
DISCRETE A PRIORI BOUNDS FOR THE DETECTION OF CORRUPTED PDE
SOLUTIONS IN EXASCALE COMPUTATIONS

PAUL MYCEK˚, FRANCESCO RIZZI: , OLIVIER LE MAÎTRE; , KHACHIK SARGSYAN§ , KARLA
MORRIS¶, COSMIN SAFTA} , BERT DEBUSSCHERE˚˚, AND OMAR KNIO::

Abstract. A priori bounds are derived for the discrete solution of second-order elliptic partial differential
equations (PDEs). The bounds have two contributions. First, the influence of boundary conditions is taken into
account through a discrete maximum principle. Second, the contribution of the source field is evaluated in a fashion
similar to that used in the treatment of the continuous a priori operators. Closed form expressions are in particular
obtained for the case of a conservative, second-order finite difference approximation of the diffusion equation with
variable scalar diffusivity. The bounds are then incorporated into a resilient domain decomposition framework, in
order to verify the admissibility of local PDE solutions. The computations demonstrate that the bounds are able to
detect most of system faults, and thus considerably enhance the resilience and the overall performance of the solver.
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1. Introduction. Future exascale systems are expected to suffer from much higher fault rates
than today’s petascale platforms []. This raises many new scientific challenges to achieve reliable
computations, one of which being the ability to overcome the occurrence of system faults.

Arguably the most popular fault-tolerance technique for petascale is checkpoint-restart. It
relies on periodic saves of the system state, which allows one to restore the system to a previous
state whenever an error is detected. The Local Failure Local Recovery (LFLR) strategy, focusing on
local checkpointing and recovery was proposed as an improvement of the original global checkpoint-
restart []. Alternative approaches include algorithm-based fault tolerance (ABFT) [,,,],
effective use of state machine replication [] or process-level redundancy [], and algorithmic error
correction code []. Many other approaches for fault-tolerance in extreme-scale computing have
been developed (see, e.g., []). In exascale systems, however, the time needed for checkpointing may
be close to the mean time between failures [,], thus causing the system to spend an excessive
amount of time checkpointing and restarting, rather than advancing towards the solution [].

To address this issue, we have recently developed a resilient solver for elliptic partial differential
equations (PDEs), see [,]. The solver is based on an overlapping domain decomposition method
(see, e.g., [,]) and the resilient update involves the solution of local problems (independent
from one subdomain to another), which is well suited for massive parallelism. To deal with soft
faults, the solver represents the solution as a state-of-knowledge, and updates this state in a resilient
manner. In this framework, hard faults, such as a node crashing or a communication failing, are
seamlessly treated as missing data and may thus be disregarded.

In the approaches of [,], the resilient update is achieved through robust regression. In this
work, we explore the possibility of further improving the resilience capabilities of such techniques by
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checking the admissibility of the local solutions before they are fed to the regression. To this end, we
derive a priori bounds for the discrete solution of linear elliptic PDEs. Their derivation builds on
an existing discrete maximum principle [], and accounts for the source field in a fashion similar to
that used in the derivation of continuous a priori bounds []. This results in the expression of lower
and upper bounds for the discrete solution on a subdomain, for given local boundary conditions.

This idea is motivated by the fact that robust regression techniques can be expensive and
may fail if too many samples are faulty. Performing regression may then take more time for some
problems with faulty samples than for other uncorrupted problems, thus causing parallel imbalance,
which could be detrimental to the scalability of the solver. Moreover, our current machinery for
dealing with failed resilient state-of-knowledge updates consists in repeating the update step. A
complete new set of boundary conditions is sampled and the corresponding local PDE solves and
regressions need to be performed again, resulting approximately in the doubling of the original
computational time. With the introduction of the bounds to check the admissibility of the local
PDE solutions, we expect to limit the occurrence of such scenarios.

It is worth mentioning that alternative options were pursued before opting for the a priori
bounds that are developed in this paper. Specifically, we initially considered the use of more
general matrix norms to derive local bounds on the PDE solution, which only required conditions
that are usually fulfilled by the matrices involved in classical numerical methods. More precisely,
solving a discretized PDE problem usually amounts to solving a matrix system of the form Au “
b, where u represents the unknowns. Using well-known bounds for the L8 norm of the matrix
inverse [,,], this readily yields }u}8 ď }A

´1}8}b}8, as }b}8 is cheap and easy to determine.
However, these inverse matrix bounds, which are also easy to compute by simple inspection of the
elements of A, scale poorly with the matrix size. For instance, for a simple 1D Laplace problem
discretized using a second-order finite difference scheme, the upper bound estimate for }A´1}8

reaches 1029 for only 100 unknowns.
Another alternative we pursued consisted in deriving continuous bounds for the solution of

PDEs on a given inner interface, corresponding to the boundary of a neighboring overlapping
subdomain. Using functional analysis, we derived bounds for }

ş

Γ
upsqnpsq ds}2, where u denotes

the solution and where Γ
.
“ BΩj X Ωi denotes the part of the boundary BΩj that lies in Ωi. For

the diffusion equation, such bounds involve the measure of the interface, the measure of the overlap
ΩiXΩj , the norm of the source term on Ωi, the minimum diffusivity as well as the Poincaré constant
on Ωi. While appealing, the approach however provides a continuous bound that does not take
discretization errors into account.

The approach presented in this paper is based on discrete bounds that are at the same time
reasonably sharp and general enough to apply to a wide variety of numerical methods such as finite
elements or finite differences. They involve constants that are problem-specific and that depend on
the numerical scheme used for the discretization as well. Their implementation is illustrated for the
case of conservative, second-order finite difference approximation of the steady diffusion equation,
for which suitable expressions for the appropriate constants are obtained.

The paper is organized as follows. Section is dedicated to the derivation of the discrete bounds.
Relevant results for continuous and discrete operators are first briefly summarized, and general
discrete a priori bounds are then derived for discretized linear elliptic PDEs. The optimal constants
are determined for the second-order finite difference approximation of the diffusion equation, and
1D numerical examples are shown. Section then illustrates the usefulness of the bounds for our
algorithm in the context of resilience to faults. After presenting detection rates for 2D examples, we
demonstrate how the bounds enhance the performance of the algorithm, namely by improving its
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success rates for limited sampling rates. Finally, general conclusions as well as a discussion of the
proposed strategy, including ongoing work and potential improvements, are presented in Section.

2. Discrete bounds. In this Section, we derive a priori bounds for the discrete solution of
second-order, elliptic PDEs. We first recall two well known results for the continuous case. Let
Ω Ă RD be an open bounded domain, with boundary BΩ and closure Ω̄

.
“ ΩY BΩ, and let L be an

elliptic, second-order operator defined as:

(2.1) Lu “ aijL pxqDiju` b
i
LpxqDiu` cLpxqu,

where u P C0pΩ̄q X C2pΩq, Di
.
“ B{Bxi, Dij

.
“ B2{BxiBxj and the matrix raijL pxqs is symmetric

positive-definite. In Eq. (), rbiLpxqs is a vector field, cLpxq is a scalar field, and the summation
convention is understood, i.e. repeated indices imply a summation over those indices. Then, the
following maximum principle holds []:

Theorem 2.1. Let L be an elliptic operator of the form () with cL ď 0, and let u P
C0pΩ̄qXC2pΩq such that Lu ě 0 in Ω. Then supΩ u ď supBΩ u

`, where u` .
“ maxp0, uq. If cL “ 0,

then supΩ u ď supBΩ u.
Furthermore, we have the following a priori bounds for the solution []:
Theorem 2.2. Let L be an elliptic operator of the form () with cL ď 0, and let u P

C0pΩ̄q X C2pΩq such that Lu “ f in a bounded domain Ω. Then

(2.2) sup
Ω
|u| ď sup

BΩ
|u| ` C sup

Ω
p|f |{λq ,

where C is a constant depending only on diam Ω and on β .
“ supΩp}bL}{λq, and where λpxq denotes

the minimum eigenvalue of the matrix raijpxqs. In particular, if Ω lies between two parallel planes
a distance d apart, then () is satisfied with C “ epβ`1qd ´ 1.

In this paper, we are interested in the solution of Dirichlet problems defined as follows: given
a function f defined over Ω and g P C0pBΩq, find u P C0pΩ̄q X C2pΩq such that

(2.3)

#

Lupxq “ fpxq @x P Ω

upxq “ gpxq @x P BΩ.

The function f is usually referred to as the source term.

2.1. Discretized elliptic problem. We now describe the discretized Dirichlet problem. The
matrix formulation is general enough so that it can apply to a wide range of discretization schemes.

