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Large displacement analysis for ideally flexible sails

0. LE MAITRE *, J. E. SOUZA DE CURSI ** and S. HUBERSON *

ABSTRACT. — We consider the equilibrium of a sail under a given aerodynamic field of external forces. The sail is considered to be an ideally
flexible structure, having the behaviour of a network of stress unilateral strings: all the internal efforts are traction efforts. This model leads to a
Non Convex Optimisation Problem and a complete theory can be established, leading to relevant results of uniqueness for the field of stresses,
even if configurations of equilibrium are not unique. © Elsevier, Paris

1. Introduction

A complete modelling of sail’s steady equilibrium involves a fluid/structure analysis: on the one hand, the
effects of the wind must be considered; on the other hand, a mechanical model of the sail itself must be
introduced. Moreover, due to the complexity and the diversity of real operating conditions, the usual models are
simplified ones, corresponding to particular boat motions, laminar inflow conditions or rigid motions. The basic
assumptions and simplifications of each model usually underline particular aspects of the problem. For steady
case, we point out that the interaction between the sail and the external flow is to be considered by a complete
model: the presence of the sail modifies the flow, whilst the latter applies aerodynamic forces on the sail and
modifies its geometry. This suggests a fixed-point method for the numerical simulation: a flow field is given and
a configuration of the sail is computed (structural step); a new external flow is then computed by taking into
account the new configuration of the sail (aerodynamic step). This leads to a new external flow, a new geometry
of the sail and so on: the sequence of structural/aerodynamic steps is repeated until some stopping condition
is satisfied. In this paper, we consider the structural step of this procedure and the very flexible behaviour
of the sail itself is underlined: we consider the sail as an ideally flexible structure submitted to aerodynamic
forces resulting from a given flow field. So, only the resulting aerodynamic forces are computed as a part of a
fluid-structure interaction problem. The effects of the changes of the geometry on the flow are not considered
here, so the external loads are supposed to be well approximated by that of the initial configuration.

The very flexible behaviour of sails leads to large displacement analysis of very thin structures leading to
the classical models of membranes (flexion stresses are neglected). Due to large displacements, this models
are geometrically nonlinear, and since deformations in modern sails (variations of lengths and angles in the
material) remain low, constitutive laws of the material can be consider as linear: tensions in the structure are
linear functions of the local deformations. We emphasise on a consequence of the capability of the sail to undergo
large displacements without significant deformations: there can exist displacement fields that keep constant the
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elastic energy in the structure (changes due to variations of the curvature are neglected). For example, there are
many natural configurations of the sail. By natural, we mean a configuration that presents no deformation (strains
are null everywhere): the definition of a reference (natural) configuration required by the models is arbitrary.

Such geometrically nonlinear membranes have been extensively studied (see for instance theorical works in
(Antman, 1995), (Le Dret ef al., 1995) and numerical implementation in (Zienkiewicz, 1977), but they require
important computational efforts compare to sails makers resources. Moreover, we have to keep in mind that the
objective of this work is the simulation of sails’ responses to unsteady perturbations and nonlinear membranes
have been considered too expensive (in CPU time) to be coupled with a flow model: simplified models and/or
different strategies are then necessary.

Charvet (Charvet, 1992a) presents an original scheme to estimate the steady equilibrium configuration of
a sail. His analysis is based on the decomposition of the displacement from a given reference configuration
to the equilibrium shape as a two steps process: first, large displacements of an inextensible sail and second,
small displacements of an elastic sail. The first level leads to an intermediate configuration of equilibrium,
where the sail is considered as a tight fishing net: the admissible configurations are such that the distances
between neighbouring nodes are invariant. At this level, there is no variation of the internal energy of the
sail: the solution is the configuration which maximises the work of external forces. In the second level, the
elasticity of the material is taken into account: a small displacement analysis of the preceding configuration
leads to a classical linear elasticity problem and a new configuration is determined. So, this method solves
firstly a nonlinear problem with geometrical constrains of in-extensibility and, secondly, a linear problem which
is expected to take into account elastic deformation. This method is referred in the following as the “two levels
model”. It has given satisfactory results but has shown to be inefficient when the Young’s modulus of the
material is small and elastic deformations lead to large displacements (specially on free borders). In this case,
a large elastic displacement analysis is needed.

