
Journal of Fluids and Structures (1999) 13, 37—59
Article No.: jfls.1998.0188
All articles available online at http://www.idealibrary.com on
UNSTEADY MODEL OF SAIL AND FLOW
INTERACTION

O. LE MAIª TRE, S. HUBERSON
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76 000 Mont Saint Aignan, France

(Received 15 June 1998 and in revised form 17 September 1998)

We present an analysis and a numerical method for predicting the response of a two-dimen-
sional sail in unsteady flow. The fluid is considered inviscid and incompressible so that the
perturbation of the uniform inflow can be treated within vortex sheet theory. Due to the very
small thickness of the sail, the assumption of the ideal flexibility can be made, and a nonlinear
membrane model is used to solve the dynamics of the sail. Energy considerations on the
complete system provide a variational formulation of the flow-structure interaction problem,
which can be solved by using the boundary element method and a point vortex approximation
of the wake. Numerical simulations for harmonic perturbation of the trailing edge and random
inflows exhibit the nonlinear response of the sail. ( 1999 Academic Press
1. INTRODUCTION

MANY PRACTICAL SITUATIONS INVOLVE FLUID—STRUCTURE interactions, namely, the coupling
between a flowing fluid and an elastic structure. Such a situation is very often found in
engineering applications and has been studied extensively in the literature. The most usual
approach for this situation introduces two distinct problems that one can consider as
‘tasks’: (i) the fluid task is to determine the flow for given boundary conditions; the
resolution of this initial/boundary value problem allows the evaluation of the forces applied
by the fluid on the structure (here the sail); (ii) the structural task is to analyse the behaviour
of the sail for a given history of the external forces. These tasks are not independent: the
fluid applies forces on the sail and generates deformation and motion. So, the displacements
of the fluid—solid interface generate a perturbation of the flow. In fact the motion of the sail
is coupled to the flow. As a consequence, the resolution of the interaction requires the
simultaneous resolution of both tasks.

In this work, we consider the interaction of a yacht sail with an incompressible flow, but
the theory and the methodology can easily be extended to other very thin and flexible
structures, such as soft wings and parachutes. In most situations, sail operate in a natural
environment characterized by unsteadiness and complex perturbations (atmospheric turbu-
lence and complete motions of the yacht caused by sea-wave excitation). Figure 1 schemati-
cally presents the sources of excitation that induce unsteadiness in yacht aerodynamics.
0889—9746/99/010037#23 $30.00 ( 1999 Academic Press



Figure 1. Schematic representation of sailing yacht problem. Unsteadiness emerges from perturbations of the
in-flow (turbulent, wind, gusts) and of the ship motion mainly induced by waves.
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Then, a model of interaction for complex boundary conditions is of interest for anyone
concerned with design and efficient prediction. Current numerical investigations of sail
response to flow interaction mainly deal with steady problems [see Jackson et al. (1985,
1986) and Fukasawa & Katori (1992)], and unsteady computations of flows around sails
assume rigid motions of the structures [see, for example, Charvet (1992) and Flay (1997) for
a general overview of recent work on sail aerodynamics]. Nevertheless, shape variations
and elastic deformations of the sail can strongly affect the complete dynamics of the system,
but the resolution of the interaction involves many geometrical difficulties connected to
large displacements and nonlinearities.

In order to overcome such difficulties, several simplifications can be found in the
literature: asymptotic analysis of the flow, e.g. prescribed wake, lifting-line theory, camber
effects, etc. (Abbot & Von Doenhoff 1958; Guermond & Sellier 1991; Wilmott 1988; Katz
& Plotkins 1991), linear elastic model of deformation displacements from rigid or mean
shape (Zienkiewicz 1977; Batoz & Dhatt 1992; Bernadou 1994), and approximation of the
coupling equations on the undeformed shape (Dowell et al. 1978; Bisplinghoff & Ashley
1982). The approach consisting in the geometrical linearization of the fluid solid interface
was shown to be effective for calculations for many situations, but for large displacements of
the interface such linearizations can lead to erroneous results [see, e.g. Charvet et al. (1994)
and Bréard (1996)]. In fact, the problem is weakly nonlinear, irrespective of the fluid and
solid mechanical models. Moreover, functional resolution requires complex procedures in
order to avoid any time shift between the solutions in the solid and fluid domains.

The objective of this work is to determine the essential phenomena appearing in unsteady
fluid—structure interactions, and we focus on large displacement effects. In this way, we
analyse the two-dimensional problem of an ideally flexible sail set in a uniform inflow. This
problem is illustrated in Figure 2.

In Section 2, a model for the flow field is introduced. For inviscid fluid, a small angle of
attack, and in the limit of a zero thickness obstacle, the flow around the sail is kinematically



Figure 2. Schematic representation of the problem studied. A flexible sail of natural length ¸ is set in a uniform
in-flow. Motion of the edges is prescribed and the angle of attack a is small. Distance between the edges is denoted

by C.
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equivalent to the flow induced by a bound vortex sheet merged with the mean line of the
obstacle and by the wake [see Rosenhead (1931), Saffman (1992) and Leonard (1980)]. This
representation supposes that the flow remains attached along the sail so that the bound
sheet is continuously linked to the wake at the trailing edge (this is an equivalent form of the
Joukovski condition). The wake contains the information concerning the time-history of the
system and can be treated within the context of vortex sheet theory (Rosenhead 1932;
Leonard 1980). The history of the system is recorded in the wake by irreversible transfer of
circulation from the boundary layer of the obstacle to the wake according to Kelvin’s
theorem (Batchelor 1967). Moreover, vortex sheet theory provides an integral expression for
the velocity and kinetic energy of the flow field from the configurations (position) of the
obstacle and wake vortex sheet and from their circulation (Saffman 1992).