First, we define the grid as a family Ω̄h
.
“ txiu

nt
i“1 Ă Ω̄ of nt

.
“ n ` m points of Ω̄, where

Ωh
.
“ txiu

n
i“1 Ă Ω is the set of n interior points, and BΩh

.
“ txn`iu

m
i“1 Ă BΩ is the set of m

boundary points. In addition, let ui, for i P t1, . . . , ntu denote the discrete approximation of the
solution to the Dirichlet problem () at point xi. The values ui corresponding to the interior
points, i.e. for i P t1, . . . , nu, represent unknown values of the discrete approximation, while the
values un`i corresponding to boundary points, i.e. for i P t1, . . . ,mu, are prescribed by discrete
boundary conditions gi. Generally, gi “ gpxn`iq, for i P t1, . . . ,mu.

In the following, we assume that the discrete Dirichlet problem can be written in matrix form
according to:

(2.4) Au “ b´ Ãg.
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We need to determine the unknown vector u “ pu1, . . . , unq P Rn, given the discrete source term
b “ pb1, . . . , bnq P Rn and discrete boundary conditions g “ pg1, . . . , gmq P Rm. The matrix
A P Rnˆn (resp. Ã P Rnˆm) will be referred to as the interior matrix (resp. the boundary matrix ).
This classical form of the discrete problem can be obtained in a wide range of numerical methods,
including finite differences and finite elements.

For convenience (see, e.g., [,]), the system () will be written in an augmented form as

(2.5) Āū “ b̄, with Ā
.
“

„

A Ã
0 I



, and b̄
.
“

„

b
g



,

with ū “ pu1, . . . , unt
q P Rnt , 0 P Rmˆn and I P Rmˆm. Then the matrix L̄

.
“ rA, Ãs P Rnˆnt can

be viewed as a discrete version of the operator L in (), and will thus be referred to as the discrete
elliptic operator. We will assume in what follows that L̄ can be decomposed as L̄paL, bL, cLq “
L̄0paL, bLq ` R̄pcLq, where L̄0 “ rl̄0ijs P Rnˆnt is such that

(2.6)
nt
ÿ

j“1

l̄0ij “ 0, @i P t1, . . . , nu.

This last condition implies that for any uniform vector v̄ “ λ1̄ P Rnt with λ P R and 1̄
.
“ p1, . . . , 1q P

Rnt , L̄0v̄ “ 0 P Rn. In such a decomposition, R̄ū generally represents the discrete counterpart of
the reactive term cLpxqu in ().

2.2. Discrete maximum principle. In what follows, the inequalities between matrices or
vectors should be understood elementwise. In addition, for any scalar a P R, we denote a´ .

“

mint0, au and a` .
“ maxt0, au.

From the matrix form described in the previous paragraphs, a discrete maximum principle can
be introduced with the following definition []:

Definition 2.3. A discrete elliptic operator L̄ is said to satisfy the discrete maximum principle
if and only if any ū P Rnt satisfying L̄ū ď 0 is such that:

(2.7) max
1ďiďn

ui ď max
1ďiďm

u`n`i.

Then, the following three theorems (from []) give conditions under which the discrete operator
satisfies the discrete maximum principle.

Theorem 2.4. A discrete elliptic operator L̄ satisfies the discrete maximum principle if and
only if the extended matrix Ā in () is monotone ( i.e. for any r̄ P Rnt , Ār̄ ě 0 implies r̄ ě 0,
see e.g. [,,]), and ´A´1Ã1̃ ď 1, where 1̃

.
“ p1, . . . , 1q P Rm and 1

.
“ p1, . . . , 1q P Rn.

Theorem 2.5. A discrete elliptic operator L̄ “ rl̄ijs satisfies the discrete maximum principle
if and only if the extended matrix Ā in () is monotone and

řnt

i“1 l̄ij ě 0, for any i P t1, . . . , nu.
Theorem 2.6. A discrete elliptic operator L̄ satisfies the discrete maximum principle if the

extended matrix Ā in () has the following properties:
(i) The diagonal elements of A are all positive, while the off-diagonal elements of A, as well

as the elements of Ã, are all nonpositive.
(ii) The matrix A is irreducible, i.e. it cannot be transformed into a block upper triangular

matrix by permutations of rows and columns.
(iii) @i P t1, . . . , nu,

řnt

j“1 l̄ij ě 0 and Di P t1, . . . , nu;
řn
j“1 aij ą 0.

The proofs of these theorems are given in []. As can be seen in [], Theorem can generally
be used for low order schemes (such as second-order finite differences, as we shall see in Section),
while more general theorems, such as Theorem, are needed for higher order schemes.
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2.3. Discrete a priori bounds. In this subsection, we derive discrete a priori bounds for the
solution of the discrete Dirichlet problem (). These bounds represent the discrete counterpart of
those given by Theorem in the continuous case. The proof is actually similar to the continuous
one given in [], except that we explicitly distinguish the lower and the upper bound, and refine
these bounds in the case where R̄ “ 0, for the purposes of the application to resilience presented
in Section below.

Theorem 2.7. Let Ωh be such that there exists d P t1, . . . , Du for which O ď xdi ď O `H for
any xi “ px

1
i , . . . , x

d
i q P Ωh, where O and H denote real numbers. Let L̄ “ L̄0 ` R̄ be a discrete

elliptic operator with R̄ ď 0 such that ´L̄ satisfies the discrete maximum principle, and let ū P Rnt

such that L̄ū “ b, with b P Rn. Define w̄ “ pw1, . . . , wnt
q P Rnt by wi “ exppαxdi q, with α P R, for

i P t1, . . . , ntu. If there exists α ě 0 such that L̄0w̄ ě λ for some λ P Rn with λ ą 0, then

(2.8)

$

&

%

min
1ďiďn

ui ě min
1ďiďm

u´n`i ´ C max
1ďiďn

pb`i {λiq,

max
1ďiďn

ui ď max
1ďiďm

u`n`i ´ C min
1ďiďn

pb´i {λiq,

with C .
“ eαH ´ 1. If R̄ “ 0, then

(2.9)

$

&

%

min
1ďiďn

ui ě min
1ďiďm

un`i ´ C max
1ďiďn

pb`i {λiq,

max
1ďiďn

ui ď max
1ďiďm

un`i ´ C min
1ďiďn

pb´i {λiq,

Proof. We restrict ourselves to the case where 0 ď xdi ď H for any xi “ px1
i , . . . , x

d
i q P Ωh.

The translation to O ď xdi ď O ` H is straightforward. Let λ P Rnt with λ ą 0 and let v̄ “
pv1, . . . , vntq P Rnt be defined elementwise as:

(2.10) vi
.
“ max

1ďjďm
u`n`j `

´

eαH ´ eαx
d
i

¯

max
1ďjďn

`

|b´j |
L

λj
˘

ě 0, @i P t1, . . . , ntu.

Because R̄ ď 0, it follows that R̄v̄ ď 0 and thus L̄v̄ ď L̄0v̄. Let α ě 0 such that L̄0w̄ ě λ, then

(2.11) L̄0v̄ “ ´ max
1ďjďn

`

|b´j |
L

λj
˘

L̄0w̄ ď ´ max
1ďjďn

`

|b´j |
L

λj
˘

λ.

Let us take ū such that L̄ū ě b, then

(2.12)
“

L̄pv̄ ´ ūq
‰

i
“ pL̄v̄qi ´ pL̄ūqi ď ´λi

„

max
1ďjďn

`

|b´j |
L

λj
˘

` bi{λi



ď 0, @i P t1, . . . , nu.

Because ´L̄ satisfies the discrete maximum principle and because ´L̄pū ´ v̄q ď 0, it follows by
definition that ū´ v̄ is such that

(2.13) max
1ďiďm

pui ´ viq ď max
1ďiďm

pun`i ´ vn`iq
`
,

where

(2.14) un`i´ vn`i “ un`i´ max
1ďjďm

u`n`j ´
´

eαH ´ eαx
d
n`i

¯

max
1ďjďn

`

|b´j |
L

λj
˘

ď 0, @i P t1, . . . ,mu.

As a consequence, max1ďiďnpui ´ viq ď 0 and then

(2.15) max
1ďiďn

ui ď max
1ďiďn

vi ď max
1ďiďm

un`i ` C max
1ďiďn

`

|b´i |
L

λi
˘

, C
.
“ eαH ´ 1.
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The bounds in () are obtained from () by taking ū such that L̄ū “ b and noticing that
L̄ū ě b and L̄p´ūq ě ´b.

If R̄ “ 0, then the condition v ě 0 is no longer needed as we can work directly on L̄. Then we
can take v defined elementwise as

(2.16) vi
.
“ max

1ďjďm
un`j `

´

eαH ´ eαx
d
i

¯

max
1ďjďn

`

|b´j |
L

λj
˘

, @i P t1, . . . , ntu,

and the rest of the proof remains valid, leading to the bounds in ().
The difference between the continuous and the discrete case is that in the former, the ellipticity

of the operator suffices to fully define the constant C in Theorem. In the discrete case, however,
the parameter α appearing in C depends on the discrete operator. In the following subsection, we
derive a condition on α in the case of a conservative, second-order finite difference (FD) scheme
for the scalar diffusion equation. We shall see that under such conditions, the a priori bounds in
Theorem apply to the corresponding discrete solution.

