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Abstract

The e�ects of spatial and temporal scales in uncertain in�ltration processes are investigated within overland
�ow models. The saturated hydraulic conductivity is considered as the uncertain input parameter. The
probabilistic model for this parameter relies on a spatial organization of the watershed into �elds. In
each �eld, the saturated hydraulic conductivity is assigned a distribution function and is assumed to be
independent of those of the other �elds. Four rainfall events are considered to explore various temporal
scales leading to di�erent soil saturation levels. Our results show the important impact of soil saturation on
overland �ow variability and the moderate impact of grass strip localization on runo� variability. Moreover,
the most in�uential input parameter, determined by sensitivity analysis, depends on its localization in the
watershed and the duration of the rainfall event. Finally, higher probabilities of extreme discharges are
observed with three grass strips instead of just one located near the �eld outlet.

1. Introduction

Water �uxes are a fundamental part of natural ecosystems and are essential to support human activities.
Many research e�orts are therefore devoted to the development and application of physically-based models
able to improve our understanding and modelling of these �uxes. One of the main obstacles to the appli-
cation of such models is the di�culty to describe the spatial and temporal (non-linear) variability of input
parameters [28]. Indeed, the performance of models directly depends on the validity of input parameters.
Even if the technological progress in sensor development regularly improves the resolution measuring the
di�erent natural and anthropogenic factors [3, 16], it is not possible to capture all their spatial and temporal
variability. In recent years, many e�orts have been undertaken to evaluate the rainfall input through the
development and implementation of rainfall radars [37]. Furthermore, several plant growth models, such as
the Soil Vegetation Atmosphere Transfer scheme (SVAT) [6], permit to determine operationally input pa-
rameters related to vegetation with a reasonable accuracy. It is more di�cult to estimate the soil parameters,
principally because of their heterogeneity and their high variability in space and time. For rainfall-runo�
prediction models, numerous studies show that the saturated hydraulic conductivity, which is deduced from
soil properties, is the most in�uent input parameter [12, 39].

The saturated hydraulic conductivity, herein denoted by Ks, provides a quantitative measure of the soil
ability to transmit water. Indeed, Ks is one of the key parameters in the in�ltration process and in water
transfer through the unsaturated and saturated parts of the soil. The parameter Ks yields the maximum
value of the in�ltration rate, which is obtained for a saturated state of the soil, and in�uences predominantly
the in�ltration capacity [12]. Di�erent methodologies have been elaborated to measure directly saturated
hydraulic conductivities. However, the obtained values for Ks depend on the chosen methodology and most
importantly, the spatial representativity of these measurements remains rather limited [53]. In most model
applications, values for Ks are estimated through the application of pedo-transfer functions (PTF) using
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basic soil properties [8, 9, 47]. By testing di�erent PTF's to predict Ks, it was concluded [45] that predicting
Ks using a PTF is not always accurate owing to the inherent variability of Ks. Furthermore, using a set
of data to compare di�erent measurement and estimation methods, a high variability of Ks (more than
79%) has been observed [4]. To overcome this lack of accuracy, a possible approach consists in calibrating
parameters, but the resulting values are often valid only for the used con�guration and moderate variations
thereof.

An alternative approach already suggested in [15, 35, 40, 46] consists in considering Ks as a stochastic
parameter instead of being estimated by deterministic approaches. It is today well admitted that proba-
bilistic modelling provides e�cient means to quantify parameter uncertainty. Uncertainty Analysis (UA)
considers the uncertain parameters of a model as random objects, and the objective is to compute or char-
acterize the induced variability in the model solution or in quantities of interest. For highly uncertain data
within non-linear models, as in hydrology applications, so-called global UA methods, which study the ef-
fects of all the input parameters simultaneously, are needed. One essential step in UA is the de�nition of
a random model for the uncertain parameters. Random models with di�erent levels of complexity can be
considered. For instance, a relatively simple approach is the Generalized Likelihood Uncertainty Estima-
tion (GLUE) procedure [5] which is a Monte Carlo (MC) method generating a high number of parameter
sets to compare the predicted model responses with observed responses and to accept or not some simu-
lations through some chosen likelihood measure. Being a Bayesian approach, this likelihood measure can
be updated for each new set of observed responses. Numerous studies are based on a Bayesian framework
[27, 29, 30, 44]. Bayesian statistics mean that input parameters are considered as probabilistic variables
having a joint posterior probability density function (pdf). Di�erent methods exist for sampling posterior
pdf's. The Monte Carlo Markov Chain (MCMC) sampler is often used in hydrology models, the earliest
general (and most popular) method being the Metropolis�Hastings algorithm [25, 34]. In hydrology, various
recent studies have aimed at improving MCMC samplers: the Shu�ed Complex Evolution (SCE) Metropolis
(SCEM) algorithm [49], which is a modi�ed version of the SCE global optimization algorithm [17], or the
Di�erential Evolution Adaptive Metropolis algorithm (DREAM) [50]. In contrast with Bayesian statistics,
an alternative approach providing a complete probabilistic description considers the unknown parameters as
random variables described by a �xed pdf. This approach, which is more adapted to problems where little
data is available, is undertaken in the present work. Once the probabilistic framework is settled, it remains
to characterize the model output variability in terms of input variability. To this purpose, MC methods are
often employed since such methods provide an e�ective and robust methodology to generate a sample set of
model solutions by sampling input parameters. Another recent methodology is based on stochastic spectral
methods [22]. The advantage is that a more complete probabilistic description of model output is achieved,
but the methodology becomes computationally demanding when the input parameters are described by a
large number of random variables.

