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1. Introduction. In recent years, functional approaches have been deeply investigated for the
numerical solution of models driven by stochastic partial differential equations [15, 19]. These
approaches consist in searching for a functional expansion of the random solution u on a basis of
functions of a discrete set of random parameters modeling the input uncertainties. The solution
u is thus a function defined on a parameter space Ξ equipped with a probability measure P , and
with values in a certain function space V. Classical approximation methods consist in searching for
an approximate M -terms expansion

∑M
k=1 ukΨk(ξ) of u(ξ), where the Ψk are some suitable basis

functions, typically polynomials or piecewise polynomials, and where the uk ∈ V are the coeffi-
cients that need to be computed. Approximate expansions can be computed using sampling-type
approaches or Galerkin-type projection methods, these latter methods requiring the solution of a
coupled system of M partial differential equations. For large-scale applications, the computation
of these approximations becomes simply intractable.

In order to address this complexity, various model reduction methods have been proposed
(see [28] for a short review). Model reduction methods based on nonlinear approximation aim at
constructing an approximation of the parameterized solution u(ξ) under the form

∑m
i=1 uiλi(ξ),

where the ui and λi constitute reduced bases of functions that are not fixed a priori but simultane-
ously determined using some suitable optimality criteria. These optimality criteria must be such
that the m-term approximation is computable without any a priori information on the solution u.

A first class of model reduction methods, the so called “Reduced Basis” methods, define opti-
mal approximations using a uniform norm on the parameter space [32, 22, 34]. For computational
purposes, suboptimal approximations are introduced, using a greedy construction of deterministic
approximation spaces. Reduced basis functions ui are progressively determined by the solution
of successive deterministic problems associated with parameters values ξi, i.e. ui = u(ξi), where
a suitable error indicator is detected to be maximum. These methods have been applied to a
large class of partial differential equations (see e.g. [35, 33] for the application to Burgers and
Navier–Stokes equations). Some convergence results have been recently obtained for a class of lin-
ear elliptic problems, under some regularity assumptions on the solution [4, 5]. These approaches,
initially introduced for parametric analyses, do not take into account the probability measure on
the parameter space.
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A second class of model reduction methods, known as Proper Generalized Decomposition
methods (PGD), is based on the approximation of the weak solution of parametric/stochastic
equations which is an element of a tensor product space V ⊗ S, where S is a space of functions
defined on the weighted parameter space Ξ, typically S = L2(Ξ,P). It has been introduced in [26]
for the solution a class of linear stochastic PDEs, and then extended to other classes of stochastic
PDEs (see e.g. [27, 31, 8]). Different definitions of approximations have been proposed, which
can be seen as generalized spectral decompositions (generalized Singular Value Decompositions).
Based on the interpretation of the approximation problem as a nonlinear eigenproblem, several
algorithms have been proposed, which are inspired from methods for the solution of eigenproblems,
see [27]. Greedy-type algorithms that construct the functions ui one after the other are of particular
interest. Indeed, these algorithms only require the solution of successive deterministic problems.
Note however that, unlike the aforementioned methods, these problems are not associated to a
particular parameter value.

The PGD methods have also been successively applied to the solution of other high dimen-
sional problems formulated in tensor spaces (see review [9]). In particular, they have been used
for the solution of high dimensional stochastic problems by further exploiting the tensor structure
of stochastic function space [12, 30]. General convergence results have been recently obtained for
particular classes of elliptic problems [13, 6, 14]. Let us note that alternative solution strategies
based on tensor approximation methods have also been proposed for the solution of high dimen-
sional stochastic problems [2, 16, 24]. These approaches are based on the use of classical tensor
approximation methods within iterative solvers.

In this paper, we address the solution of the stochastic steady incompressible Navier–Stokes
equations. Application of stochastic spectral methods to the Navier-Stokes equations, using
Galerkin projection schemes, was first considered in [20, 21, 18, 37], see also references in re-
views [17, 25] and book [19]. Although successful, Galerkin methods for the stochastic Navier-
Stokes equations are challenged by the dimension of the resulting non-linear problem and the
need for adapted solvers [23]. Therefore, we propose in this work to apply the Proper Generalized
Decomposition method to the stochastic Navier-Stokes equations. For this purpose, we extend to
this nonlinear framework an algorithm that has been proposed in [27] for the construction of the
reduced basis of functions ui. This construction can be interpreted as an Arnoldi procedure for the
solution of the associated nonlinear eigenproblem. Arnoldi iterations can be seen as a greedy pro-
cedure for the construction of a reduced approximation space. This algorithm has the remarkable
property that for the construction of a m-dimensional reduced basis it only requires the solution
of m deterministic PDEs that possess a classical structure, close to a deterministic incompressible
Navier–Stokes problem. These deterministic problems can be handled by classical deterministic
solvers, thus making the proposed algorithm a partially non intrusive method. The algorithm is
applied to a divergence free formulation of the Navier–Stokes equations, yielding an approximation
of the random velocity field on a reduced basis of divergence free deterministic velocity fields. A
methodology is then proposed for the reconstruction of an approximation of the pressure field,
the random velocity field being given. This approximation is defined through a minimal residual
formulation of the Navier–Stokes equations. Two alternative methods are introduced for the con-
struction of an approximation of the pressure. The first method is a direct application of a PGD
algorithm to the minimal residual formulation of the Navier–Stokes equations, thus yielding to the
construction of a convergent decomposition of the pressure. The second method, which is more
computationally efficient, reuses as a reduced basis the deterministic pressure fields associated to
the deterministic problems that were solved during the construction of the decomposition of the
velocity field (i.e. the Lagrange multipliers associated with the divergence-free constraint).

The outline of the paper is as follows. In Section 2, the PGD method is presented in a
general framework for the solution of parametric stochastic PDEs. In Section 3, we introduce the
formulation of the steady incompressible Navier–Stokes equations and we detail the computational
aspects of the application of the PGD. In Section 4, numerical examples illustrate the efficiency
of the proposed method. Finally, the methodologies for pressure reconstruction are introduced in
Section 5.
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2. Proper Generalized Decomposition (PGD). In this Section we introduce the weak-formulation
of a generic problem with stochastic coefficients. We then shortly discussed the stochastic dis-
cretization using polynomial chaos expansion and the related Galerkin method. The Proper Gen-
eralized Decomposition method is then introduced and algorithms for its calculation are detailed.

2.1. Stochastic variational problem. Consider the following abstract deterministic variational
problem:

Find u ∈ V such that

a (u, v;φ) = b(v;φ), ∀v ∈ V, (2.1)

with V an appropriate vector space, φ the problem parameters, b(· ;φ) : V → R a linear form
and a(·, · ;φ) : V ×V → R a semi-linear form which is linear with respect to the second argument.
The deterministic space V can be here either infinite or finite dimensional and is equipped with
an inner product (·, ·)V with associated norm ‖ · ‖V . Note that if V has infinite dimension, it will
have to be discretized at some point. However, to remain as general as possible, we delay the
discussion on discretized spaces V to the next sections. In any case, we assume that problem (2.1)
has a unique solution (depending on φ).

In this paper, we are interested in situations where the parameters φ of the problem are
uncertain and therefore treated as random inputs. Let P := (Θ,Σ, µ) be an abstract probability
space, where Θ is the set of random elementary events, Σ the σ-algebra of the events and µ a
probability measure. For φ defined on P, we denote by φ(θ), θ ∈ Θ, a realization of the random
parameters. The expectation of a generic random quantity h defined on P is denoted

E [h] :=
∫

Θ

h(θ) dµ(θ).

