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Abstract

A resilient method is developed for the solution of uncertain elliptic PDEs on extreme scale plat-
forms. The method is based on a hybrid domain decomposition, polynomial chaos (PC) framework
that is designed to address soft faults. Specifically, parallel and independent solves of multiple
deterministic local problems are used to define PC representations of local Dirichlet boundary-to-
boundary maps that are used to reconstruct the global solution. A LAD-lasso type regression is
developed for this purpose. The performance of the resulting algorithm is tested on an elliptic
equation with an uncertain diffusivity field. Different test cases are considered in order to analyze
the impacts of correlation structure of the uncertain diffusivity field, the stochastic resolution, as
well as the probability of soft faults. In particular, the computations demonstrate that, provided
sufficiently many samples are generated, the method effectively overcomes the occurrence of soft
faults.
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1. Introduction

As high performance computing (HPC) evolves towards exascale [1, 2], new scientific challenges
need to be addressed to achieve reliable computations. One of the main obstacles is that systems
1,000 times more powerful, in terms of floating-point operations per second (flops), than today’s
leading petascale platforms are also expected, because of significantly higher error rates, to fail
more frequently [3]. As a matter of fact, because clock rates are no longer increasing (or increasing
very slowly), the increase in flops will mainly result from a significant increase in the number
of processing units. Other challenges brought by extreme-scale computing include the need to
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operate with relatively low memory per core, to cope with costly data movement, to make use of
heterogeneous hardware, and to scale to very large numbers of cores [4].

There are two main ways of coping with system faults, namely fault-tolerance and resilience.
Fault-tolerance techniques consist in detecting errors and recovering from them, while resilience
techniques are designed to keep the application running to a correct solution in a timely and efficient
manner despite system faults [1, 2]. One popular fault-tolerance technique for petascale systems is
checkpoint-restart. It relies on periodic saves of the system state, which allows one to restore the
system to a previous state whenever an error is detected. However, in exascale systems, the time
needed for checkpointing may be close to the mean time between failures [5, 3], thus causing the
system to spend most of its time checkpointing and restarting, rather than advancing towards the
solution [2].

In the last few years, new approaches have been explored to deal with system faults. The Local
Failure Local Recovery (LFLR) strategy, focusing on local checkpointing and recovery was proposed
as an improvement of the original global checkpoint-restart [6]. Alternative approaches include
algorithm-based fault tolerance (ABFT) [7, 8, 9, 10], effective use of state machine replication [11]
or process-level redundancy [12], and algorithmic error correction code [13]. Many other approaches
for resilience in extreme-scale computing have been developed (see, e.g., [2]). Nevertheless, most
of these new developments deal with fault-tolerance rather than resilience, as they rely on the
detection of the faults in order to mitigate them.

Recently, our group has developed a soft fault resilient solver for elliptic partial differential
equations (PDEs), see [14]. To deal with soft faults, the solver represents the solution as a state-
of-knowledge, and updates this state in a resilient manner. In this framework, hard faults, such
as a node crashing or a communication failing, are seamlessly treated as missing data and may
thus be disregarded. One of the strengths of this approach lies in that it does not rely on fault
detection, and therefore genuinely provides resilience, rather than fault-tolerance. This feature is
particularly interesting to address silent faults, which, as their name suggests, are hard or impossible
to detect. The solver is based on an overlapping domain decomposition method (see, e.g., [15, 16])
and the resilient update involves the solving of local problems (independent from one subdomain
to another), which is well suited for the parallel solving of large problems. Besides resilience, the
solver also presents the advantage of requiring fewer communications, which benefits scalability.

The present work focuses on the development of a resilient elliptic solver for uncertainty quantifi-
cation (UQ) in exascale computations, building on our previous effort [14]. Specifically, we address
the situation where the model PDEs involve uncertain coefficients, and one wants to characterize
the resulting uncertainty in the model solution. Our primary objective is to study the resilience
of the proposed solver, and so we focus on linear elliptic problems in one spatial dimension. In
addition, we restrict our attention to soft faults, namely faults that do not cause the program to
terminate immediately but, rather, corrupt numbers and thus lead to erroneous computations [17].
Such faults will be modeled as random bit-flips in the numbers’ binary representation, introduced
with a prescribed probability in our simulations. Regarding uncertainty, a probabilistic approach
is considered relying on stochastic spectral methods, specifically Wiener-type Polynomial Chaos
(PC) approximations [18, 19]. The PC method assumes a representation of the uncertain PDE
coefficients in terms of a (finite) number of independent random variables, and relies on a spectral
expansion of the uncertain PDE solution on a suitable stochastic basis of multi-variate polynomials
in these random variables. The efficiency of the PC methods for elliptic problems is due to the
smoothness of the elliptic problem solution with respect to the random PDE coefficients, which
provides spectral (exponential) convergence of the representation as the polynomial degree is in-
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creased. This feature has motivated many works over the last 20 years, and several alternatives have
been proposed to efficiently compute the PC expansion of the solution. Classically, see [19], PC
approaches are separated into non-intrusive (NI) and stochastic Galerkin methods (i.e. methods of
weighted residual). In NI methods, the PC expansion coefficients of the solution are estimated from
a sample set of deterministic solves corresponding to (usually carefully) selected values of the PDE
coefficients. The NI methods, such as the NI spectral projection (NISP, see e.g. [20, 21, 22, 23])
and collocation approaches (e.g. [24, 25]), only require the availability of a deterministic solver.
In contrast, stochastic Galerkin methods involve a reformulation of the original problem, generally
leading to a deterministic system of coupled PDEs for the PC expansion coefficients of the solution,
whose efficient resolution requires dedicated strategies [26, 27, 28, 29, 30, 31, 32, 33]. As a result,
making a stochastic Galerkin solver resilient to soft faults appears as quite a difficult task. On the
contrary, making resilient NI methods is much easier as it suffices to rely on a resilient deterministic
solver (for instance the solver in [14]) to compute the solution at sampled values of the PDE coeffi-
cients. In addition, these deterministic solutions are independent and can be computed in parallel
similar to a Monte Carlo approach.

Our observation that the deterministic solver is made resilient by sampling the boundary values
of the local problems (over the subdomains) suggests an alternative way to achieve resilience in the
stochastic case: we propose here to extend the deterministic approach in [14] by sampling jointly the
local boundary values and the PDE coefficients. In doing so, we expect to have more information
available that can be used to recover from soft faults, and to be more effective in computing the whole
solution (i.e. its PC expansion), compared to the case where one would proceed only locally in the
random parameter space. In other words, we want to exploit the known smoothness of the solution
with respect to the random parameters to effectively remedy soft faults. This strategy also keeps
the amount of global communications to a minimum. The proposed resilient domain decomposition
solver then consists in finding the PC expansion of the solution at the boundaries of the subdomains
in order to satisfy a system of compatibility conditions obtained by stochastic Galerkin projection.
The key point of the method is the construction of the Galerkin system expressing compatibility of
the subdomains’ boundary values. To make this construction resilient to soft faults, we associate the
joint sampling approach to robust regression techniques that overcome the presence of soft faults
(seen in this context as outliers). As a result, the proposed solver is hybrid in the sense that it mixes
a (resilient) NI approach for the approximation of the stochastic compatibility conditions, with a
Galerkin projection to determine the solution at the boundaries of the subdomains. The novelties of
this work are many fold. First, the sampling of the PDE coefficients is performed at the subdomain
PDE solve stage, as opposed to a fully NI approach consisting of an outer sampling of a deterministic
resilient algorithm. Second, we develop a new LAD-lasso [34] type of regression, with properties
similar to the elastic net [35], together with an efficient, resilient cross-validation procedure to find
the optimal regularization parameter. A general algorithm to solve such regression problems is also
developed. Third, the formulation of the stochastic domain decomposition approach is hybrid and
mixes a NI approach for the construction of the compatibility relations and a Galerkin approach
for its resolution.

The paper is organized as follows. In Section 2 we outline the domain decomposition framework
and the deterministic algorithm for one-dimensional linear, elliptic PDEs. Section 3 discusses the
extension to parameterized stochastic PDEs, introducing the PC discretization and describing the
sampling approach. Section 4 is dedicated to the derivation of the robust regression techniques that
provide resilience to soft faults, as well as stability for large problems. The resilience of the solver
is studied in Section 5, for the test case of a diffusion equation with uncertain diffusivity. Finally,
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general conclusions as well as a discussion of the proposed strategy, including ongoing work and
potential improvements, are presented in Section 6.

2. Deterministic preliminaries

In this section we briefly recall the domain decomposition approach used in [14] for the resilient
solution of deterministic problems. We start with the following 1D boundary value problem (BVP):

Lu = g, in Ω = (0, 1)

u(0) = U0,

u(1) = U1,

(1)

where L is a linear, second-order, elliptic operator. In addition, we assume that the problem is well-
posed, i.e. it has a unique solution that continuously depends on the data, namely the boundary
data, U0 and U1, and the source field, g. Although this 1D problem is not rigorously speaking a
partial differential equation (PDE), we shall nonetheless refer to it as such since our approach is
meant to be generalized in 2D and 3D.

2.1. Domain decomposition and condensed problem
The domain Ω is decomposed into N overlapping subdomains Ωd = (X−d , X

+
d ), with

X−1 = 0, X+
N = 1, and X−d < X+

d , d = 1, . . . , N. (2)

The subdomains are defined such that

∪Nd=1Ωd = Ω̄, and Ωd ∩ Ωd+1 6= ∅ d = 1, . . . , N − 1. (3)

The decomposition of Ω and the notations used later on are illustrated in Fig. 1.

U0

0

U1

1

Ωd

Ωd+1Ωd−1

Known boundary condition Interior boundary value

Subdomain solution at inner point of interest

... ...
ud,− ud,+

ud−1,+ ud+1,−

x

X−
d X+

dX+
d−1 X−

d+1

vd(X+
d−1) vd(X−

d+1)

Figure 1: Illustration of the domain decomposition for Ω = (0, 1). The dependence of vd on the boundary values has
been dropped for simplicity.

Let us define the subproblem (4) associated with a subdomain Ωd as follows:
Lv = g in Ωd = (X−d , X

+
d )

v(X−d ) = ud,−,

v(X+
d ) = ud,+,

(4)
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where ud,± are the (left and right) boundary values of (4). We shall denote by vd(x;ud,−, ud,+) the
solution of (4) for x ∈ Ωd.

