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Abstract

In this paper. we present a computer model based on an clastic string network representation
for sail deformation. The equilibrium equation for this model is written in the form of a mini-
mization problem. The latter is non-convex because of the unilateral-stress behaviour of strings.
The method of deconvexification has to be used in order to obtain an equivalent problem which
is casier to solve. The resulting model is applied to sail cut design problems: bi- and tri-radial cut
plans are compared, as well as variations of the clasticity modulus in warp and weft directions.
The results are found to be very similar to what is usually observed on actual sail boats.

1. Introduction

The main property of soft sails is probably their adjustability to very different wind
conditions. They are the only asymmetrical airfoil which can be used with the same
efficiency for positive as well as negative angles of incidence. These properties result
from the mechanical characteristics of the fabrics used in sail fabrication. Beside this,
from a mechanical point of view, fabrics are anisotropic and offer poor resistance to
shear. This last point is usually improved by coating sailcloth with resin filler.

As a consequence, a computer model has to include all the main aspect of actual
sail behaviour in order to be useful for sail makers. The usual models are based on the
elastic membrane, or shell. large deformation theories. These models take into account
two of the main characteristics of sails:

o The thickness is negligible compared to the characteristic length of the sail whereas
the curvature radius remains large. Thus, the motion of the sail can be described by
equations written on the mean surface.
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e Due to their flexibility, the sail undergoes large displacements which cannot be
described by means of a linear theory and the equations have to be written on the
actual sail mean surface.

Such models can be found, for instance. in the pioneering works of Mutin {3], and
Jackson [1]. Although all these methods are able to provide realistic results, it must be
pointed out that CPU time as well as numerical difficulties introduce severe limitations
when considering industrial applications: these methods are generally considered as
academic.

The main feature of sail problems is that the sail can undergo large deformations
without any significant internal strains. This is the result of fabric flexibility and the
corresponding equilibrium shape is expected to be as close as possible to the sail
maker's guess. Moreover, it is well known that sail never exactly fits that shape. This
is due, for a part, to the tuning of the sail by the crew, and for another part, to the
non-uniform aerodynamic load, which eventually will be supported by the sail.

The model which is proposed in this paper has been designed in order to account
for these phenomena. It is based on a representation of the sail by a network of stress
unilateral strings. The constitutive strings are as much as possible representative of the
warp-and-weft direction. This will be particularly important in the discrete model since
the mesh will have to satisfy this condition. The string model is presented in Section 3
and its extension to the string network model and the complete theory is briefly de-
scribed in Section 4. Then, the decomposition of the sail into a finite-element mesh,
based on the fabric panelling of actual sail is considered (Section 5). In Section 6,
numerical results obtained with the present model are presented and commented on.
Various cases are considered, depending on the plan cut of the sail and fabric orienta-
tion. The solutions show a realistic behaviour of the model compared to observations
of real sails, and show its capability to deal with sail cut analysis.

2. Approximation of a fabric by means of a string network

Common fabrics (yarn for example) used for sails are obtained by weaving two
families of strings, the weft and the warp. The resulting string network is then coated
in order to improve its mechanical behaviour to bias loads (weft has usually the higher
elasticity modulus direction while warp has the lower. These two moduli, as well as
the coating, combine to provide the bias elasticity modulus (45°). Thus, the fabric
is anisotropic and its mechanical characteristics usually provided by the factories are
diagrams for loads and elongations, for different loading directions. An example of
such a diagram is provided in Fig. 1.

Note that sail makers, when dealing with sail cut, usually attempt to align as much as
possible the weft direction with the field of internal stresses, in order to minimize elastic
deformations. The bias tensions are assumed to remain small and can be neglected. The
conception basis simply relies on the analysis of strains, in the weft-and-warp directions.
Thus, a string’s network model is obtained by assuming that the tensions result from
strains in individual strings.
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Fig. 1. Elongation versus load for weft, warp and bias loading directions.