In Section 3 the energies of the elastic sail are presented. We consider a sail of constant
thickness h and natural length ¸Ah. Here, natural length should be understood as
measured on a zero strain configuration (which is not necessarily unique). The solid domain
is mapped on S"[0 :¸]][0 : h]"L][0 : h]. If the thickness h is very small compared to
¸, the structure can be considered as a one-dimensional medium and its actual configura-
tion is known by a map x

B
of the mean line which associates a Lagrangian coordinate l3L

to a position:

l3LNx
B
(l)3R2. (1)

For very small thickness, the elastic energy of the structure is only a function of the mean
line configuration. As previously stated, only the kinetic and elastic energies of the sail are of
interest. These energies can easily be estimated from a geometrically nonlinear membrane
model: the elastic energy is a quadratic form of the strains of the mean line, while the kinetic
energy of the sail is a quadratic function of the derivative of x

B
with respect to time.

Given these different expressions for the kinetic and elastic energies of the sail, as well as
the kinetic energy of the flow, it is possible to apply variational principles to characterize the
complete system. This analysis is developed in Section 4. It is based on the principle of
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minimum of energy in the system and it leads to a variational equation, the unknown being
the configuration x

B
at every time. An analysis of the resulting variational equation in terms

of fluid characteristic scales leads to the characterization of the interaction by three-
dimensional parameters. The first two parameters respectively compare elastic stresses to
the fluid pressure and the inertia of the sail to the inertia of the fluid, while the last
parameter reflects the ability of the sail to undergo large displacements.

A discretization of the variational equation is then proposed in Section 5. It involves
a hybrid aeroelastic finite-element approximation of the obstacle and a particle representa-
tion of the wake (Katz & Plotkins 1991). The time discretization is performed by means of
a Runge—Kutta scheme for the kinematic field in the solid domain and for the computation
of the wake particle trajectories.

Sections 6 and 7 are devoted to numerical results obtained with the model. First, the
influence of the system parameters on the response is investigated for harmonic perturba-
tions of the trailing edge location. This computational case is an idealization of the situation
for which the motion of the yacht is the combination of translation and rolling motions.
Finally, a random perturbation analysis is used to predict the response of the system to
complex external, forcing, including many time modes, and to investigate the influence of
the sail characteristics. Random analysis is necessary, because sails usually operator in
various conditions which are sometimes unpredictable.

General conclusions on this work are presented in Section 8, as well as a discussion on the
extension of the model to three-dimensional flows.

2. THE FLOW MODEL

2.1. BOUNDARY CONDITIONS FOR THE FLOW

For an inviscid two-dimensional flow, natural boundary conditions for the velocity are the
slip-stream condition on dX and the undisturbed inflow at infinity. The first condition states
the continuity of the normal components of the fluid and solid velocities on the sail surface.
In the limit of a zero thickness sail, this kinematic boundary condition is written on the sail
mean line L as

U (x
B
) · n"

dx
B

dt
· n , (2)

where n"k3L
l
x
B
/ D Lx

B
D is the normal (k being the unitary vector normal to the plane of

the study), U is the velocity, and L
l
stands for L/Ll. The set, V of admissible fluid velocity

fields is

V"MV D$ · V , equation (2)N, (3)

where $ is the nabla operator: $T"ML/Lx, L/LyN.
As a consequence of the slip-stream condition, the flow field can only admit a tangential

discontinuity, Dº. We have

Dº (l)"(U~ (x
B
(l))!U`(x

B
(l))) · (n3k),

where the superscripts # and ! stand for the upper and lower sides of the sail.
This discontinuity of the tangential velocity is equivalent to a vortex sheet [see Saffman

(1992) and Katz & Plotkins (1991)] merged with x
B
. The circulation per unit length c

B
(l)
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carried by the arc-length element dl of the sail is denoted by c
B
(l) and is given by (Saffman

1992)

c
B
(l)+Dº(x

B
).

The conservation of the circulation in the fluid domain is a well known result of vortex
dynamics (Batchelor 1967). Let C

B
(t) be the total circulation of the sail,

C
B
(t)"P

L

0

c
B
(l) dl,

and Cu be the circulation in the wake. Since the total circulation remains constant, we have

dCu
dt

"cJ u (t)"!

dC
B

dt
. (4)

This constraint is physically satisfied by shedding vorticity in the fluid at the trailing edge, as
described later.

2.2. WAKE DYNAMICS

The vorticity-velocity formulation of the momentum equation is obtained by taking the curl
of Euler equation. For inviscid 2-D flow, we have:

du
dt

"0, (5)

where u"$]]U is the vorticity.
Equation (5) shows that the vorticity contained in any volume of fluid is kept constant.

