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This work aims at the development of a mathematical and computational approach that enables quantifica-
tion of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of
chemical reaction networks. The approach is based on reformulating the system dynamics as being generated
by independent standardized Poisson processes. This reformulation affords a straightforward identification of
individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative
characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding
decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution vari-
ance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the
variance-based sensitivities associated with individual reaction channels, as well as the importance of channel
interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems,
including the birth-death, Schlögl, and Michaelis-Menten models.
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I. INTRODUCTION

It has long been recognized that stochastic simula-
tors1–7 offer an attractive computational means for sim-
ulating the chemical master equation. These algorithms
are based on describing the evolution of the number den-
sity of individual chemical species on the basis of propen-
sity functions, which provide a probabilistic characteriza-
tion of the rate of progress of elementary reactions. In its
elementary formulation, the reaction is advanced by sam-
pling the time for next reaction to occur, whereas the sys-
tem remains frozen in its current state in the mean time.
After a reaction has occurred, new samples are drawn,
and the procedure is iterated in order to determine suc-
cessive elements of a Markov process associated with the
evolution of the state vector of species number densities.
By computing multiple realizations of such chains, the
algorithm affords in a straightforward fashion the pos-
sibility to determine various statistical moments of the
solution.

One of the difficulties associated with stochastic sim-
ulators is that it is not generally straightforward to as-
sess the impact of individual reaction channels on the
evolution of the solution, nor to quantify the effect of
uncertainties on the variability of the solution. This is
especially the case for stochastic systems that do not in-
volve parametric uncertainty, which are the focus of the
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present study. The central question we aim to address
is whether it is possible, without perturbing the reac-
tion rates (propensity functions), to exploit the stochas-
ticity inherent in stochastic simulations for the purpose
of quantifying the impact of individual channels on the
evolution of particular species of interest, and also po-
tentially characterizing the role of channel interactions.
As outlined in section II, our approach to this question
is based on reformulating classical Stochastic Simulator
Algorithms (SSAs, see Refs. 1 and 2) using independent
standardized Poisson processes similarly to the Next Re-
action Method proposed in Ref. 8. This reformulation
affords a straightforward identification of independent
random realizations for individual channel dynamics, and
consequently enables us to exploit sampling strategies in
order to quantify the impact of the stochasticity asso-
ciated with elementary channels, or groups of channels.
As discussed in section III, the Sobol-Hoeffding decom-
position is applied for this purpose. In particular, this
enables us to adopt well-established Monte-Carlo sam-
pling strategies to obtain estimates of the contributions
of individual channels, and of channel interactions, to the
variance of specific quantities of interest. Implementation
of the resulting methodology is illustrated in section V
through applications to well-known systems, including
the birth-death, Schlögl, and Michaelis-Menten models.
Major conclusions are summarized in section VI.

II. STOCHASTIC SYSTEMS AND SIMULATORS

The present work focuses on the analysis of the respec-
tive importance of inherent sources of variance in stochas-
tic simulations of chemical reaction networks. Stochas-
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tic effects arise predominantly when the reacting sys-
tem involves a small number of reactant molecules, due
to discrete evolutions. Specifically, we consider a well-
stirred chemical system involving Ms molecular species
{S1, . . . , SMs

} and Kr reactions channels {R1, . . . , RKr
}.

We denote XXX(t) = (X1(t) . . . XMs(t))T ∈ NMs
0 the state

of the system at time t, where Xi(t) is the instantaneous
number of molecules of species Si. The dynamics of the
system are prescribed by the definition of the propensity
functions aj and state-change vectors νννj ∈ ZMs associ-
ated to the reaction channel Rj . The propensity func-
tions,

aj : xxx ∈ NMs
0 7→ aj(xxx) ∈ R+, j = 1, . . . ,Kr,

are defined such that, for infinitesimal time dt, aj(xxx)dt
is the probability that one j-th reaction occurs in the
time interval [t, t + dt) given that XXX(t) = xxx, while
νννj = (ν1,j , . . . , νMs,j) describes the change in the molec-
ular population due to a unique reaction Rj .

