak’s coarse tensorization (see [19,20])
have fast convergence rate for smooth integrand and their numerical cost
increases less quickly than fully tensored formula (see the right plot in Fig-
ure 1).

In our applications, the output is expected to be relatively smooth while the
PC are C'*°. As a result, the integrand in [ are expected to be smooth. In this
context, the integration formulas based on the Smolyak’s partial tensorization
are thought to yield a good trade-off between accuracy and numerical cost,
for input involving a moderate number of random parameters, say for d < 15,
while for higher dimensional problems Monte-Carlo methods are expected to
perform better. However, it is underlined that one usually has no a priori
knowledge on the smoothness of the output, so one has to be cautious when
selecting a integration method. In the example section, the Smolyak’s method
will used to perform the NISP of the output, so we found necessary to provide
more details on the construction of the method.

10



Smolyak’s cubature

Smolyak’s cubature formulas are based on partial tensorization of one-dimensional
quadrature formulas (see [19,20]). Let us consider for [ = 0,1,... a sequence

of 1-D integration formulas involving a number of points n; increasing with [.
We call [ the level of the formula. The 1-D quadrature formula of level [, with
points and weights €0 and w®) respectively, writes:

/Q FOPE)dE ~ Qi f = iw“”f (64} . (22)
Setting Q) f = 0, the difference quadrature formula is defined as
Allc21f = (Qllc - Qllc—l) f. (23)
Using a multi-index k = (kq,..., k), the d-dimensional difference formula is
the tensor product of 1-D difference quadrature:
Apf= (A ® @A) (24)

Then, the d-dimensional Smolyak’s cubature formula of level [ is constructed
by the sum of tensor products of difference quadratures, over a set of multi-
indices k,

[ f@pere~air= ¥ Apf withleN keN. (23

\k|<i+d—1

In practice, imbedded one-dimensional quadrature formulas are used to min-
imize the number of integrand evaluations. The Smolyak’s cubature has a
convergence rate which depends on the smoothness of the integrand. Specif-
ically, for 1-D quadrature where n; = 0(21), the theoretical convergence rate
is in 02710+ for integrand f € W), where

dlslg

Wyi=4g: Q" — R, Hig S
d {g o6 OEy

<00, §; < ’I“} ) (26)

is the class of functions with bounded mixed derivatives of order r. In the
application section we shall use the software! of K. Petras to compute the
points and the weights of the Smolyak’s cubature for integration over a d-
dimensional unit cube.

Projection error

Similarly to over-fitting in least square approximation, numerical integration
errors infer errors on the computed PC expansion coefficients that may become

L http://www-public.tu-bs.de:8080/ petras/software.html

11



significant if the expansion degree is selected too high. In fact, the polynomial
degree of the sought PC expansion is an hyper-parameter that need be appro-
priately set. Indeed, for a fixed cubature formula it is usually observed that
the projection error increases with the polynomial degree of the PC expansion,
and it exists an optimal polynomial degree d yielding the lowest projection er-
ror. This degree d is unknown in general and the projection error can not be
computed. However, the cubature formula exactly integrates polynomials with
known degree equal or less then dy. A classical rule of thumb is then to select
an expansion degree < d; /2.

3 Global Sensitivity Analysis

We consider the classical variance-based method of the Sobol sensitivity in-
dices for sensitivity analysis [1|. We start by recalling the main features of
the Sobol functional decomposition (or ANOVA decomposition), and then we
define Sobol’s sensitivity indices.

3.1 The Sobol functional decomposition

For simplicity, let us consider vectors of the random input & composed of d
independent identically distributed random variables &;, with {2; as range and
p(&) as probability density function (pdf). We denote the d-dimensional range
by

Q=0 x---xQ. (27)

—_—
d times

Since the &; are independent, p(&) = IT; p(&;). The stochastic output y depends
on the random input: y = f(&). We assume &€ € Q% — f(€) € L2(Q%, p(&)).

The Sobol functional decomposition for every function f € L*(Q%, p(€)) is

FO= > ful&), (28)

uC{1,2,...,d}

where u is a set of integers, &, = (&u,, .- ., &u.) With s = card(u) = |u| and
fo = fo. Each of the 27 elements f, of the decomposition, except fy, verifies
for any &;

[ fugaplerds =0, vusi. (29)

This result implies the orthogonality of the functions f,, i.e.

