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Abstract

This paper presents a reduced model strategy for complex physical systems simulations. A classical

reduced basis is first constructed relying on Proper Orthogonal Decomposition of the system. Then,

unlike the alternative approaches, like Galerkin projection schemes for instance, an equation-free

reduced model is constructed. It consists in the determination of an explicit transformation, or

mapping, for the evolution over a coarse time-step of the projection coefficients of the system state

on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the

projection coefficients and is computed once for all in a pre-processing stage using the detailed model

equation of the system. The reduced system can then be advanced in time by successive applications

of the mapping. The CPU cost of the method lies essentially in the mapping approximation which

is performed off-line, in a parallel fashion, and only once. Subsequent application of the mapping to

perform a time-integration is carried-out at a low cost thanks to its explicit character.

Application of the method is considered for the 2-D flow around a circular cylinder. We investigate

the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and

transient stages. It is shown that the method leads to a stable and accurate time-integration for only

a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated

and the reduced basis remains relevant for the dynamics investigated.
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1 INTRODUCTION

Simulation of complex multiscale and multiphysics systems remains a challenge as the size of the discrete
problems is often an issue. Examples of complex multiscale systems can be found in many engineering
fields, such as in tribology (quantum mechanics effects), fluid mechanics (turbulent flow) and combustion
(complex reaction mechanisms involving thousands of species and reactions over multiple order of time-
scales). These systems leave us with a huge number of degrees of freedom to be considered and, even
with the growing computational power, such problems remain intractable as such. However, most of the
time, one is not interested in the fully detailed solution but rather in some macroscopic quantities, such
as integral or time-average quantities, characteristic of only the most salient and essential features of the
system, disregarding details of secondary importance. Often, these quantities of interest have a dynamics
that lives in a much lower dimensional space compared to the actual system, suggesting that they can be
predicted using a much lighter model involving a significantly lower number of degrees of freedom than
for the detailed one. This observation has raised the need for efficient model reduction procedures, which
are of utmost importance in optimization and control problems where simulations are to be performed
at a minimum cost or in a real time context.

Many different model reduction strategies have been proposed in the literature, the best of which
often being case-dependent. For instance, if the underlying difficulty of the detailed simulation lies in
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the wide range of scales, scales separation strategies that decouple phenomenas at different scales may be
appropriate. An example of scales separation treatment is the Large Eddy Simulation, where the effects
of subgrid scale flow dynamics onto large scale turbulent structures are modelled (see [20]). Similarly,
chemical systems often involve a set of reactions which kinetics may be several orders of magnitude
apart. One popular approach is then to identify slow and fast manifolds onto which the system dynamics
may be decoupled and the solution approximated (see [14]). Another reduction approach consists in
restricting the approximated solution to live in the subspace spanned by its first principal components,
i.e. generated by the first eigen-vectors of its covariance operator. This is the widely used Karhunen-
Loeve (KL) approach also termed the Proper Orthogonal Decomposition (POD) in the fluid mechanics
community.

Here, we adopt the latter type of reduction approach, where a time-space dependent variable u is
reduced in the series u(x, t) ' u(x)+

∑

m am(t)Ωm(x) with u(x) the time-average of u(x, t). In practice,
the series is truncated to a (low) finite number M of terms. From this series, one has to derive a model
for the temporal evolution of the reduced model coefficients am(t), m = 1, . . . ,M. A common procedure
consists in inserting the series into the original model equations and to require the resulting equations
residual to be orthogonal to the sub-space spanned by the M modes Ωm, in a prescribed inner product
sense. This is the Galerkin projection method. It results in a set of M coupled ODEs for the temporal
coefficients am(t) of the M modes retained in the model reduction. However, the resulting reduced
model will generally not mimic exactly the dynamics of the detailed model, as the contribution of the
disregarded modes on the dynamics is removed. In fact, although the neglected modes may have a
negligible contribution to the series expansion of u, they can have a significant impact on the dynamics:
the reduced and original systems may have different attractors. As a result, simulation of the reduced
system derived by Galerkin projection usually exhibits a slow drift of the trajectory in the phase space
from the actual attractor. The larger M, the slower the drift. Further, neglected modes often correspond
to shorter physical scale contributions to the solution and are mostly responsible for energy dissipation.
The approximation given by a truncated series thus lacks a dissipative scales and the resulting time-
integration of the reduced system can be unstable. To address this issue, different treatments have been
proposed in the literature, most of them being based on the introduction of correction terms in the reduced
model equations for the am, e.g. viscous and nonlinear damping terms (see for instance [9, 12, 21]) or
determined by calibration techniques [2, 4, 6].

An alternative approach to the Galerkin projection consists in determining the reduced model for the
coefficients evolution through a non-linear regression or a learning procedure. The reduced model form
is prescribed, possibly based on physical considerations, and the model parameters are identified using
detailed model simulations or observations of the flow. Recent works provide examples of such approach
(see for instance a neural network [16]). One of the main limitations of this type of reduced model
construction is that its robustness against conditions different from those used during the identification
process remains an essentially unresolved issue.

In this work, we instead resort to an equation-free approach where one does not look for an evo-
lution equation for the coefficients in closed form but rather tries to directly approximate the explicit
transformation of the set of reduced model coefficients am(t) as time advances. This procedure presents
the advantage to bypass the need for the a priori prescription of a particular model form. As a result,
the approximation does not take place at the design stage of the reduced model, but instead when de-
termining the transformation that relates the reduced coefficients set, after some time elapsed, to their
current values. Adopting such point of view, one expects to obtain more general and robust reduced
models able to mimic a broader range of dynamics. This is of critical importance if one wants the whole
reduction strategy to be of any general relevance. Indeed, reduced models are to be used to predict
dynamics of a system in conditions which usually differ from the one used for deriving it. As mentioned
above, this is essential in view of using the reduced models to derive control strategies for the system.
In that case, the system dynamics will be affected by the control action and the reduced model has to
preserve its predictive capability for those modified dynamics to be useful. In the present approach, this
is achieved by approximating the evolution of the reduced model coefficients over an entire domain in the
phase space, and not by a fitting procedure with some particular dynamics. In addition, the transfor-
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O. LeMâıtre & L. Mathelin Equation-free model reduction

mation (or mapping) of the reduced model coefficients is sought over a coarse time-step as a polynomial
form, in a pre-processing stage, a convenient format that makes successive applications of the mapping a
computationally inexpensive task.

