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Abstract This study aims at analyzing the combined im-
pact of uncertainties in initial conditions and wind forcing
fields in Ocean General Circulation Models (OGCM) using
Polynomial Chaos (PC) expansions. Empirical Orthogonal
Functions (EOF) are used to formulate both spatial perturba-
tions to initial conditions and space-time wind forcing per-
turbations, namely in the form of a superposition of modal
components with uniformly distributed random amplitudes.
The forward deterministic HYbrid Coordinate Ocean Model
(HYCOM) is used to propagate input uncertainties in the
Gulf of Mexico (GoM) in Spring 2010, during the Deepwa-
ter Horizon oil spill, and to generate the ensemble of model
realizations based on which PC surrogate models are con-
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structed for both localized and field Quantities of Interest
(QoIs), focusing specifically on Sea Surface Height (SSH)
and Mixed Layer Depth (MLD). These PC surrogate models
are constructed using basis pursuit denoising methodology,
and their performance is assessed through various statistical
measures. A global sensitivity analysis is then performed to
quantify the impact of individual modes as well as their in-
teractions. It shows that the local SSH at the edge of the
GoM main current - the Loop Current - is mostly sensitive
to perturbations of the initial conditions affecting the current
front, whereas the local MLD in the area of the Deepwater
Horizon oil spill is more sensitive to wind forcing perturba-
tions. At the basin scale, the SSH in the deep GoM is mostly
sensitive to initial condition perturbations, while over the
shelf it is sensitive to wind forcing perturbations. On the
other hand, the basin MLD is almost exclusively sensitive
to wind perturbations. For both quantities, the two sources
of uncertainty have limited interactions. Finally, the com-
putations indicate that whereas local quantities can exhibit
complex behavior that necessitates a large number of real-
izations, the modal analysis of field sensitivities can be suit-
ably achieved with a moderate size ensemble.

Keywords Polynomial chaos expansion · Empirical
orthogonal function · Sensitivity analysis · Basis pursuit
denoising

1 Introduction

Polynomial Chaos (PC) methods [7, 14, 21, 25, 39, 41] have
been developed in recent years for uncertainty quantifica-
tion in a variaty of scientific and engineering fields, includ-
ing chemical reaction systems [24, 29], fluid/ocean dynam-
ics [1, 21, 23, 25, 36]. The main idea of PC methods is to
approximate physical model response to uncertain inputs
in terms of a series expansion, which involves orthogonal



2 Guotu Li et al.

polynomials of variables parameterizing the uncertain in-
puts. The format of this representation readily affords var-
ious statistical analyses, e.g. Bayesian calibration of model
parameters [27, 34, 35], as well as global/local sensitivity
analysis [1, 9].

The key task in building a PC surrogate of a quantity
of interest (QoI) is to determine the series coefficients. Two
major categories of PC methods exist, namely the intrusive
and non-intrusive approaches. The former requires reformu-
lation of existing computational models into systems involv-
ing the unknown expansion coefficients [23]. Non-intrusive
methods, on the other hand, rely on sampling existing com-
putational models; the PC coefficients are consequently de-
termined based on an ensemble of deterministic model re-
alizations. Depending on sampling strategy, non-intrusive
PC reconstructions are often achieved either by quadrature-
based pseudo spectral projection (PSP) methods [7, 8, 13,
39] or regression/ compressed sensing (CS) type methods [3,
10, 11, 30]. Quadrature-based methods have shown promis-
ing performance in mitigating the so-called curse of dimen-
sionality, which manifests itself as a rapid increase in the
number of model realizations required to evaluate the coef-
ficients as the polynomial order and the number of uncertain
(stochastic) dimensions increase [23]. Quadrature-based ap-
proaches, however, can face several challenges, for instance
when model solutions are subject to noise or random forc-
ing, or when the computation model fails at specific (“ex-
treme”) values of the random inputs. In contrast, both re-
gression and CS techniques allow occurrences of simulation
failures at “extreme” sample points by either treating simu-
lation failures as missing data, or restricting the range of the
uncertain inputs.

The primary objective of this work is to analyze the com-
bined impact of field uncertainties originating from both ini-
tial condition and wind forcing perturbations in the Gulf of
Mexico (GoM). The GoM is a semi-enclosed ocean basin,
dominated by the intense Loop Current (LC). The LC has
a pathway that varies with time, from a retracted position
to an extended one, where it reaches the northern GoM be-
fore turning southeastward toward the Atlantic Ocean [17].
When extended, the LC finally sheds a large, anticyclonic
eddy, called LC Eddy, which drifts westward in the GoM
while the LC retracts to the south. This LC Eddy shedding
sequence is influenced by smaller, cyclonic eddies at the
edge of the LC, which can trigger temporary or final detach-
ments of a LC Eddy [31]. The Deepwater Horizon oil spill
in the GoM in Spring 2010, which is to date the largest oil
spill in U.S. history, was affected by this shedding sequence,
as a LC Eddy named Eddy Franklin detached from the LC,
shutting an export pathway to the south, while winds favored
the transport of oil toward the Northern GoM coasts [22].

Unlike the most common situation in uncertainty quan-
tification where one focuses on a small number of scalar

parameters [1, 34], in the present case both the initial con-
ditions and wind forcing are field quantities. A straightfor-
ward approach (in which field variable at each spatial grid
point is considered as one QoI) would necessitates a prohib-
itely large number of uncertain parameters (stochastic di-
mensions), especially in a high-resolution OGCM. It is thus
essential to formulate both initial and wind forcing fields in
such a way that stochastic dimensions are significantly re-
duced. Due to the inherent dynamical correlations among
field quantities at different spatial locations and in space-
time, a suitable strategy is to employ Empirical Orthogo-
nal Functions (EOFs) [18, 19, 26] to decompose both ini-
tial and wind forcing fields into a small number of modes,
and associate with each mode an uncertain amplitude. As a
result, the number of stochastic dimensions is significantly
reduced, while adequate representation of the variability of
the stochastic fields is still maintained. A similar EOF de-
composition approach was employed in [36] for propagating
boundary uncertainties.

Our analysis of the combined impact of initial condi-
tions and wind forcing uncertainties relies on two quantities
of interest, namely the Sea Surface Height (SSH) and Mixed
Layer Depth (MLD) (additional details will be given in sec-
tion 2). For the purpose of propagating uncertainties, we ini-
tially attempted to apply an adaptive PSP method [7, 39]
in order to generate a sparse realization ensemble (referred
to as PSP ensemble) and consequently build PC surrogates.
However, quadrature-based PSP construction of PC surro-
gates was precluded by the fact that the model yielded non-
physical MLD predictions when extreme values of the ran-
dom inputs were sampled. As mentioned earlier, it is pos-
sible to remedy this situation by treating the corresponding
samples as missing data and to build PC surrogates relying
on a CS approach . Meanwhile, we also considered generat-
ing an independent ensemble via Latin Hypercube Sampling
(LHS) [28]. Although the symptoms of simulation failure
persisted, the CS approach provided a robust mean of con-
structing PC surrogates. Both PSP and LHS simulation en-
sembles led to surrogates that are in close agreement with
each other, as well as faithful representations of the simula-
tion data. For brevity, the present discussion shall be limited
to results obtained from the ensemble generated via LHS
only.

