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Abstract.
The move towards extreme-scale computing platforms challenges scientific simulations in many

ways. Given the recent tendencies in computer architecture development, one needs to reformulate
legacy codes in order to cope with large amounts of communication, system faults and requirements
of low-memory usage per core.

In this work, we develop a novel framework for solving partial differential equations (PDEs) via
domain decomposition that reformulates the solution as a state-of-knowledge with a probabilistic
interpretation. Such reformulation allows resiliency with respect to potential faults without having
to apply fault detection, avoids unnecessary communication and is generally well-suited for rigorous
uncertainty quantification studies that target improvements of predictive fidelity of scientific models.
We demonstrate our algorithm for one-dimensional PDE examples where artificial faults have been
implemented as bit-flips in the binary representation of subdomain solutions.
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1. Introduction. Given the trends in computer architecture development, sci-
entific simulations on future extreme- scale platforms will face many challenges such
as the need to operate with relatively low memory per core, cope with costly data
movement, make use of heterogeneous hardware, scale to very large numbers of cores,
and deal with hardware and software faults, among many other challenges []. Over-
coming these challenges is essential for many science applications in terms of enabling
simulations on future extreme-scale architectures. The current paper addresses the
issue of resilience against system faults.

The term system faults covers a wide range of hardware and software faults, which
can be categorized as soft or hard faults []. Hard faults result in termination of the
program that is executed, e.g. due to a node crash. Soft faults, such as bit-flips in
memory, do not cause immediate program termination, but can lead to faulty results
or a program crash further down. Soft faults are often hard to detect, in which case
they are labeled silent faults.

Fault tolerance in high performance computing has been the subject of research for
almost three decades, with increasing intensity as capability simulations are moving
into the realm of tens of thousands of processors where the system mean time to
interrupt (MTTI) drops to a mere couple of hours []. With increasing numbers of
transistors per chip, error rates are expected to grow significantly [,,]. Various
approaches have been developed to study system reliability, ranging from graph-based
analyses [] to empirical fault injection []. The impact of system faults ranges from
negligible to major, depending on the software and the type of fault [].

By far the most commonly used fault-tolerance approach is checkpointing, ei-
ther onto physical storage or diskless through checksums. While being conceptually
straightforward and robust, checkpointing does introduce a sizeable overhead and does
not scale well with the system and simulation size []. This scaling problem arises
from the need for wide-range (often global) aggregation of information to construct
the checkpoint data and is, therefore, an imminent limitation even if the current
MTTI can be maintained for future computing systems. With current technologies,
the time to handle resilience is expected to exceed the MTTI of top supercomputers
in near future [,]. More recent work has focused on local, rather than global,
checkpointing and recovery []. Alternative, emerging approaches are various forms
of algorithm-based fault tolerance (ABFT) [,,,], effective use of state ma-
chine replication [] or process-level redundancy [], and algorithmic error correc-
tion code []. Many other approaches for resilience in High Performance Computing
have been developed. For a more comprehensive overview of the many sources of
system faults and the fast-growing body of research to achieve resilience, we refer the
reader to the review papers by Cappello et al. [,],

While the many developments in the community towards resilience against system
faults are promising, almost all of the approaches rely on being able to detect the
faults in order to mitigate them. This is particularly a problem for handling silent
faults. Also, most approaches are geared towards handling just one type of fault, e.g.
resilience against soft faults, but not hard faults. In this paper, we present a novel
algorithmic approach towards achieving resilience against both soft and hard faults,
without the need to explicitly detect them. Our algorithm is based on an overlapping
domain decomposition framework. It represents the solution as a state-of-knowledge,
and updates this state in a fault-resilient manner, based on samples of the solution
on the subdomains.

Domain decomposition methods [,], besides being attractive from a parallel
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computing viewpoint, are very well positioned from a resiliency standpoint, as they
localize faults, perhaps with the exception of faults produced during communication.
With the increased emphasis on parallel computing, domain decomposition methods
provide a convenient avenue to divide-and-conquer. However, while the scalability and
convergence of such methods have been extensively studied in both PDE [,,,,44] and linear solver [,–] contexts, there are not – to the best of our knowledge –
many studies considering fault resilience specific to domain decomposition algorithms.
Chen et al. [] proposed an algorithm-based recovery method for iterative system
solvers to enable resilience to fail-stop failures based on data partitioning tailored
to the characteristics of the iterative scheme, while Larson et al. [] achieved fault
tolerance by combining solutions on sparse grids. Both approaches can in principle
be reformulated in a domain decomposition paradigm, but with a distinct flavor of
fault-detection or redundancy present.

The approach presented in this paper iteratively advances the solution state by
constructing maps that relate the solutions at the subdomain boundaries to each other,
and then solving a fixed point problem to get the updated solution at the subdomain
boundaries. Resilience is obtained by relying on a novel – in this context – robust
regression approach to learn the mappings between the solution at the subdomain
boundaries. In this algorithm, failed runs due to node or software failures show
up as missing data, and corrupted data due to bit-flips or other silent errors shows
up as data noise in the regression. The local maps are parametrized as polynomial
expansions, similar to the local Polynomial Chaos method developed in []. Our
approach, however, allows for nonlinear problems, and tackles resilience against soft
and hard faults as the primary objective.

The current paper focuses primarily on the formulation of the algorithm and
demonstrates its strong resilience to soft faults in the application to 1D linear and
nonlinear differential equations. In linear problems, convergence is reached in just
one iteration, for almost all cases. For non-linear problems, the number of iterations
required to reach convergence depends only very mildly on the error rate. The ap-
plication of the algorithm to 2D problems along with a demonstration of resilience
against both hard and soft faults will be treated in [].

The paper is organized as follows. In Section we develop the algorithm, focusing
on the one-dimensional case, while detailing and testing the fault-resilient boundary-
to-boundary map learning procedure. Then, Section demonstrates the algorithm on
both linear and non- linear PDE test cases. We relegate conclusions and a discussion
of potential generalizations to Section.

2. Algorithm formulation.

2.1. General approach. In this work, we reformulate PDE-based simulations
in terms of a description of the current state-of-knowledge about the true solution.
In this context, the true solution is the solution one would obtain with the chosen
numerical method in the absence of any faults in the system. Starting from a range
around a reasonable mean value that captures the initial knowledge about the solution,
targeted simulations are used to refine the knowledge about the solution until the
state-of-knowledge converges to the true answer with sufficient confidence. As such,
there is no need to characterize all types of system faults that can occur in a simulation;
one focuses solely on the information that a simulation provides, and on using it to
reduce the uncertainty in the knowledge about the true solution. Our iterative solution
refinement approach relies on domain decomposition and combines information from
subdomain PDE solutions that can be obtained with regular PDE solvers. As such,
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this approach can be seen as a domain-decomposition preconditioner for the resilient
solution of partial differential equations (PDEs).
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Fig. 1. Workflow schematic of the approach for a 2-dimensional, 4 overlapping subdomain case.