2.4. Second order finite differences. We now focus on the conservative, second-order FD
approximation of the scalar diffusion equation. This particular problem will subsequently be used
in Section to illustrate our fault detection approach based on the bounds derived above. We show
that Theorem applies to this discrete operator. In particular, we show that we can find α ě 0
and λ ą 0 such that the conditions of Theorem are satisfied.

2.4.1. Grid definition. We restrict our attention to a regular grid, that is a grid aligned with
the coordinates and with uniform spacing hd in each dimension. Specifically, we assume that Ωh is
contained in a box such that

(2.17) Ωh Ă
D
ą

d“1

pOd;Od `Hdq, with Od P R, Hd “ ndch
d P R, @d P t1, . . . , Du,

where ndc P N denotes the number of 1d cells (or elements) in the dth direction. Then the grid is
defined as follows:

Ω̄h “
 

x P Ω̄ | @d P t1, . . . , Du, xd “ Od ` khd, k P t0, . . . , ndcu
(

,(2.18)

Ωh “
 

x P Ω̄ | @d P t1, . . . , Du, xd “ Od ` khd, k P t1, . . . , ndc ´ 1u
(

,(2.19)
BΩh “ Ω̄hzΩh,(2.20)

with a given ordering of the nt “ n`m points xi P Ω̄h and with

(2.21) nt “ card Ω̄h “
D
ź

d“1

pndc ` 1q, n “ card Ωh “
D
ź

d“1

pndc ´ 1q, m “ card BΩh “ nt ´ n.

2.4.2. Discrete diffusion equation. We consider the (continuous) scalar diffusion operator
in D dimensions, in its conservative (divergence) form:

(2.22) Lu .
“ ∇ ¨ rκ∇us “

D
ÿ

d“1

Ldu, with Ldu .
“

B

Bxd

„

κ
Bu

Bxd



,
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where κpxq ą 0 denotes the diffusivity field. Provided that κ is differentiable in Ω, L can be written
in a non-conservative form as in Eq. (). We restrict our attention to the following conservative,
second-order FD approximation L̄ of the continuous operator L (see, e.g., []):

(2.23) pL̄ūqi
.
“

D
ÿ

d“1

κd´i upxi ´ h
dedq ´

“

κd´i ` κd`i
‰

upxiq ` κ
d`
i upxi ` h

dedq

rhds
2 , @i P t1, . . . , nu,

where κd˘i
.
“ κ

`

xi ˘ ph
d{2qed

˘

. Note that the P1 (piecewise linear) finite element (FE) discretiza-
tion of the Dirichlet problem, with piecewise constant diffusivity on the elements, leads to the same
definition of L̄. This operator can be recast as

(2.24) pL̄ūqi “
D
ÿ

d“1

κ̃di
upxi ´ h

dedq ´ 2upxiq ` upxi ` h
dedq

rhds
2 ` ∇̃d

i κ
upxi ` h

dedq ´ upxi ´ h
dedq

2hd
,

with κ̃di
.
“ pκd´i ` κd`i q{2 and ∇̃d

i κ
.
“ pκd`i ´ κd´i q{h

d.

2.4.3. Discrete a priori bounds. Let us now reformulate Theorem for this particular
operator. We first introduce three lemmas that eventually lead to Theorem, which corresponds
to the application of Theorem to the conservative, second-order FD operator described above.

Lemma 2.8. Let βd .
“ max1ďiďn

´
ˇ

ˇ

ˇ
∇̃d
i κ
ˇ

ˇ

ˇ

M

κ̃di

¯

with j P t1, . . . , Du, and let hd denote the mesh

size in the dth direction. Then βdhd ă 2.
Proof. By definition, we have

(2.25)
|∇̃d

i κ|

κ̃di
“

2

hd
|κd`i ´ κd´i |

κd`i ` κd´i
.

The result follows directly from the triangle inequality and the fact that κ ą 0 in Ω.
Lemma 2.9. Let Ωh such that there exists d P t1, . . . , Du for which xdi ą 0 for any xi P Ωh.

Define w̄ “ pw1, . . . , wnt
q P Rnt by wi “ exppαxdi q, with α P R. If

(2.26) α ě
1

hd
log

»

—

–

hd
´

“

hd
‰2
`
“

βd
‰2
` 4

¯1{2

`
“

hd
‰2
` 2

2´ βdhd

fi

ffi

fl

ě 0,

then pL̄w̄qi ě κ̃di for i P t1, . . . , nu.
Proof. Hereafter we drop the d superscript on h and β for clarity. Let us study the function

Gpαq defined as

(2.27) Gpαq
.
“
e´αh ´ 2` eαh

h2
´ β

eαh ´ e´αh

2h
´ 1.

After a few manipulations, it follows that Gpαq ě 0 is equivalent to

(2.28) gpyq
.
“ pβh´ 2qy2 ` 2ph2 ` 2qy ´ pβh` 2q ď 0, y

.
“ eαh.

The roots of the second-degree polynomial, g, are:

(2.29) y1 “
h
a

h2 ` β2 ` 4´ h2 ´ 2

βh´ 2
, y2 “

´h
a

h2 ` β2 ` 4´ h2 ´ 2

βh´ 2
.
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Because κ ą 0, it follows from Lemma that βh ă 2. Then, it is easy to see that y1 P p0, 1q and
y2 P p1,`8q, so the only positive solution of Gpαq “ 0 is α “ logpy2q{h. A simple study of the
variations of g shows that if α ě logpy2q{h, that is if condition () is satisfied, then Gpαq ě 0.
As a consequence, assuming that condition () is satisfied, it follows that:

(2.30) pL̄w̄qi “ eαx
d
i κ̃di

«

e´αh ´ 2` eαh

h2
`

∇̃d
i κ

κ̃di

eαh ´ e´αh

2h

ff

ě κ̃di rGpαq ` 1s , @i P t1, . . . , nu,

hence the result follows.
Lemma 2.10. Let L̄ be the conservative, second-order finite difference operator defined by () ,

then ´L̄ satisfies the maximum principle.
Proof. Let us show that ´L̄ satisfies all the conditions of Theorem. First, ´aii “

řD
d“1pκ

d´
i ` κd`i q ą 0 for i P t1, . . . , nu. Furthermore, for any i P t1, . . . , nu and any j ‰ i P

t1, . . . , ntu,

(2.31) ´l̄ij “

#

´κd˘i ď 0 if xj “ xi ˘ h
ded, d P t1, . . . , Du,

0 otherwise,

which shows that ´L̄ satisfies condition. Second, it is well-known that well-posed elliptic prob-
lems should lead to irreducible finite difference matrices [,]. Here it is easy to see that the
directed graph associated to A is strongly connected, which is equivalent to A being irreducible [],
and thus conditions holds. Finally, we observe that

řnt

j“1 l̄ij “ 0 for any i P t1, . . . , nu, and that
řn
j“1 aij ą 0 whenever i P t1, . . . , nu is such that xi “ xj ˘ hded where xj is a boundary point.

Therefore condition is satisfied as well.
Theorem 2.11. Let Ωh Ă

ŚD
d“1pO

d;Od `Hdq. Let L̄ be the conservative, second-order finite
difference operator defined by () , and let ū P Rnt such that L̄ū “ b, with b P Rn. Then

(2.32)

$

&

%

min
1ďiďn

ui ě min
1ďiďm

un`i ´ C
d max

1ďiďn
pb`i {κ̃

d
i q

max
1ďiďn

ui ď max
1ďiďm

un`i ´ C
d min

1ďiďn
pb´i {κ̃

d
i q
, @d P t1, . . . , Du,

where Cd .
“ eαH

d

´ 1 with

(2.33) α ě
1

hd
log

»

—

–

hd
´

“

hd
‰2
`
“

βd
‰2
` 4

¯1{2

`
“

hd
‰2
` 2

2´ βdhd

fi

ffi

fl

.

Proof. Let α as in (), then it follows from Lemmas and that the conditions of
Theorem are satisfied with λi “ κ̃di , for any i P t1, . . . , nu and d P t1, . . . , Du. Because L̄ “ L̄0

with L̄0 satisfying condition (), the inequalities in () hold.

2.4.4. Discussion. The expressions in Eq. () reveal that the bounds depend on four
parameters, namely:

‚ the minimum and maximum of the boundary conditions;
‚ the diffusivity field (and its gradient);
‚ the source field;

8



‚ the size of the domain, more precisely Hd.
The influence of the boundary conditions directly relates to the homogeneous PDE, for which the
maximum principle applies, where only the boundary conditions are involved.

The diffusivity field plays a critical role and appears twice in the bounds. First, it is involved in
the constant Cd through βd. It is clear that, for a given discretization hd, the function α ÞÑ eαH

d

´1
is increasing, so the tightest bounds in Theorem are obtained for the smallest admissible α,
and thus for the constant Ĉd defined as:

(2.34) Ĉd “

»

—

–

hd
´

“

hd
‰2
`
“

βd
‰2
` 4

¯1{2

`
“

hd
‰2
` 2

2´ βdhd

fi

ffi

fl

Hd
{hd

´ 1.