In the present paper, we focus on the impact of the variability in the saturated hydraulic conductivity Ks

on overland �ows with runon processes [41]. A general probabilistic description of the saturated hydraulic
conductivity is to model it as a random �eld. Although very rich, this type of model needs a substantial
amount of information for its description, and is, therefore, not well adapted to the present setting. Moreover,
extracting simple information in view of practical hydrology purposes from complex probabilistic models
is an intricate issue. For these reasons, we rely on simpler probabilistic models where realizations of the
saturated hydraulic conductivity lead to constant values over distinct portions of the simulation domain
which are identi�ed a priori and referred to as �elds. In each �eld, a unique Random Variable (RV)
yields the corresponding saturated hydraulic conductivity. In addition, the saturated hydraulic conductivity
within a �eld is assumed to be statistically independent from the others. As a result, the uncertain hydraulic
conductivity �eld is modelled using a �nite set of independent random variables, whose cardinality is equal
to the number of �elds considered in the simulation. This idealization is motivated by the physical reality. If
one thinks of �elds as agricultural plots, the variability of Ks inside the �eld is usually negligible compared
to the variability from a �eld to another because of the homogenization created by agricultural practices.
Moreover, the present model can be subsequently re�ned by introducing inner variability within the parcels
if additional information on soil properties within �elds is available. Within this framework for spatial
localization, the probabilistic model is speci�ed by the choice of a probability density function for Ks in each
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�eld. In the present work, we consider uniform distributions because of the relatively low range of values
taken by Ks within each �eld (however, high contrasts are considered between �elds). In computational
hydrology Ks often follows a log-normal distribution [31, 36, 38]. We have veri�ed that in our test cases
both choices for the distribution (uniform or log-normal) with proper matching of mean value and variance
lead to the same conclusions.

The objective of this work is twofold. Firstly we consider test cases with di�erent spatial and temporal
scales to investigate the e�ect of these scales in uncertainty propagation. Our �rst salient result is that the
most in�uential input parameter on model output variability depends on the spatial and temporal scales
of the processes of interest. This information is, for instance, important to decide on where to concentrate
additional measurement e�orts to improve �eld knowledge. Moreover, within a given test case, we consider
various possibilities for the spatial organization of the parcels so as to study the e�ect of this organization
on model output variability. Our second salient result, relevant to landscape management issues, is the
comparison between three grass strips distributed evenly within a �eld and a single grass strip located near
the �eld outlet. We show that the presence of the grass strips leads to less probable extreme values for the
maximal discharges, thereby reducing the erosion risk. We focus on two-dimensional settings where the �ow
is described by the one-dimensional shallow water equations including friction and in�ltration, the latter
being described by the Green�Ampt model. More elaborate �ow models can be considered. We also mention
a di�erent approach [51, 52] to compute pdf's of in�ltration rates and in�ltration depths.

This paper is organized as follows. Section 2 brie�y describes the rainfall-runo� model and the numerical
method used in the deterministic overland �ow simulations once values for the random input parameters
are speci�ed. Section 3 introduces the stochastic approach and the statistic tools used to propagate and
analyze the uncertainties in model output. Section 4 presents the two test cases designed to evaluate the
impact of uncertainties in Ks and of the spatial localization of these uncertainties on overland �ow. Results
are discussed in Section 5. Finally, conclusions are drawn in Section 6.

2. The setting

In this section, we present the physical model and its numerical resolution.

2.1. Physical model

z 

x

R(x,t)

u(x)

I(x) h(x)
z(x)

Figure 1: Geometric con�guration and basic notation: h(x) is the water depth, u(x) the depth-averaged velocity, z(x) the
ground surface elevation, R(x) the rainfall rate, and I(x) the in�ltration rate.

We are interested in overland �ows with runon processes. We assume that the water depth is much smaller
than the characteristic horizontal size of the �eld of study (see Figure 1). Such �ows can be described by
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the 2D shallow water (SW) equations which are obtained from the 3D incompressible free-surface Navier�
Stokes equations by averaging on the vertical direction under some simplifying assumptions, in particular
hydrostatic pressure and negligible vertical velocity [21, 43, 48]. Neglecting also the �ow transverse to the
main slope direction, we obtain the 1D SW equations which express mass and momentum conservation as
follows:

∂th + ∂x(hu) = R− I, (1)

∂t (hu) + ∂x

(
hu2 + 1

2gh2
)

= −gh (∂xz + Sf) , (2)

where h [L] is the water depth, u [L/T] the depth-averaged velocity, z [L] the ground surface elevation,
and g [L/T2] the gravitational constant (where L and T denote length and time units, respectively). The
source term R − I [L/T] corresponds to the di�erence between the rainfall rate R and the in�ltration rate
I. The quantity Sf [L/L] accounts for friction e�ects. The value of Sf depends on the properties of the soil
surface and can be estimated from calibration or published values. Darcy�Weisbach's formula is often used
[14, 19, 20]:

Sf = f
|u|
8gh

u, (3)

where f is the possibly time and space-dependent Darcy�Weisbach's roughness coe�cient and |u| the module
of the velocity u.

We use the Green�Ampt model [23] to predict cumulative in�ltration through dry or wet soils. Herein, we
consider the formulation developed in [33] for rainfall-runo� predictive models. This formulation postulates,
at any point x in space, a well-de�ned wetting front propagating vertically and separating a fully saturated
zone from a zone at the initial soil moisture. At any point on the soil surface, the in�ltration capacity Ic(t)
[L/T] at time t is calculated as follows (the dependency on the space variable is omitted for simplicity):

Ic(t) = Ks

(
1 + (θs − θi)

hf + h(t)
I∗(t)

)
, (4)

where I∗(t) [L] is the cumulative in�ltration up to time t, Ks [L/T] the saturated hydraulic conductivity, hf

[L] the wetting front capillary pressure head, and θi and θs the initial and saturated water content. Over the
time interval [t, t+δt], the model assumes that if the water depth h(t) is smaller than Ic(t)×δt, all the water
volume is in�ltrated; otherwise, the in�ltrated volume is equal to the in�ltration capacity and the remaining
water streams. Hence, the in�ltration rate I over the time interval [t, t + δt] is equal to min(Ic(t), h(t)/δt).

2.2. Numerical resolution

A well-balanced �nite volume method is used to discretize the SW equations, which we rewrite in the
general form ∂tU + ∂xF (U) = S(U), where U is the vector of conservative variables, F the �ux vector, and
S the source term. Speci�cally,

U =
(

h
hu

)
, F (U) =

(
hu

hu2 + 1
2gh2

)
, S(U) =

(
R− I

−gh(∂xz + Sf)

)
.