In the domain decomposition approach, the set of boundary values {(ud,−, ud,+), d = 1, . . . , N}
is such that the solutions vd of the subproblems (4) agree with the solution u to the global prob-
lem (1) in the respective domains Ωd. Clearly, the boundary values of the global problem imply
u1,− = U0 and uN,+ = U1, whereas compatibility conditions are derived in order to determine the
remaining 2(N − 1) subdomain boundary values. Specifically, we have:{

vd
(
X+
d−1;ud,−, ud,+

)
= ud−1,+, d = 2, . . . , N,

vd
(
X−d+1;ud,−, ud,+

)
= ud+1,−, d = 1, . . . , N − 1.

(5)

These compatibility conditions are sufficient to ensure that, in each subdomain Ω̄d, vd = u (see AppendixA).
Let us denote by fd,− (resp. fd,+) the boundary-to-boundary map relating the boundary data

(ud,−, ud,+) of (4) and its solution at the inner point X+
d−1 (resp. X−d+1); that is{

fd,−(ud,−, ud,+) ≡ vd(X+
d−1;ud,−, ud,+), d = 2, . . . , N,

fd,+(ud,−, ud,+) ≡ vd(X−d+1;ud,−, ud,+), d = 1, . . . , N − 1.
(6)

For a linear operator L, the maps fd,± are affine in the boundary data ud,± and can be written in
the following form (see AppendixB):{

fd,−(ud,−, ud,+) = ad,− + bd,−ud,− + cd,−ud,+, d = 2, . . . , N,

fd,+(ud,−, ud,+) = ad,+ + bd,+ud,− + cd,+ud,+, d = 1, . . . , N − 1.
(7)

Denoting by u the vector of unknown boundary values,

u =
[
u1,+ u2,− u2,+ · · · uN−1,− uN−1,+ uN,−

]ᵀ
, (8)

the compatibility conditions can be recast as a linear system of equations Tu = a, where

T =



−c1,+ 1 0 0
1 −b2,− −c2,− 0 0
0 −b2,+ −c2,+ 1

. . . . . . . . .
1 −bN−1,− −cN−1,− 0

0 0 −bN−1,+ −cN−1,+ 1
0 0 1 −bN,−


, a =



a1,+ + U0b
1,+

a2,−

a2,+

...
aN−1,−

aN−1,+

aN,− + U1c
N,−


. (9)

This problem is said to be condensed as it involves a finite set of 2(N −1) unknown values. Solving
the condensed problem then provides the unknown boundary values which can be used subsequently
to recover, by solving (4), the solution over the subdomains Ωd.

2.2. Resilient approach for solving the condensed problem
Different strategies have been proposed to determine the vector u of compatible boundary

values. Some of these strategies are iterative and do not rely on the explicit assembly of the
boundary-to-boundary operator T (matrix-free methods), but rely instead on multiple solutions of
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the subproblems to obtain a (convergent) sequence of iterates for u. In the context of exascale com-
puting, where the solution of the subproblems is prone to soft faults, ensuring the global resilience
of such an iterative approach is not straightforward. This observation has motivated the approach
introduced in [14], which is based on an explicit construction of the operator T and the system
right-hand-side a. From (9), we observe that the entries of the operator and right-hand-side involve
the coefficients of the boundary-to-boundary maps fd,±. Owing to the linearity of the maps, the
coefficients ad,±, bd,± and cd,± can in principle be determined by solving only two independent
subproblems over each subdomain [36]. In [14], a sampling of the subdomain boundary data was
proposed to determine its associated maps’ coefficients by solving (linear) regression problems. The
approach requires more independent local problem solves but it was made resilient to soft faults
by the introduction of a suitable error model in the regression problem. The estimated coefficients
of the linear maps are subsequently assembled to form the boundary-to-boundary operator T. In
addition to its resilient character, one important virtue of the approach in [14] is that it requires
few communications as the determination of the maps’ coefficients is independent for different sub-
domains (see AppendixB, in particular Eq. (B.4)–(B.6)). Once the operator T and right-hand-side
a have been determined, the system for the unknown boundary values can be solved using stan-
dard methods for non-symmetric systems (e.g. Krylov, Bi-CGSTAB and GMRES methods). The
tridiagonal structure of T for one-dimensional problems can also be exploited.

In the present work, we extend the approach of [14] in order to accommodate a stochastic variant
of (1). As further discussed below, this extension introduces significant challenges, namely due to
the presence of a random diffusivity field. These include the loss of linearity, owing to the product
of the stochastic diffusivity field and the stochastic solution, and the potentially high dimensionality
of the probability space needed to suitably represent the random inputs and the solution. In the
following section, we develop means to address these challenges and for improving the resilience of
the solver introduced in [14].

3. Resilient stochastic solver

3.1. Stochastic problem
The deterministic problem is now extended to the stochastic case. We assume that the elliptic

operator L in (1) is parametrized using a vector of K real-valued independent random variables ξ,

ξ =
[
ξ1 · · · ξK

]ᵀ ∈ RK , (10)

with known joint probability density pξ. This leads to the following stochastic problem
L(ξ)u = g, in Ω = (0, 1)

u(x = 0) = U0,

u(x = 1) = U1,

(11)

whose solution u(x, ξ) is also random as it depends on the parameters. A classical example consid-
ered in the paper is the second-order elliptic partial differential equation with random coefficients.
In this work (see the numerical illustration in Section 5), a Karhunen-Loève expansion will be used
for the functional representation of these random coefficients (specifically the diffusivity field). The
development below can be easily extended to the case where the source term g and boundary con-
ditions are also random. We shall further assume that L is almost surely elliptic and that u(x, ξ)
has finite second order moments.
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The Polynomial Chaos (PC) expansion of u(x, ξ) can be expressed as:

u(x, ξ) =
∑
α

uα(x)Ψα(ξ), (12)

where α = (α1, . . . , αK) ∈ NK0 is a multi-index and Ψα is a multivariate polynomial in ξ consisting
of the product of K univariate orthonormal polynomials, i.e. Ψα(ξ) = ψ1

α1
(ξ1) × . . . × ψKαK

(ξK),
where αi refers to the polynomial degree. As a result, the Ψα are orthonormal,

〈Ψα,Ψβ〉ξ = Eξ [ΨαΨβ ] =

∫
RK

Ψα(ξ)Ψβ(ξ)pξ(ξ) dξ =

{
1 α = β,

0 otherwise,
(13)

and |α| = ∑K
i=1 αi is the total degree of Ψα. The set {Ψα, α ∈ NK0 } forms a complete orthonormal

basis of L2(pξ), the space of square-integrable functionals with respect to the probability measure
pξ. In practice, the PC expansions are truncated retaining a subset A of multi-indices. For instance,
fixing the maximum total degree q of the expansion leads to

u(x, ξ) ≈
∑
α∈A

uα(x)Ψα(ξ), A = {α ∈ NK0 , |α| ≤ q}. (14)

In the following we denote by P = card(A) the cardinality of the truncated PC basis.
Different methods have been proposed for the determination of the expansion coefficients uα(x),

including stochastic Galerkin projection [26, 27, 28, 29, 30], non-intrusive spectral projection [20,
21, 22, 23], and collocation methods [24, 25]. The Galerkin projection is a weak formulation of (11)
obtained by projecting the strong form on each polynomial Ψβ , β ∈ A. This results in the following
set of coupled linear problems for the expansion coefficients,

∀β ∈ A,


∑
α∈A 〈L(ξ)Ψα,Ψβ〉ξ uα = 〈g,Ψβ〉ξ in Ω = (0, 1)

uβ(x = 0) = 〈U0,Ψβ〉ξ ,
uβ(x = 1) = 〈U1,Ψβ〉ξ .

(15)

3.2. Stochastic affine maps
With a view to solving the stochastic problem (11) by means of a domain decomposition ap-

proach, we now extend the boundary-to-boundary maps associated with the subdomains, reusing
the notations of section 2. Unlike the deterministic case, the unknown boundary data for Ωd that
will satisfy the compatibility conditions are now random. This suggests extending the deterministic
local problems (4) to stochastic ones accounting for the randomness of the elliptic operator L(ξ),
and using random boundary data ud,±(ξ). For given stochastic boundary data, the boundary-
to-boundary map values, fd,±(ud,−(ξ), ud,+(ξ)), may be computed by solving the corresponding
local stochastic problem. However, we can again exploit the linearity of the problem to recast the
stochastic boundary-to-boundary relation as an affine mapping according to:

fd,± : L2(pξ)2 → L2(pξ), fd,±(ud,−(ξ), ud,+(ξ)) = ad,±(ξ) + bd,±(ξ)ud,−(ξ) + cd,±(ξ)ud,+(ξ).
(16)

To stress the stochastic nature of the coefficients appearing in the affine maps, we shall write
fd,±(·, ·) = fd,±(·, ·, ξ). Indeed, even for deterministic subdomain boundary conditions, the maps
are generally stochastic due to the randomness of the operator. The objective is then to determine
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the random maps’ coefficients ad,±, bd,± and cd,±. From the superposition principle and linearity
arguments (see AppendixB), it can be further seen that, as in the deterministic case, cd,± =
1 − bd,±, reducing theoretically the determination of the maps coefficients to the solution of only
two subproblems per subdomain. The generic form of the subproblems is

L(ξ)vd = g, in Ωd = (X−d , X
+
d )

vd(X−d ) = ud,−,

vd(X+
d ) = ud,+,

(17)

where the boundary conditions can be selected as deterministic (e.g. the coefficients ad,±(ξ) co-
incide with the solution at the inner boundary points X+

d−1 and X−d+1 for homogeneous boundary
conditions ud,± = 0). One could for instance rely on a PC expansion of the local solutions vd(x, ξ)
and a stochastic Galerkin projection of the local subproblem to compute the PC expansions of the
coefficients. However, soft faults could considerably affect the solution of the Galerkin subproblems,
with corrupted PC expansions for the maps coefficients as a result, and a resilient approach is again
needed.

3.3. Sampling approach for the PC approximation of the maps
In this subsection, we focus on a sampling strategy for the resilient approximation of the stochas-

tic maps fd,± of a subdomain Ωd. The approach is the same for both the left and the right map,
fd,− and fd,+, and for all subdomains. Therefore, we shall only describe the case of the left map,
and drop superscripts to alleviate notations.