[ FEDF(EDDE)E =0, Vu £, (30)

12



Furthermore, the Sobol decomposition is unique. The Sobol functions can be
computed using the relation

ful&) = [, TEPELIE — 3 L, (31)

vCu

vE£u

where £, is the vector £ without the elements of . For example

Sm{z} = (617‘"?§i717§’i+17“‘?§d)' (32)

3.2 The Sobol sensitivity indices

We start by defining the variance of the output y = f(£), denoted D and
the variances D, often called conditional variances in the litterature, of the
functions f, of the Sobol decomposition:

D= [ Fene)ds - ;. (33
Du= [ FHEIME)dE,. (341
D, can be expressed as a combination of conditional variances:
D, =V(E[ylg.]) = >_ D, (35)
it
v#£0D

where E and V denote the probabilistic expectation and variance operators.
Thanks to the orthogonality of the decomposition, the sum of the variances
D, is the variance of y, i.e.

D= Y D, (36)

uC{1,2,...,d}
u#)

The Sobol sensitivity indices are defined by,

D
Sy = —, 37
= (37
so that
> S,=1 (38)
uC{1,2,...,d}
u)

S, is called an s-order sensitivity index if |u| = s. Each of the Sobol sensitivity
indices, S5, measures the sensitivity of the variance of y due to the interaction
between the variables §,,, without taking into account the effect of the variables

13



in §, for v C v and v # u. For example the second order sensitivity index
Siijy, expresses the sensitivity of the variance of y with regards to & and ¢,
without taking into account the effect of each variables separately (which are
in turns measured by S; and S;).

There are 29 —1 Sobol’s sensitivity indices. This number becomes quickly large
when d increases. To ease the interpretation and analysis when d increases,
Homma and Saltelli |2] have introduced the total indices, noted Sz, which
express the total sensitivity of the variance of y due to a variable &;, i.e. its
sensitivity with & alone and all its interactions with the others variables:

udi

For example for d = 3, we have,
St = Sy + Sy + Susy + Spesy- (40)
We can also express the total indices using the probabilistic form:

BV (ylEy))
on = Viy)

A useful property, to be used in the next section for the computation of the
total indices, is

(41)

V(E[y‘gw{i}]) n E[V(y|€~{i})]
V(y) Viy

k3

1=

(42)

4 Computation of Sobol’s indices
4.1  Computation of the indices by a Monte-Carlo sampling

Let us consider a sample set of n realizations of the input variables {§(i) i
The sample estimates of the average, E[y] = fo, and the variance, D = (E[y?]—
Ely]?), are

h=r 2 s (€0), (13
.1 . .
D:ﬁ;ﬂ (9) - Dy, (44)

14



where Dy = fo To compute D, from Eq. (35), we have to estimate the con-
ditional variance V(E[y|€,]). The sample estimate of the conditional variance
is

V(Elyl€.)) = E[E[y|€ ]2] — E[EylE, ]]222 E[E[ylE.]"] — Ely)*

The computational cost of this estimate is in O(n?), and is too expensive to

be used in practice. Sobol [1| proposed a less expensive method to approxi-

mate the indices by Monte-Carlo sampling. This method computes the terms
E[E[yl¢,)?] as a unique integral. This i 19 achieved by making use of two inde-

pendent sample sets {£7}7 | and {n@}7 . Using these two sample sets, the
conditional variance can be recasted in

BIBWIE = EIEWE, [yrs ]
- / (/ P €0P(EDE ) ([ (€ E(EIE) pEE,

= / / / F&f (Mew €u)P(E)P(M)dEdN ... (46)

Using this formula, and after some manipulations, the sample estimate of D,

becomes: .
Du= -3 (") 1(¢0) - X D, (47)
= ok
where

@) o
(C')(i) _ g ifjew,
I (4)

n;” otherwise.

For example, if u = {j} we have

~

Dup = (€0 ) 1 (0 €l ) -

Finally the estimate of the Sobol sensitivity indices are given by Eq. (37):

. D
S, = —. 48
= (48)

It is seen that the numerical cost (i.e. the total number of function evalu-
ations) for the estimation of E[E[y|€,]?] is in O(2n). Therefore, using the
same sample sets to compute all the indices, the method requires a total of
nx (card({v C u,v # 0}) 4 1) function evaluations to estimate S,,. As a result,
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the evaluation of all the (2¢ — 1) sensitivity indices requires O(n2?) evalua-
tions of f. This complexity can be greatly reduced if one is interested in the
total indices only. In fact, expressing the total indices from the conditional
variances (see Eq. (42)),

Sp =1 V(ElIE])

; TV (49)

and using

V(Elylé.y)) = EEW|E.1)]*] = EEyE.,]° = EIEYIE )% — 15
= [ [ [ 1)1y mip(@plmgy)dgdng,y — 2. (50)

one obtains the sample estimates of the total indices

Sn=1-% (L7 (€) 7 (<) - Dv) o)

na=

where

W) p o
oy {0 =
Iy (1) .
;" otherwise.