The domain is divided into cells (indexed by i) of the form Ci = [xi−1/2, xi+1/2] and of length ∆x > 0 taken
constant for simplicity. The Green�Ampt model is applied locally in each mesh cell. To obtain a second-order
scheme, the variables need to be reconstructed at cell interfaces. We denote by Ui+1/2± the conservative
variables computed at either side of the interface xi+1/2 using an ENO-type (Essentially Non Oscillatory)
reconstruction [24]. Moreover, the ground surface elevation z is described as a piecewise constant function,
and cell-interface values zi+1/2± are also reconstructed. This yields the following scheme written here in
space semi-discrete form:

∆x
d

dt
Ui(t) + Fi+1/2 − Fi−1/2 = ∆x

(
Ri − Ii

−ghiSf,i

)
+ ∆x

(
0

Ss,i

)
,
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where the subscript i refers to the value in the cell Ci and the �uxes Fi±1/2 are computed using the HLL
�ux (see e.g., [7]). The source term Ss,i accounts for the term −gh∂xz in the source term S. To evaluate
the �uxes Fi±1/2 and the source term Ss,i, an hydrostatic reconstruction scheme is applied, as described in
[1, 2, 7, 32]. Speci�cally, we set

hi+1/2 L = max
(
0, hi+1/2− + zi+1/2− −max(zi+1/2−, zi+1/2 +)

)
,

hi−1/2 R = max
(
0, hi−1/2 + + zi−1/2 + −max(zi−1/2−, zi−1/2 +)

)
,

Ui+1/2 L =
(
hi+1/2 L, hi+1/2 Lui+1/2−

)t
,

Ui−1/2 R =
(
hi−1/2 R, hi−1/2 Rui−1/2 +

)t
,

where the indices L and R indicate reconstructed variables on the left and right side of the interface i+1/2.
Then, the HLL �ux is evaluated using (Ui+1/2 L, Ui+1/2 R), and the source term Ss,i is evaluated as

Ss,i =
1

∆x

g

2

((
h2

i+1/2 L − h2
i+1/2−

)
+

(
h2

i−1/2 + − h2
i−1/2 R

)
+

(
hi−1/2 + − hi+1/2−

) (
zi+1/2− − zi−1/2 +

))
.

Finally, for time discretization, we use a second-order explicit Runge�Kutta method based on the Heun
scheme, except for the friction term Sf which is treated semi-implicitly at each stage of the Heun scheme
[11]. This leads to a second-order accurate overland �ow model with in�ltration that we now use to study
uncertainty propagation.

3. Stochastic model and statistic tools

In this section, we describe the stochastic model and the statistic tools used to analyze the results.

3.1. Stochastic model

We are interested in uncertainty propagation stemming from the uncertain input parameter Ks in the
SW equations. Our stochastic model consists in subdividing the physical domain into p (with typically p = 2
or 3 in our numerical results) �elds and assigning to each �eld a single uncertain parameter Ks which is a
RV with known pdf. As a result, the random �eld Ks(x, θ), where θ is a random event, becomes

Ks(x, θ) =
p∑

i=1

1Ωi(x)Ks,i(θ), (5)

where 1Ωi is the indicator function of the i-th spatial �eld and {Ks,i(θ)} is a set of (positive) real-valued
RV's which are regrouped into a single vector-valued RV such that X = (X1, . . . , Xp) = (Ks,1, . . . ,Ks,p).
We assume that the RV's Xi are independent, but can have di�erent pdf's denoted by pXi . We consider a
uniform distribution for all the �elds because of the relatively low range of values taken by Ks within each
�eld (however, high contrasts are considered between �elds). In the present setting, the pdf pXi depends on
its corresponding �eld i only through the minimal and maximal bounds on Ks,i. Moreover, since the RV's
Xi are assumed to be independent, the pdf of X factorizes into the form

∀x = (x1, · · · , xp), pX(x) =
p∏

i=1

pXi(xi). (6)

The uncertain output quantities of the model are the peak runo� rate and the runo� coe�cient for a
speci�c rainfall event. Let Y denote any of these output quantities. Once a realization of X, say x, is
known, a realization of Y , say y(x), is obtained by solving numerically the corresponding deterministic
problem described in Section 2.
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3.2. Moments and pdf

Assuming that Y has �nite second-moment, the expectation and the variance of Y are de�ned as

E[Y ] =
∫

y(x)pX(x)dx and V (Y ) =
∫ (

y(x)− E[Y ]
)2

pX(x)dx,

so that V (Y ) = E[Y 2]− E[Y ]2. We are interested in evaluating various statistical quantities related to the
model output Y . To this purpose, we use Monte Carlo (MC) simulations. Let X = {x(1), . . . ,x(M)} be a
sample set of the input stochastic parameters, where M is the sample set dimension and x(m), 1 ≤ m ≤ M ,
are realizations of X. Let Y = {y(1), . . . , y(M)} be the corresponding sample set of the model output such
that, for each 1 ≤ m ≤ M , y(m) = y(x(m)) is the model response to the vector of input parameters x(m).
The empirical estimators for the expectation and the variance are

Ê[Y ] =
1
M

M∑
m=1

y(m) and V̂ (Y ) =
1
M

M∑
m=1

(
y(m) − Ê[Y ]

)2

. (7)

To estimate the pdf of a random variable, we use the kernel density estimator, also called Parzen�
Rozenblatt method, which is a generalization of the histogram method [10]. The pdf of Y is estimated
as

p̂η(y) =
1

Mη

M∑
m=1

G

(
y − y(m)

η

)
,

where G is a speci�c pdf used as kernel and η is a smoothing parameter. The most commonly used kernel
is the Gaussian function G(x) = (2π)−1/2 exp (− 1

2x2). Thus, the pdf at a point y is estimated by the
number of observations close to y and counterbalanced by the distance of these observations to y. The
kernel distribution function allocates more important weights to observations near the point y and weaker
weights to distant observations. The parameter η �xes the kernel function width and, therefore, controls the
smoothness of the estimated pdf p̂η. The smaller the parameter, the more accurate the estimation of the
pdf; however, too small values for η can generate spurious data artifacts if the sample set is not su�ciently
large. An illustration is presented in Section 4.2.