The originality of this method is essentially the first level which furnishes an estimated (and not an arbitrary)
reference configuration before considering elastic effects. This is a great improvement compare to the previous
works of (Jackson, 1985), (Jackson ez al., 1986) and (Fukasawa et al., 1992) where small displacements analysis
is performed on an arbitrary shape.

In the second part of this paper, we present an alternative approach to the nonlinear membrane models. We
assume that sails can be correctly considered as structures constituted of elastic strings networks (i.e. fabrics).
This approximation of the medium using strings is equivalent to consider only elastic deformations (strains) in
a finite number of given material directions. Here material direction means that it moves with the structure.
The strings network approximation is a simplified form of the nonlinear membrane model and it leads to a
non-convex variational equation (Principle of Virtual Works) of Minimum of the Energy, which is functionally
solved by relaxation. The functional resolution leads to relevant mechanical properties, as the uniqueness of the
internal efforts and the equivalence between the Principle of Virtual Works and the Principle of the Minimum
of the Energy (this is not immediate for a non-convex situation). Moreover, it leads to a numerical method,
which is tested in some simple situations (Finite Element Approximation of the solution and iterative solution
of the nonlinear resulting equations).

The connection between the two formulations in finite displacement is investigated: in fact, for a modulus
of Young going to infinity, an asymptotic analysis of the large deformation model leads to a model where
the geodesic distances between points of the sail are invariant. For a tight sail, this corresponds to the first
level of the two levels model.

The application of the considered methods to an unsteady problem is discussed.
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2. The two level model

As previously observed, sails are very flexible and can be considered as ideally flexible structures. Moreover,
small loads can produce large displacements, even under infinitesimal strains. Charvet (Charvet, 1992a) has
proposed that the deformation of a sail can be approached by considering large displacements of an inextensible
sail and subsequent small displacements of an elastic one. This ’two levels’ method leads to the following
method of calculation:

Level 1 (Inextensible deformation): Let be given a configuration of reference «; and a grid defining nodes on
this configuration. We compute an intermediate configuration z7, such that the distances between neighbouring
nodes are invariant.

Level 2 (Linear Elastic deformation): The final configuration Z is obtained by the equation ¥ = z7, + 4,
where u is assumed to be infinitesimal: a linearised elastic formulation is considered for the determination of #.

2.1. DEFINITION OF THE GEOMETRY

We consider a sail in a configuration #. The sail is characterised by a length L, and a thickness h supposed

to be small compared to L. Then the complete domain €2 of the space occupied by the sail is defined by a map

which associates the curvilinear coordinates a = (a!,a?), a € Q defined on the mean surface to the vector #(a):

S h h
Z :Qx [—55} — R?
The unitary vector normal to the surface, denoted by 7 is defined by:
Lo NI N OT
" 1017 A a7
., 0T
0T = %;
This definition supposes that the coordinates lines a’ = ¢! are not parallel. Figure 1 presents a schematic

view of the problem.
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Fig. 1. — Definition of the geometry.
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2.2. FIRST LEVEL: INEXTENSIBLE DEFORMATION

At this level, the sail is approximated by an inextensible fishing net, i.e. an ideally flexible and inextensible
structure such that:

1. Any configuration is defined by the position of a finite set of points (the nodes of the grid mentioned above).

2. The set of the admissible configurations is the set of the configurations which preserve the distance between
the neighbouring nodes.

In this first step, Charvet assume that this approximation of the conservation of the metric on the surface,
by a finite number of lengths lying on the surface furnishes an accurate estimation of constant elastic energy
deformations: the variation of the internal energy of the sail is neglected: the strain tensor is identically null and
only the work of the external loads (the pressure jump across both side of the surface) is taken into account.
Then, the nonlinear problem of the determination of the configuration of equilibrium of the structure reduces
to the problem of the maximisation of W, the work of the external forces, under geometrical constraints of
in-extensibility. W is given by

W(X) :/ ffin,t-ﬁ(spds’
satl
where 7 is the unitary vector normal to the surface and 6 P the pressure jump. After discretization involving a

grid having N x N nodes z;,¢ = 1,..., N x N, this functional is approached by

NN
W(finf) ~ W(l])(:i:illf) = ZS(Zi)finf(zi)~ﬁ§P:
i=1
where S(z;) > 0 is a given coefficient, connected to the grid: if the total area of the sail at the configuration
of reference Zp is S, we have

NXN
> S(z)=S.
=1
If the neighbours of the node z; are z}, ey z:"’f'('), the in-extensibility condition reads as

(/)f(zfv'z)!) :, fillf(zi) - fim(z,!) l - ’ f]?(zi) - fR(ZII) |: 0,
j=1,... nne(i),i=1,..., Nx N.
As previously observed, this set of conditions corresponds to the discretization of the surface by a net

such that neighbouring nodes constitute extremities of segments of constant length. The set of the admissible
configurations is

Cod = {&Fimt | #i(21,20) =0, =1,... nme(i),i=1,...,NN}.