The outline of the paper is as follows. In Section 2, we introduce the physical model and governing
equations for the test system used throughout the paper. The system considered is the flow around
in a 2-D circular cylinder in laminar regime. In Section 3, the size of the problem is first reduced
by considering only the most representative, in the ergodic sense, modes of the flow; these modes are
determined by means of the Proper Orthogonal Decomposition method which is described and finally
applied to the test system, yielding the reduced basis representation. The construction of the reduced
model is then considered in Section 4. The ideas of equation-free model and coarse time-integration are
first recalled to motivate the representation of the dynamics by means of an explicit transformation of
the coefficients of the system state on the reduced basis. Then, the methodology for the approximation
of the mapping by a polynomial transformation is introduced. Application of the reduced model to the
flow around the cylinder is considered in Section 5. The efficiency of the reduced model and the effect of
its different parameters on the resulting predictions are investigated for both asymptotic and transient
regimes. Finally, concluding remarks and perspectives are proposed in Section 6.

2 DETAILED FLOW MODEL

We consider the two dimensional flow around a circular cylinder, with diameter R and centered on the
origin, in an infinite domain. The inflow is uniform with velocity U∞ along the x-axis of the space. The
fluid is assumed incompressible and Newtonian with density ρ and viscosity µ. The governing equations
are then the incompressible Navier-Stokes equations. The flow regime is function of the characteristic
Reynolds number Re ≡ ρU∞R/µ. In the detailed flow model, the dimensionless Navier-Stokes equations
are time integrated in vorticity stream-function formulation. These equations are [25]:



















∂ω

∂t
+ u ·∇ω =

1

Re
∇2ω, (a)

∇2ψ = −ω, (b)
u = ∇ ∧ (ψk), (c)
ωk = ∇ ∧ u. (d)

(1)

where ω is the vorticity field, u is the velocity field, and ψ is the stream-function. We have also denoted
k the direction normal to the flow plane. Boundary conditions for the flow are no-slip velocity (u = 0)
on the cylinder surface, and undisturbed flow velocity at infinity. The equations are solved in a finite
domain Ω, bounded internally by the cylinder surface γR and externally by the circle γ∞ defined by
‖x‖ = R∞ � R (see Figure 1). Boundary conditions for ω and ψ are required for the resolution of
Eq.(1). On γ∞, we set ψ = ψ∞ where ψ∞ is the stream-function of the undisturbed flow, and we use
homogeneous Dirichlet or natural out-flow boundary conditions for ω depending on the sign of the normal
velocity:

{

ω(x) = 0, ∀x ∈ γ∞|u · n ≥ 0,
∂ω

∂t
= −u ·∇ω, ∀x ∈ γ∞|u · n < 0.

(2)

On the cylinder, values of ω and ψ (constant over the γR) are determined by means of influence matrix
techniques [5].

The computations presented in the following use R∞ = 30. The physical domain is conformally
mapped to the rectangular domain (X,Y ) ∈ [0, 2]× [0, 2π] discretized using a uniform grid consisting of
180× 180 points. Then, the detailed model possesses 1802 degrees of freedom. Classical 2nd order finite-
differences schemes are used for the spatial discretization of the operators. The conformal transformation
allows for fast (FFT-based) inversion of the Laplacian and diffusion operators. A second order time
discretization is employed to integrate the discrete problem. We classically rely on an explicit treatment
of the non-linear (convective) term and an implicit treatment of the linear (diffusion) one. Overall, the
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integration over one time-step involves the resolution of 2 Helmholtz and 2 Poisson equations. More
details about the flow solver and discretization may be found in [10].

O x

y

n

n

γ
R

Computational
domain

γ
oo

Inflow

Figure 1: Sketch of the computational domain for the flow around the cylinder. The inflow velocity is
uniform, and the computational domain has two boundaries: the cylinder surface γR and the far-field
boundary γ∞.

3 REDUCED BASIS CONSTRUCTION

We have seen that the detailed model has 1802 degrees of freedom after discretization. However the flow
dynamics leaves in a much lower dimensional space. This observation motivates the projection of the
system on a low-dimensional manifold, with dimension M � 1802, preserving the essential characteristics
of its dynamics. This requires the determination of a reduced basis for the manifold.

In this work, we considered the Proper Orthogonal Decomposition (POD or Karhunen-Loève -KL-
decomposition) [8,11], as this decomposition is the most often used in the literature. However, we stress
that the mapping strategy for the integration of the reduced model, to be introduced later, extends
immediately to any orthogonal basis. In this section, we recall the essential theory and main properties
of the POD and its practical determination which is finally applied to the flow around the cylinder.