The system then obeys the chemical master equation9

(CME),

∂P (xxx, t|xxx0, t0)

∂t
=

Kr∑
j=1

[aj(xxx− νννj)P (xxx− νννj , t|xxx0, t0)

−aj(xxx)P (xxx, t|xxx0, t0)] , (1)

where P (xxx, t|xxx0, t0) is the probability thatXXX(t) = xxx given
that XXX(t0) = xxx0.

Solving (1) is impractical even for systems with small
Ms and Kr. The Gillespie stochastic simulation algo-
rithm (SSA) exactly emulates the chemical master equa-
tion by generating samples of XXX(t) with probability law
P (xxx, t|xxx0, t0). In Section II A we briefly recall the origi-
nal SSA. In Section II B we introduce a slightly modified
version of the SSA, which is suitable for the analysis of
the variance.

A. Stochastic Simulation Algorithm

Gillespie’s SSA1,2 consists in the construction of a
Markov-chain XXX(t) having for distribution P (xxx, t|xxx0, t0).
The first idea of the SSA is that, given XXX(t) = xxx, the
probability of the next reaction (irrespective of the chan-
nel) to occur in the infinitesimal time interval [t, t + dt)
is

a0(xxx)dt = dt

Kr∑
j=1

aj(xxx).

In other words, the time elapsed to the next reaction, τ ,
follows an exponential distribution with mean 1/a0(xxx).
Second, the relative probability of reaction channel Rj to
fire first is pj(xxx) = aj(xxx)/a0(xxx). Gillespie’s Algorithm 1
proceeds along these two stages to advance the state of
the system: first, drawing at random a time increment to

the next reaction event, and second, selecting at random
the firing reaction channel to update the state. In more
details, given the current state XXX of the system, the SSA
first evaluates the Kr propensity functions aj and their
sum a0. Drawing r1 uniformly in (0, 1) the algorithm
sets τ = − log(r1)/a0, and selects the index of the firing
channel using the largest l such that

∑
j<l aj < a0r2,

where r2 is another random number, independent of r1,
drawn uniformly from (0, 1). Time and system state are
then advanced, t ← t + τ and XXX ← XXX + νννl, and the
procedure is repeated until the final time is reached.

It is thus seen that the SSA advances in time using
a consolidated next reaction time distribution and rela-
tive reactions probabilities, so the method inherently de-
pends on the whole state of the system. In other words,
the algorithm fully couples the reaction dynamics. It re-
quires drawing 2 random numbers from the unit interval
for every elementary event (occurrence of a reaction). In
practice, a pseudo-random number generator RG is used
to simulate the sequence of random numbers r1 and r2.
Classically, the pseudo-random number generator RG pro-
vides the exact same sequence of pseudo-random couples
(r1, r2) when properly seeded (initialized). As further
discussed below, this property of pseudo-random gener-
ators is attractive for our purpose, because it enables us
to generate the same sequence of pseudo-random events
multiple times.

However, the SSA has several drawbacks that make
it unsuitable for the separation of the variances caused
by the different channels. The central drawback is that
SSA combines all channels to determine the next reaction
time, while the analysis of the variability inherent to spe-
cific channels, as proposed in the next section, requires
us to distinguish and control the dynamics of individual
channels. An alternative way to understand the issue is
that for a fixed sequence of pseudo-random numbers, the
resulting trajectory of XXX(t) is not stable to permutation
of the reaction indexation. This drawback motivates the
use of the Next Reaction Algorithm (NRA) outlined be-
low.

B. Next Reaction Algorithm

Following the Next Reaction Method proposed in
Ref. 8, the dynamics of the stochastic state vector XXX(t)
can be expressed through the following random time-
change10

XXX(t) = XXX(t0) +

Kr∑
j=1

νννjNj(tj), (2)

where Nj(τ) are independent Poisson processes with unit
rates, and the scaled time tj are given by

tj =

∫ t

t0

aj(XXX(τ))dτ, j = 1, . . . ,Kr. (3)
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ALGORITHM 1. Stochastic Simulation Algorithm.
Procedure SSA (XXX0, T, {νννj}, {aj}, RG)

Require: Initial condition XXX0, final time T , state-change
vectors {νννj}, propensity functions {aj}, and seeded
pseudo-random number generator RG