This paper is organized as follows. Section 2 outlines the
model setup and specifies the random inputs. The approach
used to construct the PC surrogates is outlined in section 3.
In section 4, we focus on the analysis of the variability in the
selected QoIs. We first assess the validity of PC representa-
tions, and then exploit these representations to assess sensi-
tivities to the uncertain inputs. In section 5, we generalize
the sensitivity analysis to field quantities. An EOF decom-
position method is developed for this purpose. In addition
to the analysis of sensitivity fields, we exploit the EOF de-
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composition to conduct a brief assessment of the impact of
ensemble size on the quality of stochastic predictions. Con-
clusions are discussed in section 6.

2 HYCOM Setup and Uncertainties

The circulation in the GoM (Fig. 1) is simulated using the
Hybrid Coordinate Ocean Model (HYCOM). HYCOM is
an Ocean General Circulation Model that uses a general-
ized vertical coordinate system to optimize the distribution
of vertical computational layers; these layers are made to
be isopycnic in stratified regions, terrain-following in shal-
low coastal regions, and isobaric in the unstratified mixed
layer [4]. HYCOM serves a large user community who uses
it for a wide variety of oceanic simulations1. The configura-
tion adopted here is similar to the one used operationally by
the US Navy for ocean prediction during the period 2003-
2014. It has 4-km horizontal resolution and 20 vertical lev-
els. The computational domain is open along portions of
its southern, eastern and northern boundaries, where values
are provided by a lower-resolution (1/12◦ vs. 1/25◦) simula-
tion of HYCOM configured for the Atlantic Ocean (similar
to [5]). The model is forced at the surface by 3-hourly out-
puts from the Coupled Ocean/Atmosphere Mesoscale Pre-
diction System (COAMP [15]), which has 27-km resolution.
For the present study, model simulations with uncertain in-
put parameters are run for two months, starting on May 1st.,
2010.

Fig. 1: Bathymetry of the Gulf of Mexico (meters), SSH
(blue box) and MLD (red box) averaging domains.

The PC methodology requires the establishment of a func-
tional relationship between the uncertain inputs and the quan-
tities of interest, and two issues arise when contemplating
uncertainties in field variables. The first concerns the iden-
tification of the random input variables that represent the
uncertainties in the fields, and the second issue concerns

1 (Seee http://www.hycom.org for more information)

the need to capture most of the uncertainty in the system
while minimizing the number of uncertain variables that are
needed to characterize this uncertainty. These issues can be
effectively addressed by relying on EOF decompositions [18,
19, 26], that by construction capture the dominant variability
modes of the system. The EOF modes are the eigenmodes
of covariance matrices and are the finite-dimensional equiv-
alent of a Karahunan-Loève modal decomposition. Further-
more we identify the uncertain input variables as the am-
plitude of the EOF modes. In the following, we present the
methodology adopted in constructing the covariance matri-
ces for the initial conditions and wind forcing perturbations.

The selection of the optimal covariance matrices to char-
acterize variability modes in geophysical systems remains
an open question. Analysts, however, have considerable lee-
way in configuring the covariance matrices to target specific
uncertainties. A primary interest in the present instance is in
the local variability of frontal dynamics at the edge of the
LC. The covariance matrices for the initial condition uncer-
tainties were thus constructed from 14 daily samples of the
near-real-time HYCOM simulation of the GoM (performed
at the Naval Research Lab in Stennis MS and predating the
start of the present experiment). This relatively short period
was found sufficient to capture localized variability in the
LC front.

The EOF decomposition was performed simultaneously
over a set of two model variables. The first one is the 3D
hydrostatic pressure increment within each HYCOM model
layer, a quantity that is guaranteed to be defined at all times
despite the hybrid nature of the HYCOM vertical coordi-
nate system. The 3D pressure incorporates variability in the
model vertical structure, which is associated with changes
in heat and salt content, as well as in the dynamics (since
horizontal gradients are associated with currents). The sec-
ond variable is the model sea surface height which is a good
proxy for the model surface dynamics. We use the principal
components of each mode, which includes the temporal sig-
nature of the mode, to project the EOF modes obtained from
the aforementioned decomposition to the actual model vari-
ables (temperature, salinity, layer thickness, velocity). In the
present study, the four dominant EOF modes were retained
in the initial conditions as they accounted for most of the
variability experienced by the model during this 14-day pe-
riod. The amplitude of each EOF mode is a random variable
defining a new dimension in the uncertain parameter space.

A similar procedure was followed to characterize the un-
certainty in the wind forcing. The EOF analysis used the
wind forcing fields from COAMP over a 60-day period, in
May and June of 2010, i.e. during the study period. The EOF
decomposition was performed over the wind vector in both
horizontal directions, before being projected onto the wind
amplitude and wind stress vectors, which are the variables
used to actually force the model. The reason for perform-
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ing the EOF decomposition over the wind vector, and not
the wind stress vector, is that the latter approach tends to
emphasize events of large wind (or wind stress) amplitude,
as the wind stress amplitude tends to evolve like the square
of the wind amplitude. The EOF decomposition of the wind
vector allows the identification of variability modes that are
smoother in time (not shown). As for the perturbation of the
initial conditions, we retain the first four space and time de-
pendent dominant (scaled) modes.

As a result, the initial condition and wind forcing fields
are given as follows:

u(xxx, t = 0,ξξξ a) =ū(xxx,ξξξ a = 000)

+αu[
√

λ1U1,
√

λ2U2,
√

λ3U3,
√

λ4U4]ξξξ
T
a

(1)

f (xxx, t,ξξξ b) = f̄ (xxx,ξξξ b = 000)

+α f [
√

η1F1,
√

η2F2,
√

η3F3,
√

η4F4]ξξξ
T
b

(2)

where ū and f̄ are the unperturbed initial and wind forcing
conditions; xxx denotes spatial coordinates; ξξξ a = [ξ1,ξ2,ξ3,ξ4]

and ξξξ b = [ξ5,ξ6,ξ7,ξ8] are stochastic random vectors where
all random variables ({ξi|i = 1,2, ...,8}) serve as amplitudes
of corresponding perturbation modes and are assumed to be
independent and uniformly distributed over [−1,1]. (λi ,Ui)
and (ηi ,Fi) are eigenvalue/eigenvector pairs of covariance
matrices in initial and wind forcing EOF analysis respec-
tively. Note that, for wind forcing perturbations, all EOF
modes are time-dependent as well. Two scale factors (αu =

0.8 and α f = 0.04) are introduced to limit the amplitudes of
perturbations in initial conditions and wind forcing respec-
tively.

Two quantities of interest are the focus of the present
study. The first is the SSH whose variations are a reflec-
tion of baroclinic and barotropic processes in the ocean, and
whose slope is associated with ocean surface currents. SSH
highs are usually associated with anticyclonic circulation,
typically the LC and LC Eddies in the GoM, while SSH lows
are associated with cyclonic circulation, in the GoM with LC
frontal eddies. The second variable of interest is the MLD.
The MLD defines the thickness (in meters) over which wa-
ters are homogeneous at the surface of the ocean. This ho-
mogeneity is mostly due to mixing by the surface winds,
which tends to counteract the stratification generally caused
by insolation at the surface of the ocean. In the present HY-
COM simulation, the MLD is estimated as the thickness of
the surface layer in which the water density is lighter than
the surface density modified by a temperature decrease of
0.3◦ C. Hence, the first variable of interest (the SSH) is es-
sentially due to inherent oceanic dynamics, whereas the sec-
ond one (the MLD) is essentially responding to local wind
forcing. It is thus expected that the SSH will be sensitive

to perturbations of the ocean state (typically of the initial
conditions), whereas the MLD will be more sensitive to per-
turbations in atmospheric forcing.