As discussed above, the stochastic map can be generically expressed as

f(u−, u+, ξ) = a(ξ) + b(ξ)u− + c(ξ)u+, (18)

where u− and u+ are the boundary data. Using c(ξ) = 1−b(ξ), the coefficient c(ξ) can be eliminated
to obtain

f(u−, u+, ξ)− u+ = a(ξ) + b(ξ)(u− − u+). (19)

The coefficients a(ξ) and b(ξ) are approximated using PC expansions,

a(ξ) ≈
∑
α∈A

aαΨα(ξ), b(ξ) ≈
∑
α∈A

bαΨα(ξ). (20)

The key idea to achieve resilience is to estimate the PC coefficients of a and b (and subsequently
deduce c) through a robust regression procedure. To perform the regression, we rely on a joint
sampling of the boundary data u−, u+ and random parameters ξ, generating a sample set of n
independent triplets {(u−i , u+

i , ξi), i = 1, . . . , n}. The samples ξi are drawn from the distribution
pξ, while the boundary values can be sampled freely over ranges for which the solution exists, e.g.
uniformly from [0, 1]. With each triplet (u−i , u

+
i , ξi) we associate the deterministic subproblem (4),

with deterministic operator L = L(ξi) and u−i (resp. u+
i ) as left (resp. right) boundary value, and

we denote by fi the associated map value (solution at the inner point of interest). The regression
aims at finding the PC expansion coefficients of a and b that minimize, in some sense, the sample
set distance between the observed and approximated maps. For each triplet, the difference between
the observed map value and its approximation is given by

ri ≡ fi − u+
i −

∑
α∈A

aαΨα(ξi)− (u−i − u+
i )
∑
α∈A

bαΨα(ξi). (21)
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Denoting by y ∈ Rn the vector with components fi − u+
i , a (resp. b) the vector of RP containing

the PC coefficients of a (resp. b), the distances at the sample points can be expressed in vector
form according to

r = y −Xaa−Xbb, (22)

where the matrices Xa and Xb have elements

[Xa]i,α = Ψα(ξi), [Xb]i,α = (u−i − u+
i )Ψα(ξi), i = 1, . . . , n and α ∈ A. (23)

Gathering the PC coefficients of a and b in a single vector β ∈ R2P , we end up with

r = y −Xβ, X = [Xa,Xb], (24)

where X is called the design matrix. The question of finding β that provides the best approximation
of the exact map’s coefficients is central to the present work. In particular, the direct minimization
of r, e.g. its `2-norm is not an option here, because of potential soft faults. Specifically, some
samples fi are expected to be corrupted so the fit must be performed on noisy data. This calls for
an appropriate regression method, which will be developed in Section 4 below.

Remark. The sampling approach described above considers a generic subdomain, while for the first
and last ones a boundary value is actually known (U0 and U1 respectively). Different treatments
of known boundary values can be envisioned. In particular, one could adapt the definition of the
maps for the first and last subdomains, retaining a dependence and a sampling of the only remaining
unknown boundary values. In that case, the global boundary conditions are implicitly accounted
for and are not apparent in the compatibility conditions to be enforced. In the present work,
we choose to keep the same treatment and map definition for all the subdomains, and deal with
the known global boundary conditions when assembling the stochastic linear system expressing the
compatibility conditions. The method then seamlessly applies to the case when the global boundary
conditions are uncertain.

3.4. Condensed problem for the stochastic boundary values
Once the PC coefficients in Eq. (22) are estimated through regression on each subdomain and

for each inner point of interest (see Sections 3.3 and 4), compatibility conditions can be derived
using those coefficients. Specifically, the unknown boundary values must satisfy the following set
of 2(N − 1) stochastic compatibility equations:{

fd,−(ud,−(ξ), ud,+(ξ), ξ) = ud−1,+(ξ), d = 2, . . . , N,

fd,+(ud,−(ξ), ud,+(ξ), ξ) = ud+1,−(ξ), d = 1, . . . , N − 1,
(25)

where u1,−(ξ) = U0, uN,+(ξ) = U1, and the maps are given by

fd,±(ud,−(ξ), ud,+(ξ), ξ) = ad,±(ξ) + bd,±(ξ)ud,−(ξ) + cd,±(ξ)ud,+(ξ). (26)

To solve (25), we replace the coefficients and boundary data involved with their PC expansions,

ad,±(ξ) ≈
∑
α∈A

ad,±α Ψα(ξ), bd,±(ξ) ≈
∑
α∈A

bd,±α Ψα(ξ),
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cd,±(ξ) ≈
∑
α∈A

cd,±α Ψα(ξ), ud,±(ξ) ≈
∑
α∈A

ud,±α Ψα(ξ),

and require that the resulting residuals be orthogonal to the span of {Ψα, α ∈ A}, which corresponds
to a stochastic Galerkin projection. Using the orthonormality of the PC basis, the projected system
of equations becomes

∀α ∈ A,


ud−1,+
α − ad,−α −

∑
β∈A

∑
γ∈A
Cαβγ

(
bd,−β ud,−γ + cd,−β ud,+γ

)
= 0, d = 2, . . . , N,

ud+1,−
α − ad,+α −

∑
β∈A

∑
γ∈A
Cαβγ

(
bd,+β ud,−γ + cd,+β ud,+γ

)
= 0, d = 1, . . . , N − 1,

(27)

where C denotes the Galerkin multiplication tensor with entries

Cαβγ = Eξ [ΨαΨβΨγ ] .

Accounting for the global boundary conditions u1,−(ξ) = U0, uN,+(ξ) = U1, this system of 2P (N −
1) linear equations can be recast in matrix form as

−C1,+ IP
IP −B2,− −C2,− 0

−B2,+ −C2,+ IP
. . .

. . .
. . .

IP −BN−1,− −CN−1,−

0 −BN−1,+ −CN−1,+ IP
IP −BN,−





u1,+

u2,−

u2,+

...
uN−1,−

uN−1,+

uN,+


=



a1,+ + U0b
1,+

a2,−

a2,+

...
aN−1,−

aN−1,+

aN,− + U1c
N,−


,

(28)
with P -by-P block matrices Bd,± and Cd,± defined by

Bd,±
αβ =

∑
γ∈A

bd,±γ Cαβγ , and Cd,±
αβ =

∑
γ∈A

cd,±γ Cαβγ , ∀α, β ∈ A, (29)

IP the P -by-P identity matrix and the block vectors ud,± and ad,± gathering the PC coefficients of
ud,±(ξ) and ad,±(ξ). We underline the block tridiagonal structure of the system, reminiscent of the
deterministic case, and the contribution of the global boundary conditions on the right-hand-side
as discussed previously. The system can be solved using standard iterative or direct methods for
non-symmetric sparse problems. Finally, it should be mentioned that the present formulation, if
no additional treatments are applied, requires that the condensed system be solved in guaranteed
fault-free environment.

3.5. Discussion
In this section we have described a resilient stochastic solver based on a domain decomposition

method and a sampling approach for the boundary-to-boundary map operator construction. An
overview of the approach is given in algorithm 1.

Because the sampling is performed locally and independently on each subdomain, it does not
require any global communication. The only communication appears in the assembly of the con-
densed matrix, only once and for all as a last stage of the approach. This is a considerable advantage
in the context of exascale computing since global communications are known to degrade parallel
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Algorithm 1: Schematic steps of the resilient solver.
Partition the domain Ω into subdomains ;
// Parallel loop
foreach subdomain Ωd do

Randomly sample the boundary values (u−, u+) and the random vector ξ ;
Solve the corresponding local PDE for each sample (u−i , u

+
i , ξi) ;

Collect the solutions vdi ;
getMapCoefficients (u−i , u

+
i , ξi, v

d
i );

end foreach
Assemble and solve the condensed system ; /* see equation (28) */

function getMapCoefficients (u−i , u
+
i , ξi, v

d
i )

Collect the solutions at the inner points, vdi (X+
d−1) and vdi (X−d+1) into f±i ;

Assemble the (left and right) regression problems ; /* see equations (23) and (24) */
Solve the robust regression problems using IRT ; /* see section 4 and algorithm 2
*/

return estimators of the maps’ coefficients ;
end function

scalability. In that sense, the proposed strategy dramatically differs from that of sampling, e.g.
wrapping a Monte-Carlo, or other non-intrusive sampler around the deterministic resilient algo-
rithm presented in [14]. Such an alternative would require the assembly and solve of the condensed
system for every sample. Consequently, this would result in a large amount of global communica-
tion, causing synchronization and data transfer latency that would degrade the parallel efficiency
of the deterministic algorithm.

At this point, it is relevant to mention that the sampling strategy provides resilience at additional
cost. As a matter of fact, more samples than what would be necessary in a fault-free environment
need to be drawn, resulting in an increased number of local PDE solves. This additional cost is
nonetheless affordable in the context of exascale computing, where it is considered that CPU time
is cheap, as opposed to communication time. Indeed, the underlying domain decomposition can be
made such that the local problems to be solved on the subdomains are orders of magnitude smaller
than the global problem. Another source of overhead resides in the inference of the local maps,
which is currently achieved through regression, as detailed further in section 4. The size of each
regression problem is independent from the spatial discretization, but depends on the cardinality
P of the PC basis, which suffers from the curse of dimensionality. We recall that the primary focus
of the present work is the resilient aspect of the proposed approach, and further investigation of
the regression overhead is not pursued here. Dimensionality reduction strategies, that would yield
smaller regression problems, are currently being developed and will be the reported on elsewhere.

Lastly, it should be stressed that some parts of the algorithm, in particular the regression stage
and the condensed system assembly and solve, are not resilient, and thus need to be performed
in a guaranteed fault-free environment. Provided that these problems are small enough, various
techniques can be readily used to increase the reliability of these selected components.
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4. Robust regression

Following the sampling approach described in section 3.3, the determination of the PC coeffi-
cients of the map amounts to minimizing the residuals (see Eq. (24))

r = y −Xβ, (30)

where the vector y contains n observations and the vector β contains them unknown PC coefficients
(recall here that m = 2P ). Each column of X represents a predictor (or regressor) and contains
n samples of this predictor (see Eq. (23)). Defining a regression problem thus amounts to defining
the objective function J(β) of a minimization problem, namely

β̂ = arg min
β∈Rm

J(β), (31)

where β̂ is called the estimator of β for this particular minimization problem.

4.1. Objective function
To define a suitable regression problem, it is first noted that the data or responses y may be

corrupted by bit-flips. In the context of regression, these corrupted values should be regarded as
outliers. For this reason, any fitting based on least-squares (LS) type objective functions should be
avoided, as it is known that the corresponding techniques are not robust to outliers (see, e.g., [14]
for an evidence in the context of bit-flips). Instead, we suggest to use a least absolute deviations
(LAD) approach, which amounts to minimizing the L1 norm of the residual r. LAD techniques
have been used for a long time, even before LS techniques (see, e.g., [37]), and are known to be
robust to outliers.