As an example of a generic elliptic PDE, consider the form

(2.1) Ly(x) = h(x)

with a differential operator L, and a given forcing function h(x), for x ∈ Ω, where
Ω is an open and bounded subset of Rn. Consider the solution y(x) for a Dirichlet
boundary condition y(x)|x∈∂Ω = y∂Ω on the boundary ∂Ω of the problem domain Ω.
Generally, an overlapping domain decomposition consists of N subdomains {Ωi}Ni=1

with corresponding boundaries {∂Ωi}Ni=1 such that ∪Ni=1Ω̄i = Ω̄, and for each Ωi there
is at least one overlapping neighbor Ωj such that Ωi ∩ Ωj 6= ∅. The algorithm relies
on a representation of subdomain boundary conditions that captures a mean state-
of-knowledge and an uncertainty range around it. This representation is updated
iteratively, starting from an initial guess. In other words, the object of interest is
the set of solution fields yi ≡ y(x)|x∈∂Ωi at each subdomain boundary, denoted by
y = (y1, y2, . . . , yN ). With the complete knowledge of the true value of y, denoted
by ỹ, a single solve per subdomain would recover the full solution over the original
domain Ω. In order to keep the focus on the subdomain solution faults, we con-
sider this last step fault-free and skip its consideration. In principle, this last step
can be made fault-free with simple redundancy, essentially adding a fixed number
to the total required subdomain solves, or by implementing within e.g. a selective
reliability framework [,] with targeted, highly-reliable solves at the last step. Our
algorithm obtains iteratively improving, i.e. sequentially range-reducing, representa-
tions of ỹ. Each subdomain Ωi will include, due to overlaps, a set of ki boundaries
{∂Ωj|i}j=j1,...,jki

of other subdomains, see Figure. Consider the ki maps from the
boundary conditions on ∂Ωi to boundaries of other subdomains that are internal to
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Ωi, i.e. maps of form ∂Ωi 7→ ∂Ωj|i for j = 1, . . . , ki. These maps are induced by the
solution of the elliptic PDE on Ωi with Dirichlet boundary conditions:

(2.2) fi→j(yi) = yj|i for j = 1, 2, . . . , ki,

where yj|i denotes the restriction of yj to ∂Ωj|i, i.e. the part of the boundary ∂Ωj
that is inside the subdomain Ωi. The system of such boundary maps for all subdo-
mains i = 1, 2 . . . , N , given the global boundary conditions y(x)|x∈∂Ω can be written
in a fixed-point form y = Fy and is satisfied by the true solution ỹ. Note that these
boundary maps fi→j are purely on y-values and are simply restrictions of the subdo-
main solutions at the corresponding boundaries. While general non-linear solvers can
in principle solve the system, it would require global communication and repeated
online subdomain solutions in order to evaluate fi→j for each iteration in the solution
of this system. Instead, we construct surrogate maps, i.e. approximations gi→j for
each outer-to-inner boundary map fi→j ≈ gi→j , employing Bayesian techniques and a
set of training solutions pertaining to each subdomain. For linear PDEs, the bound-
ary maps are linear as well, as shown in the Appendix, and linear surrogate maps are
exact. Thus one can view the surrogate construction simply as a learning of the linear
coefficients of the boundary maps. In general, for non-linear problems, the introduc-
tion of linear surrogate maps will carry an additional source of discrepancy, due to
the linear approximation of a generally non-linear map. However, we will introduce
an iterative approach with systematic reduction of the range over which the surrogate
map is constructed, thus rendering linear surrogate increasingly more accurate.

The surrogate map is constructed with Bayesian machinery, using a number of
training runs. The surrogate range, i.e. the range of sampling of training runs, is
chosen according to a current state-of-knowledge representation that reflects the mag-
nitude of the uncertainty around the current state of the solution. The PDE is then
solved on each subdomain for sampled values of its current boundary condition distri-
butions. The resulting subdomain solution samples feed into a Bayesian inference of
surrogates that relate the subdomain boundary conditions to each other. Intersection
of these surrogate maps, i.e. the solution of the system {gi→j(yi) = yj|i}j=1,...,ki

i=1,...,N

provides a new sample of the subdomain boundary conditions that serves as an ap-
proximation of the true solution ỹ = {ỹi}i=1,...,N . When subdomain solves fail (e.g.
due to nodes crashing), the inference proceeds with fewer samples, and the associated
loss of information merely results in a locally higher uncertainty. Erroneous subdo-
main solves (e.g. due to random bit-flips) are either rejected by a properly chosen
prior distribution on the solution that strips away outrageously large errors, or ac-
counted for by the Bayesian noise model. The schematics shown in Figures and
demonstrate the workflow of the algorithm.

To describe the algorithm from a different perspective, note that the goal is to
solve the fixed-point problem y = Fy constructed from the intersection of the maps
that relate the solutions at the subdomain boundaries to each other. While the
general non-linear operator F is hard to compute, we first ‘learn’ an approximation
G(T ) ≈ F at the T -th iteration that stems from surrogate maps, requiring M training,
subdomain solves. Then, we find the fixed-point solution using the simple surrogate
y = G(T )y, in order to arrive at the solution estimate y(T+1) at the next iteration
T + 1. Next, we shrink the surrogate construction range and obtain a more accurate
surrogate map, G(T+1), before repeating iteratively. With this formulation, one could
draw clear parallels to classical Schwarz algorithms [,,], where the solution
iterations y(T+1) = Fy(T ) lead to the fixed point solution y without explicitly com-
puting F , or to Aitken-like acceleration techniques for linear operators [,], where
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Fig. 2. Schematic of one complete iteration of the algorithm.

F is linear and easily found by two training subdomain solves in the 1D case. Our
formulation, however, provides a general framework for non-linear operators, and a
resilient way to construct the surrogate maps; it also embeds a state-of-knowledge,
information-based interpretation in the iteration scheme. Note that the classical ad-
ditive Schwarz algorithm converges if the operator F is a contraction, i.e. its spectral
radius is less than 1. This means that if the surrogate is exact, i.e. G(T ) = F ,
then the convergence of the proposed algorithm is equivalent to that of the classi-
cal additive Schwarz algorithm for the same PDE. For linear problems, G(T ) = F
holds for any T , therefore our algorithm will converge after the very first iteration,
unless a large enough number of faulty solutions renders the surrogate map G(T ) in-
exact. Across several successive iterations, this is extremely unlikely as can be seen
further in this paper. For non-linear problems convergence is generally not guaran-
teed. However, our approach constructs successively more accurate linear surrogates
to the boundary-to-boundary maps at each iteration, thereby greatly enhancing the
convergence properties.

In this paper, for purposes of clarity, we focus on the one-dimensional implemen-
tation of the algorithm as a proof-of-concept, and primarily consider the effects of soft
faults. The extension to 2D problems with both hard and soft faults will be covered
in [].

2.2. One-dimensional preconditioner formulation. In this section, we pro-
vide a detailed formulation for a one-dimensional system. Consider N equal size
subdomains with an overlap size h between two neighbors. The equal-size require-
ment for both subdomains and overlaps is merely out of convenience and by no means
is a requirement in the algorithm. Denoting the full domain Ω = (a, b), we can write

(2.3) [a, b] = ∪Ni=1[ai, bi]

where the i-th subdomain is Ωi = (ai, bi) with ai = a+ (i− 1)(b− a)/N − h/2, bi =
a+ i(b− a)/N + h/2, except a1 = a and bN = b. The boundaries for each subdomain
consist of two points only ∂Ωi = {ai, bi}. For convenience, we order the y-values
at all internal boundaries according to an increasing order of their corresponding
x-locations, i.e.

(2.4) y = (yL2 , y
R
1 , y

L
3 , y

R
2 , . . . , y

L
N , y

R
N−1),
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where yLi = y(ai) and yRi = y(bi) denote the solution at the left and right boundaries
of the i-th subdomain, correspondingly. Each internal subdomain, i.e. for 1 < i < N ,
involves two boundary conditions, yLi and yRi , and contains two boundaries of other
subdomains (namely, yRi−1 and yLi+1), while the first and the last subdomain have
one varying boundary condition and contain only one relevant boundary of another
subdomain. Therefore, we need to construct 2N − 2 maps, each one of them from the
boundary conditions on a subdomain to the internal boundaries of interest in that
subdomain

(2.5)


yL2 = fR1 (yR1 ){
yRi−1 = fLi (yLi , y

R
i )

yLi+1 = fRi (yLi , y
R
i )

for 1 < i < N

yRN−1 = fLN (yLN )

4.0 4.5 5.0 5.5 6.0 6.5 7.0
x

3.0

3.5

4.0

4.5

5.0

5.5

y

Current solution state

BC samples, yLi , yRi
Solution curves, fRi (yLi ,yRi )

Solution samples, yLi+1

Fig. 3. Demonstration of the surrogate boundary map construction, on the example of yLi+1 =

fRi (yLi , y
R
i ).