Let L2(Θ, µ) be the space of second-order real-valued random variables, equipped with the inner
product (·, ·)µ and associated norm ‖ · ‖L2(Θ,µ),

∀(h, g) ∈ L2(Θ, µ), (h, g)µ :=
∫

Θ

h(θ)g(θ) dµ(θ), ‖h‖L2(Θ,µ) = (h, h)1/2
µ ,

so that

h ∈ L2(Θ, µ) ⇔ ‖h‖L2(Θ,µ) < +∞.

Since the parameters φ in equation (2.1) are random, the solution of (2.1), so denoted U , is also
random and defined on P. It satisfies equation (2.1) almost surely, that is

Find U : Θ→ V such that a.s.

a (U(θ), v;φ(θ)) = b(v;φ(θ) ), ∀v ∈ V. (2.2)

It will be further assumed that U ∈ V⊗L2(Θ, µ), so that one can derive the fully weak variational
form of the stochastic problem given by the following problem.

Stochastic problem.

Find U ∈ V ⊗ L2(Θ, µ) such that

A (U, V ;φ) = B(V ;φ), ∀ V ∈ V ⊗ L2(Θ, µ), (2.3)

with the forms A and B given by

A (U, V ;φ) := E [a (U, V ;φ)] =
∫

Θ

a (U(θ), V (θ);φ(θ)) dµ(θ),

B(V ;φ) := E [b(V ;φ)] =
∫

Θ

b(V (θ);φ(θ)) dµ(θ).
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2.2. Stochastic discretization. For computational purposes, numerical discretizations need to
be introduced. These will concern both the deterministic space V, to be discussed in the fol-
lowing sections, and the stochastic space L2(Θ, µ), for which we rely on Polynomial Chaos (PC)
expansions.

For the sake of simplicity, we restrict ourself to the case of PC approximations for a set of N
independent identically distributed (i.i.d.) random variables, ξ = {ξi, i = 1, . . . ,N}, defined on
P, with range Ξ and known probability density function dP(ξ). Any functional h : ξ ∈ Ξ 7→ R is
then a real-valued random variable and we have

E [h] =
∫

Θ

h(ξ(θ)) dµ(θ) =
∫

Ξ

h(y) dP(y).

In this context, we assume the knowledge of the random model parameters φ as a functional of ξ
(see examples in the results sections), specifically

φ(θ) ≡ φ(ξ(θ)) a.s.

Since the model parameters are the only source of stochasticity in the problem, we have U(θ) ≡
U(ξ(θ)) for the solution of (2.2) with φ(ξ). In other words, the solution is computed in the
probability space P(ξ) := (Ξ,ΣΞ, dP), called the image space, instead of in the abstract space P.
Further, we denote L2(Ξ,P) the space of second-order random variables, equipped with the inner
product defined for (λ, β) ∈ L2(Ξ,P)2 by

〈λ, β〉 :=
∫

Ξ

λ(y)β(y) dP(y) = E [λβ] ,

and the associated norm

‖λ‖L2(Ξ,P) = 〈λ, λ〉1/2 = E
[
λ2
]
.

Next, we introduce an Hilbertian basis (complete orthonormal set) {Ψ1,Ψ2, . . . } of L2(Ξ,P), and
denote by SM the subspace of L2(Ξ,P) spanned by the first M elements of the stochastic basis,
that is

L2(Ξ,P) ⊃ SM := span {Ψ1, . . . ,ΨM}.

Any element λ ∈ L2(Ξ,P) can be approximated by λM ∈ SM defined by the expansion

λM(ξ) =
M∑

i=1

λiΨi(ξ), lim
M→∞

‖λM − λ‖L2(Ξ,P) = 0.

Classically, the basis functions Ψi are N-variate polynomials in ξ. Each standard measure P(ξ)
over Ξ leads to a different classical polynomial family [36], the case of ξi standard Gaussian random
variables corresponding to (normalized) Hermite polynomials [15]. All developments below imme-
diately extend to other types of stochastic basis, including piecewise polynomial approximations
and hierarchical stochastic multi-wavelets. For spectral polynomial bases, a common truncature
strategy is based on the maximal total degree of the basis functions retained in the construction
of SM. Denoting No the maximal total degree, the dimension of SM is

dim(SM) = M =
(N + No)!

N!No!
,

highlighting its combinatoric increase with both the number of random variables in ξ and the
expansion degree No. Other possible construction strategies for SM have been investigated e.g.
in [1].
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2.3. Stochastic Galerkin formulation. The stochastic problem (2.3) can be recast in SM by
means of Galerkin method, resulting in the following problem.

Discrete Stochastic Problem.

Find UM ∈ V ⊗ SM such that

A
(
UM, V M;φ

)
= B(V M;φ), ∀V M ∈ V ⊗ SM.

Inserting the PC expansion of the solution, UM =
∑M

i=1 uiΨi, in the previous equations results
in a set of M coupled problems for the deterministic modes ui ∈ V of the solution [15, 19], namely

A

(
M∑

i=1

uiΨi, vlΨl;φ

)
= B(vlΨl;φ), ∀vl ∈ V and l = 1, . . . ,M. (2.4)

It is seen that dimension of the Galerkin problem is M times larger than the size of the original de-
terministic problem. Consequently, its resolution can be very costly, or even prohibitive, whenever
N or No needs be large to obtain an accurate approximate UM of the exact stochastic solution. An
additional difficulty appears when the form a is nonlinear in its first argument, making difficult
the practical computation of the stochastic form A. These two difficulties call for improvement.
First, regarding the dimensionality of the Galerkin problem, one can reduce complexity by relying
on more appropriate expansion basis, e.g. by means of adaptive strategies and enrichment of
polynomial basis (see e.g. [3, 10, 11]). However, adaptive approaches are complex to implement
and often remains computationally intensive, while they do not address the difficulties related to
nonlinearities. On the contrary, the PGD approaches discussed in the following aim at tackling the
issues of dimensionality and, to some extent, are better suited to the reuse of deterministic code
without special treatments of nonlinearities as a result. This latter point will be further discussed
in the following.

2.4. PGD: principles. Let us go back to Formulation 2.3. The PGD method seeks for a
separated representation of the solution U ∈ V ⊗ L2(Ξ,P) as

U(ξ) =
∑

i

uiλi(ξ),

where the ui ∈ V are the deterministic components and the λi ∈ L2(Ξ,P) the stochastic com-
ponents of the PGD. The m-terms PGD approximation of U , denoted U (m), corresponds the
truncated series

U (m) =
m∑

i=1

uiλi ≈ U. (2.5)

The objective is then to construct the expansion (2.5) to minimize the approximation error in
some sense, without a priori selection of deterministic and stochastic components. PGD thus has
to be contrasted with the classical Galerkin approach where the stochastic components, the Ψi,
are selected a priori, before the computation of the deterministic coefficients.