3.3. Sensitivity analysis

Sensitivity Analysis (SA) allows one to assess the relative contribution of each uncertain input parameter
to model output variability and, in particular, to identify key parameters by establishing a hierarchy within
the input parameters according to their in�uence on the output variability. Variance-based global SA
methods based on Sobol indices [42] determine which part of the response variance results from the variance
of each input or group of inputs. The sensitivity of the response Y to the input parameter Xi can be
quanti�ed by the �rst-order sensitivity index Si de�ned as

Si =
Vi

V (Y )
, Vi = E

[
E[Y |Xi]2

]
− E[Y ]2,

where E [Y |Xi] is the conditional expectation of Y given the value of Xi (see (8) below for its de�nition).
More generally, higher-order sensitivity indices quantify the sensitivity of the model response to interactions
among input parameters. Let i denote a non-empty subset of indices such that i ⊆ {1, . . . , p} and let
∼i = {1, . . . , p} \ i. The sensitivity index Si is de�ned as

Si =
Vi

V (Y )
, Vi = V (E [Y |Xi])−

∑
∅6=j(i

Vj ,
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where V (E [Y |Xi]) is the variance of the conditional expectation of Y given the value of Xi. This conditional
expectation is de�ned as

E [Y |Xi] =
∫

y(x)pX∼i
(x∼i)dx∼i, (8)

where pX∼i
and dx∼i are, respectively, the density and the probability measure of x∼i (conventionally,

E [Y |Xi] = Y if i = {1, . . . , p} and ∼i is empty). Observing that E [E[Y |Xi]] = E[Y ], we obtain

V (E[Y |Xi]) = E
[
E[Y |Xi]2

]
− E[Y ]2.

Furthermore, the law of total variance states that
∑

∅6=i⊆{1,...,p} Vi = V (Y ), so that∑
∅6=i⊆{1,...,p}

Si = 1.

Following Homma and Saltelli [26], it is convenient to consider for a single index i ∈ {1, . . . , p}, the total
sensitivity index ST,i which evaluates the total sensitivity of the model response Y to the input parameter
Xi, including Xi alone and all interactions with the other input parameters Xj , j 6= i. Computing this index
instead of the high-order sensitivity indices allows one to reduce computational costs by avoiding tedious
calculations. The total sensitivity index ST,i is evaluated as follows:

ST,i = 1− V∼i

V (Y )
, V∼i = E

[
E[Y |X∼i]2

]
− E[Y ]2,

where V∼i is the variance of the conditional expectation of Y given all the parameters except Xi. The
interpretation of the indices Si and ST,i is the following: Xi is an in�uential parameter if Si is important,
whereas Xi is not an in�uential parameter if ST,i is small. Moreover, Si close to ST,i means that interactions
between Xi and the other parameters are negligible.

MC simulations are used to estimate the quantities Vi and V∼i in the �rst-order sensitivity indices Si

and the total sensitivity indices ST,i. To save computational costs when evaluating these variances [42],

the expectations E
[
E[Y |Xi]2

]
and E

[
E[Y |X∼i]2

]
are computed as a unique integral by making use of two

independent M-samples of input variables, X and X ∗, in such a way that

V̂i =
1
M

M∑
m=1

Y
(
x(m)

)
× Y

(
x

(m)
i ,x

∗(m)
∼i

)
− Ê[Y ]2,

V̂∼i =
1
M

M∑
m=1

Y
(
x(m)

)
× Y

(
x
∗(m)
i ,x

(m)
∼i

)
− Ê[Y ]2,

where the starred variables belong to the sample X ∗. Finally, the �rst-order sensitivity index Si and the
total sensitivity index ST,i are estimated as

Ŝi =
V̂i

V̂ (Y )
, ŜT,i = 1− V̂∼i

V̂ (Y )
.

In practice, the computational procedure requires two samples of input parameters, each of dimension
M , and M × (2p + 1) deterministic model evaluations to calculate all the �rst-order and total sensitivity
indices.

4. Test cases

This section presents the test cases and a brief performance evaluation of the methodology.
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4.1. Presentation

To evaluate how uncertainties on the values of Ks and its spatial localization can impact the surface
runo� during various types of rainfall events, we focus on two output quantities: the peak runo� rate at
the outlet, Qmax, and the runo� coe�cient, RC, de�ned as the total volume of runo� divided by the total
volume of rainfall.

A one-dimensional constant slope of length L with an inclination gradient ∂xz = 2% is considered.
Uniform friction coe�cient and in�ltration parameters (except Ks) are chosen with values

f = 0.25, θs − θi = 0.3, hf = 0.023.

A constant rainfall intensity R(t) [L/T] is imposed during a time TR [T] and stopped afterwards. The
simulation time is denoted by T [T]. Two test cases, and, for each one, two rainfall events are simulated, a
short rainfall event (SRE) and a long rainfall event (LRE). The values of the rainfall intensity R, the rainfall
duration TR, and the simulation time T are speci�ed in Tables 1 and 3 for the two spatial con�gurations.

For the �rst spatial con�guration, named �Three-�eld�, the domain has length L=4.8 m and is divided into
three �elds, referred to as �elds, each one with its own saturated hydraulic conductivity Ks,i, i ∈ {1, 2, 3},
which is a RV independent of Ks,j , j 6= i. For each �eld Ks,i has a uniform distribution Ks,i ∼ U [Kmin

s,i ,Kmax
s,i ],

where Kmin
s,i and Kmax

s,i are the minimal and maximal values which can be taken by Ks,i. To assign these
values, we consider three choices, each representing realistic values for a given soil type. We refer to these
choices using an index −, o, or + indicating respectively low, intermediate or high values for Ks. The
corresponding values are listed in Table 2. Then, we consider the six possible spatial localizations of the
three �elds: [+o−], [+−o], [o+−], [o−+], [−+o], and [−o+]. For instance, [+−o] means that the upslope
�eld is assigned the RV Ks,+ (and is therefore the most in�ltrating �eld), the midslope �eld the RV Ks,−,
and the downslope �eld the RV Ks,o, see Figure 2(a). Figure 2(b) presents the hydrographs for the case
where Ks,+, Ks,o, and Ks,− are all equal to their respective mean values (Table 2), and the impermeable
con�guration. The signi�cant di�erences observed emphasize the importance of in�ltration processes.

L

2%

R(t)

Ks,-
Ks,o

Ks,+

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
x 10

−4

t (s)

Q
 (
m
2
.s
−
1
)

Impermeable
configuration

K
s,mean

Rising limb Steady state Falling limb

(b)

Figure 2: �Three-�eld� test case with the spatial localization [+−o]: (a) initial con�guration ; (b) runo� hydrograph for the
impermeable con�guration and the case where Ks,+, Ks,o, and Ks,− all take their respective mean value.