In the system of equations (), f
L(R)
i denotes the map induced by the solution in

the i-th subdomain, evaluated at the left (right) internal boundary of interest. Figure
demonstrates three sampled solutions and the output detected on the right-internal
boundary of interest, within a single subdomain. With appropriate reordering, the
system () can now simply be written as

(2.6) y = Fy,

i.e. a fixed point problem, the solution ỹ of which is the target we seek. Generally,
the operator F is nonlinear and not known explicitly, making the solution of the fixed
point problem problematic, since it would require PDE solves on each subdomain
to evaluate F at each iteration of the fixed point solver. Therefore, we construct

surrogate approximations g
L(R)
i ≈ f

L(R)
i leading to an approximate operator G ≈ F .

As shown in the Appendix, there is no approximation, i.e. G = F for linear PDEs.
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For nonlinear PDEs, we introduce iterative solution update strategy that renders the
approximation increasingly more accurate as iterations progress. The solution of the
fixed point problem y = Gy will be considerably less expensive and intrusive, as it

will only require evaluations of a priori found surrogate functions g
L(R)
i . Note that

for simplicity we dropped the iteration counter T – we set the fixed point solution ỹ
to be the best-knowledge solution at the next iteration y(T+1) = ỹ, and shrink the
range of sampling so that the surrogate map G = G(T ) is updated to a more accurate
one G = G(T+1) for the next iteration (see Section).

An important measure of the accuracy of the current solution y(T ) is the residual
vector, defined as

(2.7) z(T ) = Fy(T ) − y(T ),

which can be computed by extra subdomain solves using boundary conditions defined
by the current solution y(T ), and subsequent subtraction the corresponding current
solutions y(T ) from the resulting values at all boundaries. It follows from the definition
that the residual () vanishes if the current solution y(T ) is the exact solution we
seek.

We build surrogates that have polynomial form, as detailed further in Section2.3. These surrogate maps are built over ranges centered at the current state of the
solution y. The vector of such ranges is denoted by r assuming the same ordering as
in y, i.e.

(2.8) r = (rL2 , r
R
1 , r

L
3 , r

R
2 , . . . , r

L
N , r

R
N−1).

Note that the pairs (y, r) essentially encapsulate the state-of-knowledge of the solu-
tion. Indeed, y is the current solution state, while the surrogate range r is intended
to be chosen so that the true solution is within the range (y − r,y + r) or not too
far outside of it. In the latter case, the accuracy of the fixed point solver can be
somewhat compromised due to extrapolation issues, but this effect is not crucial par-
ticularly for linear surrogates, and as the iteration counter marches on, the solution
state still converges to the true solution.

For linear problems, the boundary maps are linear, and constructing a linear sur-
rogate is sufficient, producing no approximation error. Moreover, even for non-linear
problems, most often a linear surrogate will suffice, particularly because the ranges of
inputs over which the surrogate approximation is built, i.e. components of r, will be
chosen to shrink – by an appropriate solution state updating mechanism detailed in
Section – as one gets closer to the true solution, thereby rendering linear approx-
imations increasingly more accurate. For these reasons, unless specifically mentioned
otherwise, we will focus on linear surrogate maps. The fixed point system () will
thus take the form

(2.9)


yL2 = αR1 + γR1 y

R
1{

yRi−1 = αLi + βLi y
L
i + γLi y

R
i

yLi+1 = αRi + βRi y
L
i + γRi y

R
i

for 1 < i < N

yRN−1 = αLN + βLNy
L
N .

The coefficients α
L(R)
i , β

L(R)
i , γ

L(R)
i are found a priori by fitting the linear map () to

a set of training data obtained by solving the PDE on each subdomain for a sampled
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set of boundary conditions. Casting ỹ as a column vector, the linear map G is written
in a matrix-vector form

(2.10) ỹ = Gỹ + h, where

(2.11)

G =



0 γR1 0 0 0 0 0 . . . 0
βL2 0 0 γL2 0 0 0 . . . 0
βR2 0 0 γR2 0 0 0 . . . 0
0 0 βL3 0 0 γL3 0 . . . 0
0 0 βR3 0 0 γR3 0 . . . 0
...

...
...

...
...

. . .
. . .

. . .
...

0 0 . . . . . . . . . βLN−1 0 0 γLN−1

0 0 . . . . . . . . . βRN−1 0 0 γRN−1

0 0 . . . . . . . . . 0 0 βLN 0


, h =



αR1
αL2
αR2
αL3
αR3
...

αLN−1

αRN−1

αLN


.

The linear system can therefore be solved by simple matrix algebra. Denoting by
I the identity matrix of size 2N − 2, one arrives at the solution

(2.12) ỹ = (I −G)−1h

Garbey et. al. [] presented the Aitken acceleration method for Schwarz iter-
ations of linear equations that makes use of Eq. (). They also noted that the
matrix I −G is the same appearing in the classical additive Schwarz algorithm for
linear problems. Therefore, if the näıve, deterministic iteration scheme converges for
a given problem, then the operator F is a contraction and y = Fy has a solution.
For linear problems, G = F , therefore the matrix I −G is invertible and our method
converges if the classical additive Schwarz method converges for the same PDE. The
convergence properties are not as straightforward for nonlinear problems, or in pres-
ence of more than one fault per set of subdomain sample solutions, since the linear
surrogate map G is generally not exact in those cases. However, increasingly more
accurate linear surrogates enhance the convergence properties as will be seen later
in the paper. Note that the non-convergence can be detected by looking at the dif-
ference between subsequent iterations, followed by a redundant repeat of the same
iteration which will clarify whether either a large number of bit-flips or the PDE itself
is the reason. In [], the entries of G are learnt by two solves per subdomain with
unit boundary conditions. The latter is only possible because of the linearity of the
boundary-to-boundary maps. Furthermore, the authors in [] estimate h by simply
marching one iteration forward with a single solution per subdomain h = y(1)−Gy(0).
The algorithm described in the current paper is able to handle non-linear problems
via surrogate maps, and also offers fault resilience through the proper choice of the
regression approach to obtain the surrogate maps (as discussed in Section). The
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workflow in the 1D setting is described in Algorithm.

Algorithm 1: A typical workflow of the method

Input:
• N overlapping subdomains [ai, bi] for i = 1, . . . , N , where
a1 = a, bN = b, bj − aj+1 = h for j = 1, . . . , N − 1.

• Initial, uninformative knowledge of solution a vector of length 2N − 2,
y = (yL2 , y

R
1 , y

L
3 , y

R
2 , . . . , y

L
N , y

R
N−1), and the uncertainty range r around that

solution.
• Parameters M (number of samples per subdomain for surrogate map

construction), q (polynomial order of the surrogate map)
while Stopping criterion not met do

foreach Subdomain do
Boundary sampling: generate M samples distributed uniformly over
the current ranges r for both ends of the subdomain
Subdomain solver: solve the PDE using the sampled boundary
conditions to obtain M values at the boundaries of other subdomains,
internal to the current subdomain.
Surrogate map construction: using the M values found above, employ
Bayesian inference to obtain surrogate relationship for the
boundary-to-boundary map.

end
Fixed point solver: solve the system of all surrogate maps to obtain a
solution at all subdomain boundaries
foreach Subdomain do

Solution state update: Update the representation of the solution state
at the boundaries of this subdomain, i.e. generate new values for y
and r.

end

end
Result: Final knowledge about the solution y.

The next two subsections detail key parts of the algorithm, i.e. the construction
of surrogate maps and the adaptive strategies for choosing the uncertainty ranges and
solution state update mechanisms, including appropriate stopping criteria.

2.3. Surrogate boundary map construction. A key feature that we seek
in the surrogate map construction is resilience with respect to faulty behavior, e.g.
perturbed or missing values. To enable such resiliency, Bayesian techniques will be in-
voked. The Bayesian approach is well-aligned with our paradigm. Indeed, it operates
with any given information content available, incorporating uncertainties associated
with missing or faulty data in a natural way [,,].