For a given hd, α only depends on the diffusivity field (through β), and the smallest admissible
value α̂ is an increasing function of β. As a consequence, high gradients of κ are detrimental to the
sharpness of the bounds. On the contrary, high values of κmay help to decrease βd and are beneficial
to the sharpness of the bounds. On the other hand, it can be shown (using L’Hôpital’s rule, for
example), that if βd vanishes regardless of the discretization (i.e. the diffusivity is constant), then
α̂ converges to 1 as hd tends to 0, and thus Ĉd converges to eH

d

´ 1. In that case, the diffusivity
field has no influence on Cd, but still has an influence on the last factor of the bounds. High values
of κ are also beneficial to this part of the bounds.

The influence of the source field is twofold. First, if the source field has a constant sign over
the domain, then the second term vanishes in either the lower or the upper bound, which then only
depends on the boundary conditions. Second, high magnitudes of the source field deteriorate the
sharpness of the bounds.

Lastly, the size of the domain appears in the constant Cd (or Ĉd). Smaller domains then lead
to smaller values of Cd and thus to sharper bounds.

We now illustrate the influence on the bounds of the four parameters mentioned above in light
of finite difference solutions of the following 1D diffusion problem:

(2.35)

$

&

%

B

Bx

„

κpxq
Bu

Bx
pxq



“ fpxq, @x P Ω
.
“ pX´, X`q,

upX´q “ U´, upX`q “ U`.

We will denote by U (resp. U) the lower (resp. upper) bound obtained from Eq. () in Theo-
rem using the tightest constant Ĉ

.
“ Ĉ1.

Influence of the PDE parameters. We first investigate the influence of the PDE parameters
(other than the boundary conditions) on the bounds. We consider a fixed domain Ω “ p0, 1q and
fixed boundary conditions U´ “ 0, U` “ 1. The diffusivity field, κ, and the source field, f , are
defined as follows:

(2.36)

#

κpxq “ tanh raκpx´ 1{2qs ` bκ,

fpxq “ cf tanh r5px´ 1{2qs ,

where aκ, bκ and cf are real constants allowing us to tune the properties of κ and f .
In Table we report the constants β and Ĉ, as well as the lower and upper bounds U and U and

actual minimum and maximum of the discrete solution, for different values of aκ, bκ and cf . The
9



aκ bκ cf β Ĉ U U min
1ďiďn

ui max
1ďiďn

ui

0 1 0 0 1.72 0 1 0.001 0.999
0 1 0.1 0 1.72 -0.17 1.17 0.001 0.999
0 1 1 0 1.72 -1.70 2.70 0.001 0.999
0 1 10 0 1.72 -16.95 17.95 0.003 0.997

1 1 1 1.46 6.16 -4.34 12.29 0.002 0.999
2 1 1 3.52 43.06 -25.37 178.57 0.004 0.999
5 1 1 9.93 2.27e4 -1.13e4 1.66e6 0.017 1.049
10 1 1 20.0 5.10e8 -2.51e8 5.43e12 0.547 10.48

10 5 1 2.02 10.38 -1.71 3.56 0.001 0.999
10 10 1 1.0 4.05 -0.36 1.44 0.001 0.999
10 50 1 0.2 2.02 -0.04 1.04 0.001 0.999
10 100 1 0.1 1.86 -0.02 1.02 0.001 0.999

Table 1: Constants β and Ĉ for different diffusivity and source fields (parameters aκ, bκ and cf ),
as well as lower and upper bounds (U and U) and actual minimum and maximum of the discrete
solution. The results were obtained using U´ “ 0 and U` “ 1 as left and right boundary conditions
and h “ 0.001.

first 4 rows of the table correspond to a constant diffusivity (κ ” 1) and an increasing magnitude of
the source term (controlled by cf ). The first row corresponds to f ” 0 (homogeneous problem), for
which we can see that the bounds directly result from the maximum principle and thus correspond
to the minimum and maximum boundary conditions. For the next three rows of the block, the
bounds linearly grow (in magnitude) as the source term increases. This trend is explained by the
fact that Ĉ is not affected by changes in the source field. Consequently, because κ̃di also remains
constant and uniform, the bounds linearly depend on the extrema of the source field.

The next block of 4 rows corresponds to a case where the source field lies between ´1 and
`1, and where the diffusivity field is between 0 and 2 with an increasing gradient, controlled by
aκ. Notice that the exact continuous gradient of κ reaches its maximum at x “ 1{2, where it
equals aκ. As the gradient becomes steeper, the value of β increases, and so does the value of Ĉ.
Consistent with the facts that α is an increasing function of β for a given discretization, and that
Ĉ is increasing exponentially with α for a given domain, we observe that the bounds also increase
exponentially in magnitude as aκ increases. For instance, for a maximum diffusivity gradient of 2
(second row in the block), the upper bound almost reaches 200, while the true solution remains
below 1. This makes the diffusivity gradient a critical parameter as regards the sharpness of the
bounds.

The last 4 rows correspond to a case where the maximum diffusivity gradient is high, with an
increasing minimum diffusivity value (controlled by bκ). As stated previously, the magnitude of
the diffusivity appears twice in the bounds. Increasing bκ dramatically decreases the value of β
(and thus Ĉ), but also decreases the absolute values of max1ďiďnpb

`
i {κ̃

d
i q and min1ďiďnpb

´
i {κ̃

d
i q in

Eq. (), which tightens the bounds. As a matter of fact, for a minimum diffusivity value greater
than 4 (bk “ 5), the constants β and Ĉ, and thus the bounds, have reasonable values, while with
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bκ “ 1 they reached extremely large values. This confirms that the diffusivity field plays indeed a
critical role, with either beneficial or detrimental effects, in the sharpness of the bounds.

Influence of the domain length. We now fix the PDE parameters. Specifically, we consider
the fields defined by Eq. (), with aκ “ bκ “ cf “ 1. In order to investigate the influence of the
domain size, we vary the length of Ω around x “ 1{2:

(2.37) Ω
.
“ p1{2´ δH, 1{2` δHq,

keeping a constant discretization of h “ 0.001 regardless of the domain size.

δH β Ĉ U U min
1ďiďn

ui max
1ďiďn

ui

0.5 1.46 6.16 -4.34 12.29 0.002 0.999
0.1 1.10 0.40 -0.17 1.20 0.006 0.995
0.05 1.05 0.18 -0.04 1.05 0.011 0.990
0.01 1.01 0.03 -0.001 1.002 0.050 0.950
0.005 1.004 0.016 -0 1 0.1 0.9

Table 2: Constants β and Ĉ for different domain Ω
.
“ p1{2 ´ δH; 1{2 ` δHq, as well as lower and

upper bounds (U and U) and actual minimum and maximum of the discrete solution. The results
were obtained using U´ “ 0 and U` “ 1 as left and right boundary conditions and h “ 0.001.

Table reports the constants β and Ĉ, as well as the lower and upper bounds U and U and
actual minimum and maximum of the discrete solution, for different values of δH. The first row
(δH “ 0.5) corresponds to the first row of the second block in Table for Ω “ p0, 1q. When the size
of the domain is divided by 5 (second row, δH “ 0.1) the value of Ĉ is reduced 15 folds, from 6.16
to 0.4. This significant drop is due to the exponential dependence of Ĉ on the size of the domain.
To a smaller extent, the constant Ĉ is also influenced by the slight decrease of β, which is due to the
minimum diffusivity increase when the domain is shrunk. As the domain size decreases, Ĉ keeps
decreasing and thus the bounds get sharper. However, because we keep h “ 0.001 constant, the
minimum and maximum values of the solution on the grid tend to move away from the boundary
conditions U´ “ 0 and U` “ 1.

3. Application to the resilient domain decomposition solver. In the context of exascale
computing, massively parallel jobs will be subject to system faults with significantly higher rates
than those in today’s petascale systems []. As a consequence, PDE solves, among other operations,
may return erroneous results. The bounds derived in the previous section can then naturally be
used to detect such faulty solves. Depending on the magnitude of the error caused by the faults and
on the sharpness of the bounds, checking that a PDE solution lies between these bounds may not
be sufficient to overcome the occurrence of faults. Building on an existing domain decomposition
approach for solving elliptic PDEs in a resilient fashion [], we shall see how complementing it by
checking bounds improves its resilience capabilities.

3.1. Resilient domain decomposition solver. Domain decomposition methods consist in
dividing the domain over which the problem needs to be solved into subdomains on which one
solves smaller, and thus cheaper, subproblems. In the resilient approach developed in [,]
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and summarized in Fig., the domain Ω is split into N overlapping subdomains tΩiuNi“1 with
corresponding boundaries tBΩiuNi“1 such that YNi“1Ω̄i “ Ω̄, where ¯̈ denotes the closure of a set. In
such a decomposition, we assume that for each Ωi there is at least one overlapping neighbor Ωj
(with j ‰ i), i.e. such that ΩiXΩj ‰ H. The algorithm amounts to finding, for each subdomain Ωi,
the Dirichlet-to-Dirichlet maps from the boundary conditions on BΩi to the overlapping boundary
values of its neighboring subdomains.