The simplest PGD algorithms determine the couples (ui, λi) ∈ V × L2(Ξ,P) one after the
others. Specifically, assuming that U (m) has been already determined, let (u, λ) be the next
couple of components. We here look for a correction uλ which lives in the manifold of rank-one
elements in V ⊗ L2(Ξ,P). We here impose uλ to satisfy a Galerkin orthogonality with respect to
the tangent manifold at uλ to the set of rank-one elements, which is defined by {uβ + vλ;β ∈
L2(Ξ,P), v ∈ V}. We therefore obtain the following necessary conditions for the definition of uλ:
Find (u, λ) ∈ V × L2(Ξ,P) such that

A
(
U (m) + uλ, uβ + vλ;φ

)
= B(uβ + vλ;φ), ∀(v, β) ∈ V × L2(Ξ,P). (2.6)



6 L. TAMELLINI, O. LE MAITRE AND A. NOUY

Algorithm 1 Power method
1: U ← 0 [element 0 of V]

2: for l in 1, 2, . . . ,m do
3: Initialize λ [e.g. at random]

4: repeat
5: Solve deterministic problem: u← D(λ;U)
6: Normalize u: u← u/‖u‖V
7: Solve stochastic problem: λ← S(u;U)
8: until (u, λ) converged
9: U ← U + uλ

10: end for

For some classes of semilinear forms A, we can prove the existence of solutions uλ satisfying (2.6),
see [14]. Moreover, for some particular symmetric elliptic linear problems, the couples (u, λ) can be
interpreted as left and right generalized singular vectors of U −Um, see [13]. Among the solutions
of (2.6), the best ones are selected by the algorithms described below that can be interpreted as
algorithms for capturing approximations of the dominant singular vectors of U − Um. Note that
for the present steady Navier–Stokes equations, the analysis of existence of solutions is still an
open problem. Two coupled problems for u, λ can be derived from equation (2.6):

Deterministic Problem.

Find u ∈ V such that

A
(
U (m) + uλ, vλ;φ

)
= B(vλ;φ), ∀v ∈ V. (2.7)

For λ given, we denote hereafter u = D(λ;U (m)) the solution of deterministic problem (2.7).

Stochastic Problem.

Find λ ∈ L2(Ξ,P) such that

A
(
U (m) + uλ, uβ;φ

)
= B(uβ;φ), ∀β ∈ L2(Ξ,P). (2.8)

Similarly, for u given, we denote λ = S(u;U (m)) the solution of stochastic problem (2.8).

2.5. PGD: algorithms. The above interpretation of an optimal couple (u, λ) as a couple of
dominant singular vectors of U − U (m) suggested to translate to the present situation techniques
for the resolution of eigenvalues problems, like power-iteration or Arnoldi methods (see [27]). Their
application to scalar non linear problems has been thoroughly investigated in [31]. Note that these
algorithms have also been investigated for other problems formulated in tensor product spaces,
such as time-dependent partial differential equations [29].

2.5.1. Power-Iterations. The power method for the computation of (u, λ) is stated in Algo-
rithm 1. Note that the convergence criteria is not stated on the couple (u, λ) yielded by the
power-type iterations is understood in a broad sense since u and λ may not converge individually
(see [27, 26] for discussion on the convergence of the iterations). In practice, only a limited number
of iterations is performed. We also remark that λ and u have equivalent roles in the Algorithm,
so that the normalization step at line 6 could be performed on λ rather then u.

The convergence of the resulting PGD obtained by the Power-Iteration algorithm can be im-
proved by introducing an update of the stochastic components {λ1, . . . , λm} after the determina-
tion of the m-th first couples. More specifically, given the deterministic components u1, u2, . . . , um,
the update problem consists in the solution of the following set of m coupled equations:

Update problem.
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Algorithm 2 Power method with update
1: U ← 0
2: W ← {} [initialization of the reduced basis in V]

3: Λ← {} [initialization of the reduced basis in L2(Ξ, P)]

4: for l in 1, 2, . . . ,m do
5: Initialize λ [e.g. at random]

6: repeat
7: Solve deterministic problem: u← D(λ;U)
8: Normalize u: u← u/‖u‖V
9: Solve stochastic problem: λ← S(u;U)

10: until (u, λ) converged
11: Add u to its reduced basis: W ←W ∪ {u}
12: Add λ to its reduced basis: Λ← Λ ∪ {λ}
13: Solve update problem: Λ← U(W )
14: U ←

∑l
k=1 ukλk

15: end for

Find λ1, . . . , λm ∈ L2(Ξ,P) such that

A

(
m∑

i=1

uiλi, ulβ;φ

)
= B(ulβ;φ), ∀β ∈ L2(Ξ,P), l = 1, . . . ,m. (2.9)

Denoting Λ(m) = {λ1 . . . λm}, the update problem is compactly written formally as

Λ(m) = U(W (m)),

where W (m) = {u1 . . . um} is called the reduced deterministic basis (of V). The power-type
algorithm with update is stated in Algorithm 2. Note that it is not necessary to solve the update
problem (line 13 of Algorithm 2) at every step l. Moreover, it would be possible to update W
instead of Λ. This would results in solving a Galerkin problem similar to the classical one, but
with the stochastic basis {λi} instead of the {Ψi}

2.5.2. Arnoldi iterations. One disadvantage of Power-iterations-like methods is that they dis-
card all the intermediate solutions within the repeat-until loops. The so-called Arnoldi algorithm
is a possible solution to overcome such a “waste”: the temporary solutions are used to build a
deterministic orthogonal basis W (m), and then an update problem is solved to compute Λ(m).
The main advantage of this algorithm is therefore that it requires a lower number of resolutions
for the determinstic and stochastic problems. The Arnoldi algorithm is stated in Algorithm 3.

Whenever the generation of deterministic modes stagnates into invariant subspaces (detected
using the small positive parameter ε at line 10), an update step is performed. This update step
can be interpreted as a deflation in the Arnoldi method. Note also that the update problems at
lines 12 and 20 concern the whole stochastic components Λ generated so far, but one could as well
perform a partial update considering only the Arnoldi subspace generated after the last detected
stagnation.

2.6. Practical considerations. Obviously, also the algorithms above need a stochastic dis-
cretization. Again, we shall rely on PC expansions for the stochastic components and approx-
imate the stochastic modes λi in the finite dimensional SM by

∑M
k=1 λ

k
i Ψk. Further, with this

stochastic discretization, the stochastic problem (2.8) and the update problem (2.9) translate into
the Galerkin problems

A

(
U (m) + u

M∑
k=1

λk
i Ψk, uΨl;φ

)
= B(uΨl;φ), l = 1, . . . ,M, (2.10)
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Algorithm 3 Arnoldi method
1: l← 0 [initialize counter for modes]

2: W ← {} [void container for deterministic modes]

3: Λ← {} [void container for stochastic modes]

4: U ← 0
5: Initialize λ [e.g. at random]

6: while l < m do
7: l← l + 1
8: Solve deterministic problem u∗ ← D(λ;U)
9: Orthogonalize u∗: u← u∗ −

∑l−1
k=1(uk, u

∗)V
10: if ‖u‖V < ε then
11: l← l − 1 [stagnation of Arnoldi detected]

12: Solve update problem: Λ← U(W )
13: U ←

∑l
k=1 ukλk

14: else
15: Normalize u: u← u/‖u‖V
16: Solve stochastic problem: λ← S(u;U)
17: Add u to its container: W ←W ∪ {u}
18: Add λ to its container: Λ← Λ ∪ {λ}
19: if l = m then
20: Solve update problem: Λ← U(W )
21: U ←

∑l
k=1 ukλk

22: end if
23: end if
24: end while

and

A

(
m∑

i=1

ui

(
M∑

k=1

λk
i Ψk

)
, ulΨj ;φ

)
= B(ulΨj ;φ), l = 1, . . . ,m and j = 1, . . . ,M. (2.11)

For a given stochastic approximation space SM, one can expect the PGD solution U (m) to converge
quickly to the Galerkin solution UM ∈ V ⊗SM, with m� M modes. This expectation comes from
the fact that the PGD constructs the most relevant stochastic components λi for the expansion,
contrary to the Galerkin case where one chooses a priori the stochastic components (as the elements
of the PC basis) and then seek for the solution in SM.