To this end, polynomial regression is employed for the surrogate map construction
in the 1D problem. Within a single subdomain, the boundary-to-boundary maps fi→j
have a form yin = f(yL, yR), where yL, yR are the boundary conditions on the left and
right boundaries, respectively, while yin is the solution at an inner point of interest, as
described in Eq. () 1. The goal is to approximate the function f(yL, yR) over ranges

1Note that the first and the last subdomains have one input. However, for clarity of presentation,
and without loss of generality, we describe the generic two-input case. In principle, even for those
subdomains, one can think of the global boundary values as the second input.
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yL ∈ [yL(i)−r
L
(i), y

L
(i) +rL(i)] and yR ∈ [yR(i)−r

R
(i), y

R
(i) +rR(i)] using the state-of-knowledge

(y(i), r(i)) at the current, i-th iteration. We postulate a polynomial representation

(2.13) yin ≈
∑
k

ckΨk

(
yL − yL(i)
rL(i)

,
yR − yR(i)
rR(i)

)

with respect to scaled values of the boundary conditions (yL(R) − y
L(R)
(i) )/r

L(R)
(i) ∈

[−1, 1], in terms of an expansion of orthogonal Legendre polynomials up to a given
bivariate order q. Note that while orthogonality is not employed directly, it helps to
keep the coefficients stable as one increases the order. Besides, most of the work shown
here employs linear surrogates, i.e. the basis set Ψk(z1, z2){k=0,1,2} = {1, z1, z2}. To
‘learn’ the relationship f(·), we sample the inputs M times and extract the corre-
sponding output yin for each sample by a single subdomain solve per set of inputs.
Given these training samples, we invoke Bayes rule to infer polynomial coefficients ck,

(2.14) p(c|D) ∝ p(D|c)p(c)

where the data set D refers to the training samples, and the likelihood function p(D|c)
essentially measures the goodness-of-fit of the polynomial representation to the data.
Thus, the prior probability distribution p(c) of the polynomial coefficient vector c is
updated, yielding to a posterior distribution p(c|D),

The likelihood function usually pertains to the discrepancy between the simpli-
fied polynomial model and the actual solver results and is the key component of the
Bayesian formulation. In the following, we will describe the classical, Gaussian likeli-
hood construction, and we will argue that in presence of faults, it is far more resilient
to utilize a Laplace likelihood form instead of a Gaussian one.

2.3.1. Gaussian likelihood. For notational convenience, the output of the
function f(·) will be denoted by u, and the inputs will be denoted by v. In prac-
tice, v is the vector of boundary conditions corresponding to a given subdomain, and
u is the PDE solution evaluated at a given x-location of interest, e.g. at locations that
serve as boundaries of other subdomains. The goal is, given a data set of training sam-
ples D = {(vi, ui)}Mi=1, find the best fitting polynomial coefficients c = (c0, . . . , cK−1),
so that

(2.15) ui = f(vi) ≈
K−1∑
k=0

ckΨk(vi) ≡ gc(vi)

Consider the classical, Gaussian log-likelihood form assuming an i.i.d. Gaussian noise
model with a constant variance σ2 for the discrepancy εi = ui − gc(vi):

(2.16) LD(c, σ2) = log p(D|c, σ2) = −M
2

log (2πσ2)− 1

2σ2

M∑
i=1

(ui − gc(vi))2.

Let us define the projection matrix P of size M×K by P ik = Ψk(vi) for i = 1, . . . ,M
and k = 0, . . . ,K−1. Also, denote the vector of training outputs by u = (u1, . . . , uM ).
Now the log-likelihood can be written in a more compact form

(2.17) LD(c, σ2) = −M
2

log (2πσ2)− 1

2σ2
(u− Pc)T (u− Pc).
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We assume independent uniform priors for components of c that are sufficiently wide,
while uninformative, Jeffrey’s prior [] is used on σ, i.e. p(σ) ∼ 1

σ , which we note
is equivalent to the commonly used p(σ2) ∼ 1

σ2 or p(log σ) ∼ 1. The latter is useful,
since for practical purposes, and for enforcing positivity, one often works with log σ,
assuming a uniform prior for it.

According to Bayes rule, the posterior is proportional to the product of likelihood
and prior,

(2.18) p(c, σ2|D) ∝ 1

σM
exp

(
− 1

2σ2
(u− Pc)T (u− Pc)

)
1

σ2
,

and, after standard mathematical rearranging, one can derive

(2.19)

p(c|σ2,D) ∝ 1

σK
exp

(
− 1

2σ2
(c− µ)TΣ−1(c− µ)

)
,

c|σ2,D ∼MVN ((P TP )−1P Tu︸ ︷︷ ︸
µ

, σ2 (P TP )−1︸ ︷︷ ︸
Σ

),

which, after marginalization, results in an Inverse Gamma distribution for σ2 and a
Multivariate Student-t distribution for c [,]:

σ2|D ∼ IG

M −K2︸ ︷︷ ︸
α

,
uT (I − P (P TP )−1P T )u

2︸ ︷︷ ︸
β

 ,(2.20)

c|D ∼ MST (µ,
β

α
Σ, 2α).(2.21)

Note that the Multivariate Student’s t-distribution has covariance α
α−1Σ, and it be-

haves very similarly to a Gaussian distribution for large α. The mean estimate, as
well as the maximum a posteriori (MAP) estimate µ coincides with the well-known
least-squares fit formula. The likelihood () assumes an i.i.d. Gaussian error model
for the discrepancy between surrogate evaluations gc(vi) and true solutions ui. The
magnitude of inferred σ is associated with such model discrepancy, i.e. the error pro-
duced due to polynomial approximation of the boundary map, and provides insight
about the committed error size due to polynomial approximation. The marginal pos-
terior mean for σ2 is mσ2|D = β/(α− 1), while the mode of the marginal distribution
is argmax

σ2

p(σ2|D) = β/(α+1). Furthermore, the MAP estimate of the joint posterior

distribution of (c, σ2) is argmax
σ2

p(c, σ2|D) = β/(α+ 3/2). Generally, when the num-

ber of samples exceeds the number of unknown coefficients by an order of magnitude,
both β and α are large leading to approximate relation σ2 ≈ β/α.

Although the Gaussian likelihood offers simple analytical expressions for the pos-
terior distributions as described above, it is not resilient with respect to faulty training
samples, since the associated i.i.d. Gaussian error model does not capture the nature
of the errors produced by faulty samples. The next section will detail the deficiencies
of the Gaussian likelihood when dealing with potentially corrupt training samples.

2.3.2. Faulty data. In the situation where no accidental faults/bit-flips are
present, the surrogate map can be written in a matrix form

(2.22) u = Pc0 + ε1,
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where the vector c0 is the best fitting parameter vector. The vector of residuals ε1

here represents the misfit due to the non-polynomial character of the map f(·), i.e.
it represents the model error. This error is non-zero only for non-linear problems.
In Section, we discuss how we achieve negligible model discrepancy errors by
shrinking the range over which the surrogate map is constructed, therefore making
the forward function f more and more linear. In the following computations, this
error term will be tracked, but we should note that it vanishes for linear problems
and can be made arbitrarily small for non-linear problems.

Now let us assume the data is ‘faulty’, i.e. u is corrupted by an error vector δ:

(2.23) u+ δ = Pcf + ε2

The representation induces a different model error ε2. The error made in the fitted
parameters ce = cf − c0 is then equal to

(2.24) ce = (P TP )−1P T δ.

and it obeys

(2.25) δ = Pce + (ε2 − ε1)︸ ︷︷ ︸
≡ε

.