3. The string model

A string is a one-dimensional structural object: its configuration is given by an
application associating a natural curvilinear coordinate s € 4 to a vector X(s) € A3,
the position of the particle s. The deformation of the string is characterized by the
unitary strains

es)y=[X,| -1, (1
X . = dX/ds. (2)

The characteristic length of the string’s section is supposed to be very small when
compared to its total length. If, in addition, we limit our theory to the practical situation
where the radii of curvature of the mean line remain large, flexion stresses can be
neglected. Under these assumptions, an ideally flexible behaviour can be assumed: the
mechanical behaviour of the string is entirely characterized by, on the one hand, its
internal forces given by the field of tensions T(s) (the tension is 7(s) = || T(s)||) and,
on the other hand, its modulus of elasticity K(s). The local strain &(s) and the tension
T(s) are connected by the relations:

T =K:. (3)
X,
T=7T—"". (4)
X
Moreover, strings have a stress unilateral property: compression cannot be physically
realized. Under a compressive force, the mechanical reaction includes a modification of
its shape such that compression vanishes: one usually says that a string cannot transmit
compressive stresses since it would immediately buckle. This property is illustrated in
Fig. 2 and is later referred to as “unilateral” behaviour.
The unilateral behaviour implies that all the internal forces are traction forces:

T=20 & 20 < |X, =L (5)
~~ ~~
Eg. (3) Eq. (2)

So, the tension 7 and, equivalently, the strain ¢ are both non-negative: the unilateral
behaviour appears as a restriction to the configurations of the string. In fact, let us
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Fig. 2. Mlustration of the unilateral behaviour of a string.
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Fig. 3. Relation between tension and strain.

consider that the following usual boundary conditions are given: the position of the
ends, denoted by Xy and X;. Then the set of the admissible configurations of the
string reads as

' ={X|Xs=0)=Xy. X(s=L)=X,. || X,|=1}. (6)

Due to Eq. (5), the set of admissible displacements is non-convex: this property follows
from the relation between tension and strain illustrated in Fig. 3.

4. The string network model
4.1. Definition of the internal stresses

We consider a piece of fabric described by a set of natural curvilinear coordinates,
the first one aligned with the weft direction is denoted ay, and the second with the
warp: ay. The shape is completely defined by the knowledge of a mapping which
associates @ = (ay.a, ) € Q to a position X(a) € #° (see Fig. 4).
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Fig. 5. Shear stresses are neglected.

The extension of the string’s model to the string’s network one is straightforward:
we introduce elongations and tensions relative to weft-and-warp directions by

= X = 1. (7)
T = K, (8)
T; =2 0. 9)
T - TH;\;—‘ (10)

where / = f.w. The elastic potential is given by
W(X)= / / (Kper™ ~ Kyt ) da ()
J Ja

As previously remarked, this expression does not involve energy due to bending and
bias strains, which are neglected in this model (see Fig. 5).

4.2, Equilibriunm of a network of strings
Let us consider that the fabric is submitted to a given external field of forces with

surface density f(a) € #° (this is the situation when iterative calculations of aerody-
namic forces/sail’s equilibrium are considered. for instance). Then the equilibrium of
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Fig. 6. Definition of the normal to the boundary.

the network reads as
T/, + T, +f=0 vYacQ (12)

Let us denote by ¢ the boundary of Q. Let I be the part of ¢Q which is fixed and
I' the edges allowed to move. Thus, the boundary conditions are:

X(a) = X¢(a), Yac Iy, (13)
\'fo + \'wTw = h, Va € f, (14)
where v; = v- T;/T; and v is the normal unit to I and tangent to the sail’s mean

surface (see Fig. 6) and £ is an external force applied on I'.
We consider

V={y: Q=4 (15)
Vo={vecV]v=0on Iy}, (16)

where V' is the set of displacements y defined on 2, and ¥; is its reduction to the
displacements v, null on Iy. The set of admissible configurations is

=X X=X+ V. || X =1 VacQ i=1fw} (17)
Analogously to the one-dimensional model, ¥ " is a non-convex set.
4.3. Functional Resolution

Let us introduce:

U(T,[ul,uz])://(Tf-ul+Tw-u2)da, (18)
JQ

H([c,f],u)=/r'c-ud1'+/ ‘f~uda.