Another point to be underlined in view of the above algorithms is that in each of them the
computationally intensive steps are the resolution of the deterministic and, to a lower extent, the
stochastic problems plus the update problems (optional in the Power-Iteration algorithm). As
seen in (2.7) and (2.10) the size of the deterministic and stochastic problems are constant and
equal to the dimension of the discretized spaces V and SM respectively; this is in general much
lower than the size of the Galerkin problem which is the product of the two, with a significant
complexity reduction as a result (provided that the number of systems to be solved is small
enough). Concerning the update problem, we observe that its dimension is m×dim(SM) so that if
m is less than the dimension of the discretized space V the update problem is again much smaller
in size than the Galerkin problem.

In addition, it will be shown in the following sections that for the Navier-Stokes equations
the actual deterministic problems to be solved have structures very similar to the original Navier-
Stokes equations, facilitating the re-use of existing deterministic codes, while implementing a
Galerkin solver would require a greater implementation effort.

We also remark that instead of updating the stochastic components of the PGD solution, one
could instead derive an update problem for the deterministic components {ui, i = 1, . . . ,m}, which
would in fact have the structure of the Galerkin problem in (2.4) but for the approximation in the
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stochastic space spanned by the {λi} instead of the {Ψi}. This alternative should be considered
for problems where the dimension M of the stochastic space exceeds that of the discretized space
V.

3. Navier-Stokes equations with uncertain parameters. We consider the bidimensional, steady,
incompressible (constant density) Navier-Stokes equations on a bounded, simply connected domain
Ω ⊂ R2 with boundary ∂Ω. The dimensionless Navier-Stokes equations are

u ·∇u = −∇p+ ∇ · σ(u) + f , (3.1a)
∇ · u = 0, (3.1b)

where u : x ∈ Ω 7→ R2 is the velocity field, p : x ∈ Ω 7→ R is the pressure field, f : x ∈ Ω 7→ R2 is
the external force field and σ the viscous stress tensor. For a Newtonian fluid, σ in (3.1a) has for
expression

σ(u) =
ν

2
(
∇u + ∇uT

)
,

where ν > 0 is the viscosity parameter (inverse of a Reynolds number), measuring relative influence
of the inertial (nonlinear) and viscous (linear) contributions. Accounting for the mass conservation
equation (3.1b), the Navier-Stokes equations reduce to

u ·∇u = −∇p+ ν∇2u + f , (3.2a)
∇ · u = 0. (3.2b)

These equations have to be complemented with boundary conditions; for simplicity, we shall
restrict ourselves to the case of homogeneous Dirichlet velocity boundary conditions on ∂Ω,

u(x) = 0, x ∈ ∂Ω. (3.3)

The case of non-homogeneous Dirichlet boundary conditions can be tackled by introducing a
suitable affine space for the velocity, as shown in [31].

3.1. Functional framework. Next, we classically denote by L2(Ω) the space of functions that
are square integrable over Ω. It is equipped with the following inner product and associated norm:

(p, q) :=
∫

Ω

pq dΩ, ‖q‖L2(Ω) = (q, q)1/2.

We define the constrained space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0
}
.

Then, let H1(Ω) be the Sobolev space of vector valued functions with all components and their
first partial derivatives being square integrable over Ω, and H1

0(Ω) the constrained space of such
vector functions vanishing on ∂Ω,

H1
0(Ω) =

{
v ∈ H1(Ω), v = 0 on ∂Ω

}
.

With the above notations, the Navier-Stokes system (3.2) with boundary conditions (3.3) then
admits the following weak formulation.

Navier–Stokes equations.

Find (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that

c(u,u,v) + ν v(u,v) + d(p,v) = b(v), ∀v ∈ H1
0(Ω) (3.4)

d(q,u) = 0, ∀q ∈ L2
0(Ω),
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with the forms defined by

c(u,w,v) :=
∫

Ω

(u ·∇w) · v dΩ, v(u,v) :=
∫

Ω

∇u : ∇v dΩ,

d(p,v) := −
∫

Ω

p∇ · v dΩ, b(v) :=
∫

Ω

f · v dΩ.

Pressure can also be formally suppressed in this weak formulation, by introducing the subspace of
weakly divergence-free functions of H1

0(Ω), denoted hereafter H1
0,div(Ω),

H1
0,div(Ω) :=

{
v ∈ H1

0(Ω) : d(p,v) = 0, ∀p ∈ L2(Ω)
}
.

Seeking u ∈ H1
0,div(Ω), the weak form simplifies to the following problem.

Divergence-free Navier–Stokes equations.

Find u ∈ H1
0,div(Ω) such that

c(u,u,v) + ν v(u,v) = b(v), ∀v ∈ H1
0,div(Ω). (3.5)

Finally, we introduce the uncertain parameters. In this paper, we are concerned by situations
where the external forcing f and viscous parameter ν are uncertain and, consistently with the
previous sections, are seen as functions of a set of N random variables (e.g. normalized centered
Gaussian random variables), ν = ν(ξ) and F = F (x, ξ). As a consequence, the divergence-free
Navier–Stokes equation (3.5) has now a stochastic solution U(ξ). We can therefore state the
following formulation:

Find U = U(ξ) : Ξ→ H1
0,div(Ω) such that

c(U(ξ),U(ξ),V ) + ν(ξ) v(U(ξ),V ) = b(V ;F (ξ)),

∀V ∈ H1
0,div(Ω), for a.e. ξ ∈ Ξ,

whose fully weak counterpart can be written immediately as

Stochastic Navier–Stokes problem.

Find U ∈ H1
0,div(Ω)⊗ L2(Ξ,P) such that

C(U ,U ,V ) + Vν(U ,V ) = B(V ), ∀V ∈ H1
0,div(Ω)⊗ L2(Ξ,P). (3.6)

The forms C, Vν and B are given by

C(U ,W ,V ) := E [c(U ,W ,V )] , Vν(U ,V ) := E [ν v(U ,V )] , B(V ) := E [b(V ;F )] .

The previous formulation is ready to be discretized with the Stochastic Galerkin method, in-
troducing the discretized stochastic space SM as in section 2.3. In practice, the divergence-free
constraint is treated by adding a stochastic pressure field P (ξ), see e.g. [19]. Moreover, the size of
the Galerkin problem is large, as all stochastic modes are coupled through the random viscosity
and the non-linearity, so that efficient strategies for its resolution are needed, see for instance [23].
We will however base the following discussion on PGD on the formulation in H1

0,div(Ω)⊗L2(Ξ,P)
since we are looking for a PGD decomposition of U . We will return back to the issue of pressure
later on.

3.2. PGD formulation. We now detail the deterministic, stochastic and update problems as-
sociated to the iterations of the PGD algorithms.

Deterministic problem. We here detail problem (2.7). We assume that a m-term reduced
approximation U (m) =

∑m
i=1 uiλi has been computed. For a given stochastic mode λ ∈ L2(Ξ,P),

the associated deterministic mode u = D(λ;U (m)) is defined by the following problem.
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Find u ∈ H1
0,div(Ω) such that

C(λu, λu, λv)+C(λu,U (m), λv) + C(U (m), λu, λv) + Vν(λu, λv)

= B(λv)− Vν(U (m), λv)− C(U (m),U (m), λv), ∀v ∈ H1
0,div(Ω).

For convenience and to stress the deterministic character of this problem we rewrite it as

Find u ∈ H1
0,div(Ω) such that

c(u,u,v) + c (u,v(m)
c (λ),v) + c (v(m)

c (λ), u,v)

+ ν̃ v(u,v;λ) = b̃(v;U (m), λ) ∀v ∈ H1
0,div(Ω). (3.7)

In the previous equation we have denoted

v(m)
c (λ) =

m∑
i=1

E
[
λ2λi

]
E [λ3]

ui , ν̃ =
E
[
νλ2

]
E [λ3]

b̃(v;U (m), λ) =
E [λ b(v;F )]

E [λ3]
−

m∑
i=1

E [λνλi]
E [λ3]

v(ui,v)−
m∑

i=1

m∑
j=1

E [λλiλj ]
E [λ3]

c(ui,uj ,v) .