Note that typically δ is a vector of size M , typically 10 to 100, with at most one
or perhaps two non-zero elements, as this is the error made in data due to sporadic,
relatively rare bit-flips or faults. Due to basis orthonormality, we have P TP ≈ MI
Therefore, we can estimate

(2.26) ||ce||2 = O
(
δ

M

)
where the scalar δ = ||δ||2 is the fault magnitude. Moreover, using () and σ2

MAP =
β/(α+ 3/2), one can estimate the best value of σ2 to be

(2.27) σ2 ∼ O
(
δ2

M

)
For completeness, note also that the posterior covariance width isO(σ2/M) = O

(
δ2/M2

)
,

i.e. the ‘width’ of the multivariate posterior is O (δ/M) and is of the order of the
induced coefficient error ||ce||2 according to (). This means that a single per-
turbation of size δ induces an error in the coefficients of magnitude δ/M , trying to
balance the single large misfit with many smaller ones. This is typical in least-squares
based likelihoods, but is not acceptable if one targets fault resilience. For that reason,
we will employ Laplace likelihoods for the surrogate map constructions. As discussed
below, the Laplace likelihood avoids such ‘balancing’ issues and is much more robust
with respect to the presence of a few number of outliers.

2.3.3. Laplace likelihood. One of the key algorithmic advances in this work is
the use of Laplace likelihoods for the surrogate map construction. That is, we apply
Bayesian inference of the parameters of interest employing i.i.d. Laplace distributions
for the discrepancies εi = ui − gc(vi), to get

(2.28) LD(c, λ) = log p(D|c, λ) = −M log (2λ)− 1

λ

M∑
i=1

|ui − gc(vi)|,
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Fig. 4. (left) Illustration of Gaussian and Laplace distributions of the same variance, (right)
linear regressions with a single perturbed point, using both Gaussian and Laplace likelihood.

which is closely related to the `1-norm of the discrepancy vector ε = (ε1, . . . , εM ), as
opposed to the `2-norm associated with the Gaussian likelihood.

This likelihood reflects the fact that most of the errors are very small with only
a few exceptions, which is consistent with the outputs of a solver that is most of the
time exact, except for the occasional fault. The left plot of Figure illustrates both
Gaussian and Laplace probability distributions of unit variance, demonstrating the
sharp peak near the 0-error value and longer ‘tail’ for the Laplace distribution. The
right plot of Figure demonstrates the fault-resilient property of the Laplace likeli-
hood – the regression proceeds as if there is no perturbed point, while the Gaussian
likelihood induces a linear function that tries to balance all the residual errors between
M − 1 ‘good’ and a single ‘bad’ point.

Unlike the Gaussian likelihood demonstrated in Section, the Laplace like-
lihood does not allow for an analytical solution and subsequent estimates similar to
the ones derived in Section. Hence we use simple numerical studies to inves-
tigate the effect of errors in data. Figure demonstrates the result of such studies.
We used a simple linear, bivariate function to generate M = 10 samples, one (top
row) or two (bottom row) of which are randomly selected and perturbed by a ran-
dom amount, δ or (δ1, δ2), respectively. Then the Bayesian regression algorithm is
employed with either the Laplace (left column) or the Gaussian (right column) like-
lihood. This procedure is done for an ensemble of 100 random perturbations of the
same case, and the norm of the error made in the polynomial coefficients, as well
as the inferred λ or σ are reported. Clearly, the Laplace likelihood almost always
produces the true linear function without any error in coefficients, while the inferred
value for λ is proportional to the `1-norm of the error. In fact, λ = δ/M for the
one-error case and λ = (|δ1| + |δ2|)/M for the two-error case2. Only for one of the
100 cases, in the two-error scenario, did the regression with the Laplace likelihood fail
to recover the true coefficients. The Gaussian likelihood, shown in the right column,
clearly produces errors in the coefficients that are comparable with the perturbation
size. In fact, the linear trend is consistent with the estimates derived in Section,
i.e. the coefficient error size is ||ce||2 = O (δ/M) and the inferred Gaussian width is

2In fact it can be proven, by taking the derivative of the likelihood with respect to λ, that when
the true coefficients are recovered, the best value for λ is indeed

∑
f |δf |/M .
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Fig. 5. Demonstration of 100 regression tests with Laplace (left column) and Gaussian (right
column) likelihoods, in the presence of random errors in one (top row) or two (bottom row) randomly
selected data values, out of M = 10 samples. Plotted are inferred errors induced in the resulting
coefficients and λ (or σ) versus the size of random perturbations.

σ = O
(
δ/
√
M
)

.

Within the formulation of our 1D algorithm, the surrogate map construction
proceeds twice for each internal subdomain and once for the boundary subdomains.
Figure demonstrates the advantage of the Laplace likelihood versus the Gaussian
likelihood, for a linear problem, in the simplest, two-subdomain case, where each
subdomain involves a surrogate construction for the map from the y-value at its
boundary to the y-value at the internal boundary of the other subdomain. The fixed
point, i.e. the intersection, of the maps yleft → yright and yright → yleft is the
solution we seek. Clearly, with perturbed points, the surrogate map stays exact in
the Laplace likelihood case, producing no error in the final fixed-point answer.

We note that while the general surrogate construction has been introduced within
a Bayesian framework, here and in the subsequent tests we are mainly interested in
the MAP value, with an understanding that the posterior width becomes narrow
enough for a reasonably large number of sampled points after a few iterations. Both
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Fig. 6. Illustration of the surrogate map intersection for a 2-subdomain test case. The red
points and lines correspond to yleft = f1(yright), while purple ones correspond to yright = f2(yleft).
Dashed lines correspond to true maps with no perturbed points. Intersection of dashed lines is shown
by green circles, while the intersection of solid lines corresponds to blue stars.

analytical calculations for the Gaussian case (see Section and the note after
Eq. ()) and numerical studies for the Laplace-likelihood case (results not shown)
indicate that the posterior width is inversely proportional to the sample size M and
proportional to the extent of nonlinearity of the boundary-to-boundary maps. The
latter vanishes for the linear case and reduces proportionally to the surrogate range for
the non-linear case. The MAP value is found by employing optimization via Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm []. In practice, the
optimization problem is challenged by the Laplace likelihoods due to discontinuous
derivatives. To alleviate this issue, we use a hyperbolic-tangent approximation, in
which tanh(z/ε) replaces the derivative of |z| instead of the sign function sign(z).
Correspondingly, the antiderivative of tanh(z/ε), |z| + ε ln

(
1 + e−2|z|/ε) is employed

to replace |z|. The ‘smoothing’ constant ε is set to 10−14.

2.4. Surrogate range choice and solution state updating for non-linear
problems. For linear differential equations, the boundary-to-boundary maps are lin-
ear, therefore a linear surrogate will be exact, and the fixed point problem will recover
the true solution in a single iteration. Note that in an extremely unlikely case of two
faults per single subdomain sampling set there is a considerable chance of an inaccu-
rate linear surrogate that may a) render the final fixed point solution inexistent, i.e.
the matrix I − G not invertible, or b) fall short of the exact final solution. In the
former case, however unlikely, one can implement a detection and subsequent repeat
of the same step, while in the latter case another iteration will find the true solution,
assuming negligible likelihood of multiple faults for two iterations in a row. For non-
linear problems, linear surrogate approximation will impact the result of the fixed
point solver, thus leading to an approximate answer within a single iteration/update.
The accuracy of the surrogate approximation is directly affected by the size of the
range over which the surrogate is constructed: the smaller the range, the more accu-
rate the linear map is. However, the range needs to be large enough to avoid errors
due to extrapolation. Ideally, the surrogate range r(i) of the given subdomain bound-
ary at the i-th iteration should be chosen adaptively according to some measure of
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distance from the true solution. Below we detail three different approaches,

• MAP : In this case, the range is driven by the MAP value λMAP from the pre-
vious iteration. Indeed, in the surrogate construction, we assumed a Laplace
noise model and the MAP value of the noise magnitude parameter λ is a
good indicator of the size of error in the data. Inspired by the linear case
best estimate λMAP =

∑
f |δf |/M , we set r(i) = fMλMAP

(i) , with a ‘safety’
factor f . We found f = 5 to work well generally in all tests. The MAP value
λMAP also can be interpreted as a lower bound on the posterior predictive
standard deviation. In fact, if one has sufficiently many samples, the pos-
terior itself is narrow enough making λ the sole contributor to the posterior
predictive variance. However, this approach requires surrogate construction
with the inference of both the surrogate coefficients and λ, which is generally
expensive computationally as it requires many iterations to converge to the
best values of both surrogate coefficients and λ.