For the second spatial con�guration, named �Grass strip(s)�, the domain has length L=318 m and
contains grass strips (GS) of total width equal to 6 m. Two spatial localizations of the GS are considered,
as represented in Figure 3: either three narrow, 2 m wide GS are equally spaced or one large, 6 m wide
GS is located at the outlet. We assign a saturated hydraulic conductivity to the GS and another one to
the remaining part of the soil surface called the �eld. The two Ks are independent RV's with uniform
distribution. The values taken by Ks on the GS are higher than those on the �eld (see Table 4).
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Event R (m.s−1) TR (s) T (s)

SRE 1.66·10−5 125 250

LRE 1.66·10−5 1,250 2,500

Table 1: �Three-�eld� test case, data for the two
rainfall events: rainfall intensity R, rainfall dura-
tion TR, and total simulation time T .

− o +

Kmin
s 2.78·10−7 2.78·10−6 1.10·10−5

Kmax
s 1.10·10−6 5.50·10−6 1.66·10−5

Table 2: �Three-�eld� test case: minimal and maximal values of Ks

(m.s−1) for the three soil types.

3 narrow GS 1 large GS

2% 2%

field field

R(t) R(t)

3 GS configuration 1 GS configuration

field
field

Figure 3: �Grass strip(s)� test case: initial con�guration.

Event R (m.s−1) TR (s) T (s)

SRE 8.33·10−6 3,600 5,000

LRE 1.11·10−5 8,500 9,500

Table 3: �Grass strip(s)� test case, data for the two rain-
fall events: rainfall intensity R, rainfall duration TR, and
total simulation time T .

�eld GS

Kmin
s 3.57·10−6 2.22·10−5

Kmax
s 6.35·10−6 3.33·10−5

Table 4: �Grass strip(s)� test case: minimal and maximal
values of Ks (m.s−1).

4.2. Performance evaluation

Before discussing our results in the next session, we verify the numerical procedure on the �Three-�eld�
test case with SRE and the spatial localization [+−o] for Ks. Figure 4(a) presents the convergence of the
�rst-order sensitivity indices for the output Qmax as a function of the sample set dimension M . For the
three indices, convergence is already obtained for M = 1000. The results for the total sensitivity indices ST,i

are similar. Figure 4(b) presents the MC estimate of the expectation and standard deviation of Qmax with
±3 bootstrap standard error bounds plotted against the sample set dimension M . A sample set dimension
equal to 100,000 appears to be su�cient to achieve convergence. This value for M is used in this work.
Figure 4(c) illustrates the in�uence of the bandwidth η on the pdf estimation. Here and in what follows,
pdf's are standardized so as to have zero mean value and unit variance. An under-smoothed pdf is obtained
with a small value (η = 0.01) whereas an over-smoothed pdf is obtained with a large value (η = 0.5). The
value η = 0.05 yields a su�ciently smoothed pdf without spurious oscillations. This value for η is used in
what follows.
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Figure 4: Numerical veri�cation for the �Three-�eld� test case with the spatial localization [+−o]: (a) convergence of the
�rst-order sensitivity indices for Qmax as a function of sample dimension M ; (b) convergence of the MC estimate of Qmax

expectation and standard deviation with ±3 standard error as a function of sample dimension M ; (c) probability density
estimation of Qmax, using the kernel density estimator for di�erent bandwidth values η with a standardized output sample
(zero mean value and unit variance); (d) zoom of probability density estimation of Qmax.

5. Results and discussion

This section discusses the results for the two test cases �Three-�eld� and �Grass-strip(s)� presented in
Section 4.

5.1. Three-�eld test case

Figures 5 and 6 present the 100,000 couples (Qmax,RC) for the six possible spatial localizations of soil
types and for SRE and LRE, respectively. The �rst observation is that there is, as expected, an important
correlation between the two outputs Qmax and RC for each choice of the spatial localization (in all cases the
correlation coe�cients are greater than 0.9.) Concerning SRE (Figure 5), the simulations even tend to line
up in a curve. We observe that Qmax = 0 when the �eld with Ks,+ is located downslope due to a complete
in�ltration of the rain and of the upslope runo�. The cloud of points for the spatial localization [+−o]
contains the one for [−+o] which corresponds to the weakest discharges. The con�gurations where the �led
with Ks,− is located downslope are similar whatever the positions of the two other �elds because the values
of Ks,+ and Ks,o are su�ciently important to in�ltrate all the rain. Therefore, the clouds of points for SRE
essentially depend on the Ks for the �eld located downslope. Concerning LRE (Figure 6), Qmax and RC
take larger values than for SRE since the rainfall duration is longer. As a result, the in�uence of Ks,+ is
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more pronounced for LRE and contributes more to the discharge at the outlet, whereas the in�uence of Ks,−
decreases. Therefore, the clouds of points for LRE depend essentially on the position of the most in�ltrating
�eld. Figures 5 and 6 stress the importance of the spatial distribution of the soil types since the outputs
are mainly in�uenced by the in�ltration in the downslope �eld for SRE and by the most in�ltrating �eld for
LRE. To better understand why this di�erence is observed by changing the rainfall duration, we focus on
the in�ltration process over the domain.

Figure 5: �Three-�eld� test case and Short Rainfall Event: peak runo� rates Qmax and runo� coe�cients RC for the six possible
spatial localizations of the �elds.

Equation (4) implies that the ratio Ic/Ks tends to 1 when the in�ltrated water volume tends to in�nity
(corresponding to a saturated soil). To study the e�ect of increasing the rainfall duration on soil saturation,
Figure 7 presents the con�dence interval (i.e. minimal and maximal values for the 100,000 model responses)
of the ratio Ic/Ks at �nal time, as a function of spatial position, in grey for SRE and in black for LRE.
As expected, the soil is more saturated for LRE and the ratio is closer to 1. Additionally, the variability of
the con�dence interval is in general the highest for the least in�ltrating �eld and the weakest for the most
in�ltrating �eld. The variability decreases as a function of soil saturation since the more saturated the soil,
the smaller the variability, except for some limit cases where there is no runo� on the concerned �eld.