We emphasise that this discretisation of the geometrical constrain of conservation for the metric neglects shear
stresses and then it could be improved by a discretisation of the sail using triangular elementary surfaces for which
the distances between the three vertices are conserved. Unfortunately, we tested this triangular discretisation but
it leads to an highly non convex problem and the nonlinear solver were not able to find any solution.
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The configurations of equilibrium are the solutions of
Find the configuration Tint € C,q which maximises Wy, on Coq.

This optimisation problem is solved using an iterative method involving a quadratic approximation of its
Lagrangian.

We emphasise that, in this step, the internal energy of the sail is assumed to be constant: the elasticity of
the material is taken into account at the second level.

2.3. SECOND LEVEL: LINEAR ELASTIC DEFORMATION

Charvet assumes that the effects of elasticity can be described by considering a linear elastic deformation
of the intermediate configuration Z;,;: an infinitesimal displacement formulation is introduced where Z;,¢, the
geometry obtained in the first step, is considered as the configuration of reference. Such a linearization is
classical and will not be examined in detail here.

The mechanical characteristics of the sail are given by the Young modulus (E), the Poisson coefficient
(v) and the thickness (h). The sail can be considered either as a membrane (ideally flexible), or as a thin
shell (membrane and bending stresses) (see for instance (Destuynder, 1990)). The model of membrane only
account for the tensions in the tangential plane while the thin shell theory also account for the variation of
curvature. Within the framework of shell theory, the solution of the elastic problem involves a bi-laplacien for
the displacements normal to the mean surface, and it can be computed with a finite elements method involving
a third order polynomials approximation (see for instance (Ciarlet, 1978)).

The linearisation appears in the separation of the effects of tangential and normal loads. As a matter of
fact, especially in our case which considers normal loads (at least for in-viscid flow assumption), numerical
difficulties can occur and erroneous results can be found for nearly plane and plane surfaces (Charvet, 1992a).
In such configurations, coupling the structure and the flow problems can lead to instabilities and it is then
necessary to introduce an under-relaxation coefficient in the flow step an important characteristic of the sail
is that a large part of its borders is free (i.e. their displacements are unknown). Usually, on a main-sail for
example, the displacements are fixed at the mast and the boom (where deformations are neglected), but even
if strains are small, important displacements can be observed at the trailing edge . This phenomenon is much
worst on jib. The assumption of small displacements then becomes erroncous and a linear approximation leads
to unrealistic results.

3. A large displacement model

As observed at the end of the preceding section, linear computations are not efficient in realistic situations:
nonlinear models must be introduced in order to describe large elastic displacements of the sail. Muttin (Muttin,
1989) has proposed that the behaviour of a sail be approached by considering a sequence of infinitesimal
displacements of a membrane. In this approach, a problem of linear elasticity (analogous to the second level
of the previous method) is to be solved at each step. The infinitesimal deformations are superimposed in order
to compute a finite deformation. However, such an approach can only take into account deformations where
a variation of the internal energy occurs: this is a severe restriction, since deformations of a sail are possible
without variation of internal energy.

We present in the following an alternative nonlinear model for finite displacements of the sail, where the
structure is considered as a network of stress-unilateral strings. This model describes deformations of the structure,
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for both cases of variation of the internal energy or constant internal energy: elastic or inextensible deformations
are furnished by this model. So, this formulation takes into account the two main aspects of the behaviour of
the sail. This formulation has been developed for fabrics and takes into account the possibility of folds in the
configuration but neglects bending stresses. It leads to specific difficulties connected to the formulation of a
non convex variational problem (Principle of Virtual Works). The difficulties can be functionally solved by the
method of convexification or relaxation, that leads to a numerical method: we present a variational formulation
for the relaxed problem and an algorithm for the numerical resolution.

3.1. THE STRESS-UNILATERAL PROPERTY OF STRINGS

A string is an ideally flexible structure which is not capable of transmitting compression. Under negative
stress, a string modifies its geometry in such way that this condition is satisfied. Thus the energy of deformation
of the string does not take in account the curvature of the fibres.