3.1 Proper Orthogonal Decomposition

Basically, we are looking for a projection of the time-dependent vorticity field ω(x, t) onto a low dimen-
sional basis {Ω0(x), . . . ,ΩM(x)}:

ω(x, t) ≈ Ω(x, t) ≡
M

∑

m=0

am(t) Ωm(x). (3)

In this expansion, the Ωm(x) are the spatial modes of the flow, while the am(t) are time-dependent
coefficients. The objective is to construct a basis which minimizes in some sense the distance (or trun-
cation error) between the actual (ω) and projected (Ω) vorticity fields. This requires a definition of the
projection error, ε, which is classically taken as the mean-square distance:

ε2 ≡
〈[

∫∫

(ω(x, t)− Ω(x, t))
2
dx

]〉

t

, (4)

where we have denoted 〈·〉t the time-averaging operator:

〈f〉t ≡ lim
T→∞

1

T

∫ T

0

f(t) dt.
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Considerations on the convergence of ε to 0, for increasing M, provide means for the determination of the
basis. An optimal choice, with regards to the error ε, is obtained when the basis functions Ωm are the
eigen functions of the spatial correlation function of the vorticity field.

The starting point of the POD is the separation of ω(x, t) in time averaged and fluctuating components:

ω(x, t) = ω(x) + ω′(x, t), 〈ω′(x, t)〉t = 0. (5)

Let Cω(x,y) be the two-point correlation function of the fluctuation field:

Cω(x,y) ≡ 〈ω′(x) ω′(y)〉t . (6)

The spatial mode Ωm(x) and its associated non-negative, real, coefficient λm solves the following Fredholm
integral equation (or eigen problem):

∫∫

Cω(x,y) Ωm(y) dy = λm Ωm(x), (7)

and, since Cω(x,y) is real-valued and symmetric, the modes Ωm are mutually orthogonal.
The spectral coefficients am≥1(t) are finally given by

am(t) =

∫∫

(ω(x, t)− 〈ω〉t (x)) Ωm(x) dx, (8)

and are mutually orthogonal:
〈al(t) am(t)〉t = λm δlm. (9)

3.2 Practical determination of POD

The computation of the POD of ω′ using the eigenvalue problem Eq. (7) is difficult in practice because
of the size of its discretized version. Indeed, for the discretization of the flow introduced previously, the
size of the discrete modes is 1802. Of course, as the spectrum of Cω is expected to be limited, only the
first M dominant eigenvalues are to be computed, allowing for efficient computational strategy. Still,
the full correlation kernel, has to be built and stored, raising computational and memory requirement
issues. To overcome this difficulty, an alternative approach has been proposed. It takes advantage of the
bi-orthogonality of the POD to develop a construction method based on the spectral decomposition of
the time correlation kernel. This technique is referred to as the Snapshots method in the literature [22].

Let {ω′i(x) ≡ ω′(x, ti)}, i = 1, . . . , S be a finite sample set of the fluctuating field, and denote Ci,j

the S × S real matrix defined as

Ci,j =

∫∫

ω′
i
(x) ω′

j
(x) dx. (10)

The matrix Ci,j is symmetric and positive. Let us denote λ1 ≥ λ2, . . . ,≥ λM≤S be the dominant eigen
values of Ci,j with associated normalized discrete eigen-functions aT

1 (·), aT
2 (·), . . . , aT

M(·). The POD modes
of the fluctuating vorticity field can be expressed as

Ωm(x) =

S
∑

i=1

√

λm aT
m(ti) ω

′i(x), m = 1, . . . ,M. (11)

Compared to the decomposition of the spatial correlation kernel, the Snapshot method requires much less
computational and memory effort, because the number of samples S needed for an accurate determination
of the dominant modes is much lower than the number of degrees of freedom of the detailed model (1802).
Note also that for the Reynolds numbers considered in this paper, one has interest in taking advantage
of the time-periodicity of flow, taking uniformly distributed snapshots on a single period of the flow.
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3.3 Application to the flow around a cylinder

The POD decomposition of the flow around the cylinder is now performed for Re = 200.
Figure 2 shows the truncated spectrum (λm) of Ci,j for a sample set with dimension S = 256 of evenly

distributed snapshots. The fast decay of the spectrum demonstrates the fast convergence of the POD
of the vorticity field, so truncation of the POD to the first M ' 20 modes captures essentially all of the
vorticity fluctuations.
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Figure 2: POD spectrum (from 128 snapshots) for the flow around the cylinder at Re = 200.

We now focus on the spatial structure of the first 12 POD modes Ωm(x) depicted in Figure 3.
The first two modes present an alternate pattern of positive and negative vorticity values extending
far downstream of the cylinder (the flow goes from left to right); the characteristic length scale in fact
corresponds to the von Kármán street which is indeed the dominant feature of the flow. Modes 3 and 4
also appear to mainly contribute to the representation of the von Kármán street, although they contain
higher spatial frequencies (twice as high). Subsequent modes are more localized, essentially concentrated
in the immediate vicinity of the cylinder and featuring high spatial frequencies, i.e. details at smaller
scales. They account for more subtle details of the flow field.

Focusing now on the temporal evolution of the POD modes, the first coefficients ai(t) are plotted
during one period of the flow in Figure 4 (Left) for the even index modes and (Right) for the odd index
modes. Their corresponding frequency spectra are shown in Figure 5 (Left) and (Right) respectively. The
first modes, accounting for the von Kármán street, are seen to evolve in a slow, large amplitude, manner.
In fact, the first two modes exactly have the Strouhal or natural frequency of the wake (≈ 0.11) and are
in phase opposition. The following modes have decreasing energy and fundamental frequency increasing
with the mode index. It confirms that higher order modes account for short scale details of the vorticity
field and carry less and less energy as the mode index increases.

4 CONSTRUCTION OF A REDUCED MODEL

4.1 Equation-free model - coarse time-stepping

The reduced basis for the flow being constructed, we focus now on the construction of a reduced model
approaching the flow dynamics. Classically, reduced models are based on a set of evolution equations
(ordinary differential equations) for the temporal coefficients am(t). These equations aim at describing
the dynamics of the detailed model (i.e. the detailed CFD model resulting from the discretization of the
Navier-Stokes equations) in the reduced space spanned by the modes Ωm(x). Often, equations for the
dynamics in the reduced space are determined by means of Galerkin projection of the detailed model
equations on the reduced basis.
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Figure 3: Spatial structure of the first 12 POD modes of the flow field at Re = 200.