Thus, it is possible to model the wake as a singular distribution of vorticity along a thin line,
namely a vortex sheet. This strip evolves with the flow, and the circulation dcu carried by the
strip length material element dq does not vary with time. Thus, the wake is approximated by
a material line carrying a circulation distribution and moving with the local fluid velocity,
which in turn depends on the circulation distribution. The wake is described in terms of
a map Xu which associates a position to the Lagrangian coordinate q3[0; t]. The govern-
ing equations of the wake are summarized by

Xu (q, t"q)"x
B
(l"¸, t"q), (6a)

cu(q) D
t/q"!

dC
B

dt K
t/q

, (6b)

d

dt Pdlu
cu (q) dq"0, (6c)

dXu
dt

"U (Xu). (6d)

Here dlu is a material line (wake) element. Equation (6a) is the consequence of prescribing
the shedding point at the trailing edge: the sail and the wake are continuously linked at the
trailing edge. The second equation, (6b), relates changes in the circulation of the bound and
free vortex sheets and ensures the conservation of the total circulation. Equations (6c) and
(6d) are Euler’s equation written in a characteristic form: the circulation carried by
a material line element is kept constant and is convected by the flow.
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2.3. VELOCITY FIELD AND KINETIC ENERGY

Using Green’s functions, the stream function of the flow can be written in terms of the
circulation distributions over the sail and the wake:

t (x @)"
1

4n CPL c
B
(l) ln( Dx

B
!x @ D) dl#P

t

0

cu(q) ln( DXu!x@ D) dqD#t
=

(x@), (7)

where t
=

is the incident flow stream function. This equation provides an explicit expression
for U:

U(x @, t)"$3w"

1

4n CPL
c
B
(l)k3 (x@!x

B
)

Dx@!x
B
D2

dl#P
t

0

cu(q)k3(x@!Xu)
Dx@!Xu D2

dqD#U
=

. (8)

The Kinetic energy in an unbounded domain, can be expressed in terms of stream function
and vorticity,

2K(t)"o P P)
tu dx dx@"!o PLt c

B
dl!o P

t

0

tcu dq, (9)

where o is density of the fluid. Substituting equations (8) and (7), and using equation (6), the
rate of change of kinetic energy is equal to

dK

dt
"o P

L

0

dc
B

dt
t dl#o P

L

0

(c
B
k3U(x

B
)) ·

dx
B

dt
dl.

Alternatively, t (l) can be written as

t(x
B
(l))"t (x

B
(0))#P

l

0

(U(x
B
(l@)) · n) dl@.

The stream function can be chosen such that t (x
B
(0))"0. By doing so, and using equation

(2), we finally obtain

dK

dt
"o P

L

0
CP

l

0

dc
B
(l@)

dt
dl @D

dx
B

dt
· n dl#o P

L

0

(c
B
k3U(x

B
)) ·

dx
B

dt
dl. (10)

Alternatively, the rate of change of kinetic energy can be written as

dK

dt
"o P P)

U ·
dU

dt
dx"P P)

!U· ($P) dx"!Pd)
P (U· n) dx,

where P is the total head. The right-hand-side term of the previous expression is the power
of the normal load applied by the fluid on the obstacle (P · n). Since U· n is continuous
across both sides of the sail, the previous expression can be re-written introducing the
pressure jump DP"P`!P~ across the sail:

dK

dt
"!P

L

0

DP
dx

B
dt

· n dl.

It is now easy to relate the pressure jump, DP, to the loads on the obstacle by using equation
(10):

DP"o P
l

0

dc
B
(l@)

dt
dl@#o[c

B
k]]U (x

B
)] · n. (11)
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The first term in equation (11) is the unsteady load, the second term is the steady equivalent
body force acting on the fluid [see also Katz & Plotkins (1991) and Batchelor (1967)]. The
influence of the history on the dynamics of the system appears in equations (10) and (11)
through U, which involves an integration along the wake.

3. THE ELASTIC SAIL MODEL

3.1. STRAINS AND TENSIONS

For very thin and flexible structures, the mechanical behaviour in the solid domain S can
be approached by using a large-displacement membrane model. The solid domain has been
considered as one-dimensional, so that the state of the structure (kinetic energy, internal
stresses) is a function of the mean line configuration x

B
. As a consequence, this model

neglects the variations in the thickness direction. Moreover, if the thickness h is small
compared to the local radii of curvature, flexural stresses can be neglected too, leading to
ideally flexible behaviour, where only strains of the mean line are taken into account in the
deformation. More details of the elastic analysis are available in Antman (1995), and only
the main results are reported in the following.

If the Lagrangian coordinate l is also a measure of the natural arc-length, the local strain
is given by

e (l)"D L
, l
x
B
D!1. (12)

In this work, only materials for which the tension K can be approximated by a linear
function of the strain (small strain rates), have been considered:

"(l)"E
y
e(l), (13)

where E
y

is Young’s modulus of the material. For ideally flexible behavior, the field of
tension K in the sail is tangential to the mean line (Antman 1995):

K(l, g)"KL
,l
x
B
/ D L

,l
x
B
D"E

y
eL

, l
x
B
/ D L

,l
x
B
D , ∀g3[0 : h]. (14)

The boundary conditions for the solid problem are given by the kinematics of the sail edges
(x

B
(l"0)"x

0
(t) and x

B
(l"¸)"x

L
(t)). We define the set of admissible configurationsC by

C"My(l) Dy(0)"x
0
(t), y (¸)"x

L
(t), ∀t'0N.

3.2. ENERGIES OF THE STRUCTURE

To construct a variational problem for the interacting system, we are concerned with the
kinetic energy ¹ of the structure and its elastic potential H.