Q
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The configuration of equilibrium can be characterized by the following variational
formulation associated to Eq. (12). analogous to the principle of virtual work.

Problem 1. X 7. U(T(X).[tr.vy])+H(F.h,v) =0, Yv/re v, (19)

Eq. (19) means that, for X solution and any admissible displacement field v: the
virtual work of internal stresses (U) is equal to the virtual work of external loads (/).
Problem 1 is a non-convex variational problem which can be functionally studied by
the method of convexification, which provides an associated convex problem for the
determination of the field of tensions T = T; + T, which is uniquely determined.
This second problem is obtained by replacing ¢; by ¢! in (5) and (6) with &* defined
as

e =X, -1 [IX.i=0

el =0, || X <1
We denote by U* the form analogous to U obtained by considering ¢* instead of ¢ in
the definition of T. Then the convexified problem reads as

Problem 2. X € Xy + V., UXN(T(X).[v.v])+ H([F,h],v) =0, Yejvoe Vy. (20)

As remarked, the resolution of Problem 2 gives the field of tension solution of
Problem 1. It can be shown (see Ref. [2]) that if & and &, are strictly positive ev-
erywhere, then the two problems are equivalent and uniqueness of the solution holds.
If zero-tension parts exist anywhere, the problems are equivalent only for the tensions,
which are uniquely determined: different configurations lead to the same field of ten-
sions and multiple configurations of equilibrium do exist. We assume thereafter that
the loads applied to a sail are such that ||X ;][> | everywhere so that Problems 1 and
2 are equivalent: they lead to the same solution for the deformations as well as for the
tensions.

5. Application to sails
5.1. Sail panelling

The starting point of a sail concept is the definition of the shape that the sailmaker
wants to obtain. This shape is generally a surface of #°. This target is then approxi-
mated by panelling the surface into a set of small fabric pieces which are then patched
together. The resulting structure is thus the juxtaposition of different panels of fabric
on which we can use the string network model. The complete configuration is then
defined as an atlas of maps, for every panel (see Fig. 7).

We have to deal with a variational problem which is the sum of elementary Problems
2 for every panel constituting the sail. The continuity of X and v over the whole sail
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Fig. 7. Panel decomposition and map definition.
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Fig. 8. Decomposition of the panel by triangular finite elements.

provides an additional constraint. The boundary condition in (14) states that the tension
has to be continuous (7; -, = T, - ¢; with / and j two neighbouring panels) as well.

5.2, Finite-element approximation

On cvery panel, Problem 2 is approached using a standard finite-element method [4].
Each panel is divided into triangular elements, two sides of which are aligned with the
local weft-and-warp directions as illustrated in Fig. 8.

Denoting by I the vector of the discrete ndd! degrees of freedom of the structure,
these finite-element approximations lead to a system of ndd/ non-linear equations having

the form

L(E)=0. (21

An iterative procedure is used to solve this set of equations: from a given configuration
Z° the solution is found out by the series

PL(EXy = R, (22)

1]

U 2R LR, (23)
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where o is an under-relaxation coefficient. The computations are stopped when the
iteration number £ is large enough or |[R*|| < 3R with 3R a given precision, small
enough to ensure a correct convergence.

6. Numerical results
6.1. Definition of a reference case

We now present numerical results. In order to have an casy analysis of the results,
all the computations have been performed with the same initial shape. It has been
defined by an analytical mapping: z = s(x. ). As a consequence, initial shapes arc
expected to be independent of the mesh used.