Stage 1: discretization
Stage 2: partitioning

Workflow

Stage 3: state & range

Stage 4: sampling

State

Sampling range

Stage 5: regression, 
boundary maps

Stage 6: solve
boundary
maps system

Stage 7: update
state & range

PDE samples

Figure 1: Schematic of the workflow of the resilient domain decomposition solver described in [,32], reproduced from [].

Specifically, on each subdomain Ωi, boundary conditions are randomly sampled and the local
subproblem is solved for each sample (stage 4 of Fig.). Regression is then used to infer the
relationship between the boundary conditions on Ωi and the solution at points on the boundaries
of its neighboring subdomains (stage 5 of Fig.). Using these maps, we enforce compatibility
conditions between the subdomains, which, in the case of a linear PDE, take the form of a system
of linear equations. The boundary values obtained from the solution of this system correspond to
the solution of the global Dirichlet problem on Ω at the subdomains boundaries (stage 6 of Fig.).
More details on this approach can be found in Appendix, as well as in [,].

In this framework, resilience is achieved through sampling and robust regression techniques.
Because least squares (LS) models are very sensitive to outliers (see [] for examples in the context
of bit-flips), we instead resort to least absolute deviation (LAD) models, which are known to be
much more robust []. Solving LAD regression problems amounts to minimizing the L1 norm
of the residual vector. In a Bayesian context, this amounts to using a uniform prior together
with a Laplace likelihood []. These types of techniques are widely used in compressed sensing
problems [], as it is known that the L1 norm is a good approximation of the L0 “norm” [], which
returns the number of non-zero entries in a vector. In practice, we solve the LAD regression problem
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using the iteratively reweighted least squares algorithm [,,,,,].
In the case of a linear PDE, the boundary-to-boundary maps could theoretically be determined

by solving exactly as many independent local PDEs as the number, NBi ` 1, of unknown affine
coefficients (i.e. the number of unknown boundary points plus one) on each subdomain Ωi. However,
because of the potential occurrence of faults, we allow ourselves to slightly oversample the boundary
conditions by a factor ρ˚ ą 1. In other words, on a subdomain Ωi with NBi unknown boundary
points, we define a target number of samples s˚i “ ρ˚pNBi `1q to be used for the regression problems
on subdomain Ωi. We will refer to ρ˚ as the nominal sampling rate. In fact, the nominal sampling
rate fixes the amount of extra work required to ensure the resilience of the approach. Indeed ρ˚

should be increased from 1 as the expected fault rate increases, and we shall see that the verification
of the solutions with the bounds allows to reduce the value of ρ˚ (and so the overhead) compared
to the original approach in [].

The resilient solver was validated on 1D [] and 2D [,] elliptic problems. In the latest
campaign of runs, tests up to about 110,000 cores showed excellent scalability. Specifically a parallel
efficiency higher than 90% was reported for both weak and strong scaling experiments [].

3.2. Implementation details and fault model. The implementation of the approach is
based on a server-client framework, relying on the message passing interface (MPI). In such a
framework, the MPI processes are grouped into servers and clients. The servers are assumed to
be fault-free units holding the data, whereas the clients are designed solely to accept and perform
work without any assumption on their reliability. The work to be performed on the clients takes
the form of tasks that are created on the server, sent to the clients where the computational work
is performed, and sent back to the server where the result of the task is handled. The server-client
framework is described in detail in [] and outlined in Appendix. Typically, given the size of
the problems considered in this paper, the MPI processes are split into one or two servers and
a few tens of clients. For exascale computations, the framework may for instance involve more
than 5,000 servers, managing 1,000 clients each. Our algorithm involves two main types of tasks:
sampling and regression. The sampling tasks are given a sample of the boundary conditions and
their computational work consists in solving the PDE for these boundary conditions. Each sampling
task corresponds to one single sample of the boundary conditions on one subdomain. The regression
tasks use the samples returned by the sampling task (collected on the servers) to infer the boundary-
to-boundary maps. The final solve of the compatibility system is performed on the servers and is
thus considered fault-free. The fault-free model assumed for the servers can be supported by either
hardware or software, as detailed in Appendix.

By assumption, soft errors are introduced on the clients. They can corrupt either the trans-
mission of the incoming task (from the server to the client), or the computational work performed
on the client, or the transmission of the returning task (from the client back to the server). In the
context of the present study, in an effort to better investigate the effect on resilience of detecting
corrupted PDE solutions using the previously derived bounds, we shall only corrupt returning sam-
pling tasks. Data corruption is simulated by bit flips in the 64-bit binary representation (see the
IEEE 754 Standard []) of double precision values. Flipping a bit simply consists in altering its
value, i.e. changing it to 1 if it was originally a 0, and vice versa. A memoryless Poisson process
was chosen as a means to introduce such errors. A Poisson process is uniquely defined by a single
parameter, namely the rate of failure r, leading to a failure time distribution

(3.1) F ptq “

ż t

0

r expp´rτqdτ “ 1´ expp´rtq.
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From an implementation standpoint, to simulate the occurrence of a fault for a target operation
we proceed as follows. For a given failure rate, we draw a sample from a standard uniform random
number, and extract from the corresponding failure distribution F ptq the amount of time until the
next fault occurs. We then measure the execution time for the target operation to complete, and if
that time exceeds the next failure time, then a fault is triggered. The reader may refer to [] for
more details on the fault model.

Once the fault is triggered, we proceed to simulate the effect of the fault using bit flips. We
investigate two different effects of a fault occurring during communication. In the first scenario,
we consider that one single variable is affected within the data packet that is being transmitted.
In the second scenario, we consider that the whole data packet gets corrupted, resulting in the
corruption of all the variables being transmitted. The data packet corresponding to the returning
sampling task, performed on a 2D subdomain, basically contains two types of information. First,
it contains the boundary conditions, at each boundary point of the subdomain, for which the task
was performed, i.e. for which the local PDE was solved on this subdomain. These input variables
will subsequently be used to feed the so-called design matrix for the regression. Second, the data
packet contains the corresponding local solution, evaluated only at the inner points of interest, i.e.
at points that belong to the boundaries of neighboring subdomains. These output variables will be
used to feed the so-called response vector for the regression.

In principle, any (in the first corruption scenario) or all (in the second corruption scenario) of
the variables in the data packet should be affected whenever a fault is triggered. However, in order
to ease the analysis of the results, the corruption of the returning boundary conditions will not be
considered in this study. In addition, in both scenarios our model assumes that any given double
precision value may only be corrupted by one single bit flip. In other words, at most one of the 64
bits representing the same variable may be flipped.

When a (possibly corrupted) sampling task is returned from the client to the server, the latter
checks the admissibility of the PDE solution in terms of the bounds. If the solution does not lie
between the bounds, it is detected as corrupted. The detected samples are simply discarded, and
the rest of the algorithm, in particular the regression stage, proceeds with a degraded number of
samples si ă s˚i .

For a given PDE (with given diffusivity and source fields) and a fixed discretization, most
of the terms in the expression of the bounds (see Eq. ()) can be computed once and for all
by the servers at the beginning of the computations. In fact, only the part corresponding to the
homogeneous part (i.e. resulting from the maximum principle) depends on the boundary conditions.
Therefore, the invariant terms are computed by the servers for each subdomain in a pre-processing
stage, so that the servers simply need to add the contribution of the boundary conditions whenever
they generate samples of the boundary conditions. When a sampling task returns, the servers can
then use the bounds to determine whether the minimum and maximum values of solution that is
being returned are admissible. Note that because the bounds were computed on the server from the
uncorrupted boundary conditions, potential corruptions of the boundary conditions in the returning
task, not considered here, would not significantly affect the resulting admissibility of that task. The
sampling stage (stage 4 of Fig.), including the computation of the bounds and the admissibility
check of the PDE solutions, is summarized in Algorithm.

It should be highlighted that there are as many (lower and upper) bounds as dimensions of
space. As a result, during the pre-processing stage, one can choose the dimension that yields the
tighter bounds. It is also worth mentioning that the terms appearing in the bounds are relatively
cheap to compute on each subdomain. Specifically, their evaluation basically amounts to Opnq
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Algorithm 1: Simplified algorithm of the sampling stage (stage 4 of Fig.), including the
computation of the bounds and the admissibility check of the PDE samples.
foreach subdomain Ωi do

// [SERVER] Pre-processing stage
Compute the invariant parts of the bounds for Ωi ;
Choose dimension d P t1, . . . , Du that leads to the tightest bounds ;

// [SERVER] Sample boundary conditions
Sample s˚i boundary conditions for Ωi ;
si Ð s˚i ;

foreach sample do
// [SERVER]
Add contribution of the boundary conditions to the bounds ;
Send task to a client ;

// [CLIENT]
Receive task from server ;
Solve the local PDE in Ωi using the received sample of boundary conditions ;
Send task (with the solution) back to server ; /* Corruption may occur here */

// [SERVER]
Receive returning task from client ; /* Task is potentially corrupted */
if received solution does not lie between the bounds then

Discard current sample ;
si Ð si ´ 1 ;

end if
end foreach

end foreach

operations, where n denotes the number of unknown points in the subdomain. The cost then
naturally decreases with the size of the subdomains, which is in accordance with the reduction of
complexity expected from a domain-decomposition approach.