Because the cardinality P of the polynomial basis, and so the number of coefficients in β,
increases dramatically with the number of stochastic dimensions K and the polynomial degree q, a
stabilization of the LAD approach will also be needed. By stability, we mean here that the addition
of new predictors (i.e. increasing the PC basis size) does not deteriorate the quality of the estimated
map. The main source of instability is overfitting, which occurs when the number of samples is too
small as compared to the complexity (i.e. the size m) of the model sought. Overfitting may be
avoided by increasing the number, n, of observations. However, this could result in a prohibitively
large number of observations when considering large PC bases. Instead, we would like to use a
reasonable and constant ratio ρ = n/m of observations (samples) n as compared to the number of
unknown PC coefficients m defining the maps. To do so, we introduce regularization, appending
the objective function with a penalty on the norm of the unknown coefficients vector β. Specifically,
for λ > 0, we consider objective functions of the form

J(β) = ‖r‖1 + λ ‖β‖γγ =

n∑
i=1

|ri|+ λ

m∑
j=1

|βj |γ , 1 ≤ γ ≤ 2. (32)

The first term of the objective function corresponds to the (unpenalized) LAD problem, which
ensures resilience to bit-flips. For γ = 2, the penalty term corresponds to the ridge penalty which
is commonly used for the regularization of ill-conditioned regression problems. For γ = 1, the
penalty term corresponds to a lasso penalty [38], resulting in a LAD-lasso regression problem [34].
The lasso penalty is known to promote the sparsity of β̂. When 1 < γ < 2, the penalty term is a
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compromise between lasso and ridge, similar to the elastic net penalty [35] which consists of a linear
combination of both penalty terms. Because we are primarily concerned about overfitting, γ should
be kept close to 1 in order to benefit from the lasso properties. On the other hand, by choosing γ
slightly greater than 1, say γ = 1.3, we expect to get an effect similar to the elastic net, promoting
both the grouping of highly correlated variables (as in ridge) and the sparsity of the solution (as in
lasso).

Remark. It should be noted that stability analyses, carried out for unregularized least squares
problems, indicate that choosing n ∝ m2 is necessary to ensure stability [39, 40]. Although they lie
outside the scope of these studies, unregularized LAD problems could be expected to have a similar
behavior, especially when solved by means of an iteratively reweighted least squares algorithm (see
next section). In fact, in our experiments, we observed that very large numbers of observations
needed to be considered to ensure stability of unregularized LAD problems using large PC bases,
consistent with the above mentioned LS results, which led us to introduce a sparsity-promoting
penalty term.

4.2. Iteratively reweighted least squares algorithm
For the minimization of the objective function (32) we rely on an iteratively reweighted least

squares (IRLS) technique [41]. IRLS has been used independently to solve unpenalized LAD prob-
lems [42, 43, 44] and classical lasso problems [45, 46]. We propose here a natural extension of IRLS
to solve regularized LAD problems. Consistently with the central idea of IRLS, let us define weight
vectors wr and wβ as follows:

wri =
1

max(ε, |ri|)
, ∀i = 1, . . . , n, wβj =

1

max(ε, |βj |2−γ)
, ∀j = 1, . . . ,m, 0 < ε� 1, γ ∈ [1, 2],

(33)

where the role of ε is to prevent numerical overflows. Then, we consider the minimization of

Jε(β) =

n∑
i=1

wri r
2
i + λ

m∑
j=1

wβj β
2
j ≈ J(β). (34)

Note that for γ = 2 and ε� 1, all entries of wβ are equal to one, irrespective of β. Equation (34)
corresponds to the objective function of a weighted least squares problem with a diagonal Tikhonov
(or weighted ridge) regularization, whose minimizer β̂ is given by:

β̂ = A−1XᵀWry, with A = XᵀWrX + λWβ , (35)

where Wr = diag(wr) and Wβ = diag(wβ) are diagonal weighting matrices. Equation (35) is
usually referred to as the normal equation. Since the weight vectors depend on the solution β̂, the
normal equation (35) is in fact nonlinear. An iterative strategy is employed to compute its solution.
Starting from initial weights (e.g. unitary, or based on the solution at another λ), β̂ is computed
solving the normal equation (35). With the new estimate of β̂, the weights are updated using
Eq. (33), and the solution recomputed with the updated weights; this sequence of normal solves
and weights updates is repeated until convergence. Clearly, the computationally intensive part of
this iterative strategy is the solution of Eq.(35) given the current estimate of the weights. This step
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can be conveniently recast as an ordinary least squares (OLS) problem such that dedicated solvers
can be reused (e.g. LSQR [47, 48]). To this end, it suffices to notice that

Jε(β) = (ỹ − X̃β)ᵀW̃(ỹ − X̃β), (36)

with

X̃ =

[
X√
λIm

]
, w̃ =

[
wr

wβ

]
, ỹ =

[
y
0m

]
, (37)

and where W̃ is a diagonal weighting matrix whose diagonal is composed of the elements of w̃.
This defines a weighted least squares (WLS) problem, which can be recast into an OLS problem as
follows:

Jε(β) =
∥∥∥ỹ∗ − X̃∗β

∥∥∥2

2
, (38)

with ỹ∗ = W̃1/2ỹ and X̃∗ = W̃1/2X̃. Algorithm 2 describes the iteratively reweighted Tikhonov
(IRT) algorithm to solve (32) using the normal equation.

Algorithm 2: Iteratively reweighted Tikhonov (IRT) algorithm.
Data: Design matrix X of size n-by-m, response vector y of size n.
Input: Initial diagonal weight matrices Wr and Wβ , e.g. Wr = In and Wβ = Im, tuning

parameter λ and norm γ for the regularization.
Output: Estimator vector β̂ of size m.
while convergence criterion not met do

β̂ ← arg minβ Jε(β) ; /* Solve the regression problem with current weights */
r̂ ← y −Xβ̂ ; /* Compute the current residual */

// Update weights, see eq. (33)
for i = 1 to n do

wri ← 1/max(ε, |ri|) ;
end for
for j = 1 to m do

wβj ← 1/max(ε, |βj |2−γ) ;
end for
Wr ← diag(wr) ; Wβ ← diag(wβ) ; /* Update Wr and Wβ accordingly */

end while

4.3. Selection of the regularization parameter
The regularization parameter λ has to be selected to prevent overfitting while allowing for

a model β that adequately represents the observations. The selection of λ typically involves a
statistical validation procedure, where different values for λ are tested to retain the one yielding the
lowest prediction error. Since the prediction error is unknown, it has to be estimated from the set of
observations. One of the most natural estimates for the prediction error is obtained by considering
a separate validation set of observations which is compared to the predictions associated with β̂.
A more elaborate idea of cross-validation, the so-called k-fold cross-validation [49, 50], consists
in splitting the observation set into k subsets. The regression problem for β is then performed
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k times, each time choosing one of the subsets to be the validation set and using the remaining
observations as the training set. The k resulting estimates of the prediction error can be combined
(e.g. averaged) to estimate the overall prediction error. The limiting case where k is equal to the
number of observations n corresponds to the so-called leave-one-out procedure. The leave-one-
out approach is widely used because it allows for analytic expressions through the introduction of
rank-one updates of the regression problem. This is further discussed in the following.

When the solution β̂ has been computed using the IRT algorithm, the prediction vector ŷ is
given by:

ŷ = Xβ̂ = XA−1XᵀWry = Hy, (39)

where A is given in Eq. (35) and H ≡ XA−1XᵀWr is often called the “hat” matrix. The prediction
residual r̂ is defined as the difference between y and ŷ:

r̂ = y − ŷ = y −Xβ̂ = y −Hy = Py, (40)

where P = I −H is the projection matrix. We denote by β̂(−i) the estimator for the regression
problem where the i-th observation is left out, that is using only the (n−1) remaining observations.
Using consistent notations, we have

β̂(−i) = A−1
(−i)X

ᵀ
(−i)W

r
(−i)y(−i), with A(−i) = Xᵀ

(−i)W
r
(−i)X(−i) + Wβ . (41)

Assuming that dropping the i-th observation leaves the LAD and regularization weights unchanged
(frozen state), one can derive the following equalities:

Xᵀ
(−i)W

r
(−i)X(−i) = XᵀWrX− wrixixᵀ

i , Xᵀ
(−i)W

r
(−i)y(−i) = XᵀWry − wri yixi, (42)

where xi = Xᵀ
i·. From the Sherman-Morrison identity for the rank-one update of A−1

(−i), we have

A−1
(−i) = A−1 + wri

A−1xix
ᵀ
iA
−1

1− hi
and A−1

(−i)xi =
A−1xi
1− hi

, (43)

where hi = Hii = wrix
ᵀ
iA
−1xi is the i-th diagonal element of H. Combining (42) and (43), the

prediction of the i-th observation from the estimator β̂(−i) is[
ŷ(−i)

]
i

= xᵀ
i β̂(−i) = xᵀ

iA
−1
(−i)X

ᵀ
(−i)W(−i)y(−i) =

ŷi − yiwrixᵀ
iA
−1xi

1− hi
=
ŷi − yihi

1− hi
, (44)

with corresponding leave-one-out residual[
r̂(−i)

]
i

= yi −
[
ŷ(−i)

]
i

= yi −
ŷi − yihi

1− hi
=
yi − ŷi
1− hi

=
r̂i

1− hi
. (45)

We stress that this expression of the leave-one-out residual is an approximation, since solving the
regression problem for the (n − 1) observations would actually affect the weights of the regression
problem which were considered fixed in the derivation above. This approximation is valid only for
situations where the estimator β̂(−i) (and so the predictor ŷ(−i)) remains similar for all i or, in
other words, if the regression solution is stable when leaving out one observation. In fact, this is the
case for large λ. For small λ, the equalities in (42) and (43), as well as the update of A−1, are not
correct anymore but remain suitable to detect the emergence of overfitting. Specifically, one selects
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the value of λ leading to the minimal root-mean-square (RMS) value ΣLOO of the leave-one-out
residual, defined as

Σ2
LOO =

1

n

n∑
i=1

[
r̂(−i)

]2
i

=
1

n

n∑
i=1

r̂2
i

(1− hi)2
=

1

n
yᵀP(diagP)−2Py. (46)