3 Polynomial Chaos surrogate

In this section, we detail the construction of the PC surrogate
of a generic QoI, Q(ξξξ ), from the realizations Qi=1,...,NLHS at
the LHS points. For simplicity, we consider the case where
Q is a real scalar. Since a HYCOM simulation depends on ξξξ ,
Q is a functional of ξξξ as well and is therefore a real-valued
random variable. We shall assume that all QoIs considered
are second-order random variables, that is

E
[
Q2]= ∫

Ξ

Q(ξξξ )2 p(ξξξ )dξξξ <+∞. (3)

Following the discussion in section 2 above, ξξξ is an eight-
dimensional random vector, whose components ξi are inde-
pendent and identically distributed, with uniform distribu-
tions in [−1,1]. Thus, the ξi’s have joint density

p(ξξξ ) =

{
2−8 for ξξξ ∈ Ξ ,

0 otherwise.
(4)

Observe that the first four components of ξξξ are involved
in the parameterization of the initial conditions, while the
last four concern the wind forcing. We shall denote by Ξ

.
=

[−1,1]8 the 8-dimensional hypercube, and by L2(Ξ , p) the
space of second-order functionals in ξξξ , equipped with the
inner product 〈·, ·〉, ∀Q,Q′ ∈ L2(Ξ , p),〈
Q,Q′

〉 .
= E

[
QQ′

]
=
∫

Ξ

Q(ξξξ )Q′(ξξξ )p(ξξξ )dξξξ , (5)

and norm ‖Q‖2
L2

.
= 〈Q,Q〉.

3.1 Polynomial Chaos approximation

Because Q ∈ L2(Ξ , p), Q(ξξξ ) admits an infinite PC expan-
sion of the form

Q(ξξξ ) =
∞

∑
α=0

qαΨα(ξξξ ), (6)

where the qα ∈ R are the expansion coefficients and the
functions Ψα : ξξξ ∈ Ξ 7→R are orthogonal multivariate poly-
nomials in ξξξ . The orthogonality condition can be expressed
as:

〈
Ψα ,Ψβ

〉
=

{
‖Ψα‖2

L2
if α = β ,

0 otherwise.
(7)

Also, because the ξi’s are independent and identically dis-
tributed in [−1,1], the Ψα are products of one-dimensional
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Legendre polynomials [36]. We shall adopt the classical con-
vention that Ψ0(ξξξ ) = 1. With this convention, we have:

E [Q] =
∞

∑
α=0

qα 〈Ψα ,1〉= q0, (8)

while

V [Q] = E
[
(Q−E [Q])2]= ∞

∑
α,β=1

qα qβ

〈
Ψα ,Ψβ

〉
= ∑

α≥1
q2

α‖Ψα‖2
L2
. (9)

In practice, the PC expansion is truncated, yielding an
approximation Q̃ of the quantity of interest:

Q(ξξξ )≈ Q̃(ξξξ )
.
=

Np

∑
α=0

qαΨα(ξξξ ). (10)

We have denoted (Np + 1) the total number of terms re-
tained in the truncated expansion. Classically, the truncation
is made with respect to some polynomial order. However,
due to the rapid increase in the basis size when increasing
the polynomial order, the hyperbolic truncation introduced
in [40] is employed in this study. Specifically, we use an
isotropic polynomial basis which is the union set of three
hyperbolic truncated basis given by maximum total order
of No = [6,20,35]; the corresponding truncation parameters
are q = [1,0.55,0.42], respectively. The choice of this ba-
sis has been carefully analyzed for all the approximations
constructed below. For this setting, the basis dimension is
Np + 1 = 8695. With the basis defined, the core task of the
PC approximation is then determination of the expansion co-
efficients qα ’s in Eq. (10).

3.2 Determination of PC expansions

Several methods are available for the determination of the
PC expansion coefficients qα in Eq. (10). As mentioned in
Section 2, we generate an ensemble of realizations of Q at
randomly selected values ξξξ i (ξξξ i ∈ PLHS, where PLHS de-
notes the LHS set of random inputs). Let NLHS denote the
ensemble size (We choose NLHS = 798 in this study to ob-
tain faithful empirical estimations of various statistical mea-
sures), YYY = (Q1 · · ·QNLHS)

T be the vector of realizations,
[Ψ ] ∈RNLHS×(Np+1) denote the matrix with coefficients

[Ψ ]i,α =Ψα(ξξξ i), (11)

and qqq∈RNp+1 denote the vector of unknown PC coefficients
qα . Thus, [Ψ ]qqq is the vector of predicted values for the QoI
at the sample points; qqq is defined as the solution of the fol-
lowing basis pursuit denoising problem:

qqq = arg min
ccc∈RNp+1

‖ccc‖`1 s.t. ‖YYY − [Ψ ]ccc‖`2 ≤ σ ||YYY ||`2 , (12)

with `1 and `2 the classical 1 and 2 norms in Rm. This opti-
mization problem is solved using the SPGL1 algorithm [37,
38]. The `1-norm promotes the sparsity in the constructed
PC model while σ > 0 is an error tolerance factor in the
present context. The value of σ is adjusted in order to avoid
over-fitting the realization data. The appropriate selection of
σ is critical as we are considering a large PC basis while
disposing of a limited number of realizations. To this end,
we rely on K-fold cross validation procedure [10, 30], with
K = 5, to determine the optimal value of σ (minimizing
the estimated L2-prediction error). The resulting predictions
have been carefully analyzed and validated against alterna-
tive approaches and different basis selections.

3.3 Global Sensitivity Analysis

Though the uncertainty in initial conditions and in wind forc-
ing are specified in terms of independent random variables,
their effects may still combine in a complex manner be-
cause of the non-linear dynamics of the ocean model. Thus,
we shall rely on variance-based sensitivity analysis meth-
ods [33] to investigate the global impact of uncertainties in
initial condition and wind forcing. The approach selected is
briefly outlined in this subsection.

Let iii be a subset of {1, · · · ,8} and iii∼
.
= {1, · · · ,8}\ iii its

complement. Following [16], we define the first-order and
total-order sensitivity indices associated to iii as

Siii =
V [E [Q|ξξξ iii]]

V [Q]
, Tiii = 1−

V
[
E
[
Q|ξξξ iii∼

]]
V [Q]

, (13)

where V [·] denotes the variance operator and E [Q|ξξξ iii] is the
expectation of Q conditioned on the ξi for i ∈ iii. Briefly,
the interpretation of the indices is as follows [16]. The first-
order index Siii measures the fraction of the variance of Q(ξξξ )

arising solely due to the random variables ξi with index i∈ iii.
On the other hand, the total-order sensitivity index Tiii is the
fraction of variance due the variables ξi with index i ∈ iii as
well as all their interactions with the others. When Siii is close
to 1, this indicates that other variables with indices in iii∼
have a low effect on Q. Additionally, one can conclude that
variables with index in iii are unimportant when Tiii is close to
zero. In the analysis below, we shall often report the global
effects of the initial condition (that is sensitivity indices for
iii = {1, . . . ,4}) or wind forcing (iii = {5, . . . ,8}), as the effect
of individual variables is not as informative.