3.3. Fault detection. We now illustrate the effect on resilience of checking the bounds with
2D numerical experiments. The following 2D diffusion equation will be solved using a conservative
second-order FD scheme:

(3.2)

#

∇ ¨ rκpxq∇upxqs “ fpxq, @x P Ω “ p0, 1q2,

u|BΩ “ 1.

The boundary conditions on the subdomains will be sampled in a range of length one around the
global boundary conditions. Specifically, they will be sampled uniformly on r0.5, 1.5s.

We investigate three different problems, corresponding to three different definitions of the dif-
fusivity and source fields, defined as follows.
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Case A. This case will be our reference case. It involves a uniform diffusivity field and a source
field that changes sign with a steep, localized gradient:

(3.3)

#

κpxq “ 1,

fpxq “ tanhrdpxq{0.05s,

with dpxq “ 0.25´ }x´ x0}, where x0 “ p0.5, 0.5q denotes the center of the full domain.
Case B. This case involves a uniform source field and a diffusivity field with a steep, localized

gradient:

(3.4)

#

κpxq “ 4.5 tanhrdpxq{0.05s ` 5.5,

fpxq “ 1.

Case C. This case involves a uniform source field and a diffusivity field with a steep, localized
gradient. The difference with case B is that here the gradient is unidirectional:

(3.5)

#

κpxq “ κpx, yq “ 4.5 tanhrpx´ 0.25q{0.05s ` 5.5,

fpxq “ 1.

The contours of the (non-uniform) fields involved are plotted in Fig..
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(a) Contours of f for case A.
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(b) Contours of κ for case B.
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(c) Contours of κ for case C.

Figure 2: Contours of the source and diffusivity fields for cases A, B and C.

We consider a fixed discretization of 200 finite difference cells in each direction, resulting in a
mesh size h “ hx “ hy “ 0.005. Five different partitions of the domain into subdomains will be
used hereafter: 5 ˆ 5, 11 ˆ 11, 25 ˆ 25, 2 ˆ 25 and 25 ˆ 2. The subdomains overlap by 2 cells in
each direction for all partitions. The overlapping regions are visible on Fig. to Fig. as (narrow)
darker stripes between the subdomains.

To better understand how the bounds can be useful on an actual problem, we first investigate
their ability to locally detect corrupted samples on subdomains. To do so, we proceed to the
sampling stage with a fixed target number of samples s˚ “ s˚i “ 10, 000 on every subdomain Ωi,
and choose to corrupt every corresponding returning task. Each returned task, i.e. each corrupted
PDE solution, is checked for admissibility in terms of the bounds. Samples that are thus detected
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as corrupted are discarded, so that we eventually collect an actual number of samples si ď s˚ on
each subdomain. We then report the detection rate defined as di

.
“ 1 ´ si{s

˚ for each subdomain
Ωi. The other stages (regression and solve of the final system) are not considered. We investigate
the two corruption strategies mentioned in Section. In the first scenario, only one variable is
corrupted by a bit flip, while in the second scenario the whole data packet is corrupted.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0

2

4

6

8

10

12

14

16

18

20

D
e
te

ct
io

n
 r

a
te

 [
%

]

(a) 5 ˆ 5 partition.
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(b) 11 ˆ 11 partition.
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(c) 2 ˆ 25 partition.

Figure 3: Detection rates for case A and different partitions. One single data point is corrupted
during transmission.

Figure depicts the detection rate on each subdomain for case A, with one single variable
being corrupted. Regardless of the partitioning, the detection rate is relatively uniform over the
subdomains, and lies between 16% and 20%. This means that the corruption of one (double
precision) float can be detected by the bounds between 16% and 20% of the time. The average
detection rate is slightly higher in Fig. and is slightly higher than it is in Fig.. This
can be explained by the fact that smaller subdomains lead to tighter bounds (see discussion in
Section).

It is worth mentioning at this point that in the IEEE 754 standard [], double precision variables
are stored using 64 bits, one of which being the sign bit, 11 corresponding the exponent bits, and
the remaining 52 corresponding to the mantissa bits. Flipping the sign bit naturally corresponds to
changing the sign of the real number. Flipping mantissa bits result in the alteration of the decimal
significant digits of the real number, i.e. its fractional part. Lastly, exponent bits are responsible
for the integer part of the real number. Therefore, it is clear that the most noticeable bit flips are
those affecting either the sign bit or the exponent bits. Notice that 12{64 « 19%, so it is fair to
assume that the bit flips that are detected here affected the sign and exponent bits.

Figure shows the detection rates for the same case, but in the second corruption scenario
where the whole data packet is corrupted. In the case of a 5ˆ 5 partition depicted in Fig., all the
subdomains have a 100% detection rate. This is due to the fact that, on a given subdomain, the
corrupted solution at each inner point of interest has about a 16% chance of being detected. Interior
subdomains, i.e. subdomains that do not share a boundary with the global domain, have about 150
inner points of interest. Then the probability of detecting one of the corrupted values (typically,
the minimum and/or the maximum value) is close to 100%. In the case of a 25 ˆ 25 partition
(Fig.), the interior subdomains still show detection rates close to 100%. Such subdomains have
24 inner points of interest. For “boundary subdomains” that share one boundary with the global
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(a) 5 ˆ 5 partition.
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(b) 25 ˆ 25 partition.

Figure 4: Detection rates for case A and different partitions. The whole data packet is corrupted
during transmission.

subdomain, the detection rate is slightly lower, around 98%. This can be explained by the fact
that such subdomains have fewer inner points of interest, since they have only three overlapping
neighbors. This drop in the detection rate is more pronounced in the corners, for subdomains
sharing two boundaries with the global domain, and thus having only two overlapping neighbors.
Such subdomain only have 13 inner points of interest, but still show a detection rate of about 95%.
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(a) 5 ˆ 5 partition.
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(b) 11 ˆ 11 partition.
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(c) 2 ˆ 25 partition.

Figure 5: Detection rates for case B and different partitions. One single data point is corrupted
during transmission.

Let us now focus on case B, where the diffusivity field has a sharp radial gradient. Figure
depicts the case where a single data point is corrupted. For the 5 ˆ 5 partition (Fig.), the
corner subdomains and center subdomain show a detection rate close to 18%, similarly to case A,
while the other subdomains show a poor detection rate of about 2%. This significant drop in
the detection rate is explained by the diffusivity gradient, which deteriorates the sharpness of the
bounds, as discussed previously in Section. Indeed, those subdomains with a poor detection
rate correspond to subdomains where the diffusivity gradient does not vanish. Notice that even
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the boundary subdomains are affected, although the diffusivity gradient is mild in these regions.
This may be caused by the fact that the alteration of any exponent bit can often drive the variable
very close to zero. As a consequence, because of the diffusivity gradient, the lower bound may
become negative, and the admissibility check would then fail to detect the corruption caused by
such exponent bit flips. It should be stressed that this is closely related to the choice of modeling
fault by bit flips. We believe that other fault models would most likely lead to different detection
rates on those particular subdomains.

The 11 ˆ 11 partition (Fig.) shows a consistent behavior. On the subdomains where the
diffusivity is almost constant, the detection rates are between 18% and 20%, while most of the
other subdomains show a low detection rate of about 2%. One exception is for the subdomains
at the center of the domain in each dimension. For such subdomains, the detection rate is always
greater than 18%, even in areas where the diffusivity gradient is high. In such cases, the gradient
is actually mostly 1D, so that we can choose one direction d in which the derivative ∇̃d

i κ (see
Section) almost vanishes, leading to tighter bounds. Another observation is that in regions
where the diffusivity gradient was mild but high enough to cause the detection rate to drop to
2% for the 5ˆ 5 partition, which correspond to the second “ring” of subdomains starting from the
boundaries in the 11ˆ 11 partition, the detection rates remain above 18%. This can be explained
by the fact that the subdomains are smaller, and consequently the bounds are tighter and the lower
bound remains positive.

The 2 ˆ 25 partition (Fig.) confirms the observations made previously. It emphasizes the
fact that even if the diffusivity gradient is localized, it still penalizes the whole subdomain. A good
partitioning strategy therefore consists in designing a partition that best isolates the high gradient
areas in a limited number of subdomains. The smaller and the more uniform the subdomains
are, and the more isolated the high gradient regions will be, which is consistent with the domain
decomposition paradigm.
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(a) 5 ˆ 5 partition.
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(b) 25 ˆ 25 partition.