We denote by € the unitary strain, by T the tension and by K > 0 the modulus of elasticity. Then the
constitutive law is:

€= — and T>0
K 2
This inequality introduces functional and numerical difficulties in the analysis of strings: non existence of
equilibrium and convergence to approximated solutions which are not solution (local minimum). A Non Convex
Optimisation method is used to yield a numerical method.

3.2. STRESSES IN A NETWORK OF STRINGS

We consider a network consisting of two families of strings: the “Horizontal” and “Vertical” strings which
approach the sail in a natural configuration (i.e. without strain). Each string is defined by a constant of elasticity
and a length ~°. We assume that ~° is small compared to a characteristic length of the sail.

The network is described by curvilinear coordinates a = (a!, a?); Each line of coordinate a' corresponds to
stress-unilateral strings: the internal efforts are the tension 7' = 17 + T3 and are given by:

il

1o - 1

€

(1) Ti=1f, =295 (=12

without summation on indices.

This definition of the internal stresses indicates that only variations of length in given directions (the strings
directions) induce tension in the medium. An important consequence of this tension model is that changes
in relative orientation of the two strings families (angle between #; and i) does not lead to elastic energy
variation: shear stresses are neglected too.

The field of tensions generated by the current configuration Z of the sail is contained in the plane tangential
to the surface and referred as 7. Then the energy of elastic strain is:

w@ = [ | 5iors) - + B ousta) - 112 do
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We can observe that this model for internal stresses consists in considering only the strains of the strings and
then, shear stresses are neglected although they actually appear because fabrics are weave and coated. One may
remarks that these stresses should be taken into account but sails’ designers try as much as possible to align the
directions of the strings of higher elastic moduli with internal stresses directions. As a consequence shearing
modes of deformation are minimised. A more convenient modelisation of the problem would involve a higher
order approximation for the Young modulus and the Poisson coefficient. However, a simpler model can be
obtained by just fitting to the actual sail cut plan. An example of such a mesh is provided on figure 2. Every
triangular element of the mesh has 2 sides aligned with the local strings’ directions of the constitutive fabrics.

Fig. 2. ~ Example of a mesh for a complex panelling of the sail.

3.3. THE EQUILIBRIUM EQUATIONS

The sail is submitted to external forces of Lagrangian densities f = 6pil (the pressure jump through the sail
which applies a normal load). Then the equation describing the equilibrium of the structure can be written as:

31ﬁ+32T2+f=6, a € §1

We consider the case of a sail which has fixed borders I'g and other parts I' = 92 — I'g allowed to move.
Thus, the boundary conditions read as:

Z(a) = Zola) , a €Ty
ylﬁ =+ ugﬁ —honT

Here, 7 = (11,1n) € R? denotes the outwards unit normal to §). We observe that the first condition
corresponds to a rigid link between the sail and the boat (by means of the mast and/or boom considered as
rigid). Some authors consider that this condition must be modified in order to take into account an elasti_g
link (see for example (Muttin, 1989)). Such a generalisation is immediate by using the second relation (h
depends on the elastic link) and does not involve new theoretical difficulties. In the following, we will restrain
ourselves to the rigid case (l_{ = 5).
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3.4. A VARIATIONAL FORMULATION (PRINCIPLE OF VIRTUAL WORKS)
We denote by Vj the set of admissible displacements (null on I'y):
Vo={7 : 92— R |§=00n Ty}

Let us introduce:

Then a formulation of the steady equilibrium is as follows:

TeV==%+W

(7 [ovai]) = P([7.9) e v
3.5. FUNCTIONAL RESOLUTION

The meaning of the previous equation is that Z is a configuration solution of our problem if and only if V¥
in the set of the admissible displacement, the displacement field ¢ induces a positive variation of the energy of
the total system (i.e. that for such a displacement from Z, variation of elastic deformations energy is positive).
Moreover, £ , as we mentioned above, has to satisfies some additional constrains:

1. Z(a) = Zy(a) on Ty (boundary condition)
2. [|0aZ]| > 1 (unilateral stress behaviour)

As a consequence of the unilateral stress behaviour, the set of admissible configurations is nonconvex and
it leads to numerical difficulties. We introduce as Kj, the set of admissible configurations which satisfies the
previous conditions:

K, = {-;E eV ' ”6an| >1on Q}

i + _ (a+]a))