Note that the avalaibility of a PC representation of Q
greatly simplifies the estimatation of the corresponding sen-
sitivity indices. Specifically, the latter can be readily ob-
tained from [1, 9]:

Siii =
∑α∈Siii

q2
α‖Ψα‖2

L2

∑
∞
α=1 q2

α‖Ψα‖2
L2

. (14)



6 Guotu Li et al.

and

Tiii =
∑α∈Tiii

q2
α‖Ψα‖2

L2

∑
∞
α=1 q2

α‖Ψα‖2
L2

, (15)

where Siii (resp. Tiii) is the set of polynomial indices α > 0
such that Ψα has degree 0 in all the ξ j with j /∈ iii (resp. has
degree > 0 in all ξ j with j ∈ iii). In other words, the indices
are obtained from partial sums involving the coefficients of
the PC expansions, and the norms of the basis elements.

4 Regionally averaged QoIs

In this section, we apply the PC methodology above in order
to analyze the combined effects of initial condition and wind
forcing uncertainties on two scalar QoIs, namely the SSH
and MLD. Both quantities are regionally avaraged over sub-
domains, as described in section 4.1. We start in section 4.2
by analyzing the performance of the PC representation, and
exploit it in section 4.3 to perform a global sensitivity anal-
ysis of the impact of the random inputs.

4.1 Definitions of QoIs

We refer to [4] and online HYCOM documentation2 for a
more detailed discussion of SSH and MLD. It is worthwhile
to note that whereas SSH is a dynamic HYCOM variable,
the MLD is a diagnostic quantity. The analysis in this section
is based on two QoIs, obtained by (1) averaging SSH over
the rectangular subdomain

ΩSSH = [−86.04◦,−85.20◦]× [25.19◦,26.23◦],

and (2) averaging MLD over the subdomain

ΩMLD = [−88.84◦,−87.88◦]× [28.40◦,29.07◦].

The two averaging domains are plotted in Figure 1. As noted
earlier, the former subdomain is located in an area associated
with LC detachment, whereas the latter is near the DWH
well.

4.2 Validation of the PC approximations

We start by illustrating the procedure of constructing PC ap-
proximations for our QoIs, focusing on the averaged SSH
and MLD at day 30. Recall that the two QoIs are represented
as:

Q̃SSH,MLD(ξξξ ) =
Np

∑
k=0

qSSH,MLD
k Ψk(ξξξ ), (16)

2 http://www.hycom.org

where the respective PC coefficients are computed by solv-
ing the minimization problem in Eq. (12).

Figure 2 reports the surface plots of the PC models of the
regionally averaged SSH and MLD at day 30, in the plane
(ξ1,ξ5) (all other random coordinates being set to 0). In ad-
dition to the PC model surfaces, several independent HY-
COM simulations were performed for ξξξ in the considered
plane and are reported using blue points. From these inde-
pendent simulations, one can appreciate the fidelity of the
PC approximations. It can be seen that most of HYCOM
simulations of SSH closely agree with the PC model sur-
face (top plot), demonstrating that Q̃SSH provides a reason-
able prediction for ξξξ outside the construction set PLHS. The
same conclusion holds for MLD surrogate model. We also
observe that in the (ξ1,ξ5) plane the averaged SSH is es-
sentially affine in ξ1, whereas the averaged MLD appears to
depend mostly on |ξ5|. Such distinct behaviors highlight the
need for global sensitivity analysis to properly characterize
the various effects of the different random inputs.

The quality of PC models can be more quantitatively ex-
amined using empirical error measures. The empirical er-
rors for a QoI Q compare the PC predictions at the sample
set points, Q̃(ξξξ i), to their corresponding HYCOM values Yi.
For i = 1, . . . ,NLHS we then define the relative empirical er-
ror on Q according to:

εi =
|Q̃(ξξξ i)−Yi|

max j(Yj)−min j(Yj)
. (17)

Figure 3 shows the cumulative distribution functions of rel-
ative empirical errors εi for the two QoIs. It shows that in
both cases the median relative empirical error is less than
2.5% demonstrating the quality of the PC models. We fur-
ther define the global accuracy measure (Err95) using the rel-
ative empirical error level for which the CDF reaches 95%,
namely

Err95 = ε|CDF=0.95 (18)

In other words, the criterion suggests that the relative er-
ror between Q(ξξξ ) and its PC approximation Q̃(ξξξ ) is less
then Err95 with ≈ 0.95 probability. For SSH and MLD, the
computed Err95 are 5.5% and 3.8%, respectively, confirm-
ing the quality of the constructed PC models. These find-
ings are further confirmed by the results reported in Table 1
which compares the empirical (based on HYCOM realiza-
tions at ξξξ i ∈ PLHS) and PC model standard deviations for
the two QoIs. It is seen that the empirical and PC standard
deviations again agree within 4− 5% approximately. Note
the lower values for the PC standard deviations compared to
the empirical ones, as expected from the model construction
method which treats a fraction of the variability in Q(ξξξ ) as
noise, and the fact that the number of realizations is insuffi-
cient to fully capture all the relevant features.
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Fig. 2: Surface plots of PC models Q̃(ξξξ ) in the plan (ξ1,ξ5)

all other coordinates being set to zero: (Top) SSH; (Bottom)
MLD. Also shown using blue points are several HYCOM
deterministic simulations in the same plan. Both SSH and
MLD are in meters.

Empirical PC model
SSH (m) 0.1000 0.0956
MLD (m) 2.8873 2.7456

Table 1: Standard deviations of the regionally averaged SSH
and MLD: Empirical (from the NLHS HYCOM simulations)
and PC approximations.

Further examination of the PC models for SSH and MLD
is performed by plotting in Figure 4 the probability density
functions of Q̃SSH(ξξξ ) and Q̃MLD(ξξξ ). These densities are es-
timated by means of a classical Kernel-Density-Estimation
(KDE) method [32], from a large sample set of 105 ξξξ points
drawn randomly in Ξ (blue curves). These PC densities are
also contrasted with KDE estimates based on the HYCOM
realizations Yi (red curves) generated at the sample points
ξξξ i ∈PLHS. Overall the different densities qualitatively agree,

ǫ
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Err95(SSH)=0.055

Err95(MLD)=0.038

SSH

MLD

Fig. 3: Cumulative distribution functions of the relative local
errors, see Eq. (17), for the regionally averaged SSH and
MLD QoIs as indicated.

with however shorter tails for the densities using the PC ap-
proximations Q̃(ξξξ ) (and consequently generally higher den-
sity peak(s)). Again, the shorter tails for the PC approxima-
tions, compared to the empirical densities, are expected due
to the regularization which tends to smooth extreme values
and features when they are not sufficiently observed by the
realization ensemble.

All the analyses presented above were conducted us-
ing predictions obtained at day 30. These analyses were re-
peated for intermediate times, providing confidence in the
ability of the PC approach to suitably model the essential
trends in QSSH(ξξξ ) and QMLD(ξξξ ). A sample is provided in
Figure 5, which shows the evolution of Err95 (top plot) and
compares the empirical and PC standard deviations for the
two QoIs. Overall, the conclusions reached for the PC mod-
els at day 30 hold true at earlier times, though the error level
can fluctuate significantly from one day to another. In par-
ticular, it is seen that for SSH Err95 seems to roughly in-
crease in time, whereas for MLD it has a much noisy be-
havior. This is due to a more complex dynamics for MLD,
which exhibits sharp variations in time; see for instance the
time evolutions of the MLD-standard deviations in the bot-
tom plot. Note that increasing the averaging domain ΩMLD
reduces the PC approximation error, as measured by Err95,
but sharp time variations can still be observed (not shown).