The kinetic energy of the sail is a quadratic functional of the velocity:

2¹"PL o
s
h C

dx
B

dt D
2

dl, (15)

where o
s
is the density of the undeformed structure.
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For a member model, the elastic potential (or elastic energy) of the sail associated with the
configuration x

B
is a quadratic functional of the strains:

2H"PL hE
y
[e]2 dl. (16)

The sum of the elastic potential and solid kinetic energy can be differentiated with time to
provide the instantaneous variations of the structure energy:

d(¹#H)

dt
"PL h CK · L, l

dx
B

dt
#o

s

d2x
B

dt2
·
dx

B
dt D dl. (17)

4. COMPLETE AEROELASTIC MODEL

The variations of the energy of the complete system (i.e. in the fluid and solid domain) can be
estimated from the previous elementary models. Let J be this instantaneous rate of change,

J (x
B
),

d(K#¹#H)

dt
. (18)

Application of variational principles on the system energy states leads to the following
optimization problem:

Problem 1. Find, for every time t, the configuration x
B
3C which minimizes J given by

equation (18).
A variational formulation of Problem 1 is Problem 2 as follows:

Problem 2. Find x
B
3C such that

PL CAP
l

0

o
dc

B
(l@)

dt
dl@B n#o (c

B
k3U(x

B
))#h A$ · L, l#o

s

d2x
B

dt2 BD · V* dl"0, ∀V*3D,

(19)

where D"My Dy (0)"0, y (¸)"0N is the set of admissible virtual velocities (V*) of the sail
mean line. In equation (19), c

B
is such that the total velocity U given by equation (8) satisfies

the boundary conditions on the sail (U3V), and K is given by (14). We shall assume that
the solution of Problem 2 exists and is unique.

A dimensionless form of Problem 2 is obtained by considering the characteristic length ¸,
and velocity º

=
of the free stream. The characteristic time and load (stress) of the

interaction then are

t
c
"¸/º

=
, P

c
"oº2

=
.

Introducing these characteristic quantities into equation (19) yields two dimensionless
parameters. The first one, denoted P

s
, is the ratio of the characteristic elastic stress to the

characteristic fluid stagnation pressure, while the second, P
m
, is the ratio of inertial forces in

the two domains:

P
s
"hE

y
/o¸º2

=
, P

m,
"ho

s
/¸o .

For a sail, we can expect P
m

to vary from +0 (light materials and large yacht) to 0)5
(dinghies and heavy fabrics). P

s
can take values over a much larger range, because for

a given sail it is a function of the in-flow (wind) velocity º
=

which depends on weather
conditions. Usually, extreme values for º

B
are estimated to be 0 (no-wind) and 30 m s~1

(+60 knots). For common sails, the order of magnitude for E
y
h is 106 Pa m, so we can
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expect P
s

to vary from 100 [very windy and large yachts (sails)] to R (no wind and
dinghies).

Another important parameter, which characterizes the sail geometry, is defined as the
ratio of the natural length of the structure, ¸ to the distance, C, between its edges; it is
a measure of the natural curvature. When ¸/C'1 natural configurations (unstrained) are
not unique and for every admissible configuration there exist many displacement fields that
conserve the elastic energy H, so that a better adaptation of the sail to external loads can be
expected compared with the case where ¸/C41. This parameter will be referred to as P

g
.

5. DISCRETISATION OF PROBLEM 2

5.1. FLOW PROBLEM

The solution of Problem 2 involves two main difficulties connected with the computation of
the flow fields for a given history of the configuration, on the one hand, and the resolution
of equation (19), on the other. For a given history of the deformation, the distribution of
circulation density is the solution of an unsteady boundary value problem at every time
step: c

B
is such that the slip-stream condition equation (2) is satisfied. Because of the

conservation of the total circulation, equation (4), this problem is not linear: the boundary
conditions of the problem depend on c

B
through the velocity field U, which is also a function

of the shed circulation given by equation (4). Moreover, the time integration of the wake
equation has to be performed at the same time. Many procedures can be found in the
literature to solve this problem, and we choose to adapt the method developed in Charvet
et al. (1992, 1997) for three-dimensional flows. This method combines a point vortex
method (Leonard 1980) for the wake discretization with a lifting surface model (Katz
& Plotkins 1991) for the sail. Simplification of the models for a two-dimensional problem is
straightforward (Le Maı̂tre et al. 1997a) and is not detailed here.

5.2. DISCRETIZATION OF THE VARIATIONAL PROBLEM

Using the implicit, second-order, Runge—Kutta scheme, we can write the velocity and
acceleration fields as linear functions of their values at the previous time step and of
x
B
(t#Dt) the unknown solution. Introducing this time discretization in equation (19), the

following problem is obtained: to find x
B
(t#Dt) such that

PL [F(t#Dt)#hK(t#Dt)#hb
a
o
s
x
B
(t#Dt)]V* dl"!PL ho

s
AP(x

B
(t), x5

B
(t))V*, ∀»*3D,

(20)

where AP is a function of the configuration and its velocity at the previous time step, b
a
is

a coefficient which only depends on Dt and F (t#Dt)"DPn is the aerodynamic load
[equation (1)]. This equation is approximated using a finite element method (Zienkiewicz
1977) which results in a nonlinear system of equations in the discrete degrees of freedom of
the sail centreline, Mx

Bi
NN
i/1

: Let N be the resulting system of nonlinear equations for the x
Bi

:

N (x
Bi

(t#Dt))"0. (21)

Then, equation (21) can be solved by successive approximations as described in the next
subsection.
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5.3. ITERATIVE ALGORITHM

Some difficulties arise when solving system N because of the strong non linearities of the
equations relative to x

B
(t#Dt). Nevertheless, the solution can be obtained by cyclic

iterations, starting from a guess solution x
g
. The iterations are as follows

(i) x
g

is used to estimate F and K on the obstacle. The estimation of F involves the
resolution of the fluid problem, as discussed in Section 5.1.