'Let us introduce a™ = g
given by:

, the total energy J = W + U and the relaxed energy J** = W** + U,

wee@) = [ {0 - 071 + B [0 - 1)) o
U(#) = ~F((g,h], )

For this particular functional, J** = Q.J = J, where Q.J is the quasi-convex regularization of .J and J is its
lower semi-continuous regularisation (see (Dacorogna, 1989)). Thus we consider the following problems:

Problem 1: Find the configuration ¥ € K;, which satisfies (1) and:
Vlfl + z/gfg =honT
(7, [Ty, 039]) = F([7.F]).7) Vi e v
Problem 2: Find the configuration & € K;, such that J(Z) = infr, {J}
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Problem 3: Find the configuration ¥ € Vy such that J**(Z) = infy, {J**}

A mathematical analysis of these problems leads to the following results (see (Souza de Cursi, 1987)):

(1) A configuration & corresponds to a solution of the problem 1 if and only if it is solution of the problem 2
(2) £ is a solution of the problem 2 if and only if ¥ is a solution of the problem 3 and ¥ € K,

(3) The field of tensions T is uniquely determined and is the same for the problems 1, 2 and 3

(4) ¥ is a solution of problem 2 if and only if ¥ € K;, and ¥ generates the field of tensions T

(5) The problem 3 has at least one solution.

3.6. A NUMERICAL METHOD FOR THE STRING NETWORK

The previous results give us a numerical method for the prediction of the equilibrivm shape of a sail under
an external field of forces. Problem 1 describes the behaviour of a sail, under the assumption mentioned above
and for the approximation of the material by a strings network.

We solve this problem in two steps:
Step 1: we solve the Problem 3 which gives us the field of tensions T which is also solution of Problem 1.

Step 2: we look for an admissible configuration # € Kj;,, which generates the previous field of tensions ; this
configuration is a configuration of equilibrium and is unique if the strain is greater than zero for every string.

Thus we shall establish a numerical method for the problem 3.

3.7. REDUCTION TO A VARIATIONAL EQUATION
Since problem 3 is a convex differentiable problem, it is equivalent to the following variational problem:

reV=zy+W

(@) = F([f(@),h.9) , ¥§ €Wy

Where o - o
(T, ) = a1(Z, 7) + az(&, ¥)
. O0aZ ,
Ao = fﬂ K(\(lamf - 1)+|_8‘CL;_-7|'8(lyda
(45

The problem can be solved using a Finite Element Method (FEM. See (Zienkiewicz, 1977)).

3.8. APPLICATION TO THE PROBLEM OF A SAIL

We consider the situation of a jib (the case of a main-sail differs on the number of fixed borders I'g). The
sail-maker provides a geometry for a natural configuration (the strain are null everywhere).

Thus we set on the surface (M + 1).(N + 1) constitutive points of a mesh made of V; (1 < i< M +1)
“Vertical” per H; (1 < j < N + 1) “Horizontal” curved lines supposed to be aligned with the strings that
approximate the material. 'y corresponds to V; (the Iuff) and Hx 4 (the header); the intersection of V; and
H; is the point P;;. With the diagonals P,y ; — P, j+1 we built 2.M.N triangles where the unknowns are
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Fixed border

Fig. 3. — Sketch of the mesh.

approximated by polynomials of degree 1. Let X; ; be the approximated value of #(F;;) so the unknowns of
the problem are x = (X;‘J')QSI‘,SA,].*].ISJ‘S_N. A view of a mesh is presented on figure 5.

A flow computation is then performed using a particles method (see (Charvet, 1992b), (Charvet, 1992a))
and the inextensible model. This computation provides the external efforts f for the guess configuration. The
approximated value of f (Z) at the point X: j is fi e

In order to take into account the mobility of the third extremity of the sail (the tack) (which corresponds to
the point )?11,1_,_1,1) where the jib is tied, a penalty method is used on the distance from this point to a fixed
point of the deck (the length of the sheet):

Xr— Xars1a
NXars11 — Xl

Farern = fursin — (Dyr — | Xar41.1 — X&IDCpen

Where X R is a fixed point on the deck (the jib roller), Cp., is a penalty coefficient and Dy is the length
of the sheet. In the following, the tack XA[.{_]J will be denoted by X..