It is therefore seen that the structure of the deterministic PGD problem is essentially the same
as the weak formulation of the deterministic incompressible Navier-Stokes equations, with a few
remarkable differences. In particular: i) we have two new linear convective terms, associated
with convective velocity v

(m)
c ; ii) the viscosity parameter is different, since its value is now ν̃ =

E
[
νλ2

]
/E
[
λ3
]
; iii) the forcing term contains all the information about the previous modes which

have been already computed. We further observe that we can always make ν̃ > 0, by changing λ
to −λ, owing to the homogeneity of the sought couple (λ,u).

As a result, the resolution of this problem can re-use existing deterministic flow solvers with
minimal adaptations for the computation of the right-hand-side and the additional convection
term. In addition, the enforcement of divergence free character of u can be achieved by introducing
a deterministic Lagrange multiplier ∈ L2

0(Ω).

Stochastic problem. We now detail problem (2.8). Let us assume again that a m-term reduced
approximation U (m) =

∑m
i=1 uiλi has been computed. For a given deterministic mode u ∈

H1
0,div(Ω), the associated stochastic mode λ = S(u;U (m)) is solution of the following problem.

Find λ ∈ SM such that

C(λu, λu, βu)+C(U (m), λu, βu) + C(λu,U (m), βu) + Vν(λu, βu)

= B(βu)− C(U (m),U (m), βu)− Vν(U (m), βu) ∀β ∈ SM

This is a quadratic equation for λ in weak form. We can highlight this by recasting the previous
formulation as

Find λ ∈ SM such that

E
[
λ2β

]
c(u,u,u) +

m∑
i=1

E [λλiβ] ( c(ui,u,u) + c(ui,u,u) ) + E [νλβ] v(u,u)

= E [β b(u;F )]−
m∑

i,j=1

E [λiλjβ] c(ui,uj ,u)−
m∑

i=1

E [νλiβ] v(ui,u) ∀β ∈ SM. (3.8)
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To actually compute the PC expansion of λ in SM, λ =
∑M

k=0 λ̂kΨk, one has next to choose β = Ψl

in (3.8) and solve the following set of M quadratic equations in the coefficients λ̂k: ∀ l = 1, . . .M ,

c(u,u,u)
M∑

k,k′=1

λ̂kλ̂k′ E [ΨkΨk′Ψl] +
m∑

i=1

( c(ui,u,u) + c(ui,u,u) )
M∑

k,k′=1

λ̂kλ̂i, k′E [ΨkΨk′Ψl]

+ v(u,u)
M∑

k,k′=1

λ̂k ν̂k′ E [ΨkΨk′Ψl] =
M∑

k′=1

b (f̂k′ ,u) E [Ψk′Ψl]

−
m∑

i,j=1

c(ui,uj ,u)
M∑

k,k′=1

λ̂i, k λ̂j , k′E [ΨkΨk′Ψl]−
m∑

i=1

v(ui,u)
M∑

k,k′=1

ν̂kλ̂i, k′E [ΨkΨk′Ψl] ∀ l = 1, . . .M ,

where we have supposed that F admits a PC expansion, F (x, ξ) =
∑M

k′=1 fk′(x) Ψk′(ξ).

Update Problem. Finally, we detail the update problem (2.9). Given a m-term decomposition
U (m) =

∑m
i=1 uiλi, the update problem consists in recomputing all the m modes λi by solving

the following problem.

Find λi ∈ SM, i = 1, . . . ,m, such that

C

(
m∑

i=1

uiλi,

m∑
i=1

uiλi, βu

)
+ V

(
m∑

i=1

uiλi, βu

)
= B(βuj)

∀β ∈ SM, ∀j = 1, . . . ,m (3.9)

In the present case, it consists in a system of m quadratic equations for λi, all mutually coupled,
but whose structure is close to the stochastic problem (3.8). Denoting λi =

∑M
k=1 λ̂i,kΨk and

taking β = ψk, k = 1, . . . ,M, in (3.9), we end up with a system of quadratic equations for the
coefficients λ̂i,k, whose dimension is therefore m×M.

4. Numerical results. In this Section we consider two test cases of increasing complexity and
computational cost: in the first one the viscous parameter ν is the only uncertain parameter, while
in the second one we consider both the viscous parameter and the forcing term as uncertainty
sources. The aim of the tests is to compare the PGD approximation against the Galerkin solution,
to assess the effectiveness of the method. All PGD approximations will be computed with the
Arnoldi method described in Section 2.5.2.

As for the spatial discretization, we will consider a classical Spectral Element Method dis-
cretization, see e.g. [7]. In particular, we will use a grid of Nu × Nu Gauss–Lobatto points for
the approximation of the components of the velocity, while the pressure is approximated over a
Nu− 2 × Nu− 2 grid. The non linearity in the Navier–Stokes equation is solved with a precondi-
tioned Quasi-Newton method, and at each step the linear system is solved with a GMRES solver.
Once more we remark that the efficiency of the PGD method in determining the reduced approx-
imation of U does not depend on the discretization method or Navier–Stokes solver considered,
and any technique may be used.

4.1. Test 1: Random viscosity parameter. In the first test we consider a random viscosity ν
given by

ν(θ) = νε + ν′(θ),

where νε > 0 and ν′(θ) has a Log-normal distribution with median value ν′ > 0 and coefficient of
variation Cν′ ≥ 1. For these settings, the random viscosity can be expressed as

ν(θ) = νε + ν′ exp (σξ(θ)) , σ :=
logCν′

2.85
, (4.1)

where ξ ∼ N(0, 1), ensuring that ν′ ∈ [ν′/Cν′ , ν′Cν′ ] with a probability ≈ 0.995 .
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(c) mean vorticity field.
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(d) standard deviation of the
vorticity field.

Figure 4.1. Reference Galerkin approximation for Test 1.

Regarding the deterministic force field, it is well-known that force fields deriving from the
gradient of a potential induce no flow for homogeneous boundary conditions. Therefore we consider
the deterministic function ψ(x) and define f as

f = ∇ ∧ (0, 0, ψ)T , (4.2)

so that ∇∧ f = (0, 0, −∇2ψ)T . For simplicity, we restrict ourselves here to forcing terms having
constant rotational Φ,

∇ ∧ f = (0, 0, Φ)T , (4.3)

and a zero normal component on ∂Ω. This leads to the definition of ψ by{
∇2ψ = −Φ in Ω
ψ = 0 on ∂Ω .

(4.4)

It is useful to further define the operator L : H−1(Ω) → H1
0(Ω) that maps the forcing term Φ in

(4.4) to the corresponding solution, that is

L[Φ] = ψ . (4.5)

The magnitude of the forcing term is fixed by Φ, which is hereafter set to Φ = 100 ν′ to ensure
that ‖U‖Ω ≈ 1. The spatial structure of f is shown in Figure 4.1(a).

Galerkin solution. We start by setting ν′ = 1/200, Cν′ = 1.5, Nu = 51 and νε = 0.01ν′, and we
consider the classical Galerkin Stochastic Projection method for the approximation of U . Guided
by the expression of the viscosity in (4.1), we rely on a PC expansion of the solution using a
single normalized Gaussian random variable ξ and corresponding Hermite PC basis. The Galerkin
approximation is therefore sought as

UG(ξ) :=
No+1∑
k=1

uG
k Ψk(ξ), (4.6)

with No denoting the expansion order and Ψk denoting the k-th degree Hermite polynomial in
ξ. For this random viscosity distribution, a well converged solution is obtained for No = 10, as
shown in the following discussion.