4.3 Global Sensitivity Indices

The PC models for the two quantities of interest are now ex-
ploited to conduct a global sensitivity analysis. We start by
discussing results obtained at day 30. The first and total sen-
sitivity indices, computed from the PC expansion of Q̃SSH

and Q̃MLD using Eq. (14) and Eq. (15) with iii = {i} using
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SSH(m)

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

P
D

F

0

1

2

3

4

5

HYCOM

PCE

MLD(m)

0 5 10 15 20 25

P
D

F

0

0.05

0.1

0.15 HYCOM

PCE

Fig. 4: Comparison of the SSH (top) and MLD (bottom)
density functions estimated by KDE method. Empirical es-
timations from HYCOM realizations on ξξξ i ∈ PLHS (red
curves) and PC model predictions (blue curves) obtained by
evaluating PC surrogates over a fine sampling of Ξ using
105 points.

i = 1, . . . ,8, are reported in Figure 6. For the regionally av-
eraged SSH (top plot) we observe that all T{i} are insignif-
icant except for i = 1 and 2. It can then be concluded that
the SSH is primarily influenced by the first two modes of
the initial condition, while the wind forcing uncertainty has
nearly no impact on the predicted SSH (at day 30). This find-
ing has to be contrasted with the case of the regionally av-
eraged MLD, for which T{5} is clearly dominant, followed
by much weaker effects reported for ξ6 and ξ1. Thus, the
first wind forcing mode appears to be the main contribu-
tor to the MLD uncertainty. Further, the comparison of the
total and first order indices reveals significant interactions
between random sources within initial condition and wind
forcing respectively, as one could have anticipated from the
non-linearities of the model.
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Fig. 5: Evolution in time of 95% relative error estimates
(Err95, top plot) and comparison of the empirical and PC
standard deviations for the SSH (center plot) and MLD (bot-
tom plot).

To simplify the sensitivity analysis, we now set IC =

{1, . . . ,4} and WF = {5, . . . ,8}, such that SIC and TIC (resp.
SWF and TWF) are the first and total order sensitivity indices
associated with the uncertain initial condition (resp. uncer-
tain wind forcing). Since no other source of uncertainty is
considered, we have

TIC +SWF = TWF +SIC = 1, (19)

and

TIC−SIC = TWF−SWF = IIC×WF. (20)

In the previous equation, we have denoted IIC×WF the sen-
sitivity index, which measures the fraction of the variance
due to the interaction between the uncertainties in the initial
conditions and in the wind forcing. An alternative expres-
sion for this additional index is IIC×WF = 1−SIC−SWF.
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Fig. 6: First and Total order sensitivity indices associated to
each input variables at day 30: (Top) SSH; (Bottom) MLD

With these definitions, we finally examine the evolutions
in time of sensitivities of the regionally averaged SSH and
MLD responses to the different sources of uncertainty. These
evolutions are shown in Figure 7. From the top plot, it is
evident that essentially only the uncertain initial condition
plays a role in the variability of the regionally averaged SSH,
since both the corresponding SWF and IIC×WF remain very
low over the whole time span reported. On the contrary, for
the regionally averaged MLD response, we observe that at
the beginning of HYCOM simulations, the initial condition
is dominant (but the variance is then very low, see bottom
plot of Figure 5) as it take some time for the forcing to af-
fect the flow. However, after day 2, the wind forcing is the
clearly dominant source of uncertainty in the regionally av-
eraged MLD prediction. Note that at day 22, the interaction
between the two sources of uncertainty becomes significant,
but again this event occurs at a time when the variance in the
averaged MLD achieves a low value.

It is worth pointing out that all sensitivity indices pre-
sented so far concern the SSH and MLD responses averaged
over two spatial locations, namely the LC frontal area and
the DWH region respectively, as discussed in Section 4.1,
and for a limited time horizon of 30 days. As a result, the
conclusion on the weak interaction between initial condition
and wind forcing uncertainties regarding the two QoIs may
not hold for other averaging domains and for other times. In
the specific configuration of the LC during our study period,
it seems that local conditions in the DWH area during May-
June 2010 are not sensitive to the uncertainties in LC frontal
conditions on May 1st. Clearly, a more complete investiga-
tion is needed to better understand the dynamics of the un-
certainties and the way they propagate in time through the
domain. To this end, in the next section we investigate field
uncertainties in SSH and MLD throughout the GoM.
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Fig. 7: Time evolutions of the sensitivity indices SIC, SWF
and IIC×WF: (Top) SSH; (Bottom) MLD;

5 Field Sensitivities

Though it is possible to construct the whole SSH (or MLD)
field over the GoM by building PC surrogates for field vari-
ables at each spatial grid independently, the computational
cost would make this brute-force approach impractical due
to the large number of grid points. As a result, the EOF-PC
analysis is employed here to reduce the dimensionality of
the field PC reconstruction problem. For clarity, we outline
the EOF-PC approach below.

5.1 Decomposition and Approximation

We first briefly discuss the EOF decomposition (also known
as Proper Orthogonal Decomposition, Karhunen-Loeve Ex-
pansion, and Principal Component Analysis) [18, 19, 26].
Let xxx∈Ω and U(xxx,ξξξ ) be a real-valued second order stochas-
tic process. We denote (·, ·)

Ω
the spatial inner product,

(u,v)
Ω

.
=
∫

Ω

u(xxx)v(xxx)ρ(xxx)dxxx, (21)

with the spatial weighting function ρ : Ω 7→ R+, and define
‖·‖L2(Ω) the associated norm. From the NLHS realizations of
U at the sample points ξξξ j ∈ PLHS, we define the empirical
average U(xxx) and the fluctuations U ′j(xxx) as

U(xxx) .
=

1
NLHS

NLHS

∑
j=1

U(xxx,ξξξ j), U ′j(xxx)
.
=U(xxx,ξξξ j)−U(xxx),
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and construct the matrix [C]∈RNLHS×NLHS of empirical (spa-
tial) covariance, through

[C]i, j =
(
U ′i ,U

′
j
)

Ω
, 1≤ i, j ≤ NLHS. (22)

We observe that [C] is symmetric, non-negative, and we de-
note λ k ∈ R and φφφ

k ∈ RNLHS its proper-elements such that

[C]φφφ k = λ
k
φφφ

k, (φφφ k)T(φφφ k) = 1. (23)

The empirical spatial modes are subsequently defined as

uk(xxx) =
NLHS

∑
j=1

U ′j(xxx)φφφ
k
j. (24)

It can be easily checked that the modes uk are mutually or-
thogonal:(

uk,ul
)

Ω

=
NLHS

∑
i, j=1

φφφ
k
i
(
U ′i ,U

′
j
)

Ω
φφφ

l
j = (φφφ k)T[C]φφφ l = λ

l
δk,l .