The Galerkin technique therefore provides a set of governing equations for the temporal coefficients of
the reduced model. Alternatively, one can derive a so-called equation-free methods to integrate in time
the evolution of the coefficients am(t), m <M [13, 19]. These methods are said equation free as they do
not rely on explicit equations for the integration of the am(t), but instead use the detailed model (here the
Navier-Stokes solver) to estimate their rate of change. The main assumptions supporting equation-free
methods are: first, the relevance of reduced basis to properly represent the system’s state and second,
the scale-separation between the dynamics of the reduced modes (≤ M) and the truncated ones (> M).
The scale-separation means that modes with index > M are somehow slaved to reduced model modes
(m ≤ M): the dynamics of am>M is essentially governed by a1≤m≤M. Then starting at t0 from an
arbitrary initial state, we assume that within a short time-span τ , the system reaches an equilibrium
where we have

am>M(t > t0 + τ) ≈ hm>M(a1(t), . . . , aM(t)). (12)

As a result, starting from an initial truncated state, ω(x, t) =
∑M

m=0 am(t)Ωm(x), after a short period

of time, say τ , the system reaches a state ω(x, t + τ) =
∑M

m=0 am(t + τ)Ωm(x) + ω′′(x, τ), where the
dynamics of ω′′ is governed by the reduced modes.

Then, assuming that the relaxation time τ is short compared to characteristic time-scales of the
reduced modes dynamics, one can estimate the instantaneous rates of change for the temporal coefficients,
ȧm ≡ dam/dt, by classical finite differences and use these estimates to integrate the am(t) with a coarse
time-step T longer than τ . This leads to the following equation-free integration scheme:
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Figure 4: Example of time-evolution of the first 10 POD temporal coefficients ak(t) over a period of the
flow around the cylinder. Left: even index modes; right: odd index modes.
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Figure 5: Frequency spectrum of the first 12 POD temporal coefficients ak(t) for the flow around the
cylinder at Re = 200. Left: even index modes; right: odd index modes.

1. Set the system state at time t,

ω(x, t) =

M
∑

m=0

am(t)Ωm(x). (13)

2. Run the detailed model for a small time-interval τ .

3. Project the detailed solution at t+ τ on the reduced basis: am(t+ τ).

4. Estimate rates of change ȧm at time t from am(t) and am(t+ τ).

5. Advance in time the coefficients am, from t to t+ T , with T > τ using estimates ȧm.

6. Update time, t← t+ T , and repeat from step 1.

It is remarked that the initialization step could also include a contribution of the truncated modes, e.g. by
randomly selecting am>M(t), as they are supposed to quickly reach an equilibrium state with regards to
the reduced ones. In any case, it is important to note that the initialization from any linear combinaison
of Ωm(x), yields a vorticity field that satisfy the problem boundary conditions.

Different integration techniques can be used for the time-integration of the coefficients am, ranging
from the simplest Euler to advanced Runge-Kutta schemes. However, multi-step integrations require
multiple estimates for the ȧm along the coarse time step T , and so multiple runs of the detailed model.
Computational savings in equation-free methods are achieved, by using T significanlty larger than τ . As a
result, the detailed model has to be run for a fraction of the integration time only. Results of the previous
Section have shown that there is indeed a certain time-scale separation between the first dominant modes
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and higher order modes (higher order modes have higher fundamental frequencies), suggesting that a
coarse time-stepping approach as described above is feasible.

The main limitation of the equation-free strategies is that although minimizing the use of the detailed
model, the latter is run on-line. Here, thanks to the low dimensionality of the reduced basis considered,
we propose to go one step further in the equation-free approach: instead of relying on detailed model
simulations to estimate the ȧm along the course of the dynamics (on-line), we explicitly determine the
future values of the temporal coefficients, after a prescribed time horizon T , from their current values. In
other words, denoting a(t) ∈ R

M the vector of temporal coefficients, we seek for the mapping that relates
a(t) to a(t+ T ). We write this mapping as

a(t+ T ) =MT (a(t)). (14)

Clearly, construction of such a mapping is an expensive task and an efficient approximation strategy is
needed. Below, we propose to approximate the mappingMT on a polynomial basis. The determination
of the mapping being performed off-line, subsequent integrations of the dynamics is essentially cost-free.
For instance,

a(t+ nT ) =MT (a(t+ (n− 1)T )) =MT ◦MT (a(t+ (n− 2)T )) = . . .

4.2 Polynomial approximation of the reduced system dynamics

In this paragraph, we focus on the polynomial approximation of the transformation MT : a ∈ R
M 7→

MT (a) ∈ R
M which expresses the increment in the reduced system’s state variables after a time span T .

We denote QT (a) this polynomial approximation:

QT (a) ≈MT (a). (15)

Different strategies can be thought of to construct this approximation, for instance through interpolation
or fitting procedure. Here, we seek QT minimizing a mean-square distance εQT

between QT andMT :

ε2QT
=

∫

RM

(QT (a)−MT (a))
2
wa(a)da, (16)

where wa ≥ 0 is a normalized weight function. Since the coefficients am of the reduced system have
variable amplitudes, it is convenient to rescale them by their respective eigen-value

√
λm, i.e. to express

the mapping in terms of the normalized Am, so

〈Am〉t = 0, 〈AiAj〉t = δi,j , (17)

and equation (16) can be recast as

ε2QT
=

∫

RM

(QT (A)−MT (A))
2
wA(A)dA. (18)