The Galerkin solution for No = 10 is depicted in Figure 4.1(b)-4.1(d), showing the expected
velocity field (that is the first mode of the Galerkin solution uG

0 , see Figure 4.1(b)), and the
expectation and the standard deviation of the rotational of UG, see Figures 4.1(c) and 4.1(d).
Plots in Figure 4.1 highlight the effect of nonlinearities. Indeed, since in the present situation the
forcing term is deterministic and the viscosity parameter does not depend on x, if the nonlinear
convective terms were neglected the solution of the resulting linear Stokes problem would be
expressed as a product of a deterministic function times a stochastic factor, U(ξ) = α(ξ)u∗.
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(a) Rotational of KL spatial modes 1, 5 and 9.
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(b) KL spectrum.

Figure 4.2. KL expansion of the reference Galerkin approximation of Test 1.

As a consequence mean and standard deviation of U would be equal to E(α)u∗ and to σ(α)u∗

respectively, and they would thus exhibit the same spatial structure. This is not the case here.
Indeed, we observe in Figure 4.1(c)- 4.1(d) that expectation and standard deviation field of the
rotational of the velocity clearly exhibit different spatial patterns. In fact, the random viscosity
has the strongest impact on the vorticity field along the boundary of the domain, where the shear
stress is maximal and the uncertainty level reaches roughly 25%. Another stringent feature of the
standard deviation of the vorticity field is the presence of detached structures along the boundary,
that are created by the convective effects.

To better appreciate the complexity of the random flow field, as well as the converged character
of the Galerkin solution for No = 10, the Karhunen-Loeve (SVD) decomposition of UG(ξ) is
computed. Since the Galerkin solution is computed in a subspace SM, whose dimension is No+1 =
11, its KL expansion is finite and writes as

UG(ξ) =
No∑
k=0

uG
k Ψk(ξ) =

No+1∑
l=1

uG,KL
l

√
κG

l ηl(ξ), κG
1 ≥ κG

2 ≥ · · · ≥ κG
No+1 ≥ 0, (4.7)

where {uG,KL
l } is an orthonormal set and E [ηlηl′ ] = δll′ . Figure 4.2 shows the rotational of few

KL modes uG,KL
l : the plots show the increasing complexity with the mode index of the spatial

structure of the rotational of the KL spatial modes. They also highlight the impact of the nonlinear
convective term which induces a bending of these structures, due to the advection effects, which
however possess the symmetries of the present problem.

Figure 4.2(b) shows the normalized spectrum, that is Sl =
√
κG

l /
∑No+1

n=1 κG
n for l = 1, . . . ,No+

1. It exhibits a fast decay, the 6-th normalized mode being 10−5 times the first one, with essentially
a uniform asymptotic decay rate except for the very last KL modes which are affected by the
truncation of the stochastic basis.

PGD approximation. We next compute the PGD approximation of U , using the Arnoldi algo-
rithm with ε = 0.01 and fixing the maximum rank of PGD to m = 15, and the KL decomposition
of such PGD solution. We still use the same stochastic subspace SM as before. Figure 4.3 shows
the expected velocity field (E[U (m)]), and the expectation and standard deviation fields of the
rotational of U (m). The plots should be compared with those of the Galerkin solution shown in
Figure 4.1, and the agreement is excellent.

The same conclusion arises when looking at the rotational of the KL spatial modes of the
rank-15 PGD approximation, which are shown in Figure 4.4, and have to be compared with
Figure 4.2.

Figure 4.4(b) shows the matching between the spectra of the two KL decompositions, again
showing good agreement between the solutions. Figure 4.5 shows some of the spatial modes of
the PGD approximation, and compares their rotationals with the rotationals of the corresponding
KL spatial modes of the rank-15 PGD approximation. We observe that even if the PGD and
KL modes exhibit similar structures, with finer details as the mode index increases, they are not
the same. Indeed, the Arnoldi algorithm generates a sequence of orthogonal modes that are not
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(b) mean vorticity.
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(c) standard deviation of vorticity.

Figure 4.3. Rank-15 PGD approximation of Test 1.
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(a) Rotational of KL spatial modes 1, 5 and 9.
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Figure 4.4. KL decomposition of the rank-15 PGD approximation for Test 1.

the KL modes; however, the dominant modes of the KL expansion are well approximated in the
successive spaces generated by the Arnoldi algorithm.

Finally, we investigate the case where the viscosity parameter depends on more than one
random variable. To do this, we modify the definition of ν from equation (4.1) to

ν(θ) = νε + exp

(
σ√
Nν

Nν∑
i=1

ξi(θ)

)
,

with ξi independent and normalized, centered, Gaussian random variables. This is clearly an over-
parametrization of the problem, since indeed ξT (θ) = 1/

√
Nν

∑Nν

i=1 ξi(θ) is in turn a normalized,
centered, Gaussian random variable; therefore ν truly has a unique stochastic dimension, such
that the Navier–Stokes solution has the same intrinsic stochastic dimensionality ∀Nν ≥ 1.

It is found that the PGD approximation is quite insensitive to this over-parametrization, thus
proving to be able to capture the key features of the stochastic solution. This clearly appears in
Figure 4.6, where we consider the rank-15 PGD approximations for problems with Nν = 1, 2, 3:
here we compare the (normalized) norms of the PGD stochastic modes λi (Figure 4.6(a)), and
the (normalized) norms of the KL modes of the rank-15 PGD approximations (Figure 4.6(b))
for the three parameterizations tested. For the three values of Nν the decay of the λi’s norm
is essentially similar, although the deterministic ans stochastic problems are different and λi are
randomly initialized.s This is confirmed by the excellent agreement of the KL-spectra, which only
differ for the last modes containing insignificant energy.

4.2. Test 2: Random forcing term. In the second test we consider also the forcing term as
uncertain. To this end, we go back to equation (4.3) and take now Φ, the vertical component of
the rotational of the force field, as a stationary Gaussian process with unit mean and standard
deviation σΦ > 0, characterized by the two point correlation function

CΦ(x,x′) = E [(Φ(x)− Φ0)(Φ(x′)− Φ0)] = σ2
Φ exp

(
−‖x− x′‖

L

)
,
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Figure 4.5. Test 1. PGD modes number 1, 6, 11 (left), their rotational (center) and the rotational of the
corresponding KL modes of the rank-15 PGD approximation (right).
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f1 f3 f5 f8

Figure 4.7. Spatial structure of some modes f i of the forcing term F for Test 2, as in equation (4.8). The
length of the vectors have been scaled to improve for clarity.

where Φ0 = 1 is the mean of Φ, L its correlation length, and ‖x − x′‖ is the Euclidean norm in
R2. The process admits the Karhunen-Loeve expansion

Φ(x, θ) = Φ0 +
∞∑

i=1

Φi(x)ξi(θ),

where the ξi are normalized uncorrelated Gaussian variables. Ordering the Karhunen-Loeve modes
with decreasing norm ‖Φi‖L2(Ω) and truncating the expansion after the Nf -th term results in the
following approximation of the external force field:

F (x, θ) ≈ F Nf (x, θ) := f0 +
Nf∑
i=1

ξi(θ) f i(x) , f i(x) = ∇ ∧

 0
0

L[Φi(x)]

 . (4.8)

We set L = 1, σf/‖f0‖ = 0.2, Nu = 35 and Nf = 7. Figure 4.7 shows some of the modes f i of
the forcing term. It is well known that as L decreases more and more KL modes are needed to
represent accurately the forcing term. However, in this work we are not really concerned about
the truncation error that stems from retaining only Nf terms of the expansion, but only to show
that the PGD method can handle such forcing terms in a natural way.