Ordering the eigenvalues as λ 1≥ λ 2≥ ·· · ≥ 0, the truncated
expansion of the stochastic field becomes

U(xxx,ξξξ )≈U(xxx)+
r

∑
k=1

uk(xxx)φ k(ξξξ ), (25)

where the φ k(ξξξ ) are uncorrelated, centered, second-order
random variables and r ≤ NLHS is the number of modes re-
tained in the reduced representation. The number of modes
is selected such that Eq. (25) retains a fraction p ∈ [0,1] of
the empirical fluctuation energy. Specifically, we set r such
that

r

∑
k=1

λk ≥ p
NLHS

∑
k=1

λk. (26)

It now remains to construct the PC approximations for the
set of random coefficients φ k(ξξξ ). These random coefficients
are treated as independent quantities of interest and each
φ k(ξξξ ) is associated with a vector YYY of realizations (see Eq. (12))
defined as

Yj = φ
k(ξξξ j) =

(
U ′j,u

k
)

Ω

/λ
k, 1≤ j ≤ NLHS. (27)

By using the method discussed in Section 3, namely the
BPDN algorithm, each φ k(ξξξ ) can be approximated by a trun-
cated PC expansion as follows:

φ
k(ξξξ )≈ φ̃

k(ξξξ ) =
Np

∑
α=0

ck
αΨα(ξξξ ) (28)

As a result, the EOF-PC approximation of the stochastic
field can eventually be expressed as

U(xxx,ξξξ )≈UPC(xxx,ξξξ ) .
=U(xxx)+

Np

∑
α=0

uα(xxx)Ψα(ξξξ ), (29)

where

uα(xxx) =
r

∑
k=1

uk(xxx)ck
α . (30)

5.2 EOF-PC at day 30

In this section, we investigate the use of the EOF-PC approx-
imation for the representation of the SSH and MLD fields.
We used a constant spatial weighting ρ(xxx) = 1, but restrict
the domain of interest to the inside of the GoM disregarding
the grey-areas in the next figures. Similar to the regionally
averaged quantities of interest, we restrict the analysis to the
quality of the SSH and MLD EOF-PC approximations at
day 30 only; similar trends were observed for earlier times
(not shown).

5.2.1 SSH field

Starting with the SSH field at day 30, Figure 8 presents the
empirical average SSH field from realizations at the LHS
set PLHS (top plot). That figure illustrates the dominant dy-
namical features, with the LC associated with high SSH in
the Eastern GoM, as well as a LC Eddy at (26◦ N, 94◦ W)
, while small cyclonic frontal eddies are noticed at the edge
of the LC, associated with low SSH. An isolated cyclonic
eddy is also present at the southwest corner of the GoM.
The decay of the spectrum (eigenvalues λ k) in the empirical
decomposition of the SSH fluctuation is then shown in the
bottom plot of Figure 8. In the present case, r = 10 empiri-
cal modes were found sufficient to retain 90% of the energy
fluctuation according to Eq. (26).

The first five spatial modes uk(xxx)/
√

λ k of the decom-
position of the SSH field fluctuation are shown in Figure 9.
Modes 1, 3 and 4 mostly resolve structures in the LC area,
while mode 2 is dominated by coastal dynamics along the
Northern GoM. Mode 5 mixes signatures in the LC area and
along the coast. Following modes (not shown) exhibit fea-
tures at smaller and smaller scales, with more and more ho-
mogeneous energy distribution in the domain analysed. In
other words, the truncation principally affects small scale
fluctuations with low energy levels.

The impact of the truncation on the field energy can be
better appreciated in Figure 10 where the standard deviation
of the SSH field at day 30 is reported. The figure compares
the empirical standard deviation estimated from the LHS en-
semble of HYCOM simulations (left plot) with the standard
deviation obtained from truncated EOF-PC approximation
of the SSH field (right plot). These two plots demonstrate
that with r = 10 modes only, the fluctuation of the field is
very well approximated, particularly in areas of high energy
fluctuation, namely the LC and north and west coastal ar-
eas. Such a low number of modes capable of reconstructing
a field is quite common when EOF decompositions are used
for analyzing ocean data (e.g.[2]).

Finally, to briefly illustrate the effect of relying on a fi-
nite set of HYCOM realizations and using a PC approxima-
tion for the random coordinates, we present in Figure 11 a
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Fig. 8: SSH field at day 30. Top: empirical average using the
LHS set of HYCOM realizations. Bottom: spectrum of the
empirical spatial covariance.

Fig. 9: First five spatial modes uk/
√

λ k in the expansion of
the SSH field at day 30.

comparison between the HYCOM solution and its EOF-PC
approximation for ξξξ = 000. Note that this particular realiza-

Fig. 10: Standard deviation of SSH fields at day 30. Left:
empirical standard deviation calculated from the LHS set of
HYCOM simulations. Right: standard deviation in the trun-
cated expansion of the field using r = 10 modes.

tion of the HYCOM simulation is not part of the LHS sam-
ple set used in the reconstruction. In order to highlight the
differences between both fields, the figures only show the
fluctuations of SSH (with respect to the empirical average
from the LHS simulation ensemble). As expected, the HY-
COM realization (left plot) presents small-scale features of
low-amplitude that are not present in the EOF-PC approxi-
mation (right plot); the latter field appears much smoother.
However, it is seen that the principal structures, particularly
the local SSH lows associated with LC frontal eddies, are
well captured. Of course, this particular realization may not
be representative of the approximation error for other real-
izations of ξξξ , but it nonetheless provides a clear illustration
of the smoothing effect of truncation.

Fig. 11: SSH fluctuation fields for realization at ξξξ = 000 at
day 30. Left: target fluctuation field. Right: EOF-PC recon-
struction of the target fluctuation field.

5.2.2 MLD field

We now repeat the analysis of the EOF-PC approximation
of the previous section, but for the MLD field at day 30.
The empirical MLD average on day 30, seen on Figure 12
(top plot) shows that the MLD is deeper in the LC region
than that in the rest of the GoM, and it tends to be shallower
along the coast. As for the small-region average, it is found
that the MLD field is significantly more complex and more
demanding to approximate. Specifically, Figure 12 shows
that though the empirical average of the MLD field (top
plot) is relatively smooth, the decay rate of the perturbation
spectrum is significantly slower than that of the SSH field
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(bottom plot). Specifically, r = 142 modes are necessary to
retain 90% of the empirical variance. Because faithful PC
recovery of higher-order modes would require a larger en-
semble than is practical, in this analysis below the EOF ex-
pansion for MLD is limited to retain 80% of field variability,
which corresponds to r = 27 modes.
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Fig. 12: MLD field at day 30. Empirical average using the
LHS set of HYCOM realizations (Left) and spectrum of the
empirical spatial covariance (Right).

The first five dominant modes of the MLD covariance
are plotted in Figure 13. As for the SSH decomposition,
Mode 1 is dominated by variability in the LC, which is also
the case for Mode 4 to a large extent. Modes 2, 3, and 5 are
mixed, with signals in the deep GoM as well as along the
coasts. Compared with the dominant modes in SSH (Fig-
ure 9), the dominant MLD modes involve shorter scale fea-
tures, and tend to be less spatially localized.

In Figure 14 we compare the empirical standard devia-
tion of the MLD field (left plot) with the standard deviation
of its EOF-PC approximation (right plot). As for the SSH,
it is seen that the EOF-PC approximation is able to properly
capture the main structures of the MLD uncertainty, in par-
ticular 1) near the LC region, 2) along the northern coastline
and 3) around the LC Eddy at (26◦ N, 94◦ W). However,
we also observe that the differences between the two stan-
dard deviation fields are more significant than in the case of
SSH (Figure 10). In fact, the EOF-PC approximation con-

Fig. 13: First five spatial modes uk/
√

λ k in the expansion of
the MLD field at day 30.

tains only 80% of the fluctuating energy in the set of HY-
COM realizations. It is noted that inclusion of additional
modes in the EOF-PC approximation would slowly improve
the capture of the remaining field variability; again, this can
be explained by the complex response of the local MLD to
random inputs, which makes it difficult to approximate the
reduced random coordinates φ k(ξξξ ). Indeed, the PC approx-
imation of the φ k yields an additional loss of variability, as
some fluctuations are interpreted as realization noise by the
PC construction procedure.