However, it appears that even if the regression is robust to outliers, owing to the LAD part of
the objective function, the RMS value of the leave-one-out residual is not resilient to the presence
of observations corrupted by bit-flips. This is due to the fact that the regression is designed to
disregard outliers, so a corrupted observation i is associated with a large residual value ri when the
bit-flips induce a large error on yi. The estimate Σ2

LOO is therefore essentially dominated by large
bit-flips errors at the corrupted observations, making it difficult to measure small effects related
to λ and the appearance of overfitting. This issue is also present for cross-validation estimates of
the prediction error which are plagued by large bit-flips errors, since cross-validation observations
can be corrupted as well. To overcome this issue, one could think of comparing the predictors ŷ
and ŷ(−i), and select the value of λ such that the RMS value of ŷi − [ŷ(−i)]i is minimal. However,
this approach tends to favor high values of λ such that the model is over-stable and insensitive
to removal of observations, but has poor predictive capabilities. A closer inspection of the LOO
residuals [r̂(−i)]i reveals that it is in fact well behaved for observations that are not corrupted by
bit-flips. This observation leads us to consider the median value instead of the RMS residual value
to design a criterion for selecting λ. Specifically, we define

mLOO = med
{∣∣[r̂(−i)

]
i

∣∣ , i = 1, . . . , n
}
, (47)

where the symbol med denotes the median value. The main assumption supporting this approach is
that fewer than half of the observations are corrupted, so mLOO can be understood as an estimate
of the predictive error based on the LOO residuals at uncorrupted observations only. The value of
λ is then selected as to minimize mLOO.

4.4. Numerical examples
To conclude this section and validate the resilient LAD-lasso regression approach proposed

above, we consider the approximation of a map for an elliptic test problem consisting of a one-
dimensional diffusion equation in a unit domain with uncertain diffusivity field parametrized with
K independent standard Gaussian random variables ξ = (ξ1, . . . , ξK). (See Section 5.1 for a com-
plete description of the test problem.) To assess the effectiveness of the resilient LAD-lasso regres-
sion, depending on the dimension of the regression problem, two random parameterizations of the
diffusivity field are considered. The first one uses K = 5 random variables and variable PC order
q. The second case uses q = 3 and a variable number of random variables K. The map to be
approximated, f(u−, u+, ξ), corresponds to an inner point xm ∈ (0, 1/2) (in this exercise, a single
domain is used for the spatial discretization). The regression uses n = ρm samples (observations)
of the map, with a fixed value ρ = 3 for all the tests of this section. Regarding the sampling,
the Dirichlet boundary values of the map, u− and u+, are sampled uniformly in [0, 1], together
with ξ according to its Gaussian distribution. For each sample, the corresponding deterministic
elliptic problem is solved with a standard finite-element method to generate an observation fi of
the map, as discussed in section 3.3. To model soft-errors, the values fi are subsequently corrupted
as follows. For each fi, we decide with a probability Pbf to alter its 64-bit binary representation
(see the IEEE 754 Standard [51]), flipping at random one of its bits (i.e. a 0 becomes a 1, and vice
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versa). As a result, Pbf controls the fraction of corrupted observations in the regression problem
and can be interpreted as the probability for a PDE solve to be corrupted by a soft-fault. It should
be noted that in the rare event of a bit-flip leading to the encoding of an infinite number (Inf)
or a so-called not-a-number (NaN), the processing unit that is handling the corresponding sample
may crash, potentially causing the entire computation to abort. To overcome the occurrence of
such events, and more generally to tackle the issue of so-called hard faults [17], our approach was
implemented in a server-client framework and resorted to the User Level Failure Mitigation pro-
totype for MPI (ULFM-MPI) [52] to recover from the loss of individual processing units [53, 54].
Such an implementation is however not considered here and we instead focus on the treatment of
silent data corruption (SDC). In any case, Inf and NaN encoded variables are easy to detect, and
the corresponding samples may simply be dropped or recomputed. More generally, a priori bounds
on the local PDE solutions can be used to detect faulty samples that lie outside these bounds, thus
improving the overall resilience of the approach [55]. In the present numerical experiments, only
the detection of Inf and NaN is considered. In order to investigate the most unfavorable scenario,
instead of dropping or recomputing Inf and NaN encoded samples, we force the bit-flip to affect
another bit, so that we still obtain a corrupted value.

The values of Pbf considered in this paper range between 0 and 10%. Such values may correspond
to high probabilities of soft-faults, as compared to realistic exascale scenarios, but are motivated
by the prospective nature of this study for which it is relevant to observe high failure rates to
investigate resilience. To assess the error in the PC approximation f̂(u−, u+, ξ) of the map, as
obtained by solving the regression problem with potentially corrupted observations, we consider
the following normalized map error

ε̃m =
‖f − f̂‖∗
‖f‖∗

, (48)

where the norm is over L2(pξ)⊗ L2([0, 1]2):

‖g‖2∗ =

∫ 1

0

du

∫ 1

0

dv

∫
RK

dξg(u, v, ξ)pξ(ξ). (49)

The map error ε̃m is estimated by means of a Monte Carlo method from a large sample set of
100,000 realizations.

The plots of Fig. 2 report typical map errors ε̃m, at xm = 0.1, for Pbf = 0 and Pbf = 0.01
(left and right column respectively), and variable PC basis size, by varying either q or K (top
and bottom row respectively). For each case, the plots report the median values of the errors ε̃m
estimated from 50 random samples sets (independent draws of sampling points and bit-flips); the
plots also contrast four different choices of the objective function defining the regression approach:
the case of least squares (labelled LS) and LAD without regularization (λ = 0 in Eq. (32)) and their
regularized versions (labelled lasso and LAD-lasso) with a selection of λ based on the minimization
of mLOO and using γ = 1.3. The plot in Fig. 2a demonstrates the importance of the regularization,
even in the absence of bit-flips (Pbf = 0): the map error for the non-regularized regressions (LS
and LAD) increases after a certain value of q, thus illustrating the loss of stability for a number of
samples scaling linearly with the PC basis dimension (ρ ≡ n/m = 3). On the contrary, regularized
regressions yield errors that remain almost constant even for large orders q. The slight increase in
the lasso and LAD-lasso errors around q = 9 is attributed to the procedure for the selection of λ,
and corresponds to the price to pay for stability. When bit-flips are introduced, Fig. 2b shows that
the least-squares based regressions (LS and lasso) become unstable for q ≥ 4. In contrast, LAD and
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LAD-lasso behave as in the case with no bit-flips, the latter remaining stable on the whole range of
q reported. The plot then indicates that if LAD provides resilience, it still needs regularization to
remain stable when q increases. Similarly, Fig. 2c and 2d confirm that the LAD-based regressions
provide resilience, while the LS-based regressions are sensitive to bit-flips. However, these plots
also indicate that for the polynomial degree considered (q = 3), the regressions do not need to be
regularized as the number of stochastic dimensions K (and the PC basis) increases: both LAD
and LAD-lasso remain stable for the whole range of K tested even in the presence of bit-flips (see
Fig. 2d).
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Figure 2: Median over 50 replicas of the normalized map error ε̃m for four regression approaches. Two probabilities
of bit-flip Pbf are shown, (left) Pbf = 0 and (right) Pbf = 0.01, as well as different PC bases with (top) K = 3 and
increasing q, and (bottom) q = 3 and increasing K.

The results presented in Fig. 2 demonstrate the advantage of using LAD-lasso regression to
ensure both resilience and stability in the map approximation. Obviously, these results depend
to some extent on the considered map and the probability of bit-flips. To better appreciate the
robustness and resilience of the LAD-lasso regression, we present in Fig. 3 the dependence of the
median map error with respect to the location of the map point, xm, for the case of K = q = 5
(P = 252, see Eq. (57)). The map degenerates to f(u−, u+, ξ) = u− as xm → 0, and the plot of
Fig. 3 indeed exhibits a decaying error with 1/xm: bit-flips are appropriately treated as outliers and
are not confused with dependence on ξ. In addition, the plot highlights the resilience of LAD-lasso,
as the median error is essentially independent of Pbf .
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Figure 3: Median over 50 replicas of the normalized map error ε̃m as a function of the map point location xm, for
three values of Pbf , and using the LAD-lasso. The regression is on a PC basis with K = 5, q = 5.

5. Results

5.1. Test Problems and Preliminaries
We consider steady diffusion equations with a log-normal diffusivity field in order to investigate

the resilience to soft fault errors of the proposed method. Specifically, the operator L(ξ) in Eq. (11)
is chosen as

L(ξ)u =
∂

∂x

[
κ(x, ξ)

∂

∂x
u(x, ξ)

]
, (50)

where κ is a log-normal process:
κ(x, ξ) = exp [G(x, ξ)] . (51)

In the previous equation, G is a Gaussian process with covariance function C. For simplicity, we
shall assume G to be centered and stationary with covariance simply defined by

C(x, x′) = E[G(x, ·)G(x′, ·)] = C(|x− x′|). (52)

The process G has an infinite Karhunen-Loève (KL) expansion

G(x, ξ) =

∞∑
k=1

√
λkφk(x)ξk, with ξk ∼ N (0, 1) i.i.d., (53)

where φk are the normalized eigenfunctions of C and λk ≥ 0 are the associated eigenvalues. For
the numerical tests, we shall rely on stationary Gaussian processes G, having squared exponential
covariance with correlation length L and variance σ2

G:

C(x, x′) = σ2
G exp[−(x− x′)2/(2L2)]. (54)

We shall consider two pairs of covariance parameters, (L = 1, σG = 0.5) and (L = 0.1, σG = 0.05),
to contrast the behavior of the method. Further, without loss of generality, we fix g = 0 and the
Dirichlet boundary conditions to U0 = 0 and U1 = 1. For convenience, we use the correlation
lengths L = 1 and L = 0.1 to identify the two covariance cases considered. As a closing note on the
test problem in (50), we mention that the problem is well posed for coefficient κ bounded above and
away from zero almost every-where in Ω. This is not the case for the log-normal field. However,
the truncated problem for finite KL expansion and finite dimensional PC expansion, as considered
below, are well posed. A complete theoretical analysis of the well-posedness of (50) for log-normal
coefficients κ can be found in [56].
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5.1.1. Truncating the Gaussian process
Figure 4a shows the eigenvalues, sorted in decreasing magnitude, of the covariance function (54)

for the two correlation lengths, L = 1 and L = 0.1. It highlights the slower rate of decay in
the eigenvalues for the shorter correlation length. The decay in the eigenvalues allows for the
truncation of the KL expansion of G to its, say, K dominant modes. We shall refer to K as
the stochastic dimension in the following because it fixes the number of random variables in the
parametrization. We denote GK the truncated version of G, LK the operator using GK instead of G
in the definition (51) of κ, and uK the corresponding solution of Eq. (11). The spatially continuous
solutions u and uK are approximated in space with a standard piecewise linear finite-element
method, on a uniform mesh fine enough to accommodate the solution features, where the numerical
KL decomposition of G uses a piecewise-constant approximation of C and its eigenfunctions over
the mesh elements. For clarity, we introduce a superscript h to denote the semi-discrete (in space)
solution, e.g. uhK , and analyze the errors in semi-discrete solutions defined on same finite-element
meshes. Figure 4b shows the decay with the stochastic dimensionK of the normalized error uh−uhK ,
in L2-norm, resulting from the approximation of L by LK . The normalized error norm is given by

ε2KL(K) = E
[∥∥uh − uhK∥∥2

L2(Ω)

]
/E
[
‖uh‖2L2(Ω)

]
. (55)

In practice, the error in (55) is evaluated from a large Monte Carlo (MC) sample set, consisting of
100,000 sample points, so that the MC sampling error is negligible.