• Surrogate error : One can instead employ a fixed λ for the surrogate con-
struction in order to gain computational efficiency. The fixed value of λ is
not relevant if one only is interested in the best, MAP values of the surrogate
coefficients. In this case, the `1 error between the surrogate and the true map
evaluated at M sample points is a good indicator of the overall committed
error, and can be used to inform the range choice r(i) = f ||u − PcMAP||1,
again within a ‘safety’ factor f . Here, too, a value of f = 5 was found to
work well in general.

• Solution difference: While constructing the surrogate with fixed λ, the range
may also be chosen according to the difference in the solution of the two
current and previous iterations: r(i) = f |y(i) − y(i−1)|. This approach, while
more empirical than the previous two, is more resilient to faults since the
surrogate range now is not getting corrupted by errors that are due to bit-flips.
A somewhat heuristic justification is that if the convergence is expected to
be exponential with respect to the number of iterations, then the committed
error should be proportional to the difference of the errors in two previous
iterations. If these latter errors have the same sign, then their difference is
exactly the difference in solutions |y(i)−y(i−1)|. While recognizing that f will
generally be problem dependent, we have found f = 0.1 to work the best in
a variety of test cases. This approach of surrogate range choice has shown at
least as good a convergence as the previous two, and better computational
efficiency. In all of the tests further in this work, we therefore employ this
rule for selecting the surrogate range.

On a conceptual level, our approach starts out with a (mean,range)=(y,r) rep-
resentation of the state-of-knowledge about the problem solution, and then updates
this representation, the solution state, with information gathered from computations
on the subdomains. At the i-th iteration, the solution state consists of the solution
value itself y(i) and the range r(i) over which we construct the surrogate map, for
each subdomain boundary. The initial representation (y(0), r(0)) can be obtained in a
variety of ways, such as expert opinion (e.g. the solution of an elliptic problem without
forcing terms should be between the boundary condition values), or informed by a
set of coarse grained solutions. Again, we emphasize that the surrogate range choice
becomes relevant only for non-linear problems.

The next section details experiments with a few test problems, both linear and
non-linear, to help demonstrate the algorithm developed so far in this paper.



18

3. Numerical tests.

3.1. Fault model. In this work we adopt a synthetic algorithm for fault gen-
eration. To mimic the occurrence of soft faults during the subdomain solves, we
implemented a binary bit-flip simulator in our software framework while still work-
ing with decimal representations. This algorithm employs random bit-flips of binary
representations of solution values selected at random, with prescribed probability.
Specifically, the entries that are selected are then converted to a 64-bit binary format
according to the IEEE 754 Standard []. Once in binary format, one of the 64 bits is
picked at random and its state is flipped between 0 and 1 with a given probability p.
The binary representations are then converted back to base 10 and the simulation is
allowed to proceed forward. Depending on the bit-flip location, in the mantissa, ex-
ponent, or the sign bit, the faulty value may sometimes be only slightly different from
the original value or it can be modified by orders of magnitude or have an opposite
sign.

In the tests below, bit-flips are applied to the results that return from the sub-
domain solves. As such, they can be interpreted as a crude model for all faults that
might happen during a subdomain solve. Another interpretation is that the subdo-
main solves rely on a different resilience approach to mitigate the effects of faults,
and the fault model applied here then represents the faults that potentially occur
during transmission of data from the subdomain solver back to the entity that builds
the surrogate maps. For purposes of illustrating the algorithmic approach, the actual
interpretation of the fault model is not crucial. Rather, it should be seen as a way to
perturb the data. Given the wide range of values that can result from single bit-flips
in a given number, the current fault model is quite powerful for testing the algorithms.
In this work, we mainly tested bit-flip probabilities ranging from 0.1% to 1%, which
are considered quite high taking into account expected failure rates reported in the
literature [].

Further note that in the implementation here, faults are assumed to only happen
during the subdomain solves. As these solves are likely to be the most time-consuming
parts of a production simulation on a large-scale platform, this assumption is reason-
able, albeit not completely robust. For complete robustness, the current algorithm
would need to be implemented in a framework with selective reliability, e.g. some
nodes can be considered safe while others are prone to errors []. The use of more
refined fault models will be illustrated in [].

3.2. Linear problem with analytical solution on subdomains. As a test
case with an analytically available solution, consider the linear problem

(3.1) y′′ + 2y′ + y = x cosx

with boundary conditions y(a) = ya and y(b) = yb. This differential equation has a
solution

(3.2) y(x) = Ce−x +Dxe−x +
x

2
sinx− 1

2
(sinx− cosx) .

We set a = 3, b = 8, ya = 5, yb = 4, which uniquely define the values for constants C
and D. This solution is depicted in Figure with a solid black line.

In this first set of tests, for the purposes of illustrating the algorithm, we make use
of the analytical solution to determine y on each of the subdomains. This means that
the solution samples used to construct the boundary map surrogates are exact. Since
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for linear problems, the boundary maps are linear, the linear surrogates constructed
are also exact. Therefore, no matter what the initial non-zero surrogate range is, the
solution state is expected to converge to the true answer in a single iteration, with a
potential exception in case of bad conditioning of the regression problem. Figure
demonstrates the convergence for two cases where the initial solution ranges have been
set to r(0) = 0.3 and r(0) = 2.5 for the internal boundaries. Clearly, after a single
iteration, the mean solution state coincides with the true solution, while the range
takes an extra iteration to reach nearly vanishing values by construction. The ranges
at the global endpoints are chosen to be equal to zero by definition. The overlap size
is set to h = 0.05, the number of subdomains is N = 10, while the number of samples
per subdomain boundary is set to M = 15.
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Fig. 7. Convergence for the linear problem (), in two cases of initial range choice for
the internal boundaries. The initial solution states and ranges are illustrated with red dots and
errorbars. The precomputed true solution is shown with black solid curve.

To test the resilience with respect to system faults, we introduce the bit-flip sce-
nario detailed in the beginning of Section. Figure illustrates the convergence
performance with or without bit-flips for two options of the surrogate map likelihood,
Gaussian and Laplace, detailed in Section. Clearly, the presence of bit-flips dete-
riorates the convergence if the surrogates are built with Gaussian likelihoods, while
the Laplace likelihood leads to a fault-resilient formulation. Note that even though
the true solution was reached in one iteration, the algorithm was run for 10 iterations
to better illustrate the resilience of the algorithm under the continual occurrence of
bit-flips. In fact, the expected number of bit flips for N subdomains, M samples, T
iterations and bit-flip probability p is Nf = (2N − 2)MpT , where the factor 2N − 2
corresponds to the fact that there are 2 surrogates per each internal subdomain, and
1 surrogate for the first and last subdomains. For the case illustrated in Figure, the
expected number of faults for each convergence curve is Nf = 3.6.

3.3. Non-linear problem with analytical solution on subdomains. Next,
we study a non-linear 1D problem with an analytically available solution to test our
algorithm. Consider the non-linear differential equation

(3.3) (y3)′′ = β sin(αx),
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for some constant parameters α, β, on the domain Ω = (a, b). It clearly has the general
form Ly(x) = h(x) with a non-linear operator L. The solution of () has the form

(3.4) y(x) =

(
− β

α2
sin(αx) + Cx+D

)1/3

,

for appropriate values of C and D found by matching the boundary conditions y(a) =
ya and y(b) = yb. The default values for the tests illustrated in this work are:

(3.5) α = 5, β = 30 a = 1, b = 4 ya = 2, yb = 3.