Figure 6: Detection rates for case B and different partitions. The whole data packet is corrupted
during transmission.

We now investigate the effect of corrupting the whole data packet on case B, illustrated in
Fig.. For the 5 ˆ 5 partition (Fig.), the corner and the center subdomains show a 100%
detection rate. This is consistent with the fact that they correspond to subdomains where the
diffusivity is nearly constant. For the other subdomains, the detection rate is slightly lower. In
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the boundary subdomains, the detection rate is about 90%, which is due to the fact that there is a
small diffusivity gradient that makes the lower bound negative, as discussed earlier. The detection
rate is lower than the other subdomains with high gradient diffusivity because they have fewer inner
points. Concerning the 25ˆ25 partition (Fig.), the deterioration of the detection rate due to the
diffusivity gradient is better isolated in specific subdomains, but the effect is also more pronounced,
because the subdomains have fewer inner points. On such subdomains, the detection rates drop to
approximately 70%. The fact that the poor detection areas can be localized in a limited number
of subdomains allows one to adapt the resilient strategies from one subdomain to another. One
may for instance increase the nominal sampling rate ρ˚ in those subdomains where the bounds are
expected to be less tight.
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(a) 2 ˆ 25 partition.
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(b) 25 ˆ 2 partition.

Figure 7: Detection rates for case C and different partitions. One single data point is corrupted
during transmission.

The detection rates for case C when a single data point is corrupted are reported on Fig.. For
the 2ˆ25 partition (Fig.), the detection rate is uniform over the subdomains and is between 18%
and 20%. Again, this is due to the fact that the diffusivity gradient is unidirectional. Specifically,
the y-component of the diffusivity gradient vanishes everywhere. In addition, the subdomains are
smaller in the y direction than in the x direction, which benefits the sharpness of the bounds.
On the other hand, for the 25 ˆ 2 partition (Fig.), there is a vertical stripe of subdomains for
which the detection rate drops to about 4%. These subdomain correspond to a region where the
diffusivity and its gradient are such that the lower bound can become negative. For the reasons
discussed previously, because of the inherent behavior of the bit flips, this leads to a drop in the
detection rate. The case where the whole data packet is corrupted, not shown here, leads to a 100%
detection rate on all the subdomains, for both partition (2ˆ 25 and 25ˆ 2).

3.4. Improvement of resilience. Let us now investigate how detecting faulty samples bene-
fits the resilience of our algorithm. As mentioned previously, our approach consists in using robust
regression techniques (see []) to achieve resilience. However, such regression problems are more
expensive to solve than classical regression problems such as ordinary least squares. To asses the
gain obtained by using the bounds in terms of resilience, we now perform a complete solve of prob-
lem () using our resilient domain decomposition algorithm. At the end of the solve, we check
the residual on the boundaries by computing the solution on each subdomain using the boundary
conditions obtained from the final solve of the boundary-to-boundary compatibility equations (see
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algorithm description in Section and []). If the residual is below a certain threshold, set here
to 10´6, we consider that the solve is a success, otherwise, we consider it a failure. We repeat
the experiment 200 times and we report the success rate, that is the proportion of experiments for
which the solve is successful. In the following experiments, the fault rate is set to r “ 0.2. Note
that this rate was set to an exaggeratedly high value to be able to observe the effect of faults. It
should be stressed that the fault rates are expected to be much lower on future exascale machines.
In addition, in what follows, we only focus on case A, and consider the most realistic corruption
scenario, that is the one where the whole data packet is corrupted during communication.

To compare the resilient capabilities of the regression, we consider two minimization problems,
namely least squares (LS) and least absolute deviations (LAD). The former is known for not being
robust to outliers and is therefore not expected to be resilient to faults. The latter is expected to
disregard outliers and is therefore expected to perform better in the presence of faults. The LAD
problem is solved using the iteratively reweighted least squares (IRLS) algorithm [,], which
consists in solving a sequence of weighted least squares problem. As such, it is clear that the IRLS
is at least as expensive as a single LS solve. To examine the potential improvement of using the
bounds, we compare the success rates over the 200 experiments using either LS or LAD, with or
without the use of the bounds.

Figure shows the success rate as a function of the number of subdomains, corresponding
to partitions 5 ˆ 5, 11 ˆ 11 and 25 ˆ 25, for the four different regression and bound scenarios
described above, and using ρ˚ “ 1.1 as the nominal sampling rate. The shaded areas correspond
to the standard deviation of the estimator of the success rate, assuming a binomial distribution
of the number of successes. When the bounds are not used, the success rate is always below
70%, regardless of the regression technique and of the number of subdomains. For both regression
techniques, the success rate remains nearly the same from 25 to 121 subdomains, and then drops
for 625 subdomains. This is due to the fact that in the latter case, there are many more samples to
be generated and transmitted, so that the average number of faults occurring during one complete
solve (i.e. one realization of the experiment) is significantly higher. In fact the average numbers of
faults per experiment are approximately 0.63 with 25 subdomains, 0.77 with 121 subdomains and
1.1 with 625 subdomains. As expected, because of the robust properties of LAD regression, the
success rate is higher when using LAD than when using LS. When using the bounds, both regression
techniques lead to a 100% success rate. This is in accordance with the nearly 100% detection rates
that were obtained in the corresponding cases (see Section).

Figure reports the success rate as a function of the nominal sampling rate ρ˚ obtained with
a 25ˆ 25 partition. When using the bounds, increasing the sampling rate does not deteriorate the
100% success rate obtained with the smallest sampling rate. However, the sampling rate has an
effect on the success rate when the bounds are not used. Specifically, when using LS regression,
the success rate decreases as the sampling rate increases. This can be explained by the fact that
increasing the sampling rate increases the total number of faulty observations, from which LS
regression is not able to recover. On the contrary, the success rate increases with the sampling
rate when using LAD regression, which is due to the fact that even if the number of faulty samples
increases, their proportion remains relatively constant. Because there are also more uncorrupted
observations and owing to the robust properties of LAD regression, the resilience improves as the
sampling rate increases. The plateau reached by the success rate around 80% for ρ˚ ě 1.3 is
explained by occurrence of bit flips that lead to corrupted value close to the numerical limit of
double precision numbers, around ˘10308. In such cases, the LS solve may fail, returning a NaN
(not a number) or an infinite number. Then the first iteration of the IRLS algorithm fails as well,
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(a) ρ˚ “ 1.1.
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(b) 25 ˆ 25 partition.

Figure 8: Success rates for case A and different regression problems, with and without the bounds.
The whole data packet is corrupted during transmission. Fig.: success rate as a function of
the number of subdomains. Fig.: success rate as a function of the nominal sampling rate. In
both figures, the curves corresponding to the use of the bounds (LAD and LS with bounds) almost
exactly overlap.

compromising the whole regression solve. These results confirms that checking the admissibility
of local PDE solutions reinforces the resilience of the overall domain decomposition solver. They
indicate that LS could be used instead of LAD in the cases considered here. However, solving the
LAD problem with IRLS consists in solving a sequence of LS problems. As such, whenever the LS
solve recovers the true solution, the IRLS would converge in one iteration, thus causing no overhead.
Using IRLS remains safer, in case the bounds miss one faulty data or if faults are introduced in the
regression task.

3.5. Improvement of computational efficiency. We have shown that checking the admis-
sibility of the local PDE solutions using the bounds improves the resilience of the whole solver. We
shall now examine the consequences on the computational efficiency of the approach. As stated
previously, the solver may actually perform more than one iteration, each of which leading to an
approximation of the solution at the subdomain interfaces. At the end of an iteration, the conver-
gence is checked comparing the residual at the interfaces to a given tolerance value. If convergence
is not achieved, in other words if the resilient solver is not successful, a new iteration is performed,
consisting of a new resilient solve including the sampling, the regression, and the final solve of
the compatibility equations (stages 4, 5 and 6 of Fig., respectively). Clearly, in the absence of
faults, the algorithm should converge in one iteration, as long as the regression problem remains
overdetermined (i.e. it involves more independent linear equations than unknowns).

Figure reports the number of iterations needed to achieve convergence as a function of the
fault rate r (see Section), with and without the use of the bounds. The LAD regression problem
is considered in both cases, and is solved using IRLS. For the range of fault rates considered here,
the plots confirm that using the bounds allows to achieve convergence in one iteration in most
cases, while not using the bounds can lead to several iterations. For the highest fault rate r “ 0.2,
the solver needs on average 2 iterations to converge when not using bounds, with a large variance.
Considering that each iteration takes about the same time to complete, this means that the resilient
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Figure 9: Number of iterations as a function of the fault rate r for case A, with and without the
bounds. The LAD regression problem is solved, using a nominal sampling rate ρ˚ “ 1.1. The whole
data packet is corrupted during transmission. Shaded areas correspond to one standard deviation
below and above the mean value.

solve takes on average twice as much time as when using the bounds. The large variance indicates
that there are cases where the solve can take even more time. To be fair, it should be mentioned that
a more efficient strategy may be implemented whenever several iterations need to be performed.
Specifically, subdomains on which all regression solves lead to small enough regression residuals,
meaning that no faults occurred or that all the faults were filtered out by the bounds, can be labeled
as “safe”. The corresponding boundary-to-boundary maps are then deemed to be safe as well, so
that they need not be computed during subsequent iterations. Nonetheless, using the bounds would
still reduce the failure rate and thus improve the overall computational efficiency of the solver.