The weight function wA should ideally be selected as to minimize the error in the resulting dynamics of
the reduced system. In fact, we only know that for the exact dynamics, the coefficients Am(t) have a unit
variance and are uncorrelated but dependent. However, we have no information regarding the dependence
structure of the coefficients Am(t) as it is emerging from the detailed flow model. Consequently, in the
absence of further information, we shall consider for simplicity weight functions that are product form of
a unique one-dimensional weight function w(Am):

wA(A) =

M
∏

m=1

w(Am), w(A) ≥ 0,

∫

R

w(A)dA = 1. (19)

Now, let {pi}i=∞i=0 be the set of orthogonal polynomials with regard to the selected weight w,
∫

R

pi(x)pj(x)w(x)dx = ‖pi‖2wδi,j , (20)
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where pi is a polynomial with degree i, and let α = (α1 . . . αM) be an integer multi-index. We define the
multidimensional polynomials pα(A) as

pα(A) =

M
∏

m=1

pαm
(Am). (21)

The total degree of pα is denoted |α| = ∑M
m=1 αm, and the polynomial approximation of the mapping is

sought as:

QT (A) =
∑

α

(QT )α pα(A), (22)

where the (QT )α ∈ R
M are the coefficients of the polynomial approximation. In practice, the polynomial

approximation has to be truncated to a finite degree denoted No, and ε2T then defines a L2-projection error
(with regard to the inner product defined by wA) for the representation of the mapping on the truncated
space spanned by the polynomials pα, |α| ≤ No. The dimension of the polynomial approximation space
is therefore:

P + 1 =
(No + M)!

No! M!
. (23)

Moreover, the polynomials pα being orthogonal, the projection coefficients (QT )α have for expressions:

(QT )α‖pα‖2w =

∫

RM

MT (A)pα(A)wA(A)dA, (24)

where

‖pα‖2w ≡
∫

RM

p2
α(A)wA(A)dA. (25)

In other words, the determination of the approximation QT (A) amounts to the evaluation of a total of
(P + 1) M-dimensional integrals.

4.3 Practical determination of the polynomial mapping

In this paragraph, we provide details on the selection of the weight function w and numerical estimation
of the integrals to yield the projection coefficients (QT )α.

4.3.1 Selection of the weight function

In this work, we choose the weight function that is the least informative with regard to the hypothesis
on the evolutions of a coefficients A(t), i.e. w maximizes the entropy E(w) defined as

E(w) ≡ −
∫

R

w(A) logw(A)dA. (26)

A first possibility is to base the weight function selection on the available information regarding the
statistical characteristics of A(t). We know, from the POD of the flow, that A(t) has zero mean and unit
variance, such that the maximization of E(w) is constrained by the two conditions (in addition to the
normalization constraint in equation (19)):

∫

R

A w(A) dA = 0,

∫

R

A2 w(A) dA = 1, (27)

and the maximum entropy principle yields:

w(A) =
1√
2π

exp
(

−A2/2
)

. (28)

For this weight function, the pα are multi-dimensional Hermite polynomials.
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However, we would like to apply the reduced model to situations which do not correspond to the flow
dynamics analyzed for determining the POD, for instance when perturbations (or control) are applied or
during transients (see the results section below). In this case, constraints in equation (27) may not hold
anymore as the system may drift to a new asymptotic state, with different mean and variance for A(t).
In this case, it may be more relevant to simply assume that the evolution of a coefficient A(t) remains
in a finite interval, say [−B,+B]. Maximization of E(w) with w(A /∈ [−B,+B]) = 0 and normalization
constraint yields

w(A) =

{

1/2B, A ∈ [−B,+B]
0, /∈ [−B,+B]

(29)

For this assumption, the pα are multidimensional (rescaled) Legendre polynomials.

4.3.2 Computation of the projection coefficients

Determination the projection coefficients (QT )α involves the computation of M-dimensional integrals.
Since M can be significantly large depending on the number of POD modes retained in the reduced basis,
efficient numerical integration techniques are needed. Because the polynomials pα and weight functions
wA used in the following are classical ones, optimal quadrature formulas, namely Gauss quadratures [1],
can be used. However, full tensorization of 1-D Gauss quadrature formulas suffers from the curse of
dimensionality as M increases, such that the number of quadrature points, and so the number of detailed
model resolutions, quickly becomes prohibitive. To maintain an acceptable number of simulations, we
instead rely on sparse tensorization [23] to construct the M-dimensional quadrature formula. Specifically,
integrals in equation (24) are first transformed by appropriate change of variables to integrals over the
unit hypercube [0, 1]M:

(QT )α =
1

‖pα‖2w

∫

[0,1]M
fα(ξ1, . . . , ξM)dξ1 . . .dξM. (30)

With this change of integration variables, the integral is approximated by the cubature formula

∫

[0,1]M
fα(ξ1, . . . , ξM)dξ1 . . . dξM ≈

Nq
∑

q=1

fα(ξ
(q)
1 , . . . , ξ

(q)
M )w̃(q), (31)

where Nq, the number of cubature points, depends on the number of points in the one-dimensional
formulas used for the construction and the requested accuracy for the integration [17]. Here, we have

used the source code from [18] to generate the cubature points ξ(q) = (ξ
(q)
1 . . . ξ

(q)
M ) and weights w̃(q) from

embedded one-dimensional Féjèr quadrature formulas, which results in a number of cubature points

Nq = O(2llM−1), (32)

where l is the polynomial degree of exactness for the cubature in equation (31). Clearly, the evolution of
the number of cubature points with l and M shows that the polynomial approximation of the mapping
MT will be feasible only for moderate M and l, i.e. if the mapping can be approximated using a low
order polynomial expansion, thus limiting de facto the time horizon T .