Fig. 14: Standard deviation of MLD fields at day 30. Left:
empirical standard deviation calculated from the LHS set of
HYCOM simulations. Right: standard deviation in the trun-
cated expansion of the field using r = 27 modes.

It should be stressed that though part of the variabil-
ity in the MLD field is lost, the main structures in the em-
pirical standard deviation field given by HYCOM realiza-
tion ensemble are still present in the EOF-PC approxima-
tion and we shall see below that the information retained is
enough to perform a suitable sensitivity analysis. However,
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the error in the EOF-PC approximation can be significant, in
particular if it is used to predict specific realizations of the
HYCOM simulation. This can be appreciated in Figure 15
where the difference between the true HYCOM fluctuation
at ξξξ = 000 (left plot) and its EOF-PC approximation (right
plot) is much more significant than for the case of the SSH
at the same parameter value (Figure 11).

Fig. 15: MLD fluctuation fields for realization at ξξξ = 000 at
day 30. Left: target fluctuation field. Right: EOF-PC recon-
struction of the target fluctuation field.

5.3 Global sensitivity analysis

From the EOF-PC approximation, one can easily compute
field values for the sensitivity indices of SSH and MLD.
Similar to the discussion in section 4, we focus on the first
order sensitivity indices with respect to the initial condition
and wind forcing (as well as the contribution to the variance
of the interaction between them).

Figure 16 reports the first order sensitivities at day 30 of
the SSH (left column) and MLD (right column) fields to ini-
tial condition (top row), wind forcing (center row) and their
interactions (bottom row). It can be seen from Fig. 16 that
the SSH field is more sensitive to the initial condition almost
everywhere except for the near shore area where wind forc-
ing exhibits significant impact. This strong impact of wind
forcing on the near shore SSH can be understood from the
following facts: 1) the variability of the initial condition is
concentrated in the LC region making initial SSH pertur-
bation along coastline negligibly small; 2) The propagation
over a 30 days time horizon of the initial uncertainty away
from the LC area is limited; 3) Wave amplitude is naturally
more sensitive to wind forcing, when waves propagate from
deep water to shallow water, and when the wave amplitude
grows and thus amplifies the sensitivity to wind forcing near
the coastline.

In contrast, the MLD field values at day 30 seem essen-
tially sensitive to the wind forcing perturbations, which is
expected since the MLD is primarily related to the turbulent
mixing process in the near surface layer, where both mo-
mentum and heat fluxes are directly influenced by wind forc-
ing perturbations. The initial condition impacts the MLD

Fig. 16: Sensitivity analysis of the SSH (left) and MLD
(right) fields at day 30. Plotted are the first order sensitiv-
ity indices related to the initial condition (top row), wind
forcing (center row) and interaction between the two (bot-
tom row).

only in the LC region, where the perturbations were local-
ized. Finally, one can notice that both SSH and MLD fields
exhibit weak interactions between initial condition and wind
forcing perturbations at the considered analysis day.

Finally, we quantify the time evolution of 1st order sen-
sitivities of both SSH and MLD fields to initial condition,
wind forcing and their interactions. Figure 17 depicts at days
10, 20 and 25 (from top to bottom) the first order sensitiv-
ity indices associated with the initial condition impact on
the SSH (left) and to the wind forcing impact on the MLD.
Because the interactions between initial condition and wind
forcing remain relatively insignificant over the simulation
span, the sensitivity indices associated with the impact of
wind forcing (resp. initial condition) on the SSH (resp. MLD)
field can be estimated using SIC +SWF ≈ 1. We remark that
the analysis at different times are processed independently,
so proposed EOF-PC approach offers flexibility of analyz-
ing sensitivities at moments of interest only. This flexibil-
ity in turn provides means of investigating the dynamic of
the uncertainty propagation. For instance, the plots for the
SSH (left column) in Figure 17 show how the effect of wind
forcing becomes progressively important near the LC region
as time advances. Similarly, observing the time evolution of
the variability of the MLD fields (see right column of Fig-
ure 17), one notices the fast evolution of MLD variance in-
duced by uncertainties in the initial condition in the western
half of the GoM.
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Fig. 17: 1st order sensitivity of SSH to initial condition (left
column) and MLD to wind forcing (right column) perturba-
tions on selected days as indicated.

5.4 Effect of sample set size

This section explores the robustness of the proposed EOF-
PC approach with respect to the size of HYCOM realiza-
tion ensemble in global sensitivity analysis for the SSH and
MLD fields. Our objective is to show that, for the present
problem, a limited number of HYCOM realizations provides
adequate estimates of the sensitivity indices. To this end, we
repeat the previous procedure for the EOF-PC approxima-
tion of the SSH and MLD fields and subsequent sensitivity
analysis, for different sizes of the realizations set. In order to
avoid having to repeat multiple HYCOM simulations when
the new sample sets are considered, a sub-sampling of the
original LHS set considered so far is introduced. Fig. 18 il-
lustrates in two dimensions the sub-sampling strategy em-
ployed in this study, which is now briefly discussed. From
the original set PLHS with NLHS samples, the objective is to
select a subset P ′LHS ⊂ PLHS preserving the covering prop-
erty of LHS schemes. To this end, we first draw at random a
new set of N′LHS sample points; for every element of this new
sample set, we select its closest neighbor in PLHS (with re-
spect to the L2 distance) that has not been previously drawn
and complete the new sample set P ′LHS with this selected
sample point. It is noted that the resulting P ′LHS may not
necessarily be an LHS set.

The accuracy of the EOF-PC approximation of the SSH
or MLD field depends on the error in the empirical covari-
ance estimate, the number of modes r retained in the expan-
sion, and finally the accuracy of PC approximation of the
random coordinates φ k(ξξξ ). With the above quasi-uniform
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Fig. 18: Illustration of the sub-sampling strategy in 2D case.
Left: Original LHS set PLHS. Center: independent LHS set
N′LHS < NLHS elements. Right: resulting sample set P ′ ⊂
PLHS.

sub-sampling scheme, we choose different number of HY-
COM realizations from the original LHS ensemble and re-
construct EOF-PC approximations UPC for both SSH and
MLD fields. The quality of the resulting approximations is
first assessed using the (normalized) L2-norm of the approx-
imation error,

ε
2
L2

=
E
[
‖U−UPC‖2

L2(Ω)

]
E
[
‖U‖2

L2(Ω)

] . (31)

This error can not be computed exactly and to avoid the need
to perform additional HYCOM simulations, we here con-
sider estimates based on the LHS sample set PLHS,

ε
2
L2
≈

∑ξξξ j∈PLHS
‖U(·,ξξξ j)−UPC(·,ξξξ j)‖2

L2(Ω)

∑ξξξ j∈PLHS
‖U(·,ξξξ j)‖2

L2(Ω)

. (32)

Because this error estimate relies on the same sample set
used for the construction, it is expected that it will under-
estimate the true L2-error. However, this estimate remains
useful to monitor the robustness of the approximation when
different number of samples are used in the construction of
the EOF-PC expansion. The evolutions of the estimated er-
rors are shown in Figure 19. The top plot concerns the SSH
case at day 30, while the bottom plot corresponds to the
MLD at the same date. In each plot, the blue curve corre-
sponds to the estimate in Eq. (32) while the red curve corre-
sponds to similar estimate obtained using the same subset as
for the EOF-PC approximation. Finally, the dotted line cor-

responds to the a priori error estimate (ε priori = 1− ∑
r
k=1 λ k

∑
NLHS
i=k λ k

)

based on the truncation of the expansion retaining only r
terms.