The variational equation of Problem 3 is then approached using a standard Finite Element Method which
leads to a nonlinear system of equations for the unknowns:

E(x) =0; Z(x) = (Eij(X))2<i<M+1,1<j<N+1

This system is solved by an iterative procedure: from the initial guess configuration, we compute XU, x4,
by:
Ghtl _ 2k 5o vk
X5t = Xi5 - wEij (X))
Where w is an under-relaxation coefficient. The quality of the approximated solution depends on this
coefficient and can be controlled by the mean value residue:

M N . ' N . %
R = (30 S I I + 3 1Bbrs (41
=2 j=1 =2

4. Numerical results

The characteristics conditions of the flow are (in the assumption of in-viscid fluid) the free stream velocity

Uso, a typical length of the sail L, and the density of the fluid p. Then we build the characteristic pressure
P. = p||U))?/2 and force F. = p||U||>L2/2 to consider the non dimensional problem. The mechanical
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characteristics of the sail are K. = K /P, equal for the two families of strings and h. = h/Ls, where K is the
modulus of elasticity of the material and h the thickness of the sail.

4.1. DEFINITION OF THE REFERENCE SAIL
For the computations, we have selected the following values:
1: the velocity of the free stream U, is taken equal to 10 knots.
2: the angle between the boat axis and Uso is 20 degrees.
3: the angle between the boat axis and the bottom of the sail is 7 degrees.

4: the characteristic length is the length of the luff which is equal to 9.4 m and the thickness of the sail
is 0.5 mm.

5: the modulus of elasticity of the strings is 5 M Pa.

Then a flow computation is performed using the first level model to find out the equilibrium geometry in the
inextensible assumption. Hereafter, the sail-maker guess geometry will be referred to as the “natural geometry”,
whereas the modified equilibrium shape which account for aerodynamic loads only will be referred to as the
“initial geometry”. This last one is presented in figures 4 and 5.

We emphasise that this geometry is a natural configuration (strains are null). The external loads obtained are
then supposed to be independent of the current geometries. i.e. that the interaction with the flow will not be
considered in the following, which is obviously an important simplification of the problem, but we only get
interested here in the study of the behaviour of the strings network model.

1 03 00491 ----
4 o2 00888 -

4 0.1 00982 -

- L 1 i L 1 - 1 § WSS
0 01 02 03 04 05 06 07 08 09 1
Y

Fig. 4. - Initial geometry - Iso-Z lines

Initial Shape ——

-0.05

-0.1
015 r

02

Fig. 5. — Top view of initial geometry.
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4.2. COMPUTATION WITH FIXED TACK

We performed a first computation assuming that the point X, is fixed. This computation gives us a prediction
of the deformations due to the elasticity for a wind rising from 0 knots to 10 knots (the characteristic velocity
Us.) without any change of the boundary conditions. Since the initial geometry does not present any initial
strain, the deformations are quite important but seem to be realistic if we consider that the interaction with
the flow is not taken into account. Nevertheless, it puts in evidence the limit of linear models when boundary
conditions lead to actual large displacement simply by elastic effect as plotted in figures 6 and 7.

4 -01

[ Y DU NN R N SN N

0 01 02 03 04 05 06 07 08 09 1
Y

Fig. 6. — Final shape for Xe fixed.
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— A
-0.05 N s ﬂ-’dgf’
< o
o S

-0.15 +

02+

Fig. 7. — Top view of final shape for Xe fixed.
4.3. FIXED BOTTOM OF THE SAIL
4.3.1. Deformation

In order to obtain realistic results, Charvet (Charvet, 1992a) had to fix the bottom of the sail for the second
level of his model. To quantify the effect of fixing this border on the displacement field, we have performed this
case. It appears that even if the displacement of this border is small, its influence on the solution everywhere is
important for the strings network model considered. The results are presented in figures 8, 9 and 10.

The displacement field from the initial geometry to the final shape in the case of the fixed bottom shows
small values such that the assumption of small displacement is valid, but this assumption is inconsistent for the
case where only X, is fixed. This result may explain the unrealistic results obtained by Charvet when he allows
this border to move. This is an evidence of the general improvement born by the nonlinear model.