The establishment of the equation free reduced model can be summarized as follow:

1- Construction of the reduced basis (see Section 3): off-line

2- Construction of the polynomial mapping: off-line

For each of the Nq cubature points:

a) Integrate the detailed model between t = 0 and t = T , with the initial condition as in Eq.(13)

with the values of the temporal coefficients a
(q)
m (t = 0) corresponding to the cubature points.

b) Projection of ω(x, t = T ) on the reduced basis to obtain the temporal coefficients a
(q)
m (t = T ).

c) Add weighted contribution of a
(q)
m (t = T ) to QT .
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3- Initialize the temporal coefficients of the flow at t = 0

4- While t < nT , repeat

a) Apply a(t+ T ) = QT (a(t)): in-line

b) t← t+ T

5- End of program

Clearly, the most time consuming part of the method is step 2, which is seen to be directly related to
the number of cubature points (Nq) and coarse time-step T . We have not attemped to optimize this part
of the method, but for large M, the use of more advanced techniques could be mandatory (e.g. adaptive
sparce grid cubature or interpolation formulas, Quasi Monte Carlo integration, . . . ). Note, again, that
these computations are performed off-line and are embarrassingly straightforward to parallelize.

5 APPLICATION

The proposed model construction is applied to the flow around the cylinder at Re = 200 and the POD basis
introduced previously. The polynomial approximation of the mapping is performed at a preprocessing
stage. Unless specified, the model involves the first 12 POD modes, the uniform weight function defined
in equation (29) with B = 2.8 and a coarse time-step T = 0.2 unit of time (roughly 1/45 of the natural
period of the flow). This value of T corresponds to a few tens of detailed model time steps ∆t. For
the polynomial approximation of the mapping, unless explicitly stated, we set No = 5 with a cubature
formula having sufficient degree of accuracy, leading to Nq ∼ 47, 000 cubature points. For each of the
cubature points, we then integrate the detailed model for a few tens of detailed time-steps. This fairly
large number of simulations can however be straightforwardly performed in parallel and is done only once
in a pre-processing stage.

5.1 Mapping

An illustration of the mapping (restricted to the plane Am≥3 = 0 for convenience) is plotted in the left
plot of Figure 6 as a 2-D vector field. Each vector corresponds to the displacement of the A1 and A2

coefficients over the coarse time-step, thus defining a vector in the (A1, A2)-plane. The system’s limit-
cycle (asymptotic trajectory, see below) for the detailed model is also plotted for comparison. Although
difficult to appreciate from the figure, the flow is divergent inside the limit cycle while it is convergent
in the outer region, leading to trajectories for the mapping integration that tends to the detailed model
limit-cycle as discussed below. The right plot in Figure 6 shows the approximation error using QT instead
of the actual mappingMT , in the Am≥3 = 0-plane. Plotted is the local error εQ defined as:

E2
Q(A) ≡ ‖MT (A)−QT (A)‖2

‖MT (A)‖2 . (33)

While the plots in Figure 6 are restricted to a 2-D plane, the error EQ is seen to be essentially uniform
over the whole domain, as one may have anticipated from using the uniform weight function. This fact
directly implies that the present mapping strategy is not restricted to the immediate vicinity of the
natural cycle limit but extends over the whole domain of the reduced model investigated, namely here,
Am ∈ [−B,+B].

5.2 Asymptotic dynamics

The accuracy of the reduced model dynamics is first assessed. To this end, the trajectory of the reduced
system, obtained by successive applications of the polynomial mapping is compared with the projection
on the reduced basis of the detailed model solution (i.e. by directly solving the full set of Navier-Stokes
equations as discussed in Section 2).
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Figure 6: Left: view of the mapping in the Am≥3 = 0 plane. Right: corresponding polynomial approx-
imation error EQ. The in-plane limit-cycle of the detailed model is also plotted for comparison (thick
solid line). M = 12, T = 0.2, No = 5.

5.2.1 Trajectory of the reduced system

The flow is initialized by setting all POD coefficients to zero, except A0 which is set to 1: i.e. the initial
state corresponds to the mean flow. The polynomial mapping is then iteratively applied to obtain a
succession of coordinates corresponding to the phase portraits reported in Figure 7 for the first, most
energetic, modes. After each time-horizon, the state of the model is represented as a dot in the phase
space (here we only plot the first four phase portraits). It is seen that the system undergoes a transient
dynamics (to be discussed later in Section 5.3) and later reaches an asymptotic state. The asymptotic
trajectory defines a limit-cycle showing that the mapping can destabilize the flow from its initial mean
state and drifts to its unsteady attractor. The reduced model limit-cycle is seen to compare well with the
detailed model one. Specifically, the distance between the detailed and reduced model phase portraits is
however increasing with the mode index, denoting an effect of the basis truncation, but the agreement
for the first modes is excellent.

This good agreement between the detailed model and the polynomial mapping limit-cycles shows that
the flow obtained through the reduced model and the mapping iterations obeys a dynamics close to the
detailed one. In fact, not only the asymptotic limit cycle is in close agreement, but the frequency spectra
of the first modes also compare favorably to the spectra from the detailed model (not shown).

It is to be noted that the asymptotic state obtained with the present reduced model is stable: no
drift is reported after as many as thousands of vortex shedding periods. This is due to the fact that
the mapping expresses the evolution of the POD coefficients over a coarse time-step as predicted by the
detailed model. Consequently, no approximation is made during the path of the coefficients within a coarse
time-step T , and the truncation errors due to both the finite number of modes in the reduced basis and
the polynomial approximation of the mapping do not build up as time advances; instead the trajectory
is continuously driven by the mapping toward the asymptotic limit cycle of the detailed model, provided
that the polynomial mapping error remains low compared to the contraction rate of the dynamics toward
the detailed flow attractor. In fact, the only source of error in the integration scheme comes with the
initialization of the flow with its M -th order representation at the start of the coarse time-step. We have
verified that the initialization with, in addition to the M -th order truncation, some non-zero modes of
indexes > M (randomly set), does not affect the mapping provided that T is large enough and the energy
of the added modes is not too large, as expected from the scale separation assumption.