As can be appreciated from Fig. 4b, the shorter correlation length implies that a higher stochastic
dimension K is required to achieve a given error level. For L = 1, the error plateaus for K > 10
because eigenvalues reach machine precision as can be seen in Fig. 4a.
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(a) Sorted eigenvalues of C
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(b) Approximation error εKL

Figure 4: Effect of truncating the KL expansion of G. (a) sorted eigenvalues λk of the covariance function C; (b)
normalized error norm for different truncation index K. The solutions uh and uhK are computed for each sample
using a finite-element method, then the error is obtained from Eq. (55) through MC sampling.

5.1.2. PC expansion error
In addition to the spatial discretization and truncation of the Gaussian process with finite K, a

stochastic discretization is introduced using PC expansions. This leads to another source of error.
Following notations of Section 3, the fully discretized solution is expressed as

uhK,q(x, ξ) ≡ uhA(x, ξ) =
∑
α∈A

uhα(x)Ψα(ξ) (56)
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where the PC basis dimension P (the cardinality of A), the number of stochastic dimensions K,
and the PC degree q are related by

P =
(K + q)!

K! q!
. (57)

As discussed previously, the expansion coefficients uhα(x) in (56) can be classically computed using
different approaches. To serve as a reference, the Galerkin projection of the stochastic problem
for the truncated operator LK is performed, and we denote ūhK,q(x, ξ) the corresponding discrete
Galerkin solution using PC expansion of degree q. To assess the error of the Galerkin solution, we
rely on two normalized error measures εGal(K, q) and εPC(K, q) defined respectively as

ε2Gal(K, q) =
E
[∥∥uh − ūhK,q∥∥2

L2(Ω)

]
E
[
‖uh‖2L2(Ω)

] , and ε2PC(K, q) =
E
[∥∥uhK − ūhK,q∥∥2

L2(Ω)

]
E
[∥∥uhK∥∥2

L2(Ω)

] . (58)

The first error measure εGal quantifies the total distance to the exact semi-discrete solution, whereas
the second error measure εPC quantifies only the effect of PC discretization on the approximation of
uhK . Figure 5a depicts the dependence of εGal and εPC on the polynomial degree q, for L = 1 and a
fixed value K = 5. We notice that for q ≤ 4 the two errors are similar denoting the predominance of
the PC discretization error in the global error. However, for q > 4, the PC discretization error εPC

keeps decreasing with q while εGal plateaus, indicating that the dominant source of error becomes
the truncation of G. In fact, it is seen that as q increases, εGal converges to the corresponding value
of εKL(K = 5) as one would have expected (see Fig. 4b). Similarly, Fig. 5b depicts the dependence
of εGal on the stochastic dimension K, for L = 1 and a fixed polynomial degree q = 2. We again
observe a fast decay of the total error, followed by a plateau. In this case, the plateau arises from
the stagnation of the PC approximation error εPC, and a larger polynomial order is required to
further reduce εGal. Based on these error measurements, unless stated otherwise below we shall use
K = 5 modes in the approximation of G when L = 1, and q = 2 for the polynomial degree of the
PC approximation when considering the case L = 0.1.Indeed, these values lead asymptotically to
global errors less than 10−5 as q and K respectively increase. For the shorter correlation length,
the polynomial degree q is fixed rather than K, since significantly more modes need to be retained
to decently approximate the log-normal process. The smaller variance σ2

G of the process for L = 0.1
explains the fact that only q = 2 is needed to achieve an asymptotic error similar to that obtained
with q = 5 for L = 1.

5.1.3. Validation of the domain decomposition approach
Before considering soft fault effects, we first verify the proposed domain-decomposition approach.

Specifically, we verify that the PC approximation of the boundary-to-boundary mappings, and the
Galerkin interpretation of the compatibility conditions on the subdomain boundary values, do not
lead to significant approximation error in the solution. To this end, in addition to the classical
Galerkin solution ūhK,q, we denote ¯̄uhK,q to be the solution of the domain decomposition (DD)
approach. To alleviate notations, we drop the subscripts K, q relative to the PC discretization. For
a decomposition of Ω involving N subdomains, let NΓ ≡ 2(N − 1) and XΓ

1≤k≤NΓ
be the number

and location of the inner boundary points, and consider the discrete norm

‖v‖2Γ =
1

NΓ
E

[
NΓ∑
k=1

∣∣v(XΓ
k , ξ)

∣∣2] . (59)
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Figure 5: (a) normalized errors εGal and εPC as a function of q for the case L = 1 and using K = 5. (b) normalized
error εGal as a function of the stochastic dimension K for the case L = 0.1 and a fixed polynomial degree q = 2.

This norm is used as a measure of the normalized distance between the DD-solution or the classical
Galerkin solution and the semi-discrete solution uh, that is

εΓ(v) ≡ ‖v − u
h‖Γ

‖uh‖Γ
, (60)

where v = ¯̄uh or v = ūh. Observe that this error measure depends on the PC discretization K
and q as well as the parameters of the domain decomposition, namely N and the overlap ¯̄h. In
all the experiments presented here, the overlap is set to be the same at each interface, that is
¯̄h ≡ X+

d − X−d+1, for d = 1, . . . , N − 1. Figure 6 reports the dependence of the normalized errors
εΓ for different discretization parameters and the two correlation functions. In these computations,
no bit-flips are introduced so we have added the subscript ? to underline the absence of soft faults.
Figure 6a, corresponding to the case L = 1, shows a decay of εΓ with q, for both the Galerkin
and the DD solutions, which is consistent with the results reported in Fig. 5a. Furthermore, the
reported errors are essentially equal for the two approaches and the two values of N reported.
Figure 6b demonstrates a similar behavior for the case L = 0.1, with a convergence of Galerkin and
DD solutions as K is increased. A minor variability with N in εΓ for the DD solution is also visible.
This variability can be attributed to the metric definition and to the (weak) variability of the DD
solution with respect to the sample sets involved in the approximation of the maps with finite ρ
(here we used ρ = 3). At any rate, the results reported demonstrate the validity and the accuracy
of the proposed DD method in the absence of bit-flips. Below, we investigate the resilience of the
DD methods when soft faults are introduced.

5.2. Analysis of resilience
We now proceed to analyze how the proposed DD solver performs under the presence of soft

faults. Recall that the domain decomposition method proceeds from distributed construction of PC
approximation for the local boundary-to-boundary maps from samples of ξ and boundary values
u±. As described in Section 4.4, soft faults are modeled by corrupting the computed samples of
the map fd,±: a sample fd,±i is corrupted with a probability Pbf , flipping at random one of the
64 bits in its binary representation. As a result, Pbf is (on average) the fraction of corrupted data
used for the resilient regression on a subdomain. In the numerical experiments presented below,
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N = 10, εΓ( ¯̄uh
?)

(a) L = 1, K = 5

1× 10−8

1× 10−7

1× 10−6

1× 10−5

0.0001

0.001

0.01

5 10 15 20

no
rm

al
iz

ed
er

ro
rs

ε Γ

stochastic dimension K

N = 5, εΓ(ūh)
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Figure 6: Error εΓ between Galerkin (ūh) or fault-free DD (¯̄uh? ) solutions and uh, using two decompositions of Ω
in N = 5 and N = 10 subdomains. (a) L = 1, K = 5, and variable q; (b) L = 0.1, q = 2 and different K. Other
parameters are ρ = 3 and ¯̄h = 0.05.

each subdomain uses an independent random sampling of ξ and u± and bit-flips are also drawn
independently. To fairly assess the resilience of the DD approach, the solution ¯̄uh is compared to
the solution ¯̄uh? that would have been obtained for the sample set of ξ and u±, but without any
bit-flips of the map values, that is for Pbf = 0. The effect of bit-flips is then directly measured by
considering the normalized distance

ε =
‖¯̄uh − ¯̄uh?‖Γ
‖¯̄uh?‖Γ

. (61)

Thus, ε measures the distance or error between the solutions of the DD method with and without
bit-flips. It should be stressed that ε is a random quantity because the two solutions ¯̄uh and ¯̄uh? are
constructed using random samples and the data of the resilient regression problem are randomly
corrupted. As a consequence, we resort to statistical measures to report the behavior of ε in our
approach. More precisely, we focus on the quantiles of the ε estimated from 1,000 independent
replicas (runs) of the DD approach.

Figure 7 reports the statistics of ε for L = 1. In these experiments the domain Ω is discretized
with 100 finite-elements and partitioned into N = 5 subdomains with an overlap of 5 elements
(¯̄h = 0.05 = 5h). The stochastic discretization uses K = 5 and q = 5 , so P = 252. Figures 7a
to 7c show the quantiles of ε as a function of the sample ratio ρ and for three bit-flip probabilities
Pbf = 0.001, 0.01 and 0.1. The plots show several quantiles, including the the median value (bold
line), as well as ε for the 1,000 replicas (labelled realizations) to illustrate the dispersion.