4.3.2. Convergence of the iterative procedure
On figure 11, we present the evolution of the mean value residue Ry (defined in the end of subsection 3.8)

during the iterative procedure used to solve the nonlinear system of equations of the problem and for different
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Fig. 8. — Final shape for fixed bottom.
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Fig. 9. — Top view of final shape for fixed bottom.
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Fig. 10. — Comparison of final shape for free or fixed bottom.
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Fig. 11. — Evolution of the mean value residue R2 versus number of iteration k for different values of the under-relaxation
coefficient w. Computations are stopped when Ry becomes smaller than 1.E — 3 or when k becomes greater than 1.E7.
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values of the under-relaxation coefficient w. For these computations, the iterative scheme is applied as long
as both the following conditions are satisfied:

Ry > 0.001

k<1.E7

For every values of w presented, Ry has the same behaviour and the log diagrams put in evidence a three
steps evolution. Firstly, during the beginning of the process (from & = 1 to k = 1.E4 — 5.E — 4), Ry slowly
decreases with logk and the slopes depend on the value of w. This stage corresponds to the iterations where
the configuration is deformed without significant changes of the elastic energy W**(Z): the sail primarily
adapts itself to the field of external loads in the way close to that described in first level of Charvet’s model
(inextensible stage) (see also figure 12 for the evolution of the elastic energy W** with iteration number k).

Elastic Energy W**(x*))
048 T 7T T

R e P ; St
R R e
0.3 b i , .
0.25 |- £ »
0.2 |t ' -
015 |
0.1 fs
0.05 |

in the sail.

()

n

100 1000 10000 : 100000  1le+06 le+07

Fig. 12. — Evolution of the elastic energy W** contained in the sail during the deformation process and with w = 1. — 7 and a fixed bottom.

Then a transition appears and Ry quickly decreases with logk (while W** increases on figure 12). This
period corresponds to the apparition of significant strains: the displacement from the initial configuration (which
is natural) then induces changes in the natural lengths of the strings leading to elastic tensions. This second
stage has a constant slope and lasts till the solution is converged to a value which depends on the choice
of the relaxation parameter.

Then the third step presents a very low convergence rate for Ry to a value which is as small as w is small.
During this low slope convergence period, the displacement of the configuration is negligible as illustrated of
figure 12 where the elastic energy is constant.

4.3.3. Computational time

Table 4.3.3 presents the computational times needed to obtain a solution with an accuracy measured by
Ry < 1.1073. We have tested the previous values of w. For w > 1077 the iterative procedure quickly diverges
since large values of w allow large displacements from an iteration to another and then induces sudden large
changes in strains. For very small values of w, the iterative procedure stills converge but computational time
increases very quickly while significant improvement in accuracy can not be expected.

4.4. INFLUENCE OF THE LENGTH OF THE SHEET

We set XR at (—0.25,-0.8,—0.63) and D;pr at 0.112 (which is the length of the sheet for X, fixed in
the initial geometry). We have performed a first computation without changing the value of D iR but X, is
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TABLE 4.3.3. — computational times for a fixed bottom sail and different values of w. The table also indicates the number of iterations necessary to
achieve an accuracy of Ry < 1073, For w = 1.10™® the accuracy is not achieved after 7 000 000 iterations when the computation is stopped.

w Number of iterations Accuracy Time (HP 712/100)
1.10~" 1249 014 Ry <1073 7 min. 15s.
8.10~*% 1577 245 Ry <1073 9 min. 03s.
5.107% 2 319 967 Ry <1073 13 min. 52s.
1.10~% 7 000 000 Ry =1.998 10! 42 min. 12s.

now allowed to move to its position of equilibrium. The results are plotted on figure 13. We notice that the
configuration of equilibrium is different from that of the case with X.. We emphasise on the limit of the linear
models to deal with this kind of problems for which the boundaries position is unknown except for the luff,
leading to large displacements even for small loads perturbations.

Then we impose D;r = 0.082. In figure 14, the final geometry is plotted. This configuration is flatter than
the initial shape. This value of D;g is such that strains remain even if external loads are null. This result put
in evidence one of the advantage of the nonlinear model: to compute an equilibrium configuration, considering
the elastic deformations, it just necessitates to know one natural configuration of the sail (id est without strain).
This advantage has many applications for the sail makers because contrary to the small displacement assumption
it does not need a guessed configuration. However, we can understand that small perturbations of the external
loads would not induce large displacements since D;, = 0.082 is such that elastic energy can not be zero. On
the contrary, for the case D;, = 0.112, it exists a large set of zero strain configurations and then many large
displacement fields for which the elastic energy is constant.

Dir=0.112 —
2 Xe Fixed ----

005}
0.1

-0.15

-0.2

Y

Fig. 13. — Top view of final shape for Djr = 0.112.