The resulting stable model is in contrast with the Galerkin techniques where the projection of the
system equations onto the reduced model modes suffer from truncations errors, which drift the solution
off with time. This is a major problem and several techniques have been proposed to improve the
method, for instance using spectral viscosities [21], using a non-linear Galerkin projection [12], a norm
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Figure 7: Phase portraits: A2 to A5 as functions of A1 from the initial state Am(t = 0) = δm,0 for the
polynomial mapping (dots). The trajectory of the reduced model (dots) is an expanding spiral from the
origin toward the asymptotic attractor. Also plotted for comparison are the asymptotic phase portraits
of the detailed model (solid lines). M = 12, T = 0.2, No = 5.

in the Sobolev space H1 to account for both the basis functions and the derivatives of the snapshots
(see [9]) or introducing additional terms in the Galerkin formulation, calibrated through an optimization
procedure [2, 4, 6]. In contrast to these, the equation-free strategy is intrinsically stable and does not
require special treatments to ensure the stability of the trajectory.

5.2.2 Influence of the polynomial mapping parameters

The relevance and impact of the selected weight function wA is now investigated. The comparison is
made on the asymptotic trajectories for the polynomial mappings determined using the constant weight
function in equation (29) and the Gaussian weight function in equation (28). The corresponding phase-
portraits are reported Figure 8, together with the detailed model reference. It is clear that the agreement
with the detailed model is good for both weight functions, and no clear advantage is seen in terms
of accuracy. The selection of the weight functions is thus not a critical one, at least as long as the
order No for the polynomials approximation is high enough and provided that the trajectory remains in
the projection bounds (Am(t) ∈ [−B,+B]) for the constant weight function. From this perspective, the
Gaussian weight function may appear more appropriate when one can not bound the temporal coefficients
evolution a priori.

The mapping process basically consists in a polynomial approximation of the evolution of the POD
modes coefficients over a coarse time-step T , so the accuracy of the approximation is directly related to
the polynomial order No. The influence of No is investigated in Figure 9, where the phase portrait A4

and A12 as a function of A1 are plotted for different polynomial orders. The exact phase portrait given
by the detailed model is also plotted for comparison. Note that for all No, the same cubature formula
(l = 5) was used for the evaluation of the multidimensional integrals involved in the determination of
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Figure 8: Comparison of the phase portraits, A2(t) to A5(t) as functions of A1(t), using constant (equa-
tion (29)) and Gaussian (equation (28)) weight functions. Also reported for comparison are the phase
portraits for the detailed model (labelled DNS). M = 12, T = 0.2 and No = 5.

QT . As the polynomial order increases, the agreement is seen to improve as the evolution of the POD
coefficient over the coarse time step is better approximated. In fact, the selection of an appropriate
polynomial order No essentially depends on the characteristic time-scales of the modes in the reduced
basis: when including in the reduced basis modes with higher index (faster time scales), the mapping to
be approximated becomes more and more complex, thus requiring higher No for a fixed coarse time-step
T . This is clearly demonstrated by comparing the phase portraits for A4 (left) and A12 (right): for
No = 3, the approximation of the exact phase portrait is fairly good for A4 while rather poor for A12.
Further increasing the polynomial order hardly improves the approximation for A4 while has a strong
effect for A12.

As just discussed above, for a given coarse time-step T , the higher the order No, the better the
approximation ofMT by QT . In a dual way, for a fixed polynomial order No, a lower T leads to smaller
and smoother variations of the POD coefficients over a coarse time-step, and thus more easily accountable
maps with a low polynomial order: one can expect the polynomial approximation error to decrease as T
decreases. On the other hand, the reduced simulation is, by essence, a truncated representation of the flow
and only a limited number of modes is accounted for when initializing the detailed model. For short coarse
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Figure 9: Asymptotic phase portraits of A4 (left) and A12 (right) as a function of A1 for different
polynomial approximation order No of the mapping. T = 0.2.

time-steps, the truncated modes have not enough time to fully develop in the detailed model simulation
step, leading to mappings MT that are less and less representative of the actual system’s dynamics as
T decreases. One finally ends up with two opposite trends: a small T allows for accurate polynomial
approximation of the mapping but introduces a sort of cut-off frequency in the flow dynamics, while a
large T improves the reduced system dynamics but rises the problem of the polynomial approximation
accuracy. It thus exists an optimum balancing those two phenomena and achieving the best reduced
model. This has been verified in our numerical experiments, using a fixed polynomial order No = 5 and
variable coarse time-step T : the optimum was found for T ' 0.3, the error on the dynamics increasing as
T is further increased and the method eventually becomes unstable for T > 0.8 (not shown): increasing
No would be necessary to ensure the stability. As a closing remark on the selection of the polynomial
mapping parameters, we point out that the computational cost of the mapping determination increases
linearly with T and exponentially with No, while the application of the mapping is essentially inexpensive;
therefore, it appears that T should be taken large enough to allow for the emergence of truncated modes
influence in the detailed model step but not larger than that.

5.2.3 Convergence with the number of modes M

The impact of the dimension of the reduced basis on the reduced model dynamics is now considered. To
this end, we define EΩ as:

E2
Ω ≡

〈

∫

(ω′ − Ω′)
2
dx

∫

ω′2 dx

〉

t

, (34)

where the ′ symbol denotes the fluctuating part of a quantity.
Here the time average is restricted to the asymptotic state, the transient stage being disregarded.