The global solution for the selected boundary conditions is depicted in Figure
with a solid black line. To begin with, we test the boundary map intersection idea
without invoking the surrogate approximation. This means, the fixed point problem
y = Fy is solved directly and the components of the operator F , the boundary-to-
boundary maps, are computed in each iteration of the fixed point solver. This entails
subdomain solves at each inner iteration of the fixed point solver. Clearly, a single
application of the fixed point solver finds the true solution, as illustrated in Figure.
We note that the fixed point solver required 25 iterations in a 5-subdomain case, and
50 iterations in a 10 subdomain case. While this exercise shows that conceptually
the fixed-point methodology works, the fixed point solver iterations involve large
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Fig. 8. RMS error versus the iteration number for 100 different simulations of the linear
problem. The bit-flip probability is set to p = 0.003, while the other parameters are at their default
values, i.e. M = 15 samples, N = 5 subdomains with overlap size h = 0.05 and the factor in the
surrogate range choice is set to f = 0.1.
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amounts of communication between subdomains and certainly do not meet our goals
of scalability and fault resilience. Surrogate maps are therefore constructed a priori
and used in place of the exact boundary-to-boundary maps as described in Section.
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Fig. 9. Solution of the fixed point problem y = Fy using the exact boundary-to-boundary
maps without surrogates.

Figure demonstrates the results of the algorithm for the default scenario, i.e.
linear surrogate maps constructed with M = 15 samples (i.e. as many PDE solver
invocations per subdomain per iteration) and N = 5 subdomains. The dashed line
on the right plot indicates the ranges averaged in a root-mean-square (RMS) sense
over the internal subdomain boundaries, chosen according to the solution difference
approach, i.e. r(i) = f |y(i) − y(i−1)| for the i-th iteration, with f = 0.1.
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Fig. 10. The results of the application of our approach to the non-linear problem. On the
left plot, the errorbars indicate the surrogate range for the corresponding iteration. On the right,
dashed line indicates the RMS average range chosen at each iteration, i.e. the RMS average of the
vector r(i), while the dotted line shows the RMS average of the computed residual vector according
to Eq. ().

Furthermore, we analyze the dependence of the convergence on the factor f that
helps define the surrogate range by r(i) = f |y(i) − y(i−1)|. Figure illustrates the
fact that large values of f lead to much slower convergence. This is due to the fact
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Fig. 11. The convergence results as the factor f in the surrogate range choice is varied. The
parameters are set to M = 15, p = 0.0, using linear surrogate maps and N = 5 subdomains. The left
plot shows the RMS error versus iteration number across 100 identical simulations. On the right
plot, a single simulation is illustrated for each value of f , together with the corresponding dashed
curve that indicates how the RMS average of the surrogate range is evolving.

that larger surrogate ranges lead to larger errors in the linear approximation of the
boundary maps over the surrogate range. As a default value we choose f = 0.1, which
seems to ensure that the chosen range at each step encompasses the true RMS error
between the mean solution and the exact one. While smaller f leads to slightly faster
convergence for this particular problem, we chose a more conservative default value
f = 0.1 to reduce the potential need of extrapolating for general problems less-than-
ideal initial solution states, as well as to reduce the impact of nonlinearities and faults
in case they are activated. Also the RMS-average of the residual vector, computed
from (), is shown in Figure. The residual is at least a couple of orders of
magnitude smaller than the actual error committed.

The dependence of the convergence on the size of the overlap between subdomains
is demonstrated in Figure. Note that a smaller overlap size makes the convergence
somewhat slower and raises the final error level. The final error is higher due to
worse conditioning of the fixed-point solver due to weaker dependence built in the
boundary-to-boundary maps. On the other hand, a larger overlap size would enhance
the non-linearity of the boundary-to-boundary maps, resulting in less accurate linear
surrogates. Besides, in these tests, larger overlaps result in larger subdomains, and
would therefore become more computationally expensive if a discrete solver were
used to compute the solutions on each subdomain. We have selected h = 0.05 as
a reasonable default choice based on these tests.

Next, we illustrate the dependence on the number of subdomains. As Figure
clearly indicates, the larger the number of subdomains, the slower the convergence.
The intuitive justification for this is that as the number of subdomains increases, it
takes more iterations for the information to travel across the computational domain.
Note that this behavior is very similar to the slow-down of the convergence of iterative
PDE solvers as the number of grid points increases for a given computational domain.

Figure demonstrates the convergence with respect to the number of samples
used in the surrogate map construction. Clearly, the results remain the same for all
the tested values of M , indicating that M ≥ 10 is sufficient to accurately construct a
two-variate linear surrogate that has three parameters. The convergence curves now
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Fig. 12. Convergence with the number of iterations for various sizes of domain overlaps with
the number of subdomains fixed at N = 5. The rest of the parameters are set to M = 15, f = 0.1,
p = 0.0, using linear surrogate maps. The left plot shows the RMS error versus iteration number
across 100 identical simulations. On the right plot, a single simulation is illustrated for each value of
h, together with the corresponding dashed curve that indicates how the RMS average of the surrogate
range is evolving.
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Fig. 13. Convergence with the number of iterations for various number of subdomains. The
parameters are set to M = 15, h = 0.5, f = 0.1, p = 0.0, using linear surrogate maps. The left plot
shows the RMS error versus iteration number across 100 identical simulations. On the right plot,
a single simulation is illustrated for each value of N , together with the corresponding dashed curve
that indicates how the RMS average of the surrogate range is evolving.

nearly coincide with each other for different values of M . This effect is fairly intuitive,
as linear surrogates have 3 coefficients that need to be found, and M ≥ 10 is more than
enough to find the best linear surrogate. In fact, for linear problems, M = 4 samples
will be sufficient to exactly recover two-variate linear surrogates even with a single
bit-flip injected. Triply-redundancy with M = 12 samples with default, Gaussian
(least-squares) fit may still not be sufficient to recover the true solution, for a linear
problem, if, say, one bit-flip is present per redundant solve. For non-linear problem, it
is not clear yet how many samples are needed for accurate recovery of the best linear
surrogate. We used M ≥ 10 and no bit-flips to demonstrate the convergence behavior
of the algorithm, while our preliminary tests (not shown) indicate that typically even
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M = 8 is sufficient for having nearly all (among 100) replica simulations converge
monotonically for the default, p = 0.001 case for both linear and non-linear problems.
A more detailed investigation of this trade-off and associated cost compared to näıvely
redundant algorithms is a matter of current research.
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Fig. 14. The convergence results as the number of samples M for linear surrogate construction
is changed. The parameters are set to f = 0.1, p = 0.0 and N = 5 subdomains. The left plot
shows the RMS error versus iteration number across 100 identical simulations. On the right plot,
a single simulation is illustrated for each value of M , together with the corresponding dashed curve
that indicates how the RMS average of the surrogate range is evolving.

Dependence of the results on the surrogate order is illustrated in Figure. We
have chosen M = 35 for all cases to ensure that cubic polynomial surrogate con-
struction is well-defined and is not affected by the sample-to-sample variability. The
third-order polynomial surrogate includes 10 terms, and M = 15 was found to be
insufficient to accurately find the third order fit with small enough ensemble-driven
variability. It is clear that higher-order surrogates allow more accurate capture of the
true boundary maps and therefore accelerate the convergence. Higher order cases,
however, naturally require more samples in order to ensure little variability in the
polynomial coefficients. While this demonstration serves as a proof-of-concept, we
use linear surrogates primarily.