1: t← 0, XXX ←XXX0

2: loop
3: Evaluate aj(XXX), j = 1, . . . ,Kr

4: Set a0 =

Kr∑
j=1

aj(XXX)

5: Get r1 and r2 from RG

6: Set τ = − 1

a0
ln(r1) . time to next reaction

7: if t+ τ > T then
8: Break . final time reached
9: else

10: Set largest l s.t.

j<l∑
j=1

aj < (a0 r2) . pick the reaction

to fire
11: XXX ←XXX + νννl . update the state vector
12: t← t+ τ . advance time
13: end if
14: end loop
15: Return XXX . State XXX(T )

Thus, the system state can be expressed as a linear com-
bination of Kr standard Poisson processes, with individ-
ual time scaling given by the time-integrals of the corre-
sponding propensity functions from t0 to t. The expres-
sion (2), together with (3), result from the fact that Pois-
son processes have independent increments distributed
according to

P (Nj(τ + ∆τ)−Nj(τ) = k ≥ 0) =
e−∆τ∆τk

k!
.

Consequently, the probability of Rj to fire once in the
infinitesimal time interval [t, t+ dt) is

P (Nj(tj + aj(XXX(t))dt)−Nj(tj) = 1) =

e−aj(XXX(t))dtaj(XXX(t))dt = aj(XXX(t))dt+O(dt2), (4)

which is precisely the definition of the propensity func-
tion aj .

The representation of XXX(t) through (2) and (3) sug-
gests an alternative version of the original SSA, here-
after referred as the Next Reaction Algorithm (NRA),
which is a slightly modified version of the Next Reac-
tion Method proposed in Ref. 8. Algorithm 2 introduces
two additional vectors, (τ1, . . . , τKr

) and (τ+
1 , . . . , τ

+
Kr

) re-
spectively, to store the unscaled time of the Poisson pro-
cesses and their next reaction times. These two vectors
are used to keep track of the trajectories of the Kr inde-
pendent Poisson processes. Given the current state XXX of
the system, normalized times (τ1, . . . , τKr

) and next reac-
tion times (τ+

1 , . . . , τ
+
Kr

), one can deduce which channel
will fire first from the scaled times advancement rules (3).
Specifically, if no other channel fires before it does, the j-
th channel will react after a time lapse dtj = (τ+

j −τj)/aj .

Letting l = arg minj dtj be the first channel to fire, the
procedure selects at once both the firing channel and the
time lapse (dtl) to the next reaction, unlike the SSA. Hav-
ing found l, time is advanced (t← t+ dtl), system state
XXX is updated (XXX ← XXX + νννl), the unscaled times vector
is updated (τj ← τj + ajdtl) and the unscaled next re-
action time τ+

l is drawn at random (τ+
l ← τ+

l − log(rl)
where rl is drawn at random from (0, 1)). The proce-
dure is then repeated until t reaches the final time. The
NRA 2 involves drawing a unique random variable per
time-step (whereas SSA draws two) but requires the ini-
tialization, computation and storage of the scaled-times
and next jump-times associated to the Kr Poisson pro-
cesses associated to the reaction channels. However, both
algorithms result in states XXX that are equal in distribu-
tion, that is

XSSA(t)
d
= XNRA(t).

Our interest in considering the NRA lies in the pos-
sibility of maintaining constant realizations of selected
standardized Poisson processes Nj while varying others.
It amounts to keeping invariant the sequences {τ+

j } of
unscaled jump-times. This possibility is enabled by the
introduction of the Kr individual pseudo-random num-
ber generators, one for each reaction channel, when in
fact a unique random number generator would have been
sufficient in NRA 2. The use of Kr independent pseudo-
random number generators distinguishes NRA 2 from the
Next Reaction Method in 8. As for SSA, the storage of
these Kr independent sequences is not required as they
are generated on the fly using the pseudo-random number
generators RGj . Doing so, the realizations of the Poisson
processes are fully determined by imposing the seeds of
the Kr pseudo-random number generators. As a result,
we now have a clear understanding of the inherent source
of stochasticity which is kept invariant when using the
same set of seeds, namely the underlying Poisson pro-
cesses, and a fine control over this source of stochasticity.
This control over the inherent stochasticity enables a de-
composition of the variance of the state vector, and the
analysis of the variability induced by distinct channels,
as discussed in the following section.