The decay of the error in the dynamics, as measured by EΩ, when M is increased is shown in Figure 10.
For low M, the detailed dynamics is poorly captured as the dimension of the parameters space is too
small to fully develop the attractor; this results in a large error EΩ > 1. Indeed, the chosen embedding
dimension of the system attractor should be large enough so that its dynamics is deterministic, i.e. that
there exists a bijective operator between the time and the state vector over a period of the reduced
system. In other words, the trajectory of the system should never cross itself. System theory shows
that a minimum subspace dimension exists so that the system projection onto that subspace obeys this
condition (see [3, 7, 24]). For larger M, the error decreases as more and more components are introduced
in the basis.
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Figure 10: Error EΩ (see equation (34)) as a function of the reduced basis dimension. T = 0.15.

5.3 Transient dynamics

So far, results have been presented for the asymptotic state of a fully developed Kármán vortex street
behind the cylinder which has served for the construction of the reduced basis. It is also of interest to focus
onto the dynamics of the asymptotic state and to investigate the range of validity of the reduced model.
This is typical of what happens when a control is applied to the flow which then transits towards a new
attractor. Being able to reproduce these driven dynamics are then of critical importance. In contrast
with most other methods (regression-based), this is intrinsically achieved in the present equation-free
technique which does not rely on approximating the system along its attractor but rather on a whole
domain of the state space, as prescribed by the weight function.

Starting from all POD coefficients Am>0 set to zero (time-averaged field), the temporal developments
of the flow for the detailed model and the mapping iterations are compared in Figure 11 as the time
evolution of the amplitudes of coefficients A1 and A3. The instantaneous amplitudes of the coefficients
are computed by means of Hilbert’s transform. Starting from zero, the amplitude of A1 and A3 then
grow and finally reach comparable asymptotic values. However, while the flow does eventually converge to
the correct asymptotic attractor, as extensively discussed above, the reduced model (M = 10) leads to a
significantly delayed development of the flow compared to the detailed model. This delayed destabilization
of the reduced flow can be explained by the low dimensionality of the reduced basis: the initial growth
phase is driven by the amplification of small perturbations of the unstable mean flow including small and
localized flow structures which are poorly accounted for in the reduced model. As a result, the projection
of the flow on the reduced basis every coarse time-steps T cancels (part of) these instability modes thus
affecting their growth rates, and making the energy growth in the large scales to be delayed in the reduced
model. In fact, in the transient stage where the actual wake is only partially developed, the reduced basis
representation is poor as it has been constructed from snapshots of a fully developed wake. However,
once a minimal amount of energy is carried by the large scale modes, the flow time scale is driven by
large structures and the growth rate of low mode indexes is seen to be similar for both the detailed and
reduced models. This experiment shows that, in addition to an appropriate equation-free strategy, it is
also necessary to consider robust reduced bases that can accurately account for a wide range of system
conditions. This is particularly crucial in view of using the reduced model for system control. The issue
of deriving a robust reduced basis and application of the equation-free reduced model to control problems
was considered in [15].
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Figure 11: Instantaneous amplitude of A1(t) (left) and A3(t) (right) for the reduced model (dashed line)
and detailed model (solid line). T = 0.2, No = 5, M = 10.

6 CONCLUSION

This paper presents a computationally efficient technique for model reduction of complex physical systems.
The reduced model is established in two stages. First, a low dimensional reduced basis is constructed by a
suitable projection of the system state involving a large number of degree of freedom. The reduced basis
is meant as to preserve the essential features of the original system. Different strategies can be used to
this task, and we have selected here the classical Proper Orthogonal Decomposition (or Karhunen-Loève
expansion), which is performed in practice as using the snapshots method. Second, a reduced model
giving the time-evolutions of the system’s projection coefficients on the reduced basis is constructed. The
main characteristic of the proposed reduced model is its equation-free character: the time-integration
does not involve the resolution of a set of differential equations, as for classical methods, but instead
rely on a explicit transformation (a mapping) of the projection coefficients during a coarse integration
time-step. The mapping is computed once for all in a pre-processing stage using the detailed model,
and stored as an approximated polynomial transformation for subsequent use. The procedure results
in an efficient reduced model, where the time-integration of the reduced model amounts to successive
application of a low cost polynomial transformation.

The effectiveness of the proposed reduced model is demonstrated for the problem of a two-dimensional
flow around a circular cylinder at Re = 200. Prediction of the reduced model are compared with the
detailed model which involves the resolution of a large set of coupled set of equations involving 180× 180
degrees of freedom. In contrast, a typical dimension for the reduced model is M = 12. It is shown that
the reduced model can accurately represent the asymptotic dynamics of the detailed model used for its
construction. In particular, the reduced model does not suffer from the unstable character of Galerkin-
based reduced models which drift in time due to unresolved small scales. Here, provided that the mapping
is appropriately constructed, the simulation is intrinsically stable and the error resulting from the model
reduction remains constant in time, even after thousands of vortex shedding periods. Further, in contrast
with other regression-based methods employed to determine the reduced model equations coefficients,
the present approach establishes a reduced model valid over a prescribed domain of the space spanned
by the reduced basis.

Therefore, the validity of the model is not restricted to dynamics in the immediate vicinity of the
system asymptotic state, provided that the reduced basis remains valid to account for different dynamics.
This robustness is of particular interest in view of controlling the system as its trajectory in the phase
space would then departs from the one the coefficients regression was determined from. The whole
reduction-control strategy was investigated in [15] to demonstrate the suitability of the present method
for the control of complex systems.
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In terms of computational complexity, the mapping contruction in the current implementation requires
multiple off-line time-intregration of the detailed model to evaluate M dimensional integrals. This is
clearly is a limitation as M increases due to the curse of dimensionality of the integration rules used. For
better efficiency and problems with larger M , one should consider more advanced integration techniques
such as adpated sparce grid cubature rules.
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