(ii) Estimate the residue R(x
g
) of the set of nonlinear equations: N (x

g
)"R(x

g
)

(iii) Relaxation of the solution:

x
g
Qx

g
#kR (x

g
).

Estimate the convergence. Let R2"DR(x
g
) D be the norm of the residue of system N for the

tested solution x
g
. If R2 is smaller than a prescribed parameter then the solution x

g
is

considered accurate, otherwise a new cycle is performed starting from step. (i).
(iv) The solution is updated:

x
B
(t#Dt)"x

g
.

Numerical integration of the wake equation (6d) over the time step.
(v) A new time iteration can begin at step (i), providing an estimation x

g
for x

B
(t#2Dt),

and so on.
In this scheme, k is a (small) relaxation parameter that is chosen to ensure convergence of

the x
g

series to the solution.

6. HARMONIC PERTURBATION OF THE TRAILING EDGE

6.1. SELECTION OF THE NUMERICAL PARAMETERS

We present results obtained for the resolution of the dimensionless variational problem.
Thus, all quantities appearing in the following sections are dimensionless with respect to the
selected characteristic scales of the problem: ¸, º

=
and o. The two edges of the sail are

separated by a constant distance which is P~1
g

. Because of the fluid model, which assumes
that the flow is attached along the obstacle, the angle of attack has to remain moderate
during computations in order to avoid any separation of the flow.

The computations are used to determine the response of the system to a uniform in-flow,
and a perturbation of the trailing edge location (i.e. a perturbation of the angle of attack) is
analysed. Thus, the sail boundary conditions are chosen as follows:

x (l"0)"x
0
"G

0

0H, x (l"¸)"x
L
"G

P~1
g

cos a
!P~1

g
sin aH , (22)

where a(t) is the angle of attack of the obstacle and obeys

a (t)"aN #a
TE

cos u
TE

t. (23)

Here u
TE

is the angular velocity of the trailing edge, aN is the mean angle of attack and a
TE

the amplitude of the trailing edge perturbation. As previously discussed, the applications of
the model are restricted to moderate angles of attack and u

TE
because the flow is assumed

to remain fully attached along the sail.
This harmonic disturbance of the trailing edge can be interpreted as an approximation of

real sailing conditions. For example, one can imagine the case of a yacht cruising on a wavy



Figure 3. Evolution of lift coefficient C
L

with time for different time steps Dt. For the computations P
m
"0)1,

P
s
"250, a

TE
"2°, aN "15° and u

TE
"n/2 rad.
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sea which comes up against the swell with a frequency f
w
, so that the reduced angular

velocity of the perturbation can be estimated as

u
TE

"2n f
w
¸/º

=
.

Since f
w

is nearly constant for given sea conditions (neglecting variations of the absolute
yacht velocity), the corresponding angular velocity is a function of the relative wind velocity
º

=
and can reach large values when º

=
is small.

The sail is spatially discretized using a number of boundary element, denoted by Ne , equal
to 15, and we set P

g
"1. The system is then fully defined by u

TE
, aN , P

s
and P

m
.

The effect of the time step is first studied. Figure 3 shows signals for the lift coefficient, C
L
,

for different time-steps. The lift coefficient represents the resulting load applied by the fluid
on the sail in the direction normal to the free stream:

C
L
"KK P

1

0
CAP

l

0

dc
B

dt
dl@B n#c

B
k3U(x

B
)D3 U

=
dl KK .

These results show that Dt"0)02 is sufficiently small to obtain an accurate solution, at least
for the tested angular frequency of the trailing edge. As the computation begins from steady
state (impulsively started obstacle), it can be noticed that the periodic behaviour is still not
reached at time t"20 and the mean C

L
still slowly increases. The wake has to expand over

a long length downstream, before a periodic state is reached. From the computational cost
point of view, it must be noted that Dt+0)01 is an acceptable value. For a large number n of
time steps, the computational cost for the wake evolution increases as n2, so it is of interest
to minimize the number of time steps necessary for large time analysis. On a HP 712/100
workstation, a simulation over 8000 time steps lasts about 20 h and corresponds to
a relative translation of perturbation and C

L
response becomes larger, and lower frequency

modes in the lift coefficient signal appear (see Figures 4 and 5).



Figure 4. Evolution of C
L

with time for different load parameters P
s
; Dt"0)02, aN "10°, a

TE
"2°, P

m
"0)1,

u
TE

"n rad, P
g
"1.
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6.4. INFLUENCE OF u
TE

The previous results show that when P
m

takes moderate values, the leading effect on the sail
response is the transfer of vorticity, i.e. of energy, from the obstacle to the wake. Next, we
investigate the effect of the nonlinear wake dynamics by increasing progressively the trailing
edge pulsation, so that the energy transfer increases. In this way, we fix Ne"10, Dt"0)01,
P
m
"0)1, P

s
"500, a

TE
"2° and aN "10° and we test the following values for u

TE
: 1, 2, 4,

6 and 8 (in radians). To underline nonlinear effects, we took P
g
"1)02, so that the sail

admits natural curvature which favour intense vortex shedding. Again, the nonlinear
coupling between the structure and the flow is quite obvious from the C

L
signals which are

plotted in Figure 6. Low-frequency perturbations induce a nearly linear response, whereas
large frequencies lead to very complex ones (see u

TE
"8 rad for instance).

In Figure 7 we compare the different spectra of the C
L

signals. In this plot, we have used
the reduced frequency F*, which is the ratio of the dimensionless frequency of the signals
with perturbation frequency f

p
"u

TE
/2n. These spectra show the different behaviours

depending on the frequency of the perturbation. For low frequency, the system responds at
the same frequency. As u

TE
increases, the energy of the C

L
signal becomes distributed over

harmonics and subharmonics of the perturbation. For u
TE

"8, the C
L

spectrum presents
a much more dispersed energy distribution with many significant frequencies. It is worth-
while to note that the computation of the spectra has been performed with a fast Fourier
transform algorithm over 4096 time steps, representing a time simulation extending over
more than a hundred periods of perturbation when u

TE
"8. Data are recorded only 20

perturbation periods after the simulation started in order to minimize the effect of the
impulsive start.

7. RANDOM PERTURBATIONS

7.1. DEFINITION OF IN-FLOW DISTURBANCE

The analysis of the response in terms of harmonic perturbations is not, generally, adapted to
deal with nonlinear coupling between different modes of perturbation. Moreover, in real



Figure 5. Lift coefficient C
L

as a function of time t and for P
m
"0)2, 0)4, 0)6, 0)8 and 1)0; aN "10°, a

TE
"2°,

P
s
"500, P

g
"1, N

e
"10, Dt"0)03, and u

TE
"2n rad.
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life, sails, and other structures such as delta wings and para-gliders, are submitted to
complex inflows (due to atmospheric turbulence for instance) or complex motion of the
complete crew (when maneuvering or due to wave perturbation for a yacht) and are
supposed to operate under various wind conditions.

Random simulation is one alternative to overcome the difficulty in the definition of
realistic boundary conditions and in the analysis of a nonlinear coupling between frequen-
cies. We present in this section the analysis of the interaction of a sail with fixed edges in an
unsteady random inflow. The free stream is defined by a mean velocity º

=
(the wind) and

an unsteady perturbation º@ (t). The angle between the chord of the obstacle (the line which
links the two edges) and the in-flow direction is a and is assumed to be small.



Figure 6. Time evolution of the lift coefficient signals for different pulsations of the trailing edge perturbation.
Computational parameters are N

e
"10, Dt"0)01, P

m
"0)1, P

s
"500, a

TE
"2° and aN "10°.

Figure 7. Spectra of the lift coefficient signals for different pulsations of the trailing edge perturbation.
Computational parameters are N

e
"10, Dt"0)01, P

m
"0)1, P

s
"500, a

TE
"2° and aN "10°.
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In order to build realistic random perturbations of the in-flow, it is first necessary to
define the statistical characteristics of the perturbations. Here measurements are required,
but very few exist (especially measurement of atmospheric turbulence over seas). Because
our model is limited to irrotational and incompressible inflows we assume the characteristic
length scale of perturbations is large compared to ¸. Then, the perturbations º@ (t) can be
considered uniform in space, and the resulting inflow is a uniformly pulsed flow; we have

U
fs

(t)"(º
=
#º@(t)) i,



Figure 8. Spectrum of the perturbation of the in-flow velocity, º@.
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where U
fs

is the instantaneous free-stream velocity. The aim of the present simulations is to
analyse the system response for successive increasing and decreasing velocity of the in-flows
(namely gusts). The effects of atmospheric turbulence on the wake development are not
taken into account here (Bréard 1996), because the perturbations are simply transported
with a variable but uniform velocity.

A basic model for the wind perturbations considered can be defined from a mean velocity,
a variance, and an energy spectrum in the frequency domain. The mean wind velocity º

=
can easily be estimated, but the variance of º

fs
depends on many factors: roughness of the

sea, height above sea-level, air characteristics, local effects, etc. The same difficulty arises
with velocity spectra which can vary a great deal from one site to another. Despite the lack
of statistical data, it is possible to find in the literature some orders of magnitude for velocity
variance in atmospheric boundary layer, and for frequency ranges with significant energy
(see for instance Kree & Soize 1984). Accordingly, we choose for the computation a variance
equal to 0)01 for the dimensionless velocity of the free-stream. According to Kree & Soize
(1984), the highest frequency to be considered in atmospheric boundary layer is 2 Hz, and
we selected a spectrum which is flat for the range of reduced frequencies between 0 and 1)5,
and decreases exponentially to 0 for reduced frequencies higher than 2)5. The corresponding
spectrum is plotted in Figure 8. It should be underlined that when perturbations of the
motion of the complete structure are considered (for example in the case of a yacht response
to random waves excitations) corresponding spectra would probably differ and exhibit
some discrete frequencies, much more than continuous spectra. From the perturbation
spectrum, it is possible to build a random time series using random phase and inverse
Fourier transform. An example of the resulting time series for the velocity is presented in
Figure 9.

7.2. INFLUENCE OF P
m

ON THE RESPONSE TO RANDOM PERTURBATIONS

First, we set the numerical parameters to N
e
"10, Dt"0)02, the angle of attack a"10°,

P
s
"500 and we observe the dependence of the computed spectrum of the lift coefficient on

the mass parameter P
m
. Five values for P

m
have been tested: 0)1, 0)2, 0)4, 0)6 and 0)8. Two

cases have been distinguished according to whether P
g

is greater than 1 or not. In
subsection 7.2.1, we analyse the response of the system for P

g
"0)99 and the defined

random perturbations. In subsection 7.2.2, we study the case where the structure presents
a natural curvature: P

g
"1)02.



Figure 9. Example of random velocity inflow evolution with time. The variance of this signal is 0)01 and its
mean value is 1.

TABLE 1

C
L

mean value and variance for various values of the mass parameter P
m

and P
g
"0)99. P

s
is fixed

equal to 500 and a"10°. Numerical parameters are Dt"0)02 and N
e
"10. Variance of the

dimensionless in-flow velocity is 0)01 and its spectrum is reported in Figure 8

P
m

0)1 0)2 0)4 0)6 0)8

C
L

mean 0)597 0)596 0)596 0)595 0)595
C

L
variance 0)0549 0)0462 0)0339 0)0264 0)0221
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7.2.1. P
g
"0)99 — Random perturbations

For P
g

lower than 1, no admissible configuration corresponds to a natural configuration
(zero strain). The sail is strained even if fluid loads are removed. In Table 1 we report the
variances and the mean values of the C

L
signals for the different mass parameter values.

Table 1 shows that the mean value of C
L
is unaffected by P

m
, but that the variance of C

L
is

strongly affected by P
m
. As P

m
increases, the variance of the lift coefficient decreases. Thus, it

appears that increasing the inertia of the sail penalizes its displacements and deformations,
which consequently reduces shape variations.

The effect of increasing P
m

is also visible in the spectra of C
L

signals, which are plotted in
Figure 10. Each curve is computed from 4096 data points. Examination of these spectra
clearly demonstrates the nonlinear behaviour of the system by comparing the different
kinds of spectra of the external forcing and of the response: when the energy of the forcing is
equally distributed over the range f3[0, 1)5], the response spectra exhibits energy peaks at
particular frequencies. Actually, it is well known that such a nonlinear system filters the
perturbations and responds to characteristic frequencies often called wetted frequencies.
These results also show that as P

m
increases the maximum energy level decreases and the

peak moves to the lower side of the frequency domain. It confirms the observation of



Figure 10. Spectra of C
L
signals for random perturbations of the inflow and for different values of P

m
. Numerical

parameters are N
e
"10, Dt"0)02, and the system is defined by a"10°, P

s
"500 and P

g
"0)99.

Figure 11. Phase shift betweenC
L
signals and inflow perturbation signal in the frequency domain. Parameters of

the system are given in Figure 10.
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Table 1: for increasing inertia of the sail, high-frequency modes of shape deformation are
penalized, and the same phenomenon occurs for the loads. In Figure 11 we plot the
corresponding phase shifts between the lift coefficient C

L
and the in-flow perturbation. The

phase shift between response and perturbation is very interesting in design when studying
the stability and control of the system. Results show that the phase shift is nearly unaffected
by P

m
variation for low frequencies (40)75). However, the shift appears to become negative

as soon as P
m

increases.



TABLE 2

C
L

mean value and variance as a function of P
m

for P
g
"1)02. Dimensionless variance of the inflow

perturbations is 0)01 and its spectrum is given in Figure 9. System parameters are P
g
"1)02, P

s
"500

and a"10°. Numerical parameters are N
e
"10, Dt"0)02.

P
m

0)1 0)2 0)4 0)6 0)8

C
L

mean 0)99 1)00 1)00 1)00 1)00
C

L
variance 0)0605 0)0556 0)0524 0)0499 0)0484

Figure 12. Spectra of C
L

signal for random perturbations defined in previous section. Parameters of the system
are N

e
"10,Dt"0)02, the angle of attack a is taken equal to 10°, P

s
"500 and P

g
"1)02.
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7.2.2. P
g
"1)02 — Random perturbations

Now the natural length ¸ of the structure is larger than the distance C between the two
edges. Thus, there exist many natural configurations, and large displacements can
easily be realized. The main effect appearing when increasing P

g
from 0)99 to 1)02, can be

seen in Table 2, which must be compared with Table 1 (other parameters are kept
unchanged).

As expected, the length excess favours the displacements and curvatures for equivalent
strain rates and then higher mean C

L
than for pre-strained case of the previous subsection.

Variance is also affected by the ability of the structure to bend: C
L

signals exhibit greater
variance when P

g
is greater than 1, but this variance is also penalized by the structure inertia

(when P
m

increases). Figure 12 shows the corresponding spectra. It is noted that, contrary to
the case with P

g
"0)99, the system now responds to every excitation frequency, even to the

highest, for which the energy remains significant when P
m
"0)8. Nevertheless, the system

still exhibits a preferential frequency range, as manifested by the dependence of the
maximum energy peak on P

m
. Again, the maximum energy frequency decreases as well as

the maximum of energy when P
m

increases, and the spectra become flatter. Computations
also demonstrate a very different behaviour from the previous case in terms of phase shift
for frequencies higher than 1 (see Figure 13).



Figure 13. Phase shifts (in rad) between lift coefficients and inflow perturbations in the frequency domain.
Parameters are given in Figure 12.

TABLE 3

Evolution of C
L

mean value and variance for P
s
"100 and P

g
41, or P

s
"500 and P

g
'1. Other

parameters are a"10°, P
m
"0)0, Dt"0)02, N

e
"10. Random perturbation of the inflow has the same

characteristics as in previous section

P
g

0)97 0)98 0)99 1)00 1)01 1)02 1)05 1)08
P
s

100 100 100 100 500 500 500 500

Mean C
L

0)638 0)689 0)783 0)897 0)882 0)998 1)246 1)429
C

L
variance 0)046 0)043 0)053 0)068 0)064 0)068 0)085 0)102
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7.3. EFFECT OF P
g

Now, in order to study more precisely the dependence of the sail response on P
g
, we fix the

mass parameter P
m

to 0)0, the load parameter P
s
"100 when P

g
41 and P

s
"500 when

P
g
'1, and the angle of attack is kept equal to 10°. Time and obstacle discretizations are the

same as previously set (N
e
"10, Dt"0)02). In Figure 14 we compare the spectra of C

L
signals for P

g
(1 (top) with P

g
'1 (bottom). The effect of whether P

g
is smaller than 1 or not

is clearly evident. When P
g
41, high-frequency perturbations are much more filtered than

when a length excess exists (P
g
'1). Actually, elasticity works in such a way that it absorbs

high frequency energy perturbations and releases it at lower frequency in the fluid.
Moreover, it is obvious that the system has also some characteristic frequencies at which the
energy is transferred from the solid to the fluid domains. We emphasize that as P

g
increases,

the sets of natural admissible configurations and constant elastic energy displacement fields
become larger. As a consequence, the structure can better adapt to the flow for the same
elastic energy variations and so the system can respond at higher frequencies.

Table 3 summarizes the results in terms of mean C
L

values and variances.



Figure 14. Comparison of the spectra of C
L
signals for various P

g
ratios: (a) smaller than 1 and (b) greater than 1,

and random perturbations characterized by a variance equal to 0)01 and a spectrum previously reported.
Numerical parameters are N

e
"10 and Dt"0)02. System is defined by a"10°, P

m
"0)0, P

s
"100 or 500 for (a)

and (b), respectively.
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7.4. EFFECT OF P
s

Finally, we present the computed C
L

spectra for P
g
"1 and 1)02 and different values of the

load parameter P
s
. Table 4 reports the corresponding mean values and variances of the lift

coefficients.
As expected, based on the previous results (harmonic perturbations), mean values of C

L
as well as variances become larger as P

s
decreases. The effect of the load parameter is visible

too when analyzing C
L

spectra. It is also noted that the shift of the maximum energy peaks
(see Figure 15) to higher frequencies, when P

s
is increased, is accompanied by an attenuation

of the energy level.



Figure 15. Comparison of the spectra of C
L

signals for various load parameters P
s
, and (a) P

g
"1 and (b)

P
g
"1)02. Numerical parameters are N

e
"10 and Dt"0)02. System is defined by a"10°, P

m
"0)0. Random

perturbations are as defined previously.

TABLE 4

Evolution of C
L

mean vlaue and variance for P
g
"1)00 and 1)02 and various

values of the load parameter P
s
. Parameters of the computations are a"10°,

P
m
"0)0, N

e
"10 and Dt"0)02. Random perturbation has same character-

istics as previously.

P
g
"1)00 P

g
"1)02

P
s

Mean C
L

Variance Mean C
L

Variance

1000 0)682 0)059 0)988 0)064
500 0)724 0)057 0)998 0)068
100 0)897 0)068 1)090 0)089
50 1)022 0)082 1)183 0)102
10 1)597 0)142 1)700 0)161
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8. CONCLUSION

The main objective of this work was the analysis of nonlinear coupling between an ideally
flexible sail and an unsteady flow. To focus our attention on the effects of large displace-
ments that can easily be realized in common situations (especially when P

g
'1), we have

developed a simplified theory which relies on an inviscid flow model. The fluid model is then
restricted to attached flows and the inviscid flow assumption leads to a vortex sheet
representation which only requires a discretization of the solid boundary and of the wake.
An interesting feature of the Lagrangian model is that it does not require re-gridding due to
the deformation of the obstacle.

The equations of the problem have been established from the inviscid vortex sheet theory
on the basis of energy considerations for the complete system including the sail and the flow.
While it leads to the same equations as those obtained when the fluid and solid problems
are dealt with independently (Le Maı̂tre et al. 1997a), the global approach is of interest since
it yields a better insight into the energy exchanges and provides a natural physical
interpretation of the system response.

In the present physical model, the sail response is characterized by three dimensionless
parameters. The first two characterize the relative importance of dynamical effects in the
fluid and solid domains, while the third is a geometric parameter which quantifies the
natural curvature. The influence of these parameters has been analysed in the computations,
which focused on the dependence of the sail response to external perturbations. The
numerical results have put in evidence the influence of the natural curvature P

g
and of the

elastic stiffness P
s
on the response: as the natural curvature increases, or when the elastic

stiffness decreases, the resulting lift coefficient signal exhibits larger variations and eventually
nonlinear modes. Moreover, when the inertia of the obstacle is not negligible, a delay
between perturbation and response has been observed, which increases with P

m
. In the

worst cases, P
m

can also involve complex responses which present lower frequencies than
the perturbation.

To be useful for designers, the problem has now to be extended to three-dimensional
situations. The three-dimensional extensions of the models used in this work have already
been used for separated three-dimensional computations, for the flow and for the deforma-
tion of the sail as well (Charvet 1992; Charvet et al. 1997; Le Maı̂tre et al. 1988, 1997b). The
different dynamics of the three-dimensional vortices and the free borders of the sail, in
contrast to the prescribed motion of the trailing edge considered here, would probably lead
to stronger interactions and more sensitive responses for 3-D cases. However, computa-
tional times required to solve the sail equilibrium and the flow are too large to consider
a direct unsteady coupling of the codes. Without any insight into the computational time
performance, simulation of unsteady three-dimensional responses is not possible using
these tools, and future work should focus on this aspect; possibilities include parallel
implementations and fast vortex methods.
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