Using Eq. (51), the computational cost for the computation of the d total
indices is reduced to O(n(d+1)). In the application section, we shall use LHS
techniques [21] to construct the sample sets {£€9}7_ and {n®}7_,.

4.2 Computation of the indices by a Quasi Monte-Carlo method

One may also use Quasi Monte-Carlo (QMC) sequences (see [22]) to generate
the sample sets {£7}7  and {n®}™, to be used in Eqs. (47,51). In the
example Section 5, we used QMC sequences based on Sobol’s sequences (see
GSL - GNU Scientific library ? ). We are well aware that the sample sets have to
be independent to estimate the conditional variances involved in Eqs. (47,51).
In practice, we generate a unique sample set, of size n, but with 2d dimensions
as in [2]. The first d dimensions are affected to {£€"}, while the remaining d
dimensions are affected to {n”}. Numerical tests (see below) have shown a
significant improvement of the convergence of the sensitivity index estimate
using the sample sets generated from QMC sequences, compared to the LHS
sampling. Still, further explanations and analysis are required to understand
and fully justify the use of QMC sequences with Eqs. (47,51).

2 http://www.gnu.org/software /gsl/
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4.3 Computation of Sobol’s indices using PC

For f € L?(Q%,p(€)), we denote g its PC expansion truncated at order p:

(p+d)!

o (52)

f&)~g(&)=> BV, P+1=
k=0

The elements f, of the Sobol decomposition of f are approximated by the
elements g, of the decomposition of g:

fu =g, Yu. (53)

It is also clear that the PC-expansion truncated at order p of an element
fu of the Sobol decomposition of f is equal to the element g, of the Sobol
decomposition of g, the PC-expansion truncated at order p of f. Then, the
interest of using an intermediate projection of f on a PC basis, in view of
the determination of the sensitivity indices, comes from the fact that the
computation of the Sobol decomposition of a PC expansion is simple and
immediate. Indeed, the expression of an element g, of the Sobol decomposition
of the PC-expansion g, is simply expressed by

W= > BUL(E,), (54)

keKy

where the set of indices K, is given by

Ku:{ke{l, P} W(¢ ﬁ¢> o >o} (55)

It is stressed that the indices sets K, depend only on the PC basis and not
on the function f. Moreover, thanks to the orthogonality of the PC basis, we
have a simple expression for the variance and conditional variances:

2 (W, U), Dy Y G20, 0. (56)

keKy

\\M*u

Finally, the Sobol indices of f are approximated by

Ek:o ﬁk <\I’k> \I’k>

and Eq. (39) is used to compute the total indices. The previous expressions
show that the determination of the Sobol decomposition and sensitivity indices
is immediate as soon as the PC expansion of f is known. Thus, the method
will be efficient provided that the computation of the PC coefficients is ac-
curate and not too expensive. In the context of non-intrusive methods (see

(57)
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Section 2.3), the computational cost of the PC expansion essentially scales
with the number of function evaluations (or model resolutions) needed to es-
timate correctly the PC coefficients. This number of evaluations is in turns
essentially related to the smoothness of the output with regards to the un-
certain input which controls the expansion order and convergence rate of the
solution method (e.g. of the cubature formula). Consequently, the projection of
the output on a PC basis is expected to significantly reduce the computational
cost of the Sobol sensitivity indices, compared to alternative methods such as
MC and QMC, for smooth output. This claim is verified in the examples of
the next section.

5 Examples

We illustrate the use of PC expansions for the determination of the Sobol sen-
sitivity indices on three classical test functions, namely the Ishigami function,
a polynomial function and the so-called g-function. These test functions are
selected to analyze the effectiveness of the proposed method on smooth and
non-smooth functions with variable number of uncertain input dimensions.