For the same reason, the external loads have been defined as an analytical function
df =df(x.v)z from the initial shape and then assumed to remain constant during the
deformation process. The sail is fixed by the luff, the head and the tack in the plane
z=0. it is 3.8 m high with a 2m long foot. The initial shape is plotted in Fig. 9, and
the magnitude of the cxternal loads in Fig. 10.

For the time being. the fabric has been assumed to have a constant modulus of
elasticity for warp-and-weft, equal to K = 1 x 10°. The surface of the sail must then
be approximated by the finite-elements constitutive of the mesh. As mentioned in the
introduction, this is a particular problem since the anisotropic behaviour of sailcloth has
to be correctly approximated by the mesh through the string network scheme. In other
words, not only the numerical results but the exact solution will be strongly related to
the grid definition. This grid has been built according to the following principle: first
of all. the sail is divided into blocks which are provided by the sail cut and defined
by the sailmaker. Then, for each block. two families of curves have been defined and
provide a grid with square cells. These families are aligned as closely as possible
with the warp-and-wett directions in order to obtain a string network which is a good

Fig. 9. Initial shape (natural configuration). Grey level correspond to different values of = = s(x, v).
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Fig. 10. Magnitude of external loads. Grey level correspond to different values of external loads d f(x. v).

Fig. 11. Equilibrium configuration for 82 elements - grey scale for the value of z(x, ) of equilibrium shape
and mesh.

approximation of the warp-and-weft network of the actual sail. A triangular mesh is
then obtained by dividing each cell into two triangles.

6.2. Contergence of the solution with mesh refinement

We consider a tri-radial cut for the sail, the weft directions are basically rays issuing
from the sail corners and constitute angular sectors dividing the sail into three blocks
(see mesh in Fig. 13). Computations were performed for different refinements of the
mesh using, respectively, 82, 170 and 348 clements for the same tri-radial cut. The
corresponding equilibrium configurations are plotted in Figs. 11-13.

From these numerical tests, we can point out that the model does not require too
many elements to provide a good estimation of the maximum value of the hollow. In
fact, there is no significant variation of the computed hollow magnitude as well as for
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Fig. 12. Equilibrium configuration for 170 ¢lements  grey scale for the value of z(x. ) of equilibrium shape
and mesh.

Fig. 13. Equilibrium configuration for 348 elements ~ grey scale for the value of z(x. v) of equilibrium shape
and mesh.

its distribution on the surface when using a finer mesh with 348 elements, instead of
170. Thus, the 170 elements mesh is used hereafter. Moreover, we can observe that
the displacements at the centre of the sail from the initial shape are important, even if
the strains remain small. This fact is due to displacements of the free edges that lead
to a finite displacement at the centre. This illustrates the capability of the model to
deal naturally with large displacement problems.

6.3. The effect of fubric orientation

The effect of the fabric anisotropy has also been investigated. We consider two
different values for the modulus of elasticity for the warp (K, ) and weft (K ) directions.
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!0.214 lO.ZSS

0.000 0.000
Fig. 14. Equilibrium configurations for oriented fabric case 1 (left) and case 2 (night) - grey scale for the
values of z(x. 1) of equilibrium geometries and meshes.

Fig. 15. Projection ot hollow in the plane = = 0 for casc | (left) and case 2 (nght). grey levels correspond

to different values of hollow.

We set Ky at 1 x 107 and K, at 2 x 10° and the computation is performed for two
cases:
Case I: The fabric is well orientated so that the weft directions are aligned with the tri-
radial panelling. It is expected that the weft is roughly aligned with the strain direction
almost everywhere in that case.
Cuse 2: The warp-and-weft direction are swapped, or more simply, K, and K; values
are exchanged.