III. VARIANCE DECOMPOSITION

In parametric sensitivity analysis, one is interested in
characterization of the variability of the deterministic
output (or quantity of interest) of a model when some pa-
rameters are changed. Local sensitivity analyses charac-
terize the dependence of the deterministic output about
a particular value of the parameters, usually by com-
puting the first derivatives of the output with respect
to the parameters. Contrary to local methods, global
sensitivity analyses aim to elucidate the global contri-
bution of a particular input on the total output vari-
ability, assuming a certain distribution of the parame-
ters. In the ANOVA (analysis of the variance) or Sobol’s
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ALGORITHM 2. Next Reaction Algorithm.
Procedure NRA(X0, T, {νννj}, {aj}, RG1, . . . , RGKr )

Require: Initial condition XXX0, final time T , state-change
vectors {νννj}, propensity functions {aj}, and seeded
pseudo-random number generators RGj=1,...Kr

1: for j = 1, . . . ,Kr do
2: Draw rj from RGj
3: τj ← 0, τ+j ← − log rj . set next reaction times
4: end for
5: t← 0,XXX ←XXX0

6: loop
7: for j = 1, . . . ,Kr do

8: Evaluate aj(XXX) and dtj =
τ+j −τj
aj

9: end for
10: Set l = arg minj dtj . pick next reaction
11: if t+ dtl > T then
12: break . Final time reached
13: else
14: t← t+ dtl . update time
15: XXX ←XXX + νννl . update the state vector
16: for j = 1, . . . ,Kr do
17: τj ← τj + aj dtl . update unscaled times
18: end for
19: Get rl from RGl
20: τ+l ← τ+l − log rl . next reaction time
21: end if
22: end loop
23: Return XXX . State XXX(T )

variance decomposition, the sensitivity indices are associ-
ated to the input parameters via a decompositions of the
output variance.11,12 When the input parameters vary
independently, the Sobol’s decomposition is orthogonal
and the definition of the sensitivity indices is immedi-
ate from the so-called partial variances (see below). The
case of dependent inputs requires appropriate definition
and interpretation of the sensitivity indices (see for in-
stance Refs. 13 and 14). The Sobol’s decomposition is
also related to High Dimensional Model Representation
(HDMR), which corresponds to a truncated SH decompo-
sition; such decompositions have in particular been used
for the construction of surrogate models (see for instance
Refs. 13, 15–17). In the context of reaction networks pre-
senting an inherent stochastic dynamics, analyses have
been restricted to averaged functionals of the stochas-
tic model solution: the analyses characterizes the sensi-
tivity of such averages with respect to parameters, for
instance coefficients in the propensity functions defining
the stochastic network.18–22

Parametric sensitivity analyses have to be contrasted
with the use of the Sobol decomposition we are proposing
in the present work. Here, we assume no variability in
any model parameters. Instead, we seek to quantify the
respective contributions of different reaction channels to
the variance of a given functional of the stochastic model
solution.

In this section, we summarize relevant aspects of the
Sobol-Hoeffding decomposition, provide a brief outline
of how these concepts can be applied to define useful

sensitivity indices, and detail a Monte-Carlo sampling
procedure for their estimation.

A. Sobol-Hoeffding decomposition

Consider a vector NNN = (N1, · · · , ND) of D indepen-
dent random quantities defined on an abstract probabil-
ity space P = (Ω,Σ, µ). Let F : NNN 7→ F (NNN) ∈ R be a
second-order random functional in NNN , that is

F ∈ L2(Ω, µ)⇔ E
{
F (NNN)2

}
<∞. (5)

LetD be the power set of {1, · · · ,D}. For uuu ∈ D denote
|uuu| = Card(uuu) and uuu∼ = D \uuu, such that uuu∪uuu∼ = D and
uuu∩uuu∼ = ∅. Given uuu ∈ D we denote NNNuuu the sub-vector of
NNN with components (Nu1

, · · · , Nu|uuu|), soNNN = (NNNuuu,NNNuuu∼).