For the three test functions, the uncertain inputs have uniform distributions,
but we expect the analysis to be independent of the statistical distribution
of the uncertain inputs. In all the tests, the PC expansions use multi-variate
Legendre polynomials (the family of polynomials orthogonal for the uniform
measure). The PC coefficients are computed by means of NISP as described
in Section 2.3, using coarse cubature formulas based on Smolyak scheme [19]
and imbedded Féjer’s one-dimensional formulas |23].

The error on the computed sensitivity indices S, from the PC expansion of
the output (i.e. using Eq. (57)) is compared with the estimates obtained us-
ing Monte-Carlo (LHS) and Quasi Monte-Carlo methods as described in Sec-
tion 4.1 (i.e. using Eq. (47)). Specifically, we compare the three methods (PC,
MC and QMOQ) for three error criteria: the sum of the Lj-error on the 2¢ — 1
indices (noted e), the sum of the Li-error on the d first order indices, (noted
e;) and the sum of the L;-error on the d total indices (noted er):

e= > |S,— S, (58)
uC{1,2,...,d}
u)
e= Y. |Swm—Sul (59)
i€{1,2,...,d}
er = Z ‘STZ — STi . (60)
i€{1,2,...,d}
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Note that on the contrary of PC method, the MC and QMC methods estimate
the total indices Sz, from Eq. (51) and not Eq. (39). Also, the estimates being
random for the MC method, the errors are averaged over 100 independent
realizations of the LHS sample sets.

5.1 Ishigami function

The first tests use the Ishigami function [24]:

f(€) = sin(&1) + a sin?(&) 4 b & sin(&y), (61)

where & ~ U([—m,7|) for i = 1,2,3. This function is smooth, non-linear and
non-monotonous. The exact variance and the conditional variances are

a
D=—+4+ — + —
8 5 + 18 2’
Y | a?
D{l}_? W—f-z, Dy =3 Dy =0,
b b*rd

3y = —— — —+ D3 =0, Doz =0.
We set ¢« =7 and b = 0.1.

To compute the PC expansion of f, we need first to select an expansion order
p for the NISP. The expansion order has to be selected in relation with the
level of the cubature formula. For the Féjer one-dimensional formula selected
in this work, the Smolyak formula of level [ is exact for polynomial integrand
of degree < 2[. If f was polynomial of degree p, setting [ = p would yield
exact PC coefficients up to order p. However, the Ishigami function is not
polynomial and numerical tests are needed to properly select p given [. We
show in Figure 2 the errors e for different values of [ and fixed p <1 (left plot).
It is seen that the errors do not decrease much when we increase the level [
for fixed order p < [. In fact, when we increase the level [ of the formula with
p held fixed, the approximation error on the integrals (so on the expansion
coefficients of f) becomes negligible: the error e on the sensitivity indices is
then dominated by the truncature error of the PC expansion. Consequently,
p = | appears to be a relevant rule for the selection of the expansion order
given [. This is confirmed by the right plot in Figure 2, which depicts the
resulting errors on the sensitivity indices for different relations between p and
[. This plot demonstrates that the same convergence rates are obtained for
the different rules (provided that p <), but that the rule p = [ is the least
expensive one in terms of number of function evaluations (which increases
with [).
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Figure 2. The left plot shows the errors e on the sensitivity indices computed from
the PC-expansion using different orders of truncature (p) and levels (1) for the cu-
bature formula as indicated. The right plot shows the errors e on the sensitivity
indices computed from the PC-expansion using different rules for the selection of
the expansion order p at given level [ of the cubature formula.

Next, the errors on the sensitivity indices, computed using the rule p = [ in
the NISP, are compared with the errors for the MC and QMC methods. The
comparison is provided in terms of the three errors criteria (e, er and ¢;) in
Figures (3-5) respectively. The errors are reported as functions of the number
of function evaluations to allow for a direct assessment of the respective meth-
ods efficiencies. It is first observed that the convergence rates of the methods
are essentially the same for the three error criteria. However, the convergence
rates of the three methods are different. Specifically, for the PC method a
-5 is reported, while it is only = for QMC and ﬁ for MC

(averaged over 100 LHS samples).

convergence rate in

The higher convergence rate of the errors on the sensitivity indices with the
number of function evaluations reported for the PC method is explained by
the smoothness of the Ishigami function: this smoothness ensures a fast con-
vergence of both the polynomial approximation and cubature formula. This
fast convergence of the PC method is in fact expected for any smooth func-
tion: for smooth functions and low to medium dimensional problems, the PC
method is expected to exhibit a spectral-like asymptotic convergence rate.