The results are presented in Figs. 14 and 15. They show that for case 1, the weft
is actually aligned with the internal tensions and small variations of the warp mod-
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Fig. 17. Comparison of twist angles (left). maximum of hollow (centre) and its chord location (right) for
different spanwise sections tor cases | and 2. Hollow values and thewr locations are scaled with the local
chord length.

ulus of elasticity do not induce large changes in the equilibrium shape. On the con-
trary. if the weft-and-warp modulus of elasticty are exchanged, noticeable variations
of the solution have been obtained which is exactly what could have been expected
(see Figs. 16 and 17). In Fig. 17 the discontinuity in the location of the maximum of
the hollow is due to the finite-element discretization since the maximum is necessarily
located on one side of an clement and then the location has to switch from one side to
the other. This numerical example illustrates the capability of the model to deal with
oriented fabric when weft-and-warp directions have difterent modulus K. Moreover,
we know that the equilibrium shape for a given field of external loads depends partly
on the mechanical characteristic of the fabric used, and partly on the panelling of the
surface. This point is investigated in the next section,
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Fig. 18. Equilibrium configurations for bi-radial (left) and tri-radial (right) sail cut - grey scales for different
values of z{x. 1) of equilibrium geometries and meshes.

6.4. Influence of sail cut on deformations

In fact, the panelling of the surface is the key point of the sail design procedure since
it will determine the orientation of the fabric with respect to the sail plan. Different
technological choices in panelling lead to different deformations under the same loading
conditions. This point induces many difficulties in sail design and require adaptable
prediction tools. The string network model can deal with these kind of problems and
we present some results obtained for two different cut plans of the same surface. The
initial geometries are still the same as the previous one, and we consider two different
panellings of the surface. The first one is a decomposition of the surface by a bi-
radial cut, while the second is the tri-radial mesh which has been used in the previous
section. Both are discretized using 170 elements. The corresponding equilibrium shapes
are plotted in Figs. 18 and 19.

As expected, we can note that the two solutions are different. The maximum value
of the hollow is greater for the bi-radial cut (see Figs. 19 and 20). The distribution
of the hollow on the surface is different too; for the tri-radial panelling the hollow is
more uniform along the span. For the bi-radial cut, a larger hollow in the upper part
has been obtained. Once again, this is due to a larger deformation of the free leech.
As a result, at a given station, not only will the camber of the sail profile be affected,
but the twist angle as well.

6.5. Influence of loud magnitude

In this section, we investigate the effect of an increased wind speed. The bi- and
tri-radial meshes are used to perform the same computations with an external load
multiplied by four. This is roughly equivalent to doubling the wind speed. In Fig. 21,
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cuts and both magnitudes of external loads. We can observe the displacement of the

hollow for the two cuts. For both cases, the hollow moves back in the direction of
the trailing edge and becomes deeper. Moreover, it is clear that the hollow distribution

along the span is uniform for the two loads and tri-radial cut, compared to the bi-radial
sail which permits a displacement of the hollow towards the head when the loads are

increased.
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Fig. 21. Projection in plane = = 0 of cquilibrium configurations for bi-radial (left). tri-radial (right) sail cut
and initial (top) or four-times external loads (bottom)  grey levels correspond to different values ot hollow.

7. Conclusions

An elastic string network model of sails has been proposed. It has been used to
simulate some real life problems of sail design. The ability of the model to reproduce
what can be expected from our knowledge of reality is very satisfactory. The tendency
is good for any of the studied cases. However. one must keep in mind that all the
problems considered in this paper are “virtual™ in the sense that the numerical results
have not been compared to real sail data. To undertake this task would require three
parts at least:

e to be able to reproduce numerically actual sailing conditions,

e to derive a coupled algorithm in order to introduce in the present model the aerody-
namic loads resulting from the previous point.

e to have data obtained for real sails in real sailing conditions.
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It can be expected that solving the first two points will require a large amount of
hard work. This will not be enough for the last point which needs also a special
financial effort. We hope that the present development of research in this domain will
soon enable us to apply our computer model to real sails, otherwise any improvement
will soon become meaningless.
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