4. Conclusions. In this paper we derived a priori bounds for the discrete solution of second-
order, elliptic partial differential equations. The bounds have two contributions. The first contri-
bution comes from the boundary conditions, through the discrete maximum principle, previously
derived in the literature []. The second contribution, involving the PDE coefficients for non-
homogeneous problems, was obtained building on an existing derivation in the continuous case [].

The discrete bounds are general enough to apply to discretized problems of the form Au “ b´
Ãg. They have the advantage of being cheap and easy to compute, only requiring Opniq operations
on each subdomain Ωi, where ni denotes the number of unknowns in Ωi. However, the conditions
under which they apply depend on both the problem and the numerical scheme. We derived
such conditions for the widely-used conservative, second-order finite difference approximation of
the diffusion equation with variable scalar diffusivity. The general approach can be adapted for
other elliptic problems, e.g. diffusion problems with tensor diffusion coefficient or reaction-diffusion
problems, as well as for other numerical schemes such as fourth-order finite differences.

We applied the presently derived bounds to an existing resilient domain decomposition solver
developed in []. Our test case was a 2D diffusion equation with variable scalar diffusivity, solved
using a conservative, second-order finite difference scheme. We showed that the bounds are affected
by the different parameters of the PDE, in particular by the diffusivity gradient. With careful
partitioning, we provided an example showing that it is possible to contain regions where the
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bounds are looser in a limited number of subdomains, for which the resilient strategy may therefore
be strengthened. Our test showed that the bounds were able to detect most of the faulty solutions
in the case where the whole data packet was corrupted during transmission. This led to a nearly
perfect success rate in the global solution, even when using non-robust regression techniques, namely
ordinary least squares. On the other hand, without using the bounds, the success rate remained
below 100% even when solving robust regression problems, namely least absolute deviations, and
even when increasing the number of samples. The gain in resilience translated into a gain in
computational time in the context of our strategy to run new iterations of the overall algorithm
until resilience is achieved.

Ongoing work concerns the application of the bounds to uncertain elliptic problems. Recently,
we developed an approach to tackle elliptic problems with parametric uncertainty, in which stochas-
tic quantities are approximated by truncated spectral expansions []. Because of the truncation
error, the approximated boundary-to-boundary maps are not supposed to be exactly affine in the
boundary conditions, which results in the need of much higher sampling rates for the robust regres-
sion to overcome faulty samples. The gain in resilience provided by the bounds in the deterministic
case should be all the more prominent in uncertain problems. Another important improvement of
the current resilient approach concerns the treatment of problems with large numbers of subdo-
mains. Indeed, it is known that the condition number of the Dirichlet-to-Dirichlet operator increases
with the number of subdomains, calling for appropriate treatments to ensure scalability with respect
to the number of subdomains. Along these directions, hierarchical and multilevel extensions appear
as natural strategies and, in this context, bounds verification is expected to play an important role
in limiting computational overheads.

Finally, we plan to investigate different fault models, both in terms of the occurrence, which is
currently simulated using a Poisson process, and of the way data is corrupted, which is currently
mimicked by the introduction of bit flips. New occurrence models could involve more complex
processes, relying for instance on gamma or Weibull distributions [,].
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Appendix A. Details on the resilient domain decomposition solver.
We consider a Dirichlet problem of the form () in the global domain Ω, and we focus on the

solution u|Γ to this problem at the boundaries of the inner boundaries (i.e. excluding the boundary
BΩ of the global domain Ω) of the subdomains, defined by Γ

.
“ pYNi“1BΩiq X Ω “ pYNi“1BΩiqzBΩ.

Because of the overlapping decomposition, each subdomain Ωi includes a set Γi
.
“ pYNj“1BΩjq XΩi

of boundary parts belonging to neighboring subdomains.
Our algorithm, which can be seen as an accelerated overlapping Schwarz algorithm, relies on

the functions Fi that map, on each subdomain Ωi, the local Dirichlet boundary conditions vi|BΩi

to the solution vi|Γi
, at the neighboring interfaces Γi, of the local Dirichlet problem defined by:

(A.1)

#

Lvipxq “ fpxq @x P Ωi

vipxq “ gipxq @x P BΩi.
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We thus have:

(A.2) vi|Γi
“ Fi

`

vi|BΩi

˘

, @i P t1, . . . , Nu.

Combining these maps for all subdomains, together with compatibility conditions at the sub-
domains, namely vi|BΩjXΩi

“ vj |BΩjXΩi
, eventually yields a fixed-point problem of the form

v|Γ “ Fv|Γ. Provided that the global problem is well-posed, the solution v|Γ of this reduced
problem uniquely matches the solution u|Γ of the full problem () at the inner boundaries. The
discretized version involves a reduced system of linear equations MuΓ “ c, where uΓ denotes the
vector of solution values at discretization points along Γ.

To build the maps, we rely on a sampling strategy that involves solving the target PDE equation
locally within each subdomain for sampled values of the boundary conditions on that subdomain
(stage 4 of Fig.). We then resort to robust regression techniques to find resilient surrogates of the
maps from potentially corrupted samples (stage 4 of Fig.). Finally, the reduced problem MuΓ “ c
is assembled and solved (stage 5 of Fig.). One of the important features of the algorithm is that the
construction of the boundary-to-boundary maps can be done for each subdomain independently from
all the others. This allows us to satisfy data locality, which is one of the main factors contributing
to scalability on extreme scale machines. In that sense, our approach differs considerably from the
classical iterative overlapping Schwarz algorithm, which is not expected to scale well.

Appendix B. Detailed server-client framework.
Our server-client (SC) model relies on grouping MPI processes into servers and clients. Cur-

rently, the servers are assumed to be safe (or “sandboxed”) units holding the data, whereas the
clients are designed solely to accept and perform work without any assumption on their reliability.
A client is simply defined as a set of MPI processes, which can take up part or all of a computing
node. Conceptually, a client does not necessarily need to be limited to reside on a single node, but
can spread over multiple nodes. Assuming the single-node scenario, however, would allow one to
exploit in-node parallelism and faster memory access to share data within a client. Clearly, the SC
framework involves substantial data exchange between servers and clients, but a key advantage of
this structure relies in its inherent resiliency to hard faults, provided that the MPI framework is
made fault-tolerant, e.g. using the User Level Failure Mitigation (ULFM) prototype for MPI [].
Since the actual data is safely held by the servers, the SC is inherently resilient to clients crashing
(partial or complete node failures), since this only translates into missing tasks. The asynchronous
nature of the SC model is beneficial to reduce the communication wait times.

Figure shows a schematic of our SC structure. We adopt a cluster-based model, namely
the MPI ranks are grouped into separate clusters, with each cluster containing a server and, for
resource balancing purposes, the same number of clients. These clusters are designed such that all
servers can communicate between each other, while the clients within a cluster are only visible to
the server within that cluster. Moreover, within any given cluster, clients are independent, i.e. they
cannot communicate with each other. The data is distributed among the servers, and these are
assumed to be highly resilient (safe or under a sandbox model implementation). The sandbox model
assumed for the servers can be supported by either hardware or software. The former assumption is
supported by hardware specifications on the variable levels of resilience that can be allowed within
large computer systems. In the case of software support, a sandbox effect can be accomplished
by a programming model relying on data redundancy and strategic synchronization [,,].
Since the servers hold the data, they are responsible for generating work in the form of tasks,
dispatching them to their pool of available clients, as well as receiving and processing tasks. To
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Figure 10: Schematic of the server-client implementation.

optimize communication, clients are designed such that it is their root process that receives a new
task to perform. After receiving the task, the root process then broadcasts it to all the other ranks
in the client, so that the client as a whole works in parallel to solve the task. This paradigm can
be exploited in certain hardware configurations because leveraging local communication within a
client is more efficient than having the server communicate a task to all the MPI ranks in a client.
One example is the case where all ranks of a client live in the same node, so that they can exploit
in-node parallelism and faster memory access. All communications between a server and its clients
are done with non-blocking operations, allowing us to overlap them on the server side with the
computational operations involved in the creation and processing of the tasks.

Due to separation of state from computation, and because of the nature of the algorithm,
sampling and regression are executed by the clients through tasks. On the other hand, because the
servers hold the state, they are responsible for performing the solve of the boundary maps system
and the subdomains updating. The safety of the servers precludes any potential data corruption
during these operations.
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