20



10 T

PC ——
0 ( -1/2 ) MC —x—
1 | —— MC —X—
0.1 A T l .y \
o TW
0.01 H
o O ( —1 «
0.001 Sy
—6
le-04 O (n )
1e-06 L
10 100 1000 10000 100000 let+06

n

Figure 3. Errors e on sensitivity indices computed from PC expansions, Quasi Mon-
te-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS sample
sets) as a function of the number of function evaluations.
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Figure 4. Errors ep on total sensitivity indices computed from PC expansions, Quasi
Monte-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS sample
sets) as a function of the number of function evaluations.
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Figure 5. Errors e; on first order sensitivity indices computed from PC expansions,
Quasi Monte-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS
sample sets) as a function of the number of function evaluations.

22



5.2 Polynomial functions

The fast convergence of the sensitivity indices for the PC method on the
Ishigami function may have been attributed to the low dimensionality of the
test function (d = 3). To support the claim of spectral asymptotic convergence
rates of the PC method for any smooth function, we consider the following
polynomial function,

d oc
f© =112,

i=1
with & ~ U([0,1]) for ¢ = 1,...,d. The exact Sobol’s sensitivity indices and
total indices of f have for expressions:

(62)

9~ lul (18yd—1 1
Sy= -, Sp=1--12____ 63
AN TS o

The polynomial function f has a degree equal to d such that its exact PC
projection would require a cubature formula with level [ = d. For large d, this
results in a prohibitively large number of cubature points, so the projection
can be only approximated. Furthermore, if we select an expansion order p < d,
it is clear from Eq. (57) that

S, =0, Vul>p. (64)

Numerical limitations impose [ < d for large d, and for the consistancy of the
integration method we have to select p <[, so we can not expect to compute
sensitivity indices of order > [. Consequently, the effects of the PC truncature
and approximated projection on the computed sensitivity indices have to be
investigated. To do so, we set d = 12. Figure 6 presents the convergence with
the number of function evaluations of the errors er on the total sensitivity
indices for PC (with the rule p = 1), QMC and MC methods. We recall that for
the PC method, the total sensitivity indices are computed from Eq. (39) and
therefore incorporate the errors on all the sensitivity indices (including those
neglected by the PC truncature); on the contrary, QMC and MC methods use
the favorable direct estimation based on Eq. (51). Figure 6 shows that even-
though the cubature formulas used do not allow for an exact determination
of the PC coefficients (we have | < d in all cases), the Sy, computed with
the PC method are much more accurate than for MC and QMC methods.
Furthermore, the spectral convergence of the PC expansion can be seen from
the improvement of the convergence rate of the PC method when the number
of evaluation points increases (or equivalently when [ = p is increased). On
the contrary, the convergence rates of MC and QMC methods are found to
remain constant.

To gain further evidence on the spectral convergence of the PC expansion and
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Figure 6. Errors ep on total sensitivity indices computed from PC expansions, Quasi
Monte-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS sample
sets) as a function of the number of function evaluations.

total sensitivity estimates, we have plotted in Figure 7 the errors ep for the
PC method only, as a function of the number n of function evaluations and
different dimensionality d of the polynomial function (it is recalled that for this
test function, the PC method gives the exact sensitivity indices for [ = d). It is
seen that for all the d tested, the convergence rates increase with the number
of function evaluations. However, the convergence rates and error magnitudes
at a given number of function evaluations (i.e. for a fixed computational cost)
deteriorate as d increases. This trend indicates that there is a dimensionality
dymaz above which MC and QMC methods are expected to perform better than
the PC method: for d > d,,,, a prohibitive number of function evaluations is
necessary to reach the spectral convergence domain of the PC method.
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Figure 7. Errors er on total sensitivity indices computed by PC expansions for
different numbers of dimension d, as a function of the number of function evaluations.
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5.8  G-function

The third test function is the so-called g-function [25]:

o146 =21+ a
_ i z’ 65
e =1 (65)
where & ~ U([0,1]) for i = 1,...,d. This function is non-smooth and non-
monotonous. The exact variance and the conditional variances are
d 1 |l
D= Dinpn+1), Dip=——, D,= Dyv. 66
HDw+ 1. Dy =357 55 Pu=Duy (66)