We consider again the viscous parameter ν as a lognormal random variable (Nν = 1), as in
equation (4.1), and we set ν′ = 1/100. This implies that the solution depends on N = Nν +Nf = 8
random variables. The discrete probability space SM is selected setting No = 2, resulting in a set
of M = 45 multivariate Hermite polynomials; within this setting, we compute the PGD solution up
to rank-45, as well as the full Galerkin solution for validation purposes. In terms of computational
cost, the rank-45 PGD solution requires the resolution of roughly 45 deterministic problems which
amount to the core of the computational time.

Figure 4.8 shows the mean and standard deviation of the rotational of the PGD approximation
for m = 45. We again observe the impact of the convective nonlinearities and the resulting high
variability level, particularly pronounced along the domain boundary. The two first moments are
in excellent agreement with the Galerkin solution (not shown).

Figure 4.9 shows some of the first PGD spatial modes. Contrary to the case of uncertain
viscosity only, we know observe that the PGD modes ui have significant symmetry breaking,
except for u1. This is again explained by the Arnoldi algorithm which aims at constructing
orthogonal basis of dominant subspaces: the vectors spanning the subspaces don’t necessarily
reflect the symmetries of the solution in theses subspaces. However, the comparison of the KL
spectra and modes of the PGD and Galerkin solutions (not shown) are in excellent agreement,
proving that the successive Arnoldi subspaces effectively capture the dominant stochastic features
of the solution.

Next, Figure 4.10 shows the decay of the total error norm with respect to the Galerkin solution.
Specifically, we compute the normalized total error norm ε(m) through

ε2(m) := E
[∥∥∥U (m) −UG

∥∥∥2

Ω

]
/ E

[∥∥∥UG
∥∥∥2

Ω

]
. (4.9)
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Figure 4.8. Rank-45 PGD approximation for Test 2.

mode 1 mode 5 mode 8 mode 10

Figure 4.9. Spatial modes of the PGD approximation of Test 2.

The error ε(m) is reported for ν′ = 1/10, 1/50 and 1/100, the coefficient of variation being kept
constant. As expected, when ν′ decreases, the PGD rank increases to achieve a given error since
the nonlinearity of the problem increases, with more and more complex stochastic features in the
solution as a result. We also observe that the dimension of the successive Arnoldi subspaces tends
to increase when ν′ decreases, as shown by the separation between successive dots on the curves.
However, for the lowest median viscosity value the rank-45 PGD solution has a relative error less
than 10−5, and is obtained at a fraction of the Galerkin computational cost. In addition, we also
monitor the convergence of the relative norm of the last λi added during the Arnoldi procedure,
which can be considered as a very naive error estimator. Indeed, the deterministic modes ui are
normalized, and therefore whenever λi is small the correction λiui becomes negligible. Such an
error estimator, although very rough, turns out to be quite effective; we will reconsider it in the
next Section.

Finally, we repeat the convergence analysis for the PGD-Galerkin error on a second test-
case, in which we consider Nf = 14 terms in the KL expansion of f , thus obtaining a problem
with N = 15 random variables. We consider again a polynomial stochastic space of order No =
2, whose dimension is M = 861. For such a problem a full Galerkin approach may be very
computationally demanding both in terms of CPU-time (a few hours) and memory occupation,
therefore we only monitor the convergence of the error indicator proposed above. The results are
very encouraging, since we obtain errors of at least 10−6 using only 60 modes. We remark that
this roughly corresponds to the computational cost of the resolution of about 60 Navier–Stokes
problems and a few sets of coupled quadratic equations for the gPCE coefficients of λi.

5. Residual computation and pressure reconstruction. At this point, it is crucial to devise an
error estimator to stop the PGD procedure as soon as the reduced solution is close enough to the
exact solution in H1

0,div(Ω)⊗ SM.
The most natural approach would be a stopping criterion involving the evaluation of the norm

of the residual of the Stochastic Navier–Stokes equation (3.6) associated to the m-terms reduced
solution U (m) in the discretized space H1

0,div(Ω) ⊗ SM. The Arnoldi algorithm would then be
stopped as soon as such residual becomes lower than a given tolerance in a suitable norm.
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Figure 4.10. Test 2: convergence of error ε(m) and of the relative norm of λm with respect to the rank (m) of
the PGD approximation for ν′ = 1/10, 1/50, 1/100, considering N = 8 (left) and N = 15 (right) random variables.

In practice, computing the residual of the Navier–Stokes equations in their divergence-free
formulation (3.6) is not a convenient operation. Therefore, we go back to the weak deterministic
Navier–Stokes equations (3.4) and introduce the

Stochastic Velocity-Pressure Navier–Stokes equations.

Find U ∈ H1
0(Ω)⊗ SM, P ∈ L2

0(Ω)⊗ SM such that

C(U ,U ,V ) + Vν(U ,V ) +D(P ,V ) = B(V ) ∀V ∈ H1
0(Ω)⊗ SM, (5.1)

D(Q,U) = 0 ∀Q ∈ L2
0(Ω)⊗ SM,

where D(Q,V ) is defined as the expected value of the bilinear form d(·, ·) appearing in (3.4),

D(Q,V ) = E [d(Q,V )] .

Computing the residual for the velocity-pressure formulation is an affordable task, but at this
point the PGD algorithm has not provided us with an approximation of the stochastic pressure
yet. Hence, we now introduce a procedure to recover the pressure P (m) associated to the m-terms
PGD solution U (m).

Computing such approximation will introduce some computational overhead, but one could be
interested in an approximation of the pressure anyway. We stress that the notation P (m) does not
refer to an m-terms approximation of P , but to a generic approximation of P given the m-terms
reduced approximation of U .

5.1. Pressure computation. For easiness of presentation, let us define

N(W ,V ) := C(W ,W ,V ) + Vν(W ,V )−B(V ), ∀V ,W ∈ H1
0(Ω)⊗ SM, (5.2)

and let 〈V ,W 〉 denote the scalar product in H1
0(Ω) ⊗ SM. Inserting the m-terms PGD velocity

U (m) and the corresponding pressure P (m) into the Stochastic Velocity-Pressure Navier–Stokes
equations (5.1) we have

N(U (m),V ) +D(P (m),V ) =
〈
R(m),V

〉
∀V ∈ H1

0(Ω)⊗ SM, (5.3a)

D(Q,U (m)) = 0 ∀Q ∈ L2
0(Ω)⊗ SM, (5.3b)

where R(m) denotes the residual of the momentum equation (5.3a), R(m) ∈ H1
0(Ω) ⊗ SM. Note

that the continuity equation (5.3b) has no residual; indeed, all the deterministic modes in U (m)

are divergence-free, being solutions of the deterministic problem (3.7). Equation (5.3) states that
the residual R(m) is a function of the pressure P (m). Hence, we propose here to define P (m) as
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the minimizer of ‖R(m)‖ in some prescribed norm. To be more computationally oriented, we next
derive the problem for P (m) in the discrete case.