For the assumptions considered, the function F (NNN) has
a unique orthogonal decomposition of the form23

F (NNN) =
∑
uuu∈D

Fuuu(NNNuuu), (6)

Equation (6) is called the Sobol-Hoeffding (SH) decom-
position of F . For instance, in the case D = 3 the de-
composition is expressed as:

F (N1, N2, N3) = F∅ + F{1}(N1) + F{2}(N2) + F{3}(N3)

+ F{1,2}(N1, N2) + F{1,3}(N1, N3)

+ F{2,3}(N2, N3) + F{1,2,3}(N1, N2, N3).

The orthogonality condition for the functions implies
that ∀uuu 6= sss

E {FuuuFsss} =

∫
Ω

Fuuu(NNNuuu(ω))Fsss(NNNsss(ω))dµ(ω) = 0,

and the SH functions Fuuu are recursively defined according
to:11

Fuuu(NNNuuu) = E {F | NNNuuu} −
∑
sss∈D
sss(uuu

Fsss(NNNsss), (7)

where E {F | nnnuuu} is the conditional expectation of F (NNN)
given NNNuuu = nnnuuu, namely

E {F | nnnuuu} =

∫
Ω

F (nnnuuu,NNNuuu∼(ω))dµ(ω).

For instance, in the previous example with D = 3, we
have

F{2,3}(N2, N3) = E {F | N2, N3} − F∅ − F{2}(N2)

−F{3}(N3).

Clearly, F∅ = E {F}, and the orthogonality of the de-
composition implies E {Fuuu} = 0 for uuu 6= ∅. The decompo-
sition (6) being orthogonal, the variance V {F} is decom-
posed into the sum of partial variances corresponding to
the variances of the SH functions:

V {F} =
∑

uuu∈D\∅

V {Fuuu} . (8)
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Recalling that E
{
Fuuu6=∅

}
= 0, and using the defini-

tion (7), the partial variances V {Fuuu} can be expressed
as:

V {Fuuu} = E


E {F | NNNuuu} −

∑
sss∈D
sss(uuu

Fsss(NNNsss)


2

= E
{

(E {F | NNNuuu} − F∅)
2
}

−2
∑

sss∈D\∅
sss(uuu

E {E {F | NNNuuu}Fsss(NNNsss)}+
∑

sss∈D\∅
sss(uuu

V {Fsss}

= V {E {F | NNNuuu}} −
∑

sss∈D\∅
sss(uuu

V {Fsss} , (9)

where we have used E {E {F | NNNuuu}} = E {F} = F∅ and
the orthogonality of the SH functions.

B. Sensitivity indices

The partial variance V {Fuuu} measures the contribution
to V {F} of the interactions between the variables NNNuuu.
Since there are 2D such partial variances, the sensitiv-
ity analysis is usually reduced to a simpler characteri-
zation, based on first and total-order sensitivity indices
associated to individual variables Ni = NNN{i} or group of
variables NNNuuu.

The first-order sensitivity index Suuu, defined as12

Suuu
.
=

1

V {F}
∑

sss∈D\∅
sss⊆uuu

V {Fsss} =
V {E {F | NNNuuu}}

V {F}
, (10)

represents the fraction of the variance V {F} due to the
variable NNNuuu only, i.e. without any interaction with vari-
ables in NNNuuu∼ . For instance,

S{1,2} =
V
{
F{1}

}
+ V

{
F{2}

}
+ V

{
F{1,2}

}
V {F}

.

The total-order sensitivity index Tuuu, defined as12

Tuuu
.
=

1

V {F}
∑

sss∈D\∅
sss∩uuu6=∅

V {Fsss}

=
1

V {F}

 ∑
sss∈D\∅

V {Fννν} −
∑

sss∈D\∅
sss⊆uuu∼

V {Fsss}


=

V {F} − V {E {F | NNNuuu∼}}
V {F}

= 1− Suuu∼ , (11)

accounts in addition for the interactions between vari-
ables NNNuuu and NNNuuu∼ . For our example with D = 3, we

have

V {F}T{1,2} = V
{
F{1}

}
+ V

{
F{2}

}
+ V

{
F{1,2}

}
+V

{
F{1,3}

}
+ V

{
F{2,3}

}
+ V

{
F{1,2,3}

}
= V {F} − V

{
F{3}

}
= V {F}(1− S{3}).