Finally, we demonstrate results with respect to errors in the subdomain solution
results. For preliminary tests, we have implemented artificial fault generation by
flipping a single, randomly selected bit in binary representations of a small fraction
p of the outcomes of subdomain solves. An additional outlier detection is currently
invoked on returned solutions that discards samples outside a range of [−5, 15], which
is a wide range of plausible output samples given that the boundary conditions are
ya = 2 and yb = 3. Such outlier detection causes an effect similar to missing samples
and is well-handled by the Bayesian surrogate construction. Figure illustrates the
convergence of the root-mean-square error for cases with and without artificial bit-
flip injection. As discussed in Section, the expected number of of bit-flips for
T = 10 iterations is Nf = (2N − 2)MpT = 1200p, i.e. 12 expected faults for a
single run for p = 0.01 case (blue curve on Figure(b)) with N = 5 subdomains and
M = 15 boundary-pair samples. However, as the error bars suggest, the bit-flips do
not deteriorate the convergence. Even with the largest value of the bit-flip probability,
i.e. p = 0.01, when one expects at least one bit-flip per iteration, the convergence
curve indicates error reduction and is fully resilient showing nearly no dependence on
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Fig. 15. Convergence with the surrogate order change. The parameters are set to M = 35,
N = 5, p = 0.0 and f = 0.1. Note that we have used larger number of training samples in order
to achieve a well defined third-order surrogate construction. The left plot shows the RMS error
versus iteration number across 100 identical simulations. On the right plot, a single simulation is
illustrated for each value of the surrogate order, together with the corresponding dashed curve that
indicates how the RMS average of the surrogate range is evolving.

bit-flip probability.
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Fig. 16. Convergence with the number of iterations with and without bit-flips. The parameters
are set to M = 15, N = 5, f = 0.1, using linear surrogate maps. The left plot shows the RMS error
versus iteration number across 100 identical simulations. On the right plot, a single simulation is
illustrated for each value of the bit-flip probability, together with the corresponding dashed curve that
indicates how the RMS average of the surrogate range is evolving.

3.4. Error propagation in the fixed-point system. In this section we study
the impact of the subdomain surrogate accuracy on the fixed point solution for the
non-linear problem. Within each iteration, the goal is to bring the current solution
state y closer to the true solution ỹ of the fixed point system (). The magnitude of
the error reduction in each iteration is limited, however, by the approximation error
of the linear surrogate maps G. Consequently, we study the effect of the current error
and the surrogate error on the final error, within one iteration. The current, or initial,
error is the RMS average of the vector y(0) − ỹ, and the final error is defined as the
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RMS average of y(1) − ỹ, while the surrogate error is the RMS average of the error
between the true boundary-to-boundary map and its linear surrogate. We present
the results using the nonlinear example from Section merely as an illustration
of the error propagation through the fixed-point machinery Fy ≈ y. Note that for
linear problems, the analogous tests lead to trivial results as the final error is always
expected to be near machine precision, and the surrogates are exact, no matter how
far away the initial guess is from the true solution.

We have generated a random selection of initial conditions y(0), and have chosen
four different values for the surrogate range, resulting in four different amounts of
surrogate error. The results, shown in Figure, suggest that both the initial error
and the surrogate error impact the limiting behavior of the final error. In other
words, if one starts far away from the true solution, i.e. with large initial errors,
then the surrogate accuracy has no impact, while if the initial error is small, then
the surrogate error directly impacts the magnitude of the final error. The same logic
applies with respect to the surrogate error itself, that is, the final error converges
with respect to the reduction of the initial error, but the convergence is limited by the
error committed in the surrogate construction. For example, if the surrogate error
is restricted to approximately 10−9 due to the selected surrogate range (blue dots
in Figure), then, no matter how accurate the initial solution is, the final error is
limited to 10−7, simply because approximate surrogates are ‘intersected’ instead of
the true boundary-to-boundary maps. In nearly all cases explored and reported in
this paper, however, such ‘saturation’ is not reached and the error in the solution is
reduced by several orders of magnitude in one iteration.
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Fig. 17. The error propagation through one iteration of the surrogate map construction and
subsequent fixed point system solution. The plotted is the final RMS error after a single iteration
versus the initial RMS error. Four surrogate ranges are chosen inducing four groupings of the
associated surrogate map accuracies.



27

3.5. Linear PDE with numerical solution on subdomains. Our final test
case is a linear PDE

(3.6) − ∂

∂x

(
k(x)

∂y

∂x

)
= f(x) in Ω = (0, 1)

where the diffusivity and source terms are defined as

(3.7) k(x) = exp

[
tanh

(
10

(
x− 1

2

))]
, f(x) = sin(5πx),

respectively, with BCs set to y(0) = 0 and y(1) = 1. In this case, a numerical solver
is used to solve the PDE on each subdomain. Figure shows the solution over the
full domain, precomputed numerically using a dense grid.
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Fig. 18. The precomputed solution of the diffusion equation (), as well as the diffusivity
and source fields.

As this is a linear PDE, linear surrogates are exact and a single iteration reaches
the true solution. Figure illustrates the convergence with or without bit-flips for
100 identical simulations. Both the subdomain solutions and the predefined, true
solution are computed on the same grid of size δ = 0.001 explaining the convergence
to nearly machine precision even on a finite grid. As discussed in Section, the
expected number of faults per full set of iterations is Nf = (2N − 2)MpT and is
about 2 for this case. The regression with Laplace likelihoods is computed using
the Iteratively Reweighted Least Squares (IRLS) algorithm that provides an accurate
and efficient approximation of the Laplace-likelihood objective function [,]. This
study clearly illustrates the advantage of using the Laplace likelihood as opposed to
the Gaussian likelihood in the regression in order to be fault-resilient.

4. Discussion and future work. In this work, we developed and demonstrated
a novel algorithmic approach for solving PDEs that is resilient to multiple soft and
hard faults. The approach relies on an overlapping domain decomposition similar to
accelerated additive Schwarz methods. At any point in the iterative solution process,
the current state of knowledge about the solution is represented as the best current
estimate for the solution plus a range within which the fully converged solution is
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(a) Gaussian likelihood, no bit-flips
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(b) Gaussian likelihood, with bit-flips
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(c) Laplace likelihood, no bit-flips
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(d) Laplace likelihood, with bit-flips

Fig. 19. Convergence with the number of iterations with and without bit-flips for the linear
diffusion problem () for both Gaussian (top row) and Laplace (bottom row) likelihoods. The
parameters are set to M = 8, N = 5, f = 0.1, h = 0.05. A total of 100 identical simulations are
shown. The grid size for the discrete solver is kept at δ = 0.001 for both the reference and subdomain
solutions. The weight relaxation parameter for the IRLS-`1 optimization is set to ρ = 0.9.

believed to reside. Using targeted solves of the PDE on the subdomains, for sampled
values of their boundary conditions, maps are constructed that relate the solutions at
the subdomain boundaries to each other. The intersection of these boundary maps
produces an updated solution state, which is refined in successive iterations until a
fully converged solution is obtained. The approach is applicable to both linear and
non-linear PDEs.

The construction of the subdomain boundary solution maps relies on Bayesian
inference, with a Laplace likelihood function that is very well suited to filter out
outliers caused by data corruption in the results of subdomain solves. This makes the
approach very resilient to faults in the subdomain solves without needing to explicitly
detect the occurrence of such faults.

We have demonstrated the algorithm on one-dimensional synthetic PDEs with
Dirichlet boundary conditions and with artificial fault injection in the form of bit-flips
applied with a specified probability to the results of the subdomain solves. For linear
problems, the approach converged to the true numerical solution of the PDE in one
iteration, even in the presence of data corruption through bit-flips. For non-linear
problems, the algorithm shows good convergence properties along with robustness
against data corruption in the subdomain solves.

The approach is currently being extended to multi-dimensional PDEs [], and
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to PDEs with uncertain coefficients, which will be reported on elsewhere.
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Appendix A. Proof of linearity of boundary maps for linear PDEs.
Consider a linear PDE Ly(x) = h(x) with Dirichlet boundary condition y(x)|x∈Γ =

yΓ on the boundary Γ = ∂Ω. Now perturb the boundary condition by ∆yΓ, i.e. set
up a new problem Ly(x) = h(x) with boundary condition y(x)|x∈Γ = yΓ + ∆yΓ.
Denoting the differences between the solutions of the original PDE and the perturbed
one by ∆y(x), we note that due to linearity of the operator L, the function ∆y(x)
satisfies the homogeneous PDE L∆y(x) = 0 with a Dirichlet boundary condition
∆y(x)|x∈Γ = ∆yΓ. Due to homogeneity, for each fixed point x, ∆y(x) is proportional
to the perturbation magnitude ∆yΓ and does not depend on yΓ itself. One can then
write ∆y(x)/∆yΓ = A(x) thus proving the linearity of the map yΓ → y(x) for each
fixed x.
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