Table 5 presents the mean µ, the standard deviation σ, the coe�cient of variation cov = σ/µ, the median
P50, and the 90th percentile P90 related to Qmax (white rows) and RC (grey rows). On the whole, there is
more dispersion on the estimated values for SRE. For instance, cov is equal to 10% for [+o−] and [o+−], to
42% for [+−o], and to 217% for [−+o]. Besides, the values are higher for SRE than for LRE. The increase
of the rainfall duration leads to a decrease in the dispersion values, therefore dispersion depends on the state
of soil saturation (as the variability of the ratio Ic/Ks observed previously in Figure 7). Furthermore, for
SRE, the distribution is not uniform when Ks,o is assigned to the downslope �eld since the median and the
mean are di�erent. Finally, similar conclusions can be drawn from the statistical values of RC. Moreover,
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Figure 6: �Three-�eld� test case and Long Rainfall Event: peak runo� rates Qmax and runo� coe�cients RC for the six possible
spatial localizations of the �elds.

we observe that for both SRE and LRE, cov takes higher values for RC than for Qmax.
Figures 8(a) and 8(b) present the pdf's of Qmax estimated by the Parzen�Rozenblatt method with

standardized output samples and plotted by groups in function of the Ks which in�uences the most the
discharge at the outlet. A �rst important point is that the pdf shape shows that the process studied is not
Gaussian. Concerning SRE, the spatial localizations of the �elds yielding clouds of points that are correlated
and uniformly distributed in Figure 5 (the ones where the least in�ltrating �eld is downslope), generate a
spread pdf looking like a rectangular function. The pdf resulting from the con�guration [−+o] has a marked
peak owing to the numerous null discharges observed. This marked peak does not have the expected form
on the left part because it is di�cult to approximate accurately such a pdf (resembling a Dirac function)
by a Gaussian kernel. Concerning LRE, the six curves on Figure 8(b) are very close and have the form of a
�at bell on top and are almost symmetrical with respect to zero (i.e, with respect to the mean because the
output samples are standardized). So, contrary to SRE, the spatial distribution of Ks does not in�uence the
distribution of Qmax for LRE. The estimated pdf's for RC lead to the same conclusions. We can conclude
that the dispersions calculated in Table 5 for SRE are con�rmed by the non-uniform distribution obtained
in the pdf curves.

Figures 9(a) and 9(b) present the �rst-order sensitivity indices estimated from the 100,000 output samples
and for the two rainfall events. The sensitivity indices related to Ks,+, Ks,o, and Ks,− are respectively
denoted by S+, So, and S−. The white top in Figure 9(a) actually refers to S+ together with all the high
order sensitivity indices. Concerning SRE (Figure 9(a)), the highest index corresponds to the parameter
Ks located downslope, thus corroborating the previous conclusions on the most in�uent Ks. For instance,
in Figure 5, for the spatial localizations where the least in�ltrating �eld is located downslope, the clouds
of points are similar. Switching Ks,o and Ks,+ does not impact the outlet discharge, meaning that only
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Figure 7: �Three-�eld� test case: con�dence interval of the ratio Ic/Ks at �nal time as a function of spatial position and for
the six possible localizations of the �elds; Short Rain�al Event (in grey) and Long Rainfall Event (in black).

0

0.1

0.2

0.3

pd
f

Ks,- downslope

 

 

0
1
2
3
4
5

pd
f

Ks,o downslope

 

 

-1 0 1 210-3

10-2

10-1

100

pd
f

-3 -2 -1 0 1 2 3 410-3

10-2

10-1

100

101

pd
f

o + -
+ o -

+ - o
- + o

(a) SRE

0

0.1

0.2

0.3

pd
f

Ks,+ upslope

 

 

-2 -1 0 1 2 310-3

10-2

10-1

100

pd
f

0

0.1

0.2

0.3

pd
f

Ks,+ midslope and downslope

 

 

-2 -1 0 1 210-3

10-2

10-1

100

pd
f

+ o -
+ - o

o + -
- + o
- o +
o - +

(b) LRE
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Rainfall Event (LRE).
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Short Rainfall Event Long Rainfall Event

Ks,− downslope Ks,o downslope Ks,+ upslope Ks,+ midslope Ks,+ downslope

+ o − o + − + − o − + o + o − + − o o + − − + o o − + − o +

µ 1.8·10−5 1.8·10−5 1.5·10−5 2.6·10−7 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 8.7·10−5 5.9·10−7 8.2·10−3 8.1·10−3 6.9·10−3 6.2·10−3 6.2·10−3 6.2·10−3

σ 1.8·10−6 1.8·10−6 6.1·10−6 5.6·10−7 1.8·10−6 1.8·10−6 3.4·10−6 3.3·10−6 3.3·10−6 3.3·10−6

6.3·10−5 6.3·10−5 6.1·10−5 1.5·10−6 5.2·10−4 5.4·10−4 6.6·10−4 8.2·10−4 8.3·10−4 8.3·10−4

cov 10% 10% 42% 217% 5% 5% 9% 9% 9% 8%

22% 22% 70% 250% 6% 7% 10% 13% 13% 13%

P50 1.8·10−5 1.8·10−5 1.5·10−5
0 4.0·10−5 4.0·10−5 3.8·10−5 3.9·10−5 3.9·10−5 3.9·10−5

2.8·10−4 2.8·10−4 7.8·10−5
0 8.2·10−3 8.1·10−3 6.8·10−3 6.2·10−3 6.1·10−3 6.2·10−3

P90 2.1·10−5 2.1·10−5 2.2·10−5 1.1·10−5 4.2·10−5 4.2·10−5 4.3·10−5 4.3·10−5 4.3·10−5 4.3·10−5

3.8·10−4 3.8·10−4 1.8·10−4 2.3·10−6 8.9·10−3 8.8·10−3 7.8·10−3 7.4·10−3 7.3·10−3 7.3·10−3

Table 5: �Three-�eld� test case: mean µ = Ê[Qmax], standard deviation σ =

q
V̂ (Qmax), coe�cient of variation cov = σ/µ,

median P50, and 90th percentile P90 for the peak runo� rate Qmax (white rows) and the runo� coe�cient RC (grey rows).
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Figure 9: �Three-�eld� test case: sensitivity indices of the peak runo� rate Qmax; (a) Short Rainfall Event (SRE); (b) Long
Rainfall Event (LRE).