Let us denote by Vh ⊂ H1
0(Ω) the finite dimensional velocity space, and with Πh ⊂ L2

0(Ω) the
finite dimensional pressure space. Upon the introduction of the bases for Vh and Πh defined in [7]
and that will be used in the results sections, we can identify any element W h ∈ Vh⊗SM with the
coordinates in the respective basis Ŵ h ∈ Rdim(Vh)⊗SM, and similarly any element Qh ∈ Πh⊗SM

with Q̂h ∈ Rdim(Πh) ⊗ SM; in other words, Ŵ h(ξ) and Q̂h(ξ) are vectors whose components are
functions of ξ, belonging to the subspace SM ⊂ L2(Ξ,P). Equation (5.3a) can therefore be recast
as a semidiscrete equation in Rdim(Vh) ⊗ SM,

N̂
(m)

h (ξ) +DT P̂
(m)

h (ξ) = R̂
(m)

h (ξ), (5.4)

with N̂
(m)

h (ξ), R̂h(ξ) ∈ Rdim(Vh) ⊗ SM, P̂
(m)

h (ξ) ∈ Rdim(Πh) ⊗ SM, and D ∈ Rdim(Πh)×dim(Vh) the
deterministic discrete divergence operator. Next we define the residual norm as

‖R̂
(m)

h (ξ)‖2 = ‖R̂
(m)

h (ξ)‖2Rdim(Vh)⊗SM = E
[
‖R̂

(m)

h (ξ)‖2Rdim(Vh)

]
,

Thus, using (5.4), we obtain that the pressure minimizing ‖R̂
(m)

h (ξ)‖ is the solution of

DDT P̂
(m)

h (ξ) = −DN̂
(m)

h (ξ) , (5.5)

Note that DDT is a deterministic operator, and equation (5.5) is well-posed if Vh and Πh verify

the inf-sup condition. Moreover, computing the PC expansion of P̂
(m)

h (ξ), that is

P̂
(m)

h (ξ) =
M∑

k=1

P̂
(m)

h,k Ψk(ξ),

with P̂
(m)

h,k ∈ Rdim(Πh) and Ψk(ξ) ∈ SM Hermite polynomials, results in a set of M uncoupled
problems

DDT P̂
(m)

h,k = −DN̂
(m)

h,k .

Note that N̂
(m)

h,k has to be computed, using the projection N̂
(m)

h,k = E [ N̂
(m)

h (ξ)Ψk(ξ)], since the

stochastic vector N̂
(m)

h (ξ) derives from a non-linear combination of the PGD solution, hence its
PC expansion is not immediately available.

Even if we can take advantage of this by factorizing the operator DDT only once to improve
the computational efficiency (e.g. with a LU, ILU or Cholesky factorization), the overall cost may
be demanding if the discrete stochastic space SM is large: indeed, it would require the resolution
of M independent systems. One could then apply a PGD procedure to obtain an approximation
of the stochastic pressure

P̂
(m)

h (ξ) =
m′∑

k=1

P̂
(m)

h,k γk(ξ), (5.6)

with P̂
(m)

h,k ∈ Rdim(Πh) and γk(ξ) ∈ SM generic functions, using any of the Algorithms illustrated
in Section 2.5 to solve (5.5). Note that the PGD approximation of P may in general use m′ 6=
m modes. Further savings can be achieved by using as deterministic modes for the pressure
the Lagrange multipliers obtained during the resolution of the deterministic steps of the PGD
decomposition of U (m); note that in this case m = m′.
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5.2. Numerical results. In the previous section we have proposed two ways of computing an
approximation of the pressure field: a “fully reduced approach” in which we use a PGD method
to compute both the deterministic and the stochastic modes of the decomposition (5.6), and a

“partly reduced approach” in which the deterministic modes P̂
(m)

h,k of (5.6) are taken to be the
Lagrange multipliers resulting from the solution of the deterministic problems during the Arnoldi
iterations. In both cases, the obtained pressure approximation will be then used to compute the

residual R̂
(m)

h (ξ) through equation (5.4), and the norm ‖R̂
(m)

h (ξ)‖ will be used as a stopping
criterion for the Arnoldi method.

We now aim at assessing the performances of these two stopping criteria, along with the one
proposed in Section 4, i.e. the monitoring of ‖λi‖. Such criterion may be reasonable whenever one

is not at all interested in pressure reconstruction, or willing to reconstruct P̂
(m)

h,k only once, after

a satisfying approximation Ŵ
(m)

h,k has been computed.
The convergence of the proposed quantities for Test 2 is shown in Figure 5.1. The residual

computed by recycling the Lagrange Multipliers is slightly worse than the one computed after
having reconstructed the pressure with a PGD approach. We observe that residual norms clearly
overestimate the error in solution by 1-2 orders of magnitude, hence representing a quite restrictive
criterion for the convergence of the method. On the other hand, the norms of the λi appear closer
to the true error, but slightly underestimating it, hence representing an “optimistic” criterion.
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Figure 5.1. convergence of the quantities proposed as stopping criterion for the PGD method with respect to
the number of modes m. i) “error” denotes the normalized PGD-Galerkin error ‖U (m) − UG‖/‖UG‖; ii) “LM-

residual” denotes the normalized norm of residual ‖bR(m)
h (ξ)‖/‖bR(0)

h (ξ)‖, the residual being computed using the
Lagrange Multipliers as deterministic modes for the pressure; iii) “PGD-residual” denotes the normalized norm of

residual ‖bR(m)
h (ξ)‖/‖bR(0)

h (ξ)‖, the residual being computed using the pressure reconstructed with a PGD approach;
iv) “λ norm” denotes the normalized norm of λi, that is ‖λi‖/

pP
i ‖λi‖2.

6. Conclusions. In this work we have investigated the resolution with a PGD method of the
steady-state Navier–Stokes equations with uncertain forcing term and Reynolds number. Based
on the interpretation of PGD as a model reduction method associated with a generalized spectral
decomposition, iterative algorithms have been proposed for the progressive construction of reduced
bases of approximation. Different algorithms have been presented, which are inspired from solution
methods for solving eigenproblems. In particular, we have employed an Arnoldi method in our
numerical simulations. The proposed strategy relies on the fact that the Navier–Stokes problem
can indeed be recast as a problem for the velocity field only (in the space of divergence-free
functions), and the pressure can be reconstructed in a second step. Future works should therefore
investigate the application of PGD methods to situations in which such “problem reduction” is
not possible.

A key feature of such PGD methods is that the computation of the deterministic and stochastic
modes of the solution is decoupled: this allows remarkable savings with respect to the standard
Galerkin technique, both in terms of computational complexity and coding effort required. We
have indeed shown that because of such decoupling it is possible to reuse any existing solver with
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minimal adaptations for the computation of the deterministic modes. In the case of the Navier–
Stokes equations, these adaptations simply entail the modification of the convective velocity, the
viscosity parameter and the forcing term. The stochastic and update problems can also be solved
with available software, since they amount to systems of quadratic equations.

The convergence of the PGD approximation of the velocity to the full Galerkin solution has
been investigated in different numerical settings. In all the considered cases, the PGD is able to
provide reasonable approximations of the full Galerkin solution with a limited number of modes,
(10−4 at least with approximately 20 modes in the test we have considered, see figure 4.10), thus
with a smaller computational cost compared to the solution of the full Galerkin problem.

However, care has to be taken in the reconstruction of a reduced pressure: the mathematical
formulation of this problem is non-trivial, and we have addressed this topic only for the discrete
problem, proposing different approaches with different computational costs and achievable accu-
racy. This is certainly an aspect worth a deeper investigation in future works, as well as the
extension of the proposed technique to non-steady problems.
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[21] O.P. Le Mâıtre, M.T. Reagan, H.N. Najm, R.G. Ghanem, and O.M. Knio. A stochastic projection method
for fluid flow. ii. random process. J. Comput. Phyics, 181:9–44, 2002.

[22] Y. Maday, A. T. Patera, and G. Turinici. Global a priori convergence theory for reduced-basis approxi-
mation of single-parameter symmetric coercive elliptic partial differential equations. Comptes Rendus
Mathematique, 335(3):289–294, 2002.
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