For the two fields, a similar behavior is reported. First,
the lowest error estimation is the one based on the trunca-
tion criteria (dotted line), as one would have expected. This
estimate is sightly smaller than the estimate based on the
reduced sample set used for the construction of the EOF-
PC approximation (red curve). The difference between these
two estimate arises from the PC approximation of the stochas-
tic coordinates φ k, as discussed previously. Interestingly, the
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distance between the dotted and red curves remains essen-
tially constant, suggesting that reducing the PC approxima-
tion error would require a significantly larger sample set. Fi-
nally, the two previous errors are seen to significantly under
estimate the true error, as denoted by their distance to the
blue curve which can be considered as a better approxima-
tion of the true L2-error when the sample set size used for
the construction is small compared to NLHS. Obviously, the
estimates for the original and reduced samples agree when
the number of samples used for the construction goes to
NLHS. Overall, from the curves reported, it can be concluded
that the EOF-PC error quickly decreases with the number
of samples involved in the construction, but then stagnate as
many more samples would be necessary to properly capture
fine stochastic features. As discussed previously, this finding
indicates that one should be cautious in using the EOF-PC
approximation as a surrogate model to predict realizations
of the HYCOM simulations at ξξξ points that do not belong
to the sample, as significant (point-wise) errors can be ex-
pected.
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Fig. 19: Estimates of the mean squared error of the EOF-PC
approximations for SSH (top) and MLD (bottom) fields as
function the size of the subset of HYCOM realizations used
in the construction.

However, despite the occurrence of appreciable point-
wise errors and appreciable L2 error estimates, we note that
the EOF-PC is still able to capture how the variability is dis-
tributed as well as the impact of the different uncertain pa-
rameters. In fact, a closer inspection reveals that even for

a sample set of only 50 HYCOM simulation the EOF-PC
based sensitivity indices for both the SSH and MLD fields
are well determined. This finding is illustrated in Figure 20
which depicts in the left column (resp. right column) the
standard deviation of the EOF-PC approximation for the SSH
at day 30 (resp. MLD) and first order sensitivity indices as-
sociated to the initial condition (resp. wind forcing). It is
seen that while using roughly 16 times less samples the ap-
proximations agree fairly well with the results reported pre-
viously (see corresponding plots in Fig. 10 14 16). It thus
appears that a moderate number of HYCOM realizations
would be sufficient to perform the global sensibility anal-
ysis of the SSH and MLD fields through EOF-PC reduc-
tion approach. This is an encouraging result for applying
the EOF-PC methodology in the context of data assimila-
tion, which requires quantifying model uncertainties. Be-
cause ocean models are computationally expensive and gen-
erate very large quantities of data, ocean data assimilation
cannot be based on techniques requiring large ensembles.
To date, ensemble data assimilation techniques implemented
in oceanography typically use ensembles of size Ω(100)
(e.g.[12, 20]), comparable to the ensemble size we find rea-
sonable for implementing the EOC-PC approach.

Fig. 20: Standard deviation fields (top) and first order sen-
sitivity index (bottom) of the SSH (left) and MLD (right)
fields at day 30. The first order sensitivity index is related
to the initial condition for the the SSH (left plot) and to the
wind forcing for the MLD case (right plot).

6 Conclusion

A PC method was used to quantify the impact of initial con-
dition and wind forcing uncertainties on the circulation in
the GoM. Attention was focused on the Sea Surface Height
(SSH) and Mixed Layer Depth (MLD). A LHS ensemble of
oceanic forecasts covering a 30-day period were generated
using HYCOM. The resulting database of realizations was
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then exploited to construct PC surrogates. A BPDN algo-
rithm [37, 38] was used for this purpose.

For the purpose of propagating uncertainties, two quanti-
ties of interest were defined, obtained by averaging the SSH
over a region located close to the zone of the LC detachment,
and the MLD around the location of the DWH well. The ad-
equacy of the PC representation was examined in light of
discrete error metrics, and the analysis revealed that the re-
constructions adequately capture the stochastic response of
the QoIs, and provides robust estimates of statistical mo-
ments, including means and variances. A global sensitivity
analysis was then performed in order to quantify the impact
of the uncertain inputs. The analysis indicated that during
the time of the simulation, the regionally averaged SSH re-
sponse near the LC region is dominated by initial condition
uncertainties, whereas the MLD around DWH is mostly sen-
sitive to wind forcing.

A EOF-PC decomposition methodology was then devel-
oped in order to assess the field sensitivities of SSH and
MLD. Due to the smooth response of SSH field in both spa-
tial and stochastic domains, we were able to build faithful
PC surrogates for SSH fields with as few as 10 EOF modes,
and to capture the region of peak SSH uncertainty around the
LC. On the other hand, the EOF-PC representation of MLD
field was limited to include only 80% of its variability due to
the fact that capturing fine structures in MLD fields requires
more HYCOM realizations. Nevertheless, despite the fact
that fine spatial structures in the MLD field are smoothed
out in the reconstruction, the dominant structures in variance
and sensitivity fields were well captured.

A computationally study was also conducted to assess
the impact of the size of the realization ensemble on the per-
formance of the EOF-PC representation. In order to avoid
generating inpedendent ensemble, a simplified approach was
adopted, based on coarsening the original LHS ensemble
while maintaining its covering property. The analysis re-
vealed the possibility of capturing the dominant features of
the stochastic variability with a relatively modest ensemble
size of 50 members, which offers perspective for applying
the EOF-PC technique in an ocean data assimilation con-
text.

We finally recall that the present analysis considers sta-
tistically independent uncertainties for the initial conditions
and wind forcing fields, such that their respective EOF de-
compositions can be easily sampled simultaneously with a
classical LHS ensemble construction. Though well motivated
from the mathematical perspective, this simplified approach
disregard the link between the ocean and atmosphere states.
Similarly, passive OGCM simulations where wind forcing
is not affected by the ocean states should be improved to
a coupled atmosphere-wave-ocean model to better simulate
the dynamics across the atmosphere-ocean interface. Based
on the insight provided by the present experiences, work is

underway to enhance both the construction and propagation
of more realistic uncertain input fields, particularly by rely-
ing on the fully coupled atmosphere-wave-ocean model [6].
Results from this ongoing effort will be reported in a future
study.
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22. Le Hénaff, M., Kourafalou, V.H., Paris, C., Helgers, J., Aman,
Z.M., Hogan, P.J., Srinivasan, A.: Surface evolution of the deep-
water horizon oil spill patch: combined effects of circulation
and wind-induced drift. Environmental Science and Technology
46(13), 7267–7273 (2012)

23. Le Maı̂tre, O.P., Knio, O.M.: Spectral methods for uncertainty
quantification: with applications to computational fluid dynamics.
Springer Science & Business Media (2010)

24. Le Maı̂tre, O.P., Najm, H.N., Pébay, P.P., Ghanem, R.G., Knio,
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