We set a; = (i — 1)/2 and d = 5. This function is a challenging test for the
PC expansion, due to the presence of the absolute value which first prevents
the spectral convergence of the PC expansion, and second compromises the
convergence of the cubature formula (f ¢ W?2). As a consequence, the se-
lection of PC truncature p, for given level [ of the cubature formula, is less
straightforward than for the previous smooth functions. This is illustrated in
the left plot of Figure 8, where plotted are the evolutions of the errors e for
fixed PC order p and increasing cubature level [. This plot shows that, on
the contrary of the observations for the smooth functions (see Figure 2), the
errors do not level-off when [ increases, denoting that the integration errors
are at least of the same order as the truncature errors. This is not a surprise
considering the error estimate given in the end of Section 2.3.3. Also, the right
plot of Figure 8, where plotted are the evolutions of the errors e with the level
[ and different rules for choosing the expansion order p, clearly indicates that
there is no rule that performs better than the others. Consequently, we make
in the following the conservative choice of using the rule p =1 — 4.

Figures (9-11) compare the PC, MC and QMC methods for the different error
criteria on the sensitivity indices. These results show that the convergence
rates of the different errors are essentially the same for PC and QMC methods.
On the contrary of the results for the smooth functions, the convergence rates
for the PC method do not improve when the number of function evaluations
increases. This trend is explained jointly by the loss of spectral convergence
for the PC expansion, and by the inadequacy of Féjer’s quadrature formula
to approximate integrals of non-smooth functions. It is however interesting to
note that the PC method remains competitive compared to MC and QMC
methods.
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Figure 8. Errors e on the sensitivity indices computed from PC-expansions truncated
at fixed orders p as a function of the level [ of the cubature formula (left plot). Errors
e on the sensitivity indices computed from PC-expansions with different the level [
of the cubature formula and different rules of truncature order as indicated (right

plot).
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Figure 9. Errors e on sensitivity indices computed from PC expansions, Quasi Mon-
te-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS sample
sets) as a function of the number of function evaluations.

6 Conclusions

In this paper, we have presented a method for the computation of the Sobol
sensitivity indices of a function (or model output) involving independent ran-
dom input, with known probability distributions. The method uses the poly-
nomial chaos expansion of the function to directly compute the conditional
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Figure 10. Errors ep on total sensitivity indices computed from PC expansions,
Quasi Monte-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS
sample sets) as a function of the number of function evaluations.
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Figure 11. Errors e; on first order sensitivity indices computed from PC expansions,
Quasi Monte-Carlo sequences and Monte-Carlo simulations (averaged over 100 LHS
sample sets) as a function of the number of function evaluations.

variances and Sobol’s sensitivity indices. The interest of this approach lies in
two essential points:

e the simple and immediate computation of the sensitivity indices from the
PC-expansion,

e the different methods available for the determination of the PC-expansion
(Galerkin projection, Non-Intrusive Spectral Projection and least square
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approximation).

The application of the PC method is entirely conditioned on the availability of
the PC expansion and its accuracy. For smooth functions, where the PC basis
allows for spectral convergence of the PC expansions, the method is expected
to exhibit spectral-like convergence rates and therefore to outperform the al-
ternative methods (Monte-Carlo, Quasi Monte-Carlo). This expectations are
verified for the two smooth functions tested, which PC expansions were com-
puted by means of Non-Intrusive Spectral Projections involving sparse cuba-
ture formulas. This procedure allowed for a direct comparison of the methods
efficiencies, by comparing the respective errors on the sensitivity indices as a
function of the number of function evaluations.

The examples provided also demonstrate that the proposed method suffers
from the usual limitations of the PC expansions. The first limitation has for
origin the exponential growth of the basis dimension with the number of inde-
pendent uncertain inputs. From the computational point of view, the growth
of the basis dimension results in a numerical cost that quickly becomes pro-
hibitive (for instance the evolution with d of the number of function evalua-
tions in the non-intrusive techniques or “curse of dimensionality”). The second
limitation is due to the loss of the spectral convergence of the PC expansion
for non-smooth functions, as illustrated by the last example of Section 5. How-
ever, recent works and on-going researches on PC approximations (e.g. multi-
resolution analysis [13,14] and adaptive cubature techniques [26,27|) allow for
some optimism, even-though Monte-Carlo methods will certainly remain the
only viable alternative for large dimensional problems (say for d > 20). Fi-
nally, we would like to mention that PC expansions may be a suitable way to
perform sensitivity analysis in situations where the input parameters are not
independent |28|.
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