Focusing first on the lowest bit-flip probability Pbf = 0.001 depicted on Fig. 7a, we observe
that the median value of ε is small (about 10−10) and independent of the sample ratio ρ. However,
for ρ = 3 a large dispersion of ε is reported as reflected by the broad range of the quantiles. As
the sample ratio ρ increases, the inter-quantile ranges shrink and become essentially constant for
ρ > 7, with an estimated 99% quantile of ε asymptotically below ε = 10−8. The fact that ε does
not converge to 0 as ρ increases is primarily due to the fact that the fraction of corrupted data in
the iterative construction of the local maps is constant, so we can not expect to have ¯̄uh → ¯̄uh? . In
addition, the IRLS algorithm is stopped when the weights are not evolving significantly from an
iteration to another, leading to additional (small) differences between ¯̄uh and ¯̄uh? . Note that if the
99% quantile of ε is asymptotically low, replicas with significantly much larger ε are still infrequently
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reported. For instance, three replicas with ε > 10−7 are reported for ρ = 7; such events with large
ε become however more and more infrequent as ρ increases. This demonstrates that increasing the
sample ratio ρ enhances the resilience of the computation.

Figures 7b and 7c show the same statistics, but for higher bit-flip probabilities Pbf = 0.01 and
0.1. The global behavior of ε with ρ remains similar to the case Pbf = 0.001 reported in Fig. 7a.
Higher values of ρ are however necessary to achieve a given value of the quantiles of ε when Pbf

increases. Specifically, for Pbf = 0.01 (Fig. 7b), ρ needs to be greater than 15 to obtain converged
quantiles, whereas for Pbf = 0.1 (Fig. 7c) the 99% quantile is still not converged for ρ = 20 and a
significant fraction of replicas have large ε. This behavior is expected since Pbf = 0.1 means that
about 10% of the subdomain PDE solves are corrupted. Yet, the trend indicates that resilience
can be improved by increasing ρ further. In practice, the fault probability is expected to be much
smaller than the values considered in this study, and a reasonable value for ρ, for instance ρ = 3,
is likely to be sufficient. Thus, the proposed approach would provide resilience to soft faults with
negligible computational overhead (see the discussion in Section 4.4).
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(a) Pbf = 0.001
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(b) Pbf = 0.01
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(c) Pbf = 0.1
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(d) Failure rate

Figure 7: Analysis of the resilience for the covariance with L = 1. (a)–(c) quantiles of ε (see (61)) as a function of
the sample ratio ρ, and different bit-flip probabilities as indicated. Also shown are realizations of ε. (d) failure rate
of the resilient DD approach as a function of the the sample ratio ρ and for Pbf = 0.001, 0.01 and 0.1.

We can conclude from the previous numerical experiments that, given a fault probability, one can
select an appropriate value for ρ in order to ensure resilience with prescribed confidence level. While
quantiles are useful to characterize the expected range of ε, a better probabilistic characterization
of the resilience is needed. To this end, we consider that a particular computation is successful if
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the solution ¯̄uh satisfies
‖¯̄uh − ¯̄uh?‖Γ ≤ ‖¯̄uh? − ūh‖Γ, (62)

where ¯̄uh and ¯̄uh? use the same sample set of subdomain boundary values u± and ξ. In words, a
computation is deemed successful when the distance between ¯̄uh and the corresponding fault-free
solution, ¯̄uh? , is less or equal to the distance between ¯̄uh? and the classical Galerkin solution ūh.
When this criterion is not met, we say that the approach has failed. Due to the triangle inequality,
this criterion ensures ‖¯̄uh − ūh‖Γ ≤ 2‖¯̄uh? − ūh‖Γ, meaning that in a successful computation, the
error with respect to the Galerkin solution is at most twice as large as the inherent error between
the fault-free DD and Galerkin solutions. Using the criterion in Eq. (62), the failure rate of the
resilient DD approach can be estimated using the 1,000 replicas by extracting the percentage of
unsuccessful computations. Figure 7d shows the dependence of the failure rates on ρ, for the three
bit-flip probabilities Pbf considered. As expected, regardless of the value of Pbf , the failure rate
decreases as the sample ratio ρ increases. However, as the probability of bit-flips increases, larger
values of ρ are needed to achieve a certain failure rate. For the smallest probability Pbf = 0.001, a
failure rate of 0.6% is achieved for ρ = 5, whereas for ρ = 10 and larger no failure is reported over
the 1,000 replicas. For the intermediate case Pbf = 0.01, success for all replicas is obtained with
ρ = 20, whereas for Pbf = 0.1, a 0.4% failure rate is estimated for ρ = 20.

Again, these results illustrate that resilience can be controlled by means of the sample ratio ρ.
For more realistic values of Pbf , this ratio can be kept small enough so that resilience is obtained
for a reasonable overhead. In addition, it should be stressed that in practice, mechanisms can be
added to detect such failures (e.g. by looking at the PDE residual), and then mitigate them by
adaptively generating additional samples.

Figure 8a shows the median and several quantiles of ε, for L = 0.1, K = 16 and q = 2 (P = 153).
We show only the intermediate bit-flip probability Pbf = 0.01, as results for Pbf = 0.001 and
Pbf = 0.1 are qualitatively similar. A striking difference with the L = 1 case (see Fig. 7b) is that
realizations of ε are much more clustered around their median value. In addition, as the sample
ratio ρ increases, both the median and the quantiles of ε decrease, but the inter-quantile range does
not shrink much, in the log scale, compared to previous results. This indicates that, although the
stochastic bases have sensibly the same dimension in the two cases, the solver is less sensitive here
to bit-flips. In fact, further experiments (not shown) have highlighted that, on a given problem,
the proposed approach generally remains resilient when the stochastic dimension K increases; on
the contrary, a higher order PC expansion requires a higher sampling rate ρ. This trend can be
explained by the need for a larger sample set to properly discriminate corrupted data when the PC
order increases. Finally, the failure rate for the case L = 0.1 is estimated (using 1,000 replicas) and
contrasted to the case L = 1 in Fig. 8b. The plot confirms the higher resilience for L = 0.1: no
failure according to the criterion in (62) is reported over the 1,000 replicas and for all values of ρ
tested. Again, the use of a lower PC order is mostly responsible for this behavior.

5.3. Domain decomposition parameters
To complete the study of the resilience, we investigate the influence of the domain decomposition

parameters, namely the number of subdomains N (and inner interfaces) and their overlap ¯̄h. For
simplicity, we use subdomains with equal size and the overlap is expressed as a percentage of
subdomain length rather than an absolute value. Specifically, denoting by Ld = X+

d − X−d the
length of a subdomain, we consider the overlap percentage γ ≡ 100× ¯̄h/Ld.

To investigate the influence of γ and N on the resilience, we consider two kinds of experiments
inspired by scalability analyses in parallel computing:
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(a) L = 0.1, Pbf = 0.01.
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(b) Failure rates for L = 0.1 and L = 1, Pbf = 0.01.

Figure 8: (a): quantiles and realization of ε as a function of ρ for the case L = 0.1 and Pbf = 0.01. (b): comparison
of the failure rates of the proposed approach for L = 1 (K = 5 and q = 5) and L = 0.1 (K = 16, q = 2) with
Pbf = 0.01. The stochastic discretization uses K = 16 and q = 2. The rest of the numerical parameters are given in
the text.

Weak scaling In these experiments, the number of subdomains is increased progressively keeping
constant the number of finite-elements used for the discretization of the local problems, leading
to a workload for each subdomain that is independent of N .

Strong scaling In these experiments, the total number of finite-elements Ne used for the global
spatial discretization of Ω is kept constant when N increases.

The comparison of the resilience as N varies requires an appropriate model for the soft faults,
that is the definition of the dependence of the bit-flip probability on N . We shall assume that soft
errors occur randomly with a given time-rate and independently from one subdomain to another.
As such, the bit-flip probabilities should scale roughly with the computational load carried by
each subdomain. For the present one-dimensional setting, the computational load (and time) for
solving a local problem can be roughly estimated as linear in the number of elements used in the
spatial discretization of the local problems (assembly and tridiagonal solve). Therefore, for the
weak scaling experiments, the bit-flip probability is kept constant: Pbf = Cweak. For the strong
scaling experiments, the bit-flip probability on the contrary scales with the inverse of the number
of subdomains N ; we use Pbf = Cstrong/N .

Figure 9 reports the evolution of the failure rate as the number of subdomain increases for the
weak and strong scaling experiments. These computations are for the case of the covariance with
L = 1 with a fixed stochastic discretization K = 5, q = 5, and constant sampling ratio ρ = 5. As
previously, the failure rate is estimated from a set of 1,000 independent replicas using the criterion
in (62) to decide the success of a computation. In the following experiments, high values of Pbf are
considered without increasing the sampling rate ρ, so as to exaggerate failure effects and capture
the trends.

Figure 9a shows the dependence on N of the failure rates in the weak scaling experiments and
for 3 values of the overlapping ratio γ. In this setting, the domain was decomposed such that
Ne/N ≈ 21 regardless of the overlap. It is seen that for every γ the failure rate increases with the
number of subdomains N . In addition, as long as the failure rate is not too large, its dependence
with N is essentially linear. This trend is expected because of the constant bit-flip probability set
to Pbf = 0.01, in the weak scaling case, which implies that each map approximation involves the
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same averaged fraction of corrupted samples irrespective of N . Therefore, the probability of having
a map with significant errors increases with N as the number of maps to be reconstructed is affine
in N . This in turn leads to a larger failure rate because the condensed system (see Section 3) is
more likely to be affected by bit-flips for increasing N : the increasing probability of an erroneous
map propagates to the solution of the condensed problem. This effect was also reported and further
investigated in the deterministic case (see [14]).

A second important observation from the results reported in Fig. 9a concerns the higher failure
rate for a lower overlap ratio. This trend seems to contradict the results reported previously for the
error on the resilient map regression which was found to improve with decreasing overlapping (see
Fig. 3). However, one needs to account for the propagation of these errors on the solution of the
condensed system. In fact, it is well known that in the deterministic case the conditioning of the
condensed system degrades with decaying overlap (see [14] for a detailed illustration in presence of
bit-flips). This is also the case for the projected stochastic condensed system; it is consequently not
a surprise that even though the errors on the map expansions improve, they affect more significantly
the solution of the condensed system as γ → 0. Also, the effect of γ is more pronounced as the
number of subdomains increases.