Djr=0.082 —
initiai Shape ---~

Y

Fig. 14. — Top view of final shape for Djr = 0.082.

4.5. CONVERGENCE TEST

From the initial geometry, we have computed the equilibrium configuration for the opposite field of external
loads in reference of the plane defined by the luff and the vector which links the clew to the roller jib. This
computation case, defined by Charvet as a ‘tack’, proves the great capabilities of the strings network model which
can support a displacement field which does not change the internal energy and find the equilibrium configuration
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even if the initial (given) shape is far from the solution. A few intermediate configurations, extracted from
the iterative procedure introduced in section (3.8), are plotted in figures 15.a to 15.f. We emphasise that this
computation has been done considering the elastic deformations. So the intermediate solutions are not necessary
admissible configurations in the sense of positive strain everywhere (Z € Kj,). Obviously, the final shape
(figure 15.1) is an equilibrium configuration and satisfies the constrains of the strings network representation.

(a) — (b) —

-0.18

() —

(e} —

-0.15

-0.15

(d) —

n—

Y Y

Fig. 15. — Intermediate configurations (a-e) and final shape (f) for convergence test.

5. Conclusions

5.1. CONNECTION OF THE TWO FINITE DISPLACEMENT MODELS

The variational equation used to solve the problem 3 of the finite displacement model, can be read in the
following way: Find the configuration & which minimise the mechanical energy of the sail J**(Z). Thus, we
have to minimise the sum of U(Z) and W**(Z).

We can notice that U(¥) = —F([ £>B],2) in its discretized form is equivalent to the functional of the
inextensible model since A = 0 and f = @6 P. So the relaxed elastic energy W**(&) appears to be a penalization
on the elastic deformation added to the inextensible problem. Then the two models are equivalent for an infinite
penalization of the strains. The modulus of elasticity K can be considered as a penalty coefficient on strains
introduced in the functional.
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In fact, on the one hand we have for lim. K the elastic problem becomes: find Z which minimise
J* =U(Z) = —F([f,h],Z) and ||0.Z|| = 1 (which is equivalent to the conservation of geodesic distances).
And on the other hand, the constrain of inextensibility leads to W** = 0.

5.2. THE UNSTEADY PROBLEM

Considering the previous numerical results, the strings network model seems to be adapted to predict the
behaviour of sails under unsteady conditions due to unsteady inflows (variations of the wind direction or gusts)
and/or due to the motion of the boat. If the inertia of the fabric can be neglected (i.e. for very light materials
or large time scales of deformation), the problem of steady equilibrium presented above has to be solved at
every time step, according to the instantaneous external loads estimated with the actual shape of the sail. On
the contrary, when the effects of inertia of sails and the external loads are of the same order of magnitude, the
quasi-steady approach of the deformation is no longer valid. It is then necessary to introduce the kinetic energy
of the sail in the functional of the problem and to use a time scheme to estimate velocities and accelerations
for the configuration. Moreover the nonlinearity of the model (and of the flow) causes theoretical difficulties
in the use of an implicit time scheme and will certainly require a variational formulation and internal cycles
similar to those used for the steady strings network problem.

5.3. FUTURE DEVELOPMENTS

The future developments of the sail models, for the structure point of view, should take into account reinforced
areas and “rigidifying” devices to fit as much as possible the real sail. The study of the influence of the mesh
size on the solution for both assumptions of elastic or inextensible behaviour seems to be necessary too. As
a matter of fact, the two levels method should be included in an iterative procedure which would lead to a
method of the same kind as the unified approach used in the strings network model. Moreover it would provide
an insight on stability of the computation and offer the possibility to compare the results of the two models.

The model presented considers the sail as a network of strings. So this model neglects shear and bending
effects even if it reproduces these deformation modes. It leads to an underestimation of the elastic energy in the
structure and in order to obtain a more realistic model, the total energy of the structure must be modified by the
inclusion of shear and bending terms. Thus, more theoretical and numerical works are necessary and will allow
to have a better estimation of the elastic energy influence on the steady equilibrium configuration.

All actual and future models should be improved on real cases that will require experimental data and
measurements in ideal or real sailing conditions. Unfortunately, such information is not available or is considered
confidential, so experimental campaigns should be planned.

The authors thank F. Hauville who provided the reference configuration and performed the flow computation,
and the Regional Council of Haute Normandie for its financial support.
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