Ks,− in�uences this quantity, and indeed the indices S− are equal to 1. Concerning LRE, since the rainfall
duration is longer, more runo� is generated in the most in�ltrating �eld because of the decreasing of the
in�ltration capacity. In Figure 9(b), the most in�uent parameter is either Ks,+ (with S+ ≈ 72%) or Ks,o

(with So ≈ 70%) when the most in�ltrating �eld is located upslope. Moreover, Ks,− is not very in�uent,
and contrary to Figure 5, the three parameters Ks are not negligible in the sensitivity analysis. Moreover,
the total sensitivity indices are equal to the corresponding �rst-order indices, that is, ST,i ≈ Si. These
equalities mean that there is no signi�cant interaction between the input parameters. Concerning the runo�
coe�cient RC, the sensitivity analysis leads to the same conclusions. In practice, in case of soils with low
levels of saturation (for SRE), it is important to focus the measurements on the �eld closer to the outlet.
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For more saturated soils (e.g., for LRE), the measurements should focus on the most in�ltrating �eld.
To study the e�ect of the length L of the domain, we have also tested the case where L = 48 m with LRE.

It is interesting to notice that the length of the domain does not a�ect the results. The clouds of points and
the pdf's have the same shape, and the most in�uent sensitivity index is the same, i.e, Ks,o in cases where
the most in�ltrating �eld is located upslope or Ks,+ in other cases. The only signi�cant di�erence is that
the sensitivity index for Ks,+ vanishes when the most in�ltrating �eld is located upslope. This result can
be explained by the fact that longer domains lead to an augmentation of the distance between the upslope
�eld and the outlet.

We have also veri�ed that our conclusions do not depend on the chosen pdf for Ks. To this purpose, we re-
ran the same test cases using a log-normal distribution for Ks with mean value and variance selected in such
a way that Ks belongs to the interval prescribed for the uniform distribution with probability 0.9958. Figures
10(a) and 10(b) compare the �rst-order sensitivity indices obtained with the two distributions (uniform and
log-normal) and for the two rainfall events. Very close agreement is observed.

0

0.2

0.4

0.6

0.8

1

Fi
rs

t-o
rd

er
 s

en
si

tiv
ity

 in
di

ce
s

 

 

S- So

+ o -o + - + - o- + o

(a) SRE

0

0.2

0.4

0.6

0.8

1
Fi

rs
t-o

rd
er

 s
en

si
tiv

ity
 in

di
ce

s

 

 

S- So S+

- o +o - +- + o o + -+ o -+ - o

(b) LRE

Figure 10: �Three-�eld� test case: sensitivity indices of the peak runo� rate Qmax for the two distributions (uniform and
log-normal); (a) Short Rainfall Event (SRE); (b) Long Rainfall Event (LRE). For each spatial localization, results with the
uniform distribution are represented on the left and those with the log-normal distribution on the right.

5.2. Grass strip(s) test case

Figure 11 presents the couples (Qmax,RC) corresponding to the 100,000 model responses for the four
con�gurations (1 or 3 GS; SRE or LRE). In each con�guration, the clouds of points are well correlated and,
as previously, the values of Qmax and RC are larger for LRE than for SRE. Concerning Qmax, for both SRE
and LRE, the values are contained approximately in the same intervals whatever the spatial localization of
the GS. Concerning RC, its values are slightly higher for the spatial con�guration with 1 GS, and this e�ect
is more signi�cant for SRE. We conclude that the spatial localization of the GS has very little in�uence on
the variability of the runo�, and almost none on that of the �ow at the outlet.

Figure 12 presents the con�dence interval (for the 100,000 model responses) of the ratio Ic/Ks at �nal
time, as a function of spatial position. As expected, because of the duration of the rainfall events, the ratios
are closer to 1 for LRE. Besides, compared to Figure 7, the values taken by the ratio are very close to 1,
meaning that the soil is almost saturated. For each rainfall event, the values taken by Ic/Ks for the two
spatial con�gurations (1 GS and 3 GS) are very close. Furthermore, we observe that for SRE, the variability
of the ratio Ic/Ks is between 2 and 4 times higher for the GS than for the �eld. Conversely, for LRE,
the variability is approximately 3 times more important for the �eld than for the GS. An interesting result
concerning SRE is that the e�ect of having 3 GS instead of 1 GS downslope is to somehow homogenize the
level of variability of Ic/Ks along the �eld.
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Figure 11: �Grass strip(s)� test case with Short and Long Rainfall Events (resp. SRE and LRE): peak runo� rates Qmax and
runo� coe�cients RC for the two con�gurations (one large grass strip downslope (1 GS), or three narrow grass strips (3 GS)).

Statistical values (µ, σ, cov, P50, and P90), not presented here, con�rm that the spatial con�gurations
with 1 GS and 3 GS are similar regarding Qmax for LRE, and very close for SRE. Concerning LRE, in
agreement with the almost essentially �at shape of the pdf's (Figure 13), we obtain the same values for the
model outputs with the mean values of the parameters, the mean estimation, and the median. Concerning
SRE, highly marked peaks are observed with signi�cantly di�erent values (4.2 for 1 GS versus 3.1 for 3 GS).
These peaks explain the di�erence between the mean and the median. Moreover, the mean values of the
model outputs di�er from the model outputs with the mean parameters. This underlines the importance of
non-linear processes. The statistical values and the estimated pdf's for RC lead to the same conclusions.

Figures 14 and 15 present the three statistic estimators µ, P50, and P90 for the peak runo� rate
maxt Q(x, t) as a function of spatial position, and the two deterministic values of this quantity (taking
Ks = Kmin

s and Kmax
s ). The curves for P50 almost coincide with those for maxt Q(x, t) calculated with the

value Ks = Kmean
s . Contrary to LRE where equality is obtained, the median is inferior to the mean for SRE.