Similar to the weak scaling, Fig. 9b reports, for different values of γ, the failure rates as function
of N in the strong scaling case. In these computations we used bit-flip probabilities Pbf = 0.05/N ,
such that the weak and strong experiments coincide for N = 5. In addition, the total number
of elements was Ne ≈ 1,000. Contrary to the weak scaling case, it is seen that the number of
subdomains does not influence the failure rate in the strong scaling experiments. Indeed, the
probability of an erroneous map decreases as N increases, preventing error amplifications as the
size of the condensed system increases (also the number of maps), with an essentially constant
failure rate as a result. This claim is also supported by the much weaker effect of the overlap ratio
on the failure rate, which is hardly noticeable in the results of Fig. 9b.
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(a) Weak scaling experiments, Pbf = 0.01
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(b) Strong scaling experiments, Pbf = 0.05/N

Figure 9: Dependency of the failure rate of the proposed method on the number of subdomains. (a): weak scaling
experiments. (b): strong scaling experiments. The two cases coincide for N = 5. The failure rates were obtained
over a total of 1,000 replicas. Details on the computational set-up are given in the text.

6. Discussion and conclusion

In this paper, we extended the work of [14] by constructing a resilient method for the solution of
uncertain elliptic problems by means of a hybrid domain decomposition technique and Polynomial
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Chaos (PC) approach. The method is designed for future exascale machines which are expected
to be prone to soft faults. It relies on parallel and independent solves of multiple deterministic
local problems, defined over subdomains, to reconstruct a PC representation of the local Dirich-
let boundary-to-boundary maps. A LAD-lasso type regression has been proposed for the map
reconstruction (see Section 4). Numerical experiments demonstrated that this regularized regres-
sion is able to properly overcome soft-fault-corrupted map values, provided that sufficiently many
observations are available (even for a fixed ratio of corrupted observations). The local maps are
then assembled to form the condensed linear system for the PC expansion of the unknown internal
boundary values. This system is solved in a fault-free environment, and the PC expansions of
internal boundary values can be subsequently used to recompute (independently) the stochastic
solution over subdomains of interest.

The proposed method is particularly suited for exascale machines because its most computa-
tionally intensive parts, namely the generation of boundary-to-boundary map observations and the
resilient PC regressions, are fully independent from a subdomain to another, enabling straight-
forward parallelism on distributed machines. This feature has to be contrasted with alternative
approaches that would consist in using a resilient deterministic solver (e.g. as proposed in [14])
to sample the stochastic solution, and subsequently rely on a non-intrusive PC projection method
(Non-Intrusive Spectral Projection, Sparse Grid Collocation method) to determine its PC expan-
sion from the samples set. Such an approach would require significantly more communication and
synchronization between computational nodes as global compatibility conditions need be enforced
for each sample of the solution – obtaining each sample would, however, require less computational
work. In our method, on the contrary, only the PC expansion coefficients of the maps need be
transferred and only once. In addition, the projected condensed system may be assembled and
solved in a distributed manner. The comparison between these approaches is part of ongoing work
and will be reported on elsewhere.

In Section 5, the proposed method has been applied and validated on simple elliptic problems.
We particularly focused on the analysis of its resilience to soft faults, which were modeled by
introducing bit-flips randomly in the samples of the boundary-to-boundary maps. For the purpose of
demonstrating resilience, unrealistically large rates of soft faults were considered, and computations
showed that the method is able to ensure resilience in these extreme situations provided that the
sampling rate is chosen large enough. In practice, future exascale machines are expected to exhibit
finite but low rate of soft faults per computational node, such that the fraction of corrupted samples
in a regression problem will be small and it can be reasonably claimed that the sampling rate will
remain essentially the same as for a computation without fault. In other words, resilience will be
achieved without significant computational overhead owing to the reformulation of the stochastic
domain decomposition method based on PC approximation of the maps.

The robustness of the method with respect to the stochastic discretization and domain de-
composition parameters was also numerically investigated. A key finding was that high-order PC
computations appears more sensitive to soft faults, requiring a higher sampling rate to ensure re-
silience. This can be explained by the regression approach which easily disregards large bit-flips
(owing to LAD) but can misinterpret small bit-flips as actual features of the maps if the number of
observations is not large enough. The method, on the contrary, seems very robust in the case of a
high number of random parameters and low PC expansion orders. The analysis also showed that,
as expected, the resilience deteriorates when the number of subdomains increases while maintaining
a constant computational load per subdomain (weak scaling case). However, assuming a fixed rate
(per CPU time) of soft faults and a computational time for the solution of the local problems that
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decays at least linearly with N , for a fixed global discretization (strong scaling case), resilience is
not degraded by increasing the number of subdomains. The latter situation is more representative
of exascale architectures where a large number of nodes will be used to solve small (independent)
elementary problems.

As mentioned in the introduction, this work is of exploratory nature, and many developments
and improvements can be explored to make the method effective on large-scale problems. An
obvious point is the extension of the approach to two and three spatial dimensions. Although con-
ceptually simple, extending the method to 2D and 3D will in practice raise several issues, in large
part due to the increased dimensionality of the boundary-to-boundary maps, and accordingly the
need for larger sample sets. However, the sampling rate ρ is not expected to change dramatically
when considering higher spatial dimensions, even in presence of soft faults. Beside the need of a
higher number of samples to construct the maps, we are currently considering alternative algo-
rithms for the resolution of the LAD-lasso regression problem, including preconditioned iterative
methods [47, 48] and reweighted coordinate descent [57, 58]. Similarly, improved solution methods
for the linear system relating the PC expansions of the unknown boundary data would be necessary
to apply the resilient approach on large scale problems and achieve scalability with the number
of subdomains in addition to the scalability with respect to the samples distribution. Immedi-
ate efforts should consider the parallel iterative resolution of this system, with in particular the
construction of dedicated preconditioners. Note that this system inheriting SPD properties of the
original problem, the recent works in [31, 32, 33] could be adapted to our purpose. As a broader ob-
jective, we are also exploring various dimension-reduction approaches (see e.g. [59, 60, 61, 62, 63])
as well as the use of local uncertainty parameterizations [? ] as potential routes to reduce both the
complexity of the maps reconstruction and the dimensionality of condensed problem. Also in view
of the implementation of the method on exascale prototypes, we are considering the treatment of
hard faults in a server-client framework (see [53, 54]) as well as more elaborate soft fault models.
Besides, we are exploring ways to detect failures (i.e. whenever our algorithm is not able to give
an accurate answer). One way of doing so consists in looking at the PDE residual, which reflects
the mismatch of the solution at the interfaces.

Finally, the extension of the method to stochastic non-linear problems can also be envisioned. In
fact, the approach would already allow us to tackle the non-linear case by simply considering maps
that are no longer linear in the local boundary data, that is constructing full expansions of f±,d
instead of imposing the affine forms in (16). Again, the proposed PC framework for the expansion
of the maps can naturally accommodate for non-linear dependences with respect to the boundary
data, but the main difficulty will be the definition of appropriate ranges and measures for the u±,d
values [14].
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AppendixA. Compatibility conditions

Let u be the unique solution of (1) and let uΓ be the vector defined as:

uΓ =
[
u(X+

1 ) u(X−2 ) u(X+
2 ) · · · u(X−N−1) u(X+

N−1) u(X−N )
]ᵀ
. (A.1)
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Let us consider the subdomain PDEs (4) with inner boundary data given by uΓ and with outer
boundary conditions u1,− = U0 and uN,+ = U1. Clearly, u = uΓ is solution of (9), or equiv-
alently (5). In other words, given the global solution u, solving the subproblems using u at the
interfaces as the inner boundary values yields solutions vd that agree with u on each subdomain,
and thus these inner boundary values naturally satisfy the compatibility equations. This shows
that the compatibility equations admit at least one solution.

Let us now show that u is the unique solution of the compatibility equations. In other words,
let us show that imposing the compatibility conditions on the inner boundary values for the sub-
problems allows to uniquely recover the global solution u. Let

û =
[
û1,+ û2,− û2,+ · · · ûN−1,− ûN−1,+ ûN,−

]ᵀ (A.2)

be a solution of the compatibility conditions (5) and let v̂d be the unique solution of
Lv = g in Ωd = (X−d , X

+
d )

v(X−d ) = ûd,−,

v(X+
d ) = ûd,+,

(A.3)

with outer boundary conditions û1,− = U0 and ûN,+ = U1. Then, û being a solution of the
compatibility conditions (5), it follows that the subdomain solutions v̂d solve the same PDE (Lv = g
with same boundary conditions) in the overlapping regions, and consequently agree in these regions:

v̂d
∣∣
[X−

d+1,X
+
d ]

= v̂d+1
∣∣
[X−

d+1,X
+
d ]
, ∀d = 1, . . . , N − 1, (A.4)

so that we can define v̂ in Ω̄ such that

v̂|Ω̄d
= v̂d

∣∣
Ω̄d
, ∀d = 1, . . . , N. (A.5)

Clearly, v̂ is solution of (1). The solution being unique, we have v̂ = u. More particularly:{
v̂(X−d ) = ûd,− = u(X−d ), ∀d = 2, . . . , N,

v̂(X+
d ) = ûd,+ = u(X+

d ), ∀d = 1, . . . , N − 1,
(A.6)

which shows that û = uΓ is the unique solution of (5). The extension to the stochastic case is
straightforward.

AppendixB. Exact linear maps

Let us define two auxiliary problems as follows:
Lv = g in Ωd

v(X−d ) = 0,

v(X+
d ) = 0,

(B.1)


Lv = 0 in Ωd

v(X−d ) = 1,

v(X+
d ) = 0.

(B.2)
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Due to the linearity of the operator L, if vd0,0 is solution of (B.1) and v̄d1,0 is solution of (B.2),
then vd0,0 + ud,−v̄d1,0 + ud,+(1− v̄d1,0) is solution of (4). This last expression actually shows that the
function vd : Ωd × R2 → R defined as

vd(x;ud,−, ud,+) = vd0,0(x) + ud,− · v̄d1,0(x) + ud,+ ·
[
1− v̄d1,0(x)

]
(B.3)

linearly maps the boundary values ud,−, ud,+ of the subproblem (4) to its solution at any x ∈ Ω̄d.
Using the following notations:

ad,− = vd0,0(X+
d−1), ad,+ = vd0,0(X−d+1), (B.4)

bd,− = v̄d1,0(X+
d−1), bd,+ = v̄d1,0(X−d+1), (B.5)

cd,− = 1− bd,−, cd,+ = 1− bd,+, (B.6)

leads to equation (7). Note that if there is no source term, i.e. g = 0 in Ωd, then vd0,0 = 0 and thus
ad,± = 0. The extension to the stochastic case is straightforward.
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