In fact, it is immediate to show from the definition of
the total-order sensitivity index that Suuu ≤ Tuuu ≤ 1. In
addition, the following inequalities hold for the case of
sensitivity indices associated to a single variable:

D∑
i=1

S{i} ≤ 1,

D∑
i=1

T{i} ≥ 1,

while

D∑
i=1

S{i} = 1⇒ T{i} = S{i} for i = 1, . . . ,D.

In the latter case, F is said to be additive since there is
no interaction between the Ni’s.

C. Monte Carlo estimation of the sensitivity indices

From (10) and (11) it is seen that the computation
of the first and total order sensitivity indices essentially
amounts to the determination of the variance of condi-
tional expectations. For this purpose, we shall rely on
Monte Carlo method proposed in Ref. 24.

Consider two independent random sample sets N I and
N II of M realizations of NNN . The conditional variance
V {E {F | NNNuuu}} can be estimated using the following av-
erage24

V {E {F | NNNuuu}}+ E {F}2 =

lim
M→∞

1

M

M∑
i=1

F (NNN I,(i)
uuu ,NNN I,(i)

uuu∼ )F (NNN I,(i)
uuu ,NNN II,(i)

uuu∼ ). (12)

Here we have denotedNNN I,(i) andNNN II,(i) the i-th elements
of N I and N II respectively. Introducing the classical
(N I -)sample estimator for the mean

Ê {F} ≈ 1

M

M∑
i=1

F (NNN I,(i)),

and variance of F ,

V̂ {F} =
1

M − 1

M∑
i=1

(
F (NNN I,(i))− Ê {F}

)2

,

the Monte Carlo estimator of the first-order sensitivity
index is

Ŝuuu =
1
M

∑M
i=1 F (NNN I,(i))F (NNN I,(i)

uuu ,NNN II,(i)
uuu∼ )− Ê {F}

2

V̂ {F}
.

(13)
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A similar expression can be derived for the estimation of
the total-order sensitivity index Tuuu in (11),

T̂uuu = 1−
1
M

∑M
i=1 F (NNN I,(i))F (NNN II,(i)

uuu ,NNN I,(i)
uuu∼ )− Ê {F}

2

V̂ {F}
.

(14)

It is seen that the MC evaluation of the sensitivity indices
requires M evaluations of F (for the elements of N I),
and M new function evaluations for each Suuu or Tuuu. In
particular, the MC estimation of the first and total-order
sensitivity indices S{i} and T{i} for the D input variables
requires a total of (2D + 1)M model evaluations.

IV. APPLICATION TO STOCHASTIC SIMULATORS

Our objective is now to propose a decomposition of
the variance for a functional g(XXX(t)), where XXX(t) is the
stochastic output of a stochastic simulator. In the ex-
amples of the next section, the functional g is simply a
component ofXXX(t) at some time t = T , but the proposed
methodology can be readily extended to more complex
functionals including path integrals and exit times, pro-
vided that g(XXX(t)) is a second-order random variable.

To decompose V {g(XXX(t))} into contributions arising
from the different Kr reaction channels and their inter-
action, and accordingly define the first and total-order
sensitivity indices, associated with the variability of an
individual channel (or group of reaction channels), an
appropriate definition of the conditional expectations is
required. Specifically, we need to provide a clear meaning
to the expectation of g(XXX(t)) conditioned on a realization
of a particular (or group of) reaction channel(s).

A. Conditional expectations

The central idea proposed in the present work is to
identify a realization of the reaction channels with the
realization of the underlying vector of independent stan-
dard Poisson processes

NNN(ω)
.
= (N1(ω), . . . , NKr

(ω)).

To this end, let us denote XXX(t,NNN(ω)) the solution of the
Poisson process formulation of the stochastic dynamics
given by (2), that is

XXX(t,NNN(ω)) = XXX(t0) +

Kr∑
j=1

νννjNj(tj , ω),

where

tj =

∫ t

t0

aj(XXX(τ,NNN(ω)))dτ, j = 1, . . . ,K.

Then, defining F (NNN(ω))
.
= g(XXX(t,NNN(ω))), with

XXX(t,NNN(ω)) given by (2), and assuming F has finite sec-
ond order moment, the variance decomposition with re-
spect to