Both for the 1 GS and 3 GS con�gurations, the distribution is not uniform in space. Moreover, for both SRE
and LRE, RC is slightly higher with the 3 GS con�guration. Although the runo� volumes are comparable
for 1 GS and 3 GS, the spatial distribution of maximal discharges varies. Indeed, both in Figures 14 and
15, the discharges along the spatial domain are weaker for 3 GS, owing to the presence of the three GS
which slow down the �ow. Moreover, this e�ect is more signi�cant for the SRE because of the saturation
of the soil. Therefore, for processes like soil erosion, which are in�uenced by the maximal discharge, the
main result of Figure 14 is that the 3 GS con�guration reduces (especially for SRE) the occurrence of high
values for maxt Q. Moreover a relevant information obtained with the stochastic approach is that, for SRE,
(resp. LRE) the 90th percentile is 33% (resp. 11%) lower with the 3 GS con�guration than with the 1 GS
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Figure 12: �Grass strip(s)� test case: con�dence interval of the ratio Ic/Ks at �nal time as a function of spatial position for
the two con�gurations (one large grass strip downslope (1 GS), or three narrow grass strips (3 GS)); Short Rainfall Event (in
grey) and Long Rainfall Event (in black).

con�guration.
Concerning the sensitivity analysis, for the four con�gurations (1 GS or 3 GS; SRE or LRE), the �rst-

order sensitivity indices related to the �eld (in the range 92% to 96%) are much higher than those related
to the GS. This shows that only the Ks of the �eld is an in�uent parameter, owing to the very important
in�ltration capacity of the GS.

To study the e�ect of the minimal and maximal values considered in Table 4, we have also tested the
�Grass strip(s)� test case with less in�ltrating GS. The obtained results corroborate the previous observations.
There is no signi�cant di�erence in terms of runo� and discharge at the outlet, but the presence of three
GS slows down the �ow and diminishes the occurrence of extreme values for the �ow rates.

To verify that our conclusions do not depend on the chosen pdf for Ks, we re-ran the same test cases
using a log-normal distribution for Ks, with mean value and variance selected in such a way that Ks belongs
to the interval prescribed for the uniform distribution with probability 0.9958. The statistical estimations
of the peak runo� rate are similar to those reported in Figures 14 and 15 for the uniform distribution,
with relative changes of 10 to 20%. The median P50 is higher for the log-normal distribution, and the 90th
percentile P90 is smaller. These relative changes are expected since the log-normal distribution assigns more
weight to lower values for Ks, which yield larger values for the runo� rate. However, the main point of our
conclusions remains unchanged, that is, the presence of 3 GS diminishes the occurrence of extreme values
for the �ow rates.
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6. Conclusion

In this work, we have studied the impact of the variability in soil properties on overland �ows caused
by rainfall events. We have considered the soil saturated hydraulic conductivity Ks as the most uncertain
input parameter in the framework of the Green�Ampt in�ltration model. To model uncertainties, the �ow
domain has been split into �elds re�ecting the spatial organization of the landscape (e.g., agricultural �elds,
grass strips), and the saturated hydraulic conductivity has been described by statistically independent and
uniformly distributed random variables, with one random variable assigned to each �eld. Concerning output
quantities, we have focused on the discharges at the outlet (peak runo� rate and runo� coe�cient) as well
as on peak discharges locally in space. Two test cases, named �Three-�eld� and �Grass strip(s)�, have been
investigated.

The �Three-�eld� test case investigates the role of spatial organization in uncertainty propagation. The
conclusions depend on the level of soil saturation. For long rainfall events leading to highly saturated
soils, the variability of model outputs remains moderate. Moreover, the most in�uent input parameter is
the Ks taking the highest values, except when the most in�ltrating �eld is located upslope, in which case
the most in�uent input parameter is the Ks taking intermediate values. For short rainfall events with
moderately saturated soils, the most in�uent input parameter, regardless of its relative value, is the Ks

located downslope, that is, closest to the outlet.
The �Grass strip(s)� test case compares runo� uncertainties obtained with two possible spatial local-
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Figure 14: �Grass strip(s)� test case (3 GS left, 1 GS right): statistical estimations of the peak runo� rate maxt Q(x, t) as a

function of spatial position (mean µ = Ê[maxt Q(x, t)]), median P50, and 90th percentile P90), and some deterministic values
of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Short Rainfall Event.

izations of grass strips within a single �eld, namely three narrow, equally-spaced grass strips versus one
large grass strip located at the �eld outlet. The �rst conclusion is that the duration of the rainfall event
substantially impacts the shape of the probability density function (pdf) of model outputs. Speci�cally,
highly peaked pdf's are obtained for short rainfall events (and moderately saturated soils), while relatively
�at pdf's are obtained for long rainfall events (and highly saturated soils). The second conclusion is that the
localization of the grass strips does not impact the variability of model outputs. However, one important
di�erence concerns the spatial distribution of maximal discharges since the con�guration with three grass
strips leads to less probable extreme values, as re�ected by the lower values taking by the 90th percentile.
This observation is relevant in view of assessing erosion risks, since the detachment of soil particles is very
sensitive to the peak discharge.

Practical aplications of this work are twofold. The �rst application is to determine where e�orts should be
concentrated when collecting input parameters to reduce output uncertainties when modelling a sloped �eld
composed of several types of soils with di�erent in�ltration capacities. This work shows that the conclusion
depends on the soil saturation state. If the soil is slightly saturated, it is relevant to focus the measurements
near the outlet. At the opposite, if the soil is highly saturated, the measurements should concentrate on
the most in�ltrating parts of the �eld. The second application concerns land management. Deciding on
the spatial repartition of grass strips in a �eld with uncertain in�ltration capacities depends on the goal to
reach. When the aim is to reduce runo�, the repartition of the grass strips is of little importance because of
the moderate output variability. On the contrary, when the aim is to reduce erosion risks, equally�spaced
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Figure 15: �Grass strip(s)� test case (3 GS left, 1 GS right): statistical estimations of the peak runo� rate maxt Q(x, t) as a

function of spatial position (mean µ = Ê[maxt Q(x, t)]), median P50, and 90th percentile P90), and some deterministic values
of this quantity (taking Ks = Kmin

s or Kmax
s ) for the Long Rainfall Event.

grass strips are more e�ective to decrease the probable of extreme values for the peak runo� rate.
Finally, the present methodology can be applied to other problems, e.g., the e�ect of erosion input param-

eters (sediment size, detachability. . . ) on suitable output quantities (erosion rate, sediment concentration,
. . . ) in a sediment transport model [13], or the impact of contamination input parameters (initial pollutant
concentration, di�usivity coe�cient, . . . ) on contamination levels in a pollutant transport model [18].
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