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Abstract

This paper investigates the use of Gaussian processes to solve sail trimming optimization problems. The
Gaussian process, used to model the dependence of the performance with the trimming parameters, is con-
structed from a limited number of performance estimations at carefully selected trimming points, potentially
enabling the optimization of complex sail systems with multiple trimming parameters. The proposed ap-
proach is tested on a two-parameter trimming for a scaled IMOCA mainsail in upwind sailing conditions. We
focus on the robustness of the proposed approach and study especially the sensitivity of the results to noise
and model error in the point estimations of the performance. In particular, we contrast the optimization
performed on a real physical model set in a wind tunnel with a fully non-linear numerical fluid-structure
interaction model of the same experiments. For this problem with a limited number of trimming parame-
ters, the numerical optimization was affordable and found to require a comparable amount of performance
estimation as for the experimental case. The results reveal a satisfactory agreement for the numerical and
experimental optimal trimming parameters, considering the inherent sources of errors and uncertainties in
both numerical and experimental approaches. Sensitivity analyses have been eventually performed in the
numerical optimization problem to determine the dominant source of uncertainties and characterize the
robustness of the optima.

Keywords: Sail trimming optimization, fluid-structure interaction, Gaussian process model, experimental,
numerical, uncertainty quantification

1. Introduction

Research on sailing yachts has fostered the advancement of methods to predict and improve the perfor-
mances of racing yachts. Yacht performance is usually assessed using so-called Velocity Prediction Programs
(VPPs) [1], which by equilibrating loads on hull, appendages and sails, determine several performance indica-
tors, such as Boat Speed (BS) and Velocity Made Good (VMG). The loads estimation in VPPs can be based
on empirical formulas, experimental data and/or numerical models of various complexity level [2, 3]. Due
to the complexity and multi-physics character of yacht dynamics, performance studies are often separated
in hydrodynamic [4] and aerodynamic [5, 6, 7] aspects. In the present work, we focus on the aerodynamics
optimization for the performance of a sail system; however, the procedure developed below can be applied
to hydrodynamic optimization and even fully coupled (hydro-aero) yacht performance optimization.

The physics of sail systems involves very complex phenomena, such as nonlinear Fluid-Structure Inter-
action (FSI) effects and aero-elastic instabilities. Moreover, the modeling of real sailing conditions is still an
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open challenge because of the large uncertainties in the prediction of wind and sea states. To our knowledge,
the sails optimization has thus been limited so far to idealized situations. For instance, sail shape optimiza-
tions (without accounting for the full FSI problem) were reported in [8], while the numerical trimming of
two-dimensional sails was considered in [9]. Regarding three-dimensional FSI problems, the authors of [10]
mention an optimization of the trimming of sails, but within an inviscid flow approximation and few details
are provided on the actual optimization procedure used.

The present work aims toward the development of efficient numerical optimization procedures, capable of
dealing with complex sail systems with realistic physical models (e.g. nonlinear FSI and turbulent flows) and
large number of optimization variables (i.e. trimming parameters). Abstractly, the optimization problem
can be expressed as

xopt = arg min
x∈Ω

−P(x), (1)

where x are the optimization variables, Ω the domain of variation of the optimization variables, and P :
Ω 7→ R is the measurement of performance to be maximized. The main difficulty in solving problem (1), in
the context of sail-trimming, is related to the cost of numerically estimating the performance P at tentative
values x of the parameters.

Indeed, the estimation of P(x) involves the resolution of a complex nonlinear FSI problem, with typi-
cally several convergence iterations between the nonlinear elastic and flow solvers. Further, adjoint-based
techniques are hardly amenable to non-linear FSI problems, particularly when the resolution is based on the
coupling of distinct solvers. This fact precludes the use of efficient gradient-based optimization methods,
and favors the use of derivative free optimization algorithms such as the simplex based [11] and evolution-
ary [12, 13] methods. These approaches classically require many performance evaluations of P(x), making
applications to sail systems very costly as a single evaluation of P can routinely require several hours of
CPU-time even on modern parallel computers.

From these observations, we advocate the use of meta-models to mitigate the large computational cost
of optimizing the trimming parameters of sail systems. Meta-models-based optimization methods have been
experiencing a growing interest for the last years, and are currently used in several other disciplines, such as
aerodynamic drag reduction [14, 15], vibration minimization for rotating aircrafts [16], civil engineering for
the design of water distribution network [17] and geological carbon sequestration [18], or FSI problems [19,
20]. Specifically, we rely in this work on Gaussian Process (GP) to approximate the mapping P : Ω 7→ R.
This statistical approach uses a coarse set of performance evaluations at some selected parameters values
x ∈ Ω to infer a GP G(x) ≈ P(x). Given the GP approximation one can apply his favorite optimization
procedure substituting G to P in (1), and obtain an approximation of xopt. This surrogate-based optimization
procedure is embedded in an iterative scheme, where new evaluations of the performance at carefully selected
new points x are introduced in order to refine the GP approximation in regions of Ω of interest, that is
susceptible to include the optimum. The GP approach is then expected to improve the direct optimization
of P by a) requiring an overall lower number of performance evaluations, compared to direct gradient-free
approaches, and b) enabling the use of efficient global optimization tools.

Another interest of GP-based optimization is that it naturally accommodates for errors and noise in the
performance evaluation. This feature is especially attractive in the case of optimizations relying on complex
numerical simulations, where both modeling and numerical errors are expected to be significant and hardly
reducible. To illustrate the interest of the robustness of the GP-based optimization to inherent error, this
work focuses on the optimization of a scaled IMOCA mainsail in upwind conditions. The objective is to find
the optimal trimming of the sail, for a performance criterion combining the drive and side aerodynamic force
coefficients. The GP-based optimization is performed first on a physical model using measurements of P(x)
performed in the wind tunnel of the Yacht Research Unit (the University of Auckland), for the sequence of
trimming points x requested by the iterative optimization procedure. In this case, the error in the observed
values of the performance is due to the imperfections in the experimental apparatus and the inherent
noise in the measurements. This experiment shows that the significant error in the measurements of P(x)
compromises the convergence of descent methods [21] without its implicit account in the GP reconstruction.

The experimental optimization is subsequently used to assess the relevance of numerical optimizations,
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where a non-linear FSI solver is used to compute the performance. To this end, a high fidelity numerical
model was created from measurements of the experimental model (e.g. dimensions, and sail geometry,
mechanical characteristics of mast and boom, wind tunnel inflow conditions, . . . ). A state of the art FSI
solver is then used to solve the numerical model at the sequence of trimming points requested by the GP-
based optimizer. The FSI solver involves a nonlinear structural solver coupled to a finite volume flow solver
with an Unsteady Reynolds-Average Navier-Stokes Equations (URANS) model. The comparison of the
experimental and numerical optimal trimming parameters shows a significant discrepancy, as expected from
both numerical modeling and experimental errors. However, it is found that the agreement between the
numerical and experimental optimal performances is consistent with the error and noise levels estimated by
the GP constructions. This observation has motivated further uncertainty quantification studies to determine
the dominant source of model error affecting the optimal trimming parameters and the performance. Because
of the highly non-linear and coupled nature of the FSI solver, the uncertainty analyses rely again on local
surrogates of the performance, using a Polynomial Chaos (PC) expansion [22] constructed on sparse grids.
These surrogates allow to quantify the variability in the achieved performance and in the optimal trimming
parameters. They are also used to propose a robust optimum.

The paper is organized as follows. Section 2 reviews the construction of the Gaussian process approx-
imation and the iterative optimization procedure detailing the selection of the new parameters. We then
detail the experimental set-up and report the results of the experimental optimization in Section 3, con-
trasting the cases of GP with and without noise assumption. The numerical modeling of the experiment
and the FSI solver are discussed in Section 4, which also presents the corresponding optimization results.
Section 5 discusses the various possible source of disagreement between the experimental and numerical
optima, and presents several uncertainty quantification analyses to assess their respective importance and
impact. Finally, conclusions of this work and direction for future developments are provided in Section 6.

2. GP-Based Optimization

The use of surrogate models is a classical approach to reduce the computational burden related to
the optimization of complex systems [23]. Polynomial models were firstly used as surrogates, thanks to
their ease of construction. However, more sophisticated meta-models such as Gaussian processes (GP) [24]
or Support Vector Machines (SVM) [25] have emerged so far. GP models have been found especially
appealing for optimization purpose, because their statistical nature allows to provide both a prediction of
the performance function, in terms of model mean, and an error estimate, in terms of model variance.
Optimization procedures need also to be adapted to the statistical nature of the approximation. Here, we
shall rely on the rigorous optimization framework based on the maximization of the Expected Improvement
(EI) criterion, referred as the Efficient Global Optimization (EGO) [26] method. An additional key feature
of the GP construction exploited in this work, is that it can naturally deal with observation noise. We also
mention the recent extensions to multi-point optimization proposed [27, 28].

In this Section we start by introducing the definitions of a Gaussian process and briefly summarizing the
construction of a Gaussian process to model a function from noisy observations. More details on GP models
can be found, e.g., in [29, 30]. We then describe the GP-based optimization procedure [31], detailing the
selection of successive optimal candidates.

2.1. Gaussian Process
Gaussian Process modeling is a statistical method to approximate functions from a finite set of observa-

tions, possibly noisy, at arbitrary points. The method takes advantage of the full definition of a Gaussian
process from its second-order characteristics, namely its mean and covariance functions. Using the ob-
servations, it explicitly updates the prior mean and covariance functions into their posterior counterparts,
minimizing the mean squared-error of the estimator. For Gaussian observation noise, the estimator corre-
sponds to the optimal Bayesian posterior. Compared to alternative regression-type approaches, the Gaussian
process modeling also avoids the need to prescribe explicitly a basis for the approximation space, which can
be infinite. Instead, one needs to specify the prior covariance structure, which is usually selected using
objective criteria (see below) in a family of parametrized kernels.
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For a formal definition of the Gaussian processes, we are considering a probability space Ω, a measurable
space E and a random variable defined by the measurable application X : Ω→ E. The space E ⊂ Rd and X
is called a real-valued random variable when d = 1. Gaussian variables are a particular class of the random
ones and the real-valued random variable X is a Gaussian variable if ∃ (µ,Σ) ∈ R × R+, Z ∼ N (0, 1) and
X = µ+ ΣZ. We write X ∼ N

(
µ,Σ2).

Definition 1. A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution [30].

The mean function m(x) and covariance function k(x,x′), that fully parameterize a Gaussian process of
a real process f(x), are defined by

m(x) = E {f(x)}, (2)
k(x,x′) = E {f(x)−m(x), f(x′)−m(x′)}, (3)

and a Gaussian process is written as

f(x) ∼ G (m(x), k(x,x′)) . (4)

2.2. Gaussian Process Model
We first focus on the construction of a GP to approximate a mapping f : x ∈ Ω 7→ f(x) ∈ R, from a set

Xn = (x1, . . . ,xn)T of n training inputs vectors, or observation points, xi ∈ Ω. Each component xi ∈ Xn

is associated to an observation (or measurement) yi ∈ R which is assumed to be dependent on the latent
function f(x) through

yi = f(xi) + εi, i = 1, . . . , n, (5)

where εi is a random measurement error (i.e. the measurement noise). In this work, the εi are assumed
independent and identically distributed, with (centered) Gaussian distribution:

εi ∼ N
(
0, σε2

)
. (6)

In the following, σε2 is referred to as the noise variance.
In the GP model, the latent function is considered as a realization of a zero-mean multivariate Gaussian

process F , with unknown covariance function CF ; that is F ∼ N (0, CF ), with

CF (x,x′) .= E {F (x), F (x′)}, (7)

where E {·} denotes the expectation operator.
The covariance function of F must be specified. We shall consider the Matérn class [32] of stationary

covariance functions, given by one-dimensional generator with form

Mν(r, l) = 21−ν

Γ(ν)

( √
2νr
l

)ν
Kν

( √
2νr
l

)
. (8)

Here r .= |x − x′|, ν and l are two positive parameters, and Kν is the modified Bessel function of the
second kind. We shall further restrict ourselves to covariances with ν →∞, leading to the classical squared
exponential covariance family with generator

M∞(r, l) = exp
(
−r2

2l2

)
. (9)

Other kernel functions could be used as well. However, as shown in the benchmark from [33], the influence
of the kernel choice is low in general, and only noticeable for multi-modal objective functions, which is not
the case in the present study. Various other definitions of kernel are given in [30].
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The multidimensional counterpart is defined as the product of the one-dimensional generator. The final
expression of the covariance function for the GP approximation is

CF (x,x′; Θ) .= θ1

d∏
i=1

exp
(
−(xi − x′i)2

2l2i

)
+ θ2. (10)

In the expression (10) of CF , Θ = {θ1, θ2, l1, l2, . . . , ld} is a vector of hyper-parameters that will have to
be inferred from the observations. The first hyper-parameter, θ1, scales the distance-dependent correlation,
while θ2 is an offset from zero. The remaining parameters li are the anisotropic correlation lengths associated
to the d directions of Ω. We denote C(Θ) ∈ Rn×n the covariance matrix for the observation points in Xn,
having entries

Ci,j(Θ) .= CF (xi,xj ; Θ), 1 ≤ i, j,≤ n. (11)

The vector Yn = (y1, . . . , yn)T of noisy observations and the predicted observation y(x) at a point x ∈ Ω
have for joint Gaussian distribution(

Yn

y(x)

)∣∣∣∣Xn,Θ, σε
2 ∼ N

(
0,
[
C + σε

2I k(x)
kT(x) κ(x) + σε

2

])
. (12)

The dependence of C on the hyper-parameters has been removed in (12) to simplify the notation; in addition,
we denoted

κ(x) .= CF (x,x; Θ), k .= (CF (x,x1; Θ), . . . , CF (x,xn; Θ))T
,

while I is the identity of Rn. The rule of conditional probabilities [34, 30] allows to write the inference of
y(x) given the noisy observations Yn as

p (y(x)|Yn) = p (y(x),Yn)
p (Yn) , (13)

and noting Cn+1 =
[
C + σε

2I k(x)
kT(x) κ(x) + σε

2

]
, that predictive posterior distribution is

p (y(x)|Yn) ∝ exp
(
−1

2
[
Yn y(x)

]
C−1
n+1

[
Yn

y(x)

])
. (14)

Using the partitioned inverse equation [35], C−1
n+1 is written

C−1
n+1 =

[
Mn mn+1

mT
n+1 µ

]
, (15)

where
µ =

(
κ(x) + σε

2 − kT(x)
(
C(Θ) + σε

2I
)−1 k(x)

)−1
,

mn+1 = −µ
(
C(Θ) + σε

2I
)−1 k(x),

Mn =
(
C(Θ) + σε

2I
)−1 + 1

µ
mn+1mT

n+1.

Then, we substitute in equation (14) and we find

p (y(x)|Yn) ∝ exp
(
− (y(x)− ŷ(x))2

2σ̂2
y(x)

)
. (16)
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To the end, we have y(x)|Yn,Xn,Θ, σε
2 ∼ N

(
ŷ(x), σ̂2

y(x)
)
, with best prediction (mean of y(x)) ŷ(x) and

prediction variance σ̂2
y(x) given by

ŷ(x) = kT(x)
(
C(Θ) + σε

2I
)−1 Yn, (17)

σ̂2
y(x) = κ(x) + σε

2 − kT(x)
(
C(Θ) + σε

2I
)−1 k(x). (18)

The hyper-parameters Θ and noise variance σε2 are unknown a priori and must to be learned from the
observations. It is done by maximization of the evidence, which involves to maximize the probability
density of the observations:

f
(
Yn|Xn,Θ, σε

2) = (2π)
n
2
∣∣C(Θ) + σε

2I
∣∣− 1

2 exp
(
−1

2YT
n

(
C(Θ) + σε

2I
)−1 Yn

)
. (19)

The likelihood function is given by L(Θ, σε
2) .= L(Θ, σε

2; Yn) .= f
(
Yn|Xn,Θ, σε

2) ∈ R+. In the present
work, (Θ, σε

2) are determined by maximizing the log-marginal likelihood [30] defined by

L(Θ, σε
2) = −n2 log (2π)− 1

2 log
∣∣C(Θ) + σε

2I
∣∣− 1

2YT
n

(
C(Θ) + σε

2I
)−1 Yn. (20)

L(Θ, σε
2) .= log

[
L(Θ, σε

2)
]
∈ R is the natural logarithm of the likelihood and it avoids to work with very

small probability density values. An evolution strategy algorithm [13] is used to maximize L(Θ, σε) with
respect to its arguments. The GP model can be used to predict values at new points x using (17) and (18).
The most computationally demanding part of the GP construction is the inversion (and determinant calcu-
lation) of the (full) matrix

(
C + σε

2I
)
, required in the definition of the log-marginal likelihood and for new

predictions. For the problems treated in this work, this is efficiently performed by LU decomposition.
The effect of the observation noise σε on the constructed GP model is illustrated in Figure 1 for a one-

dimensional function. The construction is based on 6 observations points, depicted with circles in the plots,
and the covariance hyper-parameters Θ are determined by maximizing the log-marginal likelihood. However,
in Figure 1(a) a value σε = 0 is imposed, while in Figure 1(b) the noise level is also optimized. The two plots
report the mean ŷ of the GP models with the standard ±3σ̂ uncertainty range (≈ 95% confidence interval).
In the noise-free (σε = 0) case, the resulting GP model interpolates the observations with a variance of the
prediction equal to zero at the observation points. However, the mean of the GP model exhibits significant
oscillations such that over-fitting can be suspected. In contrast, optimizing the noise level σε in addition to
Θ results in a mean process mostly free of oscillations but no more interpolating, as it can be appreciated
from Figure 1(b). The optimal value σε = 0.143 is characteristic of the averaged distance between the best
prediction and the observations.

2.3. Optimization using Gaussian Process Models
GP models constitute an attractive alternative to approximate performance functions in complex opti-

mization problems where P(x) is costly to evaluate. More precisely, from a set of (possibly noisy) estimates
of P(xi), at n observation points xi ∈ Xn, we construct a GP model. This GP model can then be used
in the optimization procedure, to estimate at a low computational cost the performance P(x) at new ten-
tative points x. In the following, we shall denote P̂n the predictive mean of the performance, and x̂n the
corresponding optimum

x̂n = arg min
x∈Ω
−P̂n(x). (21)

It is expected that x̂n ≈ xopt if the approximation error P̂n − P is small enough. This claim can be made
more formal assuming sufficient regularity on P(x) and P̂n. The advantage is that P̂n(x) is inexpensive to
evaluate (compared to the evaluation of P(x)) and can be easily differentiated (see (17)), enabling efficient
gradient-based optimization methods. The error between x̂n and xopt is a concern; in the approach below,
the error on the optimum is iteratively reduced by completing the set of observation points Xn.
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(a) Assuming σε = 0.
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(b) Optimal σε = 0.143.

Figure 1: Effect of σε on the GP model.

It is clear that the error between P and P̂n only matters in the neighborhood of the optimum, so
the completion of Xn with a new point xn+1 should aim at reducing the predictive error close to xopt

while ensuring that P̂n(x) has no other spurious optimum. A deterministic optimization procedure would
classically choose xn+1 as the optimal point given our current approximation, that is xn+1 = x̂n with x̂n
given in (21). However, the GP model of P(x) provides not just a predictive mean, but a whole distribution
of values at any x. This probabilistic information can be exploited to construct more robust approaches for
the selection of xn+1, particularly during the initial stages of the optimization when P̂n may have significant
errors. Such improved strategies are based on merit functions which usually are composite functions involving
the predictive mean (P̂n) and the variance (σ̂2

P) of the GP model; the new point xn+1 is selected as the
optimum of such composite merit function. Specifically, the merit functions should balance an optimization
of P̂n (optimality) with the selection of xn+1 in areas of large variance σ̂2

P to reduce the GP model error.
A review of various merit functions proposed in the literature is provided in [36]. In this work, we use the
Augmented Expected Improvement (AEI) merit function [37], which is an extension of the popular Expected
Improvement (EI) of [26] to the case of noisy estimations. The AEI merit function AEI(x) estimates the
expected increase in the performance, taking into account the noise in the observed values and penalizing
areas where the variance σ̂2

P is small. It writes as

AEI(x) = EI(x)
(

1− σε√
σ̂2
P(x) + σε2

)
, (22)

where the Expected Improvement is defined by

EI(x) = σ̂2
P(x) [u(x)Φ (u(x)) + φ (u(x))] , u(x) = P̂n(x∗,n)− P̂n(x)

σ̂2
P(x) , (23)

with Φ and φ = Φ′ the cumulative distributions (Erf-function) and density of the standard Gaussian distri-
bution, and x∗,n is the effective best solution over the set of current observation points Xn:

x∗,n
.= arg min

xi∈Xn

[
P̂n(xi) + σ̂P(xi)

]
. (24)
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Then, we set the new points xn+1 as the optimum point of the AEI, and add the new point to Xn

setting n ← n + 1. The iteration is completed by evaluating the performance P(xn) of the new point,
solving the full model. The next iteration can then proceed, starting by updating the GP model using the
new observation point and its performance. Overall, each iteration requires one numerical model resolution
to compute P(xn), and the resolution of two optimization problems, the first one to determine the covariance
parameters of the GP model, and the second one to find AEI optimum. For these optimization problems, the
results reported in this work were obtained using the nonlinear non-convex black-box optimization library
based on the Covariance Matrix Adaptation Evolution Strategy [38, 13]. The iterations of the GP-based
optimization problem are continued until a stopping criterion is satisfied or the resources allocated to the
optimization procedure have been exhausted (e.g., fixing a maximum number of performance evaluations).
Classically, the stopping criterion compares the distance between successive iterates. The distance can be
measured from the successive AEI optimal points, xn, successive predictive optimal points, x̂n given by (21),
or based on the differences in successive AEI values, AEI(xn+1), or optimal predictive performance P̂n(x̂n).

The optimization procedure is schematically presented in Figure 2, in the case of the numerical opti-
mization considered in Section 4. In the top block, labeled sampling loop, an initial set of observation points
xi ∈ Ω are generated. In the present work we rely on a Latin Hypercube Sample (LHS) scheme [39] to
randomly generate the initial sample set. The performance P(xi) is also evaluated for all the initial sample
points. The lower block, label iterative loop in Figure 2, is the core of the optimization procedure consisting
in the repetition of the sequence of GP model construction, AEI optimization and performance evaluation
at the new point xn selected, as well as the convergence check.

Start

Dataset sampling
(10 points)

Estimate performance
(Solve non-linear FSI problem)

Estimate performance
(Solve non-linear FSI problem)

Trimming optimization

- Build metamodel

- Optimize AEI

Conv ?

End

New trim

No

Yes

New trim

sampling loop

iterative loop

Figure 2: Schematic of the GP-model based optimization procedure.

As explained above, the performance evaluations, which represent the bulk of the computational cost,
are divided between the initial sampling of observation points and the additional entries governed by the
AEI criterion. As with most derivative-free approaches, the number of evaluations required to determine a
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satisfactory approximation of the optimum can grow rapidly with the number of parameters. Obviously, this
cost depends strongly on the characteristics of the performance function, such as its smoothness, anisotropy,
separability, making the prescription of guidelines tedious. As discussed in references provided, GP models
are usually restricted to few dozens of parameters. The reader interested in a more precise quantification
of the computational cost and the best strategy to allocate resources, in particular for problems in larger
dimension, can refer to [40].

3. Experimental Optimization

This Section concerns the sail trimming optimization performed in the wind tunnel of the Yacht Research
Unit (YRU) [41].

3.1. Experimental Setup
The experimental sail is inspired by an IMOCA 60-foot design mainsail at 1:13 scale, designed and

manufactured by INCIDENCE SAILS company. The surface area is 1 m2, for a height of h = 2 m; it is
supported by a rig made of a flexible circular section carbon mast (constant diameter 14 mm). The mast is
simply clamped at its base and has no spreader, backstay or forestay. The sail and rig are set in the open
jet test section of the YRU wind tunnel, see Figure 3(a). The test section is 7.2 m wide and 3.5 m high.

Three stepper motors and a control card are used to remotely control the main sheet length (Lsheet)
and main car position (Lcar), which are the two trimming parameters to be optimized. The remote control
system, shown in Figure 3(b), allows us to enforce new trimmings with a precision of ±2 mm, without
switching off the wind tunnel flow and recalibrating the measurement devices. These devices consist in a
six-component force balance, located under the floor of the wind tunnel, to measure the aerodynamic forces,
a load sensor (±0.02 N precision, range 5 daN) to measure the load in the sheet and a V-SPARS acquisition
system [42] to track the position of five fluo-red stripes across the sail (see Figure 3(a)) and record the
sail’s flying shape. The force balance measures the thrust force in the X-direction corresponding to the
model longitudinal forward direction, the side force in the Y -direction defined as the positive port-side. The
Z-direction of the balance is pointing upward. After careful calibration checking, the balance precisions in
the X, Y and Z directions were estimated to be ±0.09 N, ±0.11 N and ±0.27 N respectively.

(a) Mainsail in the YRU wind tunnel. (b) Remote trimming system.

Figure 3: Experimental setup.

The wind tunnel inflow velocity was measured and found to have an apparent wind speed (AWS) of
3.5± 0.15 m/s for an apparent wind angle (AWA) of 40± 2 deg. The experimental Reynolds number, based
on the sail chord length c = S/h = 0.5 m, is Re = 1.2 105. A multi-hole pressure probe (Cobra Probe) was
used to measure profiles of the flow velocity at several locations inside the wind tunnel, in particular in the
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inflow section. These measurements were repeated with and without the sail model to observe its effects on
the flow field.

The optimization procedure is used to maximize P(x), where x = (Lsheet, Lcar). The performance
(objective) function is a linear combination of the thrust and side force aerodynamic coefficients, denoted
respectively CX and CY :

P(x) = CX(x) + 0.1CY (x). (25)

The aerodynamic coefficients are the aerodynamic forces normalized by S × p∞, where p∞ is the measured
dynamic pressure (precision ±1 Pa) of the inflow. In addition to the trust coefficient to be maximized, the
objective function in (25) penalizes the (negative) side force coefficient CY , with a weight coefficient 1/10, to
account for the hydrodynamic drag and leeway that are detrimental to yacht performance. The weight value
is selected on the basis of previous numerical hydrodynamic studies on a Figaro sailing yacht. Changing the
weight value affects the objective function and optimal trimmings such that a sensitivity analysis would be
necessary if it is not well known. Alternatively, a more complex Velocity Prediction Program can be used
to estimate the performance in lieu of (25). Nevertheless the proposed optimization procedure will remain
the same.

The optimization follows the procedure illustrated in Figure 2, except that the performance is not com-
puted but measured experimentally. Specifically, for each new point xn, the sail is remotely trimmed to the
corresponding Lcar and Lsheet values and, after the flow has stabilized, the measured aerodynamic forces are
averaged over a 30 s period to filter-out noisy fluctuations. The averaged forces are subsequently normal-
ized to estimate the experimental performance denoted Pexp(xn). In these experiments, the optimization
procedure is considered converged when two successive new trimming points xn are within a distance less
than 1 mm, a tolerance corresponding to the precision on the trimming parameters that can be applied
experimentally.

In the rest of the section, we apply the optimization procedure in two different settings in order to
demonstrate the effectiveness of the GP-based optimization on noisy experimental performance evaluations.
To this end, we first assume in section 3.2 a perfect performance measure, enforcing a measurement noise
σε = 0 (noise-free situation) in the GP construct, so the GP model exactly interpolates the experimental
points. This noise-free assumption is subsequently compared in section 3.3 to the case where the GP
construction uses a finite measurement noise estimated from the experimental observations.

3.2. Experimental Optimization with σε = 0
In a first series of experiments, the optimization is carried out using GPs constructed fixing σε = 0. This

situation corresponds to perfect performance measure assumption for the points in the initial sample set and
subsequent optima of the AEI merit functions. As the result of setting σε = 0, the posterior mean of the GPs
interpolates the experimental values. This is illustrated in Figure 4 which depicts the GP model of Pexp(x)
after iteration 36 of the optimization procedure. Figure 4(a) shows the color contours of the posterior mean
as a function of the trimming parameters Lcar and Lsheet over the optimization domain, and Figure 4(b)
shows the corresponding standard deviation. Also shown using black dots are the 36 sample points of the
initial set and successive AEI optima, that are used to construct the GP model. A large dispersion of the
sample points is reported, the points being scattered over all the domain Ω. This dispersion denotes that
the successive AEI merit function optima are not converging. Instead, the algorithm continues to explore
Ω without discovering a particular sub-domain more likely to contain the true global optimum. This is
confirmed by inspecting the posterior mean of the GP model, in Figure 4(a), which presents at least 2
local minima, but without significantly attracting sample points. This behavior can be explained from the
standard deviation field reported in Figure 4(b); it has a zero value at the sample points (consistently with
enforcing σε = 0) but quickly increases when moving away from these points: this structure dominates
the AEI merit function and leads the optimization procedure to propose new points xn+1 in less explored
areas because of the high variance of the GP model. In addition to distracting the iterates from promising
areas to favor the exploration of highly uncertain regions, the inappropriately high confidence (low standard
deviation) of the posterior mean in the immediate neighborhood of the sample points induces spurious local
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minima, due to the interpolatory nature of the mean. This behavior highlights the fact that the GP model
fits the experimental noise.

(a) GP model mean. (b) GP model standard deviation.

Figure 4: GP model of Pexp(x) at iteration 36 and assuming σε = 0.

Fitting the experimental noise is highly prejudicial in the present example, because the error in the per-
formance is significant. The effect can be appreciated in Figure 5 which shows the sequence of experimental
performance measurements Pexp(xn) as a function of the iteration index (the first 10 iterations correspond
to the initial sampling and are not actual iterations of the optimization algorithm). The plot shows that the
sequence is not converging but sustains large fluctuations from an iterate to another. The magnitude of the
fluctuations have remained essentially the same as for the initial random sampling, denoting the absence
of improvement of the proposed optimum performance with the iterations. Clearly, the over-fitting of the
noisy measurement Pexp is responsible for the failure of the present approach, which keeps exploring the
domain without converging to the maximum underlying performance.

3.3. Experimental Optimization with finite noise
We next repeat the previous experiment, starting from the same initial sample set, but using a fixed finite

measurement noise in the construction of the GPs. In this experiment, the value of σε is not determined
as part of the GP construction optimizing the log-marginal likelihood in (20), but is fixed to σε = 0.027.
This value for σε was experimentally estimated from repeated measurements at different trimmings points.
Other than using a finite fixed non-zero value for σε, the optimization procedure is the same as previously.
However, the initial GP constructed from the initial sample set being different, the sequence of optima
proposed is entirely different. In particular, the optimization reaches the stopping criterion at iteration 33.

Figure 6 depicts the GP at convergence and should be contrasted with the previous case shown in
Figure 4. In particular, we observe that the posterior mean is much smoother than previously, with a single
well-defined global optimum in Ω. In addition, it is seen that the sample points cluster in the neighborhood
of the optimum, in sharp contrast to the previous case with σε = 0. The optimal trimming at convergence,
x̂n, is found for Lsheet = 133 mm and Lcar = 138 mm corresponding to a predicted (GP) performance
P̂exp
n (x̂n) = 0.397. The standard deviation of the GP model, shown in Figure 6(b), is minimal in the

neighborhood of the optimum, but remains finite and assumes values & σε. Other regions of Ω far from the
optimum are not explored by the optimization process, although the variance can be large.

The convergence of the optimization procedure can also be appreciated from the plot of Figure 7, to be
contrasted with Figure 5. The improvement in the measured performance, after the first 10 initial random
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Figure 5: Sequence of measured Pexp(xn) as a function of the iteration index. Case of σε = 0.

(a) GP model mean. (b) GP model standard deviation.

Figure 6: GP model of Pexp(x) at iteration 33. Case of σε = 0.027.

sample points, is now clear, and the magnitude of the fluctuations quickly decreases and saturates at a low
level with small amplitude ≈ σε. Experimental imperfections can be reasonably deemed responsible for the
remaining fluctuations, rather than an ineffective selection strategy of the successive optima.

The two experiments reported in this section have underlined the importance of properly treating the
measurement noise. For the settings of the experimental test case, not accounting for the noise results in a
complete failure of optimization procedure. On the contrary, when the experimental noise is accounted for,
the GP-based optimization is robust, owing to a suitable AEI merit function able to disregard non-interesting
areas of Ω, even when they support large prediction variance. Further, the GP model with correct noise
level is able to smooth out the measurement noise, allowing to find the optimum in few iterations only.
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Figure 7: Sequence of measured Pexp(xn) as a function of the iteration index. Case of σε = 0.027.

4. Numerical Optimization

The results reported in the previous section demonstrated the effectiveness of the GP-Based optimization
procedure in determining the optimal trimming parameters in just a limited number of iterations, provided
the experimental noise is appropriately accounted for. In this section, the same optimization procedure is
used, but with the performance at trimming points estimated numerically. Our objective is to assess the
capabilities of the optimization method applied to a coupled FSI solver, and compare the computed optimum
with the experimental one. To this end, a numerical model of the wind tunnel experiment has been set up.

4.1. FSI Solver
We assume that the FSI problem has a steady solution for all values of the trimming parameters in the

optimization range, such that a quasi-steady approach can be used to couple the structural and fluid solvers.
These solvers are now briefly described.

4.1.1. Structural solver
We rely on the ARA software developed by K-EPSILON for the structural model of the sail. The

sail model involves Timoshenko beams (mast, boom, battens), cables (sheet) and Constant Strain Trian-
gles (CST) membrane elements (cloth) of various types in large displacement formulation [43]. A wrinkle
model is added to capture the local sail deformations with a reasonable number of membrane elements [44].
See Durand [45] or Nakashino and Natori [46] for further details on CST elements and the wrinkle model.
The nonlinear solution is obtained by means of a Newton method with Aitken relaxation. The geometry
of the model is imported from the SAILPACK software developed by BSG Developments, to best fit the
experimental geometry. The mechanical characteristics of the mast, boom, and sail fabrics were measured
during the experimental campaign and used in the numerical model. The number of membrane elements is
a key parameter to control the convergence of the sail geometry and of the whole FSI solution. Figure 8
shows 3 meshes of the sail with different number of membrane elements. The first mesh with ≈ 100 elements
in Figure 8(a) is quite coarse and is compared with an intermediate and fine meshes having ≈ 2, 700 and
≈ 9, 000 elements respectively (shown in Figure 8(b) and Figure 8(c)). Solving the complete FSI problem
with these 3 meshes, we found that the coarse mesh yield a solution far from being converged. On the con-
trary the two most refined meshes yield fluid loads in excellent agreement with less than 0.5% discrepancies.
To minimize the computational cost, and given the other sources of error, the structural mesh with ≈ 2, 700
membrane elements in Figure 8(b) is used in the following.
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(a) ≈ 100 membrane elements. (b) ≈ 2, 700 membrane elements. (c) ≈ 9, 000 membrane elements.

Figure 8: Numerical meshes with different number of membrane elements.

The resulting structural model is illustrated in Figure 9, where plotted are the membrane elements in
Figure 9(a) and the fabric stiffness contours in Figure 9(b). The higher fabric stiffness at the clew, head
and tack of the sail is clearly visible.

(a) Structural mesh. (b) Mainsail stiffness.

Figure 9: Numerical model of the sail.

4.1.2. Flow solvers
The structural solver has been coupled with two different flow solvers.
First, it is coupled with the steady and unsteady inviscid flow solver AVANTI [47, 48]. The inviscid solver

is based on the Vortex Lattice Method (VLM) [44] where the sail surface is discretized in rectangular panels
supporting doublets distributions. The Kutta condition is enforced at the trailing edge to generate vorticity
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particles that model the wake and its nonlinear dynamics. This inviscid model assumes slip conditions over
all the sail surface and therefore cannot account for detached flow situations. Its domain of validity is then
limited to low-camber sails trimmings and a moderate angle of attacks. The steady inviscid solution is
identified with the limit as t→∞ of the unsteady solutions.

The structural solver is also coupled with the parallel (MPI) incompressible viscous flow solver ISIS-
CFD (of FINETM/Marine). This software solves the Unsteady Reynolds-Average Navier-Stokes Equations
(URANS) with finite volume discretizations, accommodating both structured and unstructured meshes. We
considered a parallelepiped computational domain enclosing the sail, with extension 7.5 × 12 × 1.8h3 (in
the X, Y and Z directions), following the numerical tests in [49]. The boundary conditions applied on
the different faces of the computational domain are schematically illustrated in Figure 10(a). The velocity
profile at the inlet boundary is set to the profile measured experimentally in the wind-tunnel, which is
shown in Figure 10(b). The fluid domain is meshed to fit the sail geometries using HEXPRESSTM, a
semi-automated mesh generator. Note that the mast is not represented in the fluid model. Regarding the
turbulence modeling, we used the two equations shear stress transport (SST) k − ω model [50] with wall
function boundary conditions [51].

(a) Flow domain around the sail.
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(b) Inflow velocity profile.

Figure 10: Computational fluid domain and boundary conditions.

4.1.3. Coupled problem
The FSI problems are solved coupling the structural and flow solvers through a quasi-monolithic algo-

rithm [45], which is an implicit coupling procedure adapted to partitioned solvers. Briefly, the resolution of
the structural problem is nested inside the iterations on the nonlinear steady flow solution. This approach
preserves the convergence and stability properties of the monolithic approach. As the sail sustains large
deformations, the flow solver must account for the change of the boundary geometry. This is easily achieved
in the inviscid solver where only the sail surface is discretized. This is less trivial and computationally more
demanding in the case of the viscous solver, which requires a volume mesh. In this work we use the mesh
deformation propagation (MDP) method [52], proceeding from the sail boundary toward the inside of the
fluid domain. More details on the solvers and the coupling algorithms can be found in [45, 48, 47].

4.2. Numerical Validation
The inviscid and viscous FSI solvers have been extensively validated at the Naval Academy Research

Institute with many experimental comparisons, see for instance Augier et al. [5]. A specific convergence
analysis was conducted on the present problem to determine the discretization parameters of the fluid
and structural problems needed to correctly capture the physics of the FSI models, while maintaining
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an affordable computational cost. Achieving minimal computational time is indeed crucial to enable the
optimization of the trimming parameters. A comparison with experimental measurements is also provided
to assess the predictive capability of the (viscous flow) FSI solver.

4.2.1. Influence of mesh deformations
In these numerical tests, we analyze the impact of the fluid mesh generation on the computed FSI solu-

tions. More precisely, we compare two solutions for trimming parameters (Lsheet, Lcar) = (123, 124) mm. The
first one uses the MDP method [52], starting from the solution mesh at trimming parameters (Lsheet, Lcar) =
(160, 0) mm, called S0. This first solution is called SDef ; it requires a large deformation of the initial ge-
ometry of S0 to adapt the flying shape at the new trimming parameters. The difference between the two
flying shapes can be appreciated from Figure 11(a), and the mesh deformation can be assessed comparing
Figures 11(b) and 11(c). Subsequently, we build a new mesh around the geometry of SDef with ≈ 1.5 million
finite volumes, and restart the FSI solver to accommodate changes in the fluid loads induced by the new
mesh. This leads to a second solution over a much less deformed mesh, as can be seen in Figure 11(d); we
call this solution SRemesh. We only report the differences between SDef and SRemesh in terms of fluid loads
as the two flying shapes are almost indistinguishable. Values of CX , CY and the sheet tensions Tsheet are
reported in Table 1 for the two solutions. It is seen that they agree very well with less than 1% differences
in the fluid loads, demonstrating the robustness of the MDP method that remains accurate even for these
large changes in the sail geometry and mesh deformation. We shall exploit this robustness of the MDP
method and avoid systematically iterating on the initial mesh at every new optimal point proposed when
optimizing for the trimming parameters. Instead we shall perform a remeshing of the fluid domain only in
the case of extreme mesh deformations.

CX CY Tsheet [N ]
SDef 0.476 −0.841 12.6
SRemesh 0.477 −0.847 12.5
Differences 0.3% 0.7% 0.8%

Table 1: Comparison of the computed fluid loads for the Mesh Deformation Propagation method (SDef ) and the corresponding
remeshed solution (SRemesh).

4.2.2. Experimental comparison
The predictive capability of the viscous numerical FSI solver is also assessed by comparison with ex-

perimental measurements. In Table 2 we compare to the experimental values the computed fluid loads for
3 different meshes of the fluid domain having increasing resolution. The computations correspond to the
experimental optimal trimming points (Lsheet, Lcar) = (133, 138) mm. The three meshes, M0, M1 and M2
have ≈ 1.5, ≈ 3.4 and ≈ 4.3 million cells respectively. They were generated with the remeshing procedure
discussed above. We can see that the numerical loads are close to each other, denoting again the conver-
gence of the computation with respect to the fluid mesh size. The thrust force coefficient CX and sheet
tension Tsheet are also in excellent agreement with their experimental values. The magnitude of the side
force coefficient CY , on the contrary, appears to be numerically under-estimated by roughly 15%. This
discrepancy level is not surprising and can be explained by both the experimental uncertainties and the
numerical modeling errors (see below). Consequently, the fluid mesh with around 1.5 million cells is selected
in the following as it appears to provide sufficiently converged numerical fluid loads, given the discrepancies
with the experimental loads. Specifically, our numerical tests show that the discretization error can not
explain the discrepancy between numerical and experimental estimates. We shall discuss and investigate
further the causes of the remaining discrepancies, namely the model errors, later in in Section 5.

The comparison with the experiment measurements can also be made for the geometries (flying shapes).
For instance, Figure 12(a) and Figure 12(b) report the evolutions of the sail’s twist angle and camber as
functions of the height Z above the bottom boundary (the bottom of the sail is at Z = 0.2 m). These two
plots stress the convergence of the numerical prediction with respect to the mesh size, as no clear differences
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(a) Structural meshes for S0 (blue) and SDef (red). (b) Initial mesh S0.

(c) Mesh of SDef using the MDP method. (d) Mesh of SRemesh after remeshing SDef .

Figure 11: Structural and fluid meshes for different trimming parameters and mesh generation methods (see text for more
details).

CX CY Tsheet [N ] Ncell
Experimental 0.497 −1.026 14.9 –
M0 0.476 −0.844 14.5 1.5 M
M1 0.467 −0.831 14.3 3.4 M
M2 0.483 −0.849 14.6 4.3 M

Table 2: Comparison of the fluid loads computed using 3 different meshes with increasing resolution and their corresponding
experimental values. Computational case corresponding to the experimental optimal trimming point.

between the 3 meshes are reported. The twist distribution is also in excellent agreement with the measured
one. On the contrary, differences between numerical and experimental values are not negligible for the
camber distribution, with a maximum difference as large as ≈ 4.5% of the chord length around 1.5 m height.
Specifically, the camber of the sail appears to be numerically overestimated in the middle part of the sail.
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Regarding the top experimental point, we remark that it is the most sensitive to measurement errors, and
the experimental camber is likely to be overestimated at this point. We however report this point for the
completeness of the comparison.

Twist [deg]

Z
[m

]

0 5 10 15 20 25 30 35 40 45 50
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

M0

M1

M2

Exp

(a) Twist angle distribution.
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(b) Camber distribution.

Figure 12: Comparison of the experimental and numerical twist and camber distributions at the optimal experimental trimming
points. Three numerical meshes M0,1,2 are tested with size reported in Table 2.

To better appreciate the differences between the numerical and experimental results, we provide in
Figure 13 a visual comparison of the two flying shapes. In the experimental case shown in Figure 13(a), a
diagonal wrinkle of the sail is clearly visible. This is in contrast to the corresponding numerical flying shape,
shown in 13(b), which is smooth and presents no such wrinkle. The wrinkle can explain the differences in
the camber distribution (Figure 12(b)), as wrinkles generally tend to reduce the sail camber. The absence
of wrinkle in the numerical solution could be due to an incorrect prescription of the tension in the two top
battens (horizontal beams) of the sail, which is difficult to measure, and the inability of the numerical model
to capture these types of wrinkles. Another important possible source of discrepancies between the flying
shapes is the boundary conditions and confinement effects, which are known to have a significant impact on
the computed aerodynamic forces [49].

Based on this numerical experiment, we use in the following ≈ 2, 700 membrane elements for the struc-
tural mesh of the sail, and meshing parameters such that the fluid mesh size has ≈ 1.5 million finite volumes.
With these discretization parameters, well converged viscous FSI solutions are obtained in a reasonable time
of ≈ 5 h on a 64 CPUs cluster per computation.

4.3. Numerical Optimization
The results of the numerical sail trimming optimization are now presented. The optimization considers

again the performance function defined in (25). The optimization procedure is the same as for the experi-
mental case, except that P(x) is numerically evaluated, solving the FSI problem at the proposed trimming
points xi. We shall denote Pnum(x) the numerical performance. In addition, the "noise" parameter σε of
the Gaussian process is not fixed to an a priori value, as in Section 3, but is inferred from the observations
(see (20)).

4.3.1. Inviscid flow solver
The optimization is first applied on the structural solver coupled to the inviscid flow solver. The advan-

tages of the inviscid model are its low computation time, compared to the viscous solver, and the simplicity
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(a) Experimental flying shape. (b) Numerical flying shape. The color contours
indicate the wrinkles rate.

Figure 13: Comparison of the experimental and numerical (viscous model) flying shapes at trimming parameters Lsheet = 133
and Lcar = 138.

of dealing with the sail deformations (no volume mesh needs be generated).
Figure 14 shows the predictive mean P̂num

n (x) at convergence, which is achieved at iterations 38 (it must
be remember that the first 10 iterates are selected randomly and are not actual iterations of the procedure).
This predictive mean should be compared with its experimental counter-part depicted in Figure 6(a). It can
be seen that the inviscid and experimental predictive mean differ qualitatively, both in their magnitudes (note
the change in the color range) and in the location of their respective optimum. Specifically, though P̂exp

n (x)
and P̂num

n (x) are both smooth with a unique maximum, the inviscid optimum corresponds to a trimming
with Lcar fully trimmed to the windward side and Lsheet quite eased, while the car is trimmed to the leeward
side and the sheet is tightened in the experimental optimum. The optimal inviscid trimming corresponds
to an unrealistically cambered sail. Such trimming is favored because the inviscid model cannot account for
detached flow situations, yielding non-physical solutions with large overestimation of the performance in this
regime. This example illustrates the importance of using a physically realistic predictive model that remains
valid over the whole parameter domain. Otherwise, the numerical optimization procedure can produce
an unphysical solution, even if the model is actually fairly accurate in the neighborhood of the physical
optimum. In the present case, the problem could be remedied by means of an ad hoc penalization of the
performance function; for instance one could add a righting moment penalty term or artificially decrease
the performance for trimmings likely to produce a detached flow [53].

4.3.2. Viscous flow solver
The optimization is now applied coupling the structural solver with the viscous solver. For reasons that

will be explained soon, the parameter domain is extended to Lcar ∈ [−100, 310] (mm), while the range of
Lsheet is kept as before. However, the optimization procedure is still initialized with the same LHS points
as previously.

Figure 15 shows the first two moments of the GP model of Pnum(x) at the convergence of the optimization
procedure, which is achieved at iteration 34. Note that the number of iterations to converge is very close to
the experimental case (with noise). The predictive mean P̂num

n (x) reported in Figure 15(a) is again smooth
with a unique optimum. Further, for Lcar ∈ [−210, 150] mm P̂num

n and Pexp are in good agreement (see
Figure 6(a)). However, the hill of P̂num

n (x) containing the numerical optimum has a larger extension and
is flatter compared to the experimental case. Consequently, the sequence of proposed numerical optima
converges to a value of Lcar larger than for the experimental case, in fact slightly outside of the range of
the experimental test. This was the motivation for extending the Lcar range: to encompass the numerical
optimum. The standard deviation of the GP model of Pnum(x), shown in Figure 15(b), has a structure
comparable in shape and magnitude to the experimental one in Figure 6(b), at least in the areas that were
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Figure 14: Predictive mean P̂num
n (x) at iteration 38 (inviscid model, σε = 0.006).

jointly sampled areas. Also, the inferred σε = 0.022 is not far from the experimental value, even though they
have very different origins and account for totally different effects (experimental variability and numerical
errors).

(a) GP model expectation. (b) GP model standard deviation.

Figure 15: GP model of Pnum(x) at iteration 34 (viscous model, σε = 0.022).

The convergence of the viscous optimization procedure is reported in Figure 16, where the computed
Pnum(xn) is plotted as a function of the iteration index. Again, the first ten values correspond to the
initial sampling of the parameter domain. After these first points, the computed performance improves and
eventually stabilizes with slowly decaying fluctuations after iteration 20. This behavior is similar to the
experimental results reported in Figure 7. Figure 16 also provides the evolution with the iteration index of
the inferred σε. It is seen that σε decreases (on average) as the optimization proceeds and asymptotically
converges to a finite value σε ≈ 0.022 (read on the right-hand axis). The fact that σε does not go to
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zero asymptotically indicates that the GP construction is informed of the numerical errors and does not
attempt to fit exactly the computed performances. In other words, as for the experimental case, the GP-
based optimization is able to smooth out part of the numerical errors inherent, for example, to the mesh
deformations, the approximation of steady states or the convergence of nonlinear solvers.
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Figure 16: Sequence of computed Pnum(xn) as a function of the iteration index (in red, left axis), and corresponding inferred
σε (in blue, right axis). Case of the viscous model.

To complete the comparison of the experimental and numerical solutions, we report in Table 3 the
optimal trimming parameters and the corresponding optima of P̂num

n and P̂exp
n at convergence. We observe

that the experimental and numerical solution are significantly different in terms of optimum locations,
particularly for Lcar: 138 mm in the experimental case and 226 mm in the numerical case. In contrast, the
predicted performances in the fourth column of Table 3 are in much better agreement. The flatness of the
performance around the experimental and numerical optima can explain the resulting large distance in terms
of parameters: changing Lcar around its optimal value weakens the numerical performance and, conversely,
small numerical and modeling errors can drastically affect the optimal value of Lcar. This claim is further
confirmed by inspecting the fluid loads reported in the last column of Table 3. The loads reveal that the
numerical and experimental thrust coefficients are in exact agreement, such that the side force coefficient
explains all the difference in the performance. As mentioned previously, this is not surprising as the side
force is known to be more sensitive to modeling errors than the thrust force. Finally, the last column of
Table 3 compares the tensions in the sheet for the two optima, which significantly differ from one would
have expected from the differences in the car trimming. In the next section we further refine the analysis of
the different source of numerical and modeling errors and their impact on the predicted optimal trimmings.

Lsheet [mm] Lcar [mm] P̂n(xopt) CX −CY Tsheet [N]
Exp. 133 138 0.397± 0.027 0.497± 0.012 1.026± 0.015 14.9± 0.02
Num. 122 226 0.413± 0.024 0.497 0.803 20.1

Table 3: Comparison of the experimental and numerical optima: location, predicted optimal performance (see (21)), thrust
and side force coefficients, and sheet tension.

5. Optimum Uncertainty Quantification

The comparison of the experimental and numerical optimizations has shown differences in the optimal
trimming parameters that are consistent with the discrepancies between the measured and computed fluid
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forces. In addition, the numerical discretization parameters of the FSI solvers were selected as to ensure
a sufficiently small numerical error, such that it can only be responsible for a limited contribution to the
discrepancies between numerical and experimental optima. In fact, model errors and experimental imper-
fections are needed to explain most of the differences reported above. In a effort toward investigating model
errors, we follow an uncertainty quantification approach in this Section, we propagate some uncertainties in
the inflow conditions through the numerical optimization problem. Specifically, we are concerned with the
impact of the model uncertainties caused by an incomplete knowledge of the actual wind-tunnel experiment,
on the outcome of the optimization procedure. Two points of view will be considered. First, in Section 5.1,
we analyze the impact of some model uncertainties on the predicted performance at the numerical optimal
trimming determined in the previous section. Second, in Section 5.2, we directly estimate the uncertainty
on the numerical optimal trimming due to the model uncertainties.

To perform these uncertainty analyses, we need to select the most relevant experimental uncertainties
and define their variability range. To this end, we rely on expertise (from the staff of the Auckland wind-
tunnel as well as our own appreciation) to review the different sources of experimental uncertainties likely
to have a noticeable impact on the solution of the numerical model and on the optimization problem.
The main sources identified were the measured apparent wind angle (AWA), apparent wind speed (AWS)
and mechanical properties of the sail and spar elements. Regarding the mechanical properties of the mast
and boom, as well as the stiffnesses of the sail fabrics, measured before and after the experimental tests
were found to be quite accurate and also to have a small impact on the numerical solution. Assuming an
overly large 2% range of variation for these parameters, no significant effect was observed in the predicted
performance with consequently a negligible impact on the optimal solution. The tensions in the 2 top
battens of the sail were identified as another potential source of uncertainties, that could significantly
affect the numerical prediction, in particular through the direct modification of the sail camber and the
creation-resorbing of wrinkles. Unfortunately, the batten tensions were not systematically measured during
the experimental campaign, such that determining a realistic variability range is not possible and we have
preferred to disregard these model uncertainties in the present work. We are then left with the two main
characteristics of the wind-tunnel inflow: the AWA and AWS. Based on experimental measurements and
expertise, we have set the uncertainty ranges at 40± 2 degrees for the AWA and at 3.5± 0.175 m/s for the
AWS. We further assume uniform distributions for the AWA and AWS which are considered independent,
that is the least informative distribution given the variability range.

5.1. Uncertainty in the Optimal Performance
In this section we quantify the uncertainty, due to the uncertain AWA and AWS, in the numeri-

cal performance prediction at the optimal trimming point approximated by x̂n given by (21), that is
(Lsheet, Lcar) = (122, 226) mm. To this end, Pnum(x̂n) is seen as a function of AWA and AWS which
approximated using a Polynomial Chaos expansion [54, 22]. The expansion coefficients are obtained using
the non-intrusive Sparse Pseudo Spectral Projection (SPSP) method [55, 56, 57] which requires the resolu-
tion of the FSI model for selected AWA and AWS values located on a sparse grid. An isotropic PC expansion
with maximal degree 4 was found necessary to accurately approximate the dependences, corresponding to
a sparse grid having a total number of 17 grid points.

Figure 17(a) shows the PC approximation of Pnum(x̂n) as a function of AWA and AWS in the uncertainty
range. The sparse grid points involved in the PC construction are also shown using black squares. The
performance is seen to have a low dependence on the wind speed AWS over the considered uncertainty range,
especially at the lowest wind angle. The surface plot also indicated that the performance monotonically
depends on the AWA, and this dependence is stronger at the highest wind speed.

The influence of AWA and AWS can be quantified using global sensitivity indices, also known as the
Sobol indices [58, 59], which can be easily computed from the PC approximation [60, 61]. First and total
sensitivity indices of the predicted performance are reported in Table 4. The first order indices measure the
fractions of the variance due to the respective factor (AWA or AWS) without any interaction with other
factors. On the contrary, the total indices account for the effect of the factor and all its interactions with
other factor. The table confirms the low influence of AWS compared to AWA, with a total sensitivity index
barely exceeding 2%. Conversely, the AWA variability is responsible for 98% of the optimal prediction
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variability, and the two factors are weakly interacting. The low influence of the wind speed can be explained
by the normalized form of the performance and the relative stiffness of the sail system that does not undergo
significant elastic deformations over the AWS uncertainty range.

AWA AWS
First order 0.9776 0.016
Total order 0.9838 0.022

Table 4: First and total order sensitivity indices of Pnum(x̂n), associated to AWA and AWS.

The PC approximation can be averaged over the uncertainty domain to give Pnum(x̂n) = 0.413; This av-
eraged performance agrees up to the third significant digit with the nominal predicted performance P̂num

n (x̂n)
(that is for AWA= 40 degrees and AWS= 3.5 m/s). Then similarly, the standard deviation over the uncer-
tainty range can be estimated from the PC expansion; we find σP = 0.014, corresponding to a low coefficient
of variation (ratio of mean and standard deviation) less than 3.5%. Having characterized the uncertainty
in the performance at the nominal optimum point x̂n, we would like to deduce an uncertainty in the opti-
mum itself. In Section 5.2 we shall consider the resolution of all the optimization problems with uncertain
AWA and AWS, to assess the uncertainty in x̂n. Here, we adopt a simpler characterization based on the
distance to the nominal optimal performance Pnum(x̂n); we define the family of uncertainty sets X(δ) ⊂ Ω,
parametrized by δ ≥ 0, as follows:

X(δ) = {x ∈ Ω; Pnum(x̂n)− Pnum(x) < δ}.

In words, X(δ) is the set of trimmings points whose nominal performance is in a distance less than δ to the
optimal nominal performance. In particular, X(σP) is the set of trimmings points that are within a distance
less than one AWA and AWS-induced standard deviation. To compute this set, we substitute the numerical
performance Pnum(x) with P̂num

n (x). The boundary of the set X(σP) is plotted in Figure 17(b) using a
dotted line. It is superposed to the color contours of the experimental performance P̂exp

n (x). We see that the
experimental optimum is not far from being included in X(σP). Using δ = kσP with k > 1 in the definition
of X(δ) defines larger and larger sets of parameters. However, k can be made arbitrarily large, in the present
case, because of the finite variability of the performance caused by the AWA and AWS. Instead we consider
for largest set X(δmax) the set defined by the upperbound distance δmax = Pnum(x̂n)−Pnum

min where Pnum
min is

the minimal performance over the AWA and AWS uncertainty range. The boundary of X(δmax) ⊃ X(σP)
is also shown in Figure 17(b) using a solid line. It is seen that the set X(δmax) contains the experimental
optimum. This result suggests that the discrepancy between the experimental and numerical optima can be
partly explained by the experimental and model uncertainties, though other sources of modeling error not
considered in this work could also have a significant impact.

5.2. Uncertainty on Optimal Trimming
The analyses presented in Section 5.1 demonstrate the effect of uncertainties in the AWA and AWS on

the performances. In this section, we directly examine the uncertainty in the optimal trimming and its
robustness. Following the previous findings on the dominant influence of the AWA relative to the AWS, we
restrict ourselves to this unique uncertainty source in the following, keeping the same uncertainty range as
before. Our objective is to characterize the dependence with the AWA of the numerical optimum, that is
to determine x̂n(AWA) and subsequently propose a robust optimum. To this end, we start by generating a
PC expansion to approximate the dependences of the numerical performance with respect to the trimming
parameters and the AWA. We again rely on the SPSP method assuming a uniform distribution of Lcar, Lsheet
and AWA in the domain [100, 150]× [100, 300]× [38, 42]. Note that the trimming domain has been restricted
to a small portion of Ω around the nominal numerical optimum. The isotropic sparse grid used to construct
the PC expansion of the performance is shown in Figure 18(a); it has 31 points, requiring as many resolutions
of the FSI problem, and leading to a polynomial approximation with maximum partial degree of 3. The
resulting PC approximation is illustrated in Figure 18(b), where shown are the colour contours of the
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(a) Color contours of the PC approximation of the dependences
of Pnum(x̂n) with the AWA and AWS. The dark points indicate
the sparse grid points supporting the PC approximation.

(b) Color contours of P̂exp
n (x) superposed with the boundaries

of the uncertainty sets X(σP ) (dashed line) and X(δmax) (solid
line) and experimental optimum (white point).

Figure 17: Effects of uncertainties in the AWA and AWS.

numerical performance in the (Lcar, Lsheet) domain for three values of AWA = 38.5, 40.0 and 41.5 deg. The
contours for AWA = 40 deg should be compared with the predicted mean P̂opt

n of the GP model shown
in Figure 15(a). Differences between the PC and GP models are visible, with in particular the presence of
a second local maximum along the domain boundary. However, increasing accuracy of the PC expansion
would require significantly more FSI solves, and the PC approximation is believed accurate enough for the
uncertainty characterization of the optimum.

For the characterization, we rely on the determination of the optimal trimming solution x̂n(AWA), for
AWA ∈ [38, 42]. For a given value of the AWA, the optimum is determined by a simple Newton optimization
method, exploiting the polynomial form of the PC approximation. The function x̂n(AWA) is shown as a
red line in Figure 18(b). We can see that the optimal trimming corresponds to a car moved leeward and a
sheet progressively eased as the AWA increases.

The uncertainty in the optimum x̂n can be appreciated from the values collected in Table 5, which
reports the (AWA) averages and standard deviations of the trimming parameters and optimal performance.
The AWA uncertainty is seen to have a greater influence on the optimal car trimming (13 mm standard
deviation) than on the sheet trimming (1 mm standard deviation). Note that the averaged trimming point is
close to the nominal numerical solution but remains quite different from the experimental one. In addition,
the coefficient of variation of the optimal performance is seen to be slightly less than 6%, a significantly high
value given the AWA range. This behavior is consistent with the findings of the previous of Section 5.1.

Lsheet [mm] Lcar [mm] Pnum(x̂n) (PC approx.)
Mean 120 238 0.427

Standard deviation 1 13 0.025

Table 5: AWA averages and standard deviations of the numerical optimum trimmings and optimal performance. Quantities
are based of the PC expansion of the numerical performance.

Finally, Table 6 presents the optimal trimming for the AWA-averaged numerical performance. It corre-
sponds to the best (most robust) fixed trimming solution that one would select knowing that the AWA is
uncertain, to yield the best performance on average. The standard deviation with respect to the AWA of
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(a) Sparse grid for the PC approximation of the numerical per-
formance in the Lsheet, Lcar and AWA domain.

(b) Color contours of the PC approximation of the performance
for 3 values of the AWA: 38.5, 40 and 41.5 degrees. Also shown
is the optimal trimming as a function of the AWA (red line).

Figure 18: Effect of the AWA on the performance and optimal trimming.

this robust optimal solution is also provided. It is remarkable that the robust trimming parameters are close
to the averaged trimming solution reported in Table 5 and to the optimal solution for the nominal AWA
value. However, the robust and nominal trimmings yield different averaged performances, with an increase
from 0.413, using the optimum for the nominal AWA, to 0.426 for the robust optimum solution.

Lsheet [mm] Lcar [mm] Pred. P
120 240 0.426± 0.026

Table 6: Robust optimal trimming based on (AWA)-averaged numerical performance. Also reported is the mean performance
with ± standard deviation. Quantities are based on the PC expansion of the numerical.

6. Conclusion

We have proposed to use a Gaussian process model based optimization procedure to enable the opti-
mization of trimming parameters in complex nonlinear sail systems. The approach was demonstrated on
experimental optimization of a sail trimming in the Yacht Research Unit wind tunnel. These experiments
have demonstrated the validity of the approach, which converges quickly on this problem, without explor-
ing uninteresting trimming values. It was also shown that the GP model approach is very robust against
experimental noise in the performance measurements.

To assess the validity and relevance of the experimental optimization, a comparison with a purely numer-
ical optimization has been proposed. To this end, detailed numerical models of the wind tunnel experiment
and sail have been established, considering the resolution of the nonlinear Fluid-Structure Interactions prob-
lems. An inviscid and a viscous flow solvers have been compared to highlight the importance of using a
model physically correct over the whole optimization domain. The most complex, and physically correct,
numerical model is based on a turbulent flow solver coupled with a nonlinear elastic solver, with a mesh
deformation method to handle the changes in the sail geometries. This FSI solver can be considered repre-
sentative of the state of the art for this kind of simulations. Discretization parameters were carefully selected
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to ensure sufficient convergence while maintaining a computational cost low enough to enable the numerical
optimization, and the FSI solution was validated using several experimental measurements.

Performing the optimization on the numerical model confirmed the effectiveness of the GP-based ap-
proach. The convergence on the numerical optimum was achieved in a number of iterations comparable to
the experimental case. In fact, we have shown that, using a limited set of computations, the GP model
is able to accurately reconstruct the computed performance. Comparing the experimental and numerical
optima, we found that while the corresponding performances and fluid forces are in excellent agreement,
the optimal trimming parameters differ significantly, in particular the trimming of the car which is set more
leeward in the numerical case than in the experimental one. Several modeling imperfections can explain
these differences and it can be reasonably claimed that they are consistent with the current predictive ca-
pabilities of state of the art FSI solvers. In any cases, the GP-based optimization is not responsible for
these differences, since it does not introduce noticeable errors, and only a better numerical modeling of the
experimental set-up would help reducing the observed discrepancies. Possible avenues in this direction have
been discussed such as improved batten models, better boundary conditions for the flow, accounting for
mast/flow interaction or more advanced turbulence model. We also focused on the influence of experimental
uncertainties on the optimal performance and trimming, focusing principally on the apparent wind angle.
We have shown that the uncertainty in the AWA induces an uncertainty in the performance which is con-
sistent with the distance between the experimental and numerical optimal trimmings, and the important
effect of the AWA on the trimming of the car. We finally were interested in considering uncertainties in the
definition of the optimum and introducing robust optimization.

Though the results reported in the paper have demonstrated the efficiency of the procedure, in terms of
number of performance estimations, the method remains to be tested on problems involving larger sets of
trimming parameters, for instance an optimization of a realistic full rig system. This is currently investigated
numerically. In terms of future improvements of the optimization procedure, current developments concern
the treatment of constrained problems and the incorporation of a prior belief on the optimal trimming pa-
rameters. We are also planning to introduce multi-fidelity concepts [62] to further reduce the computational
cost of optimizing complex nonlinear fluid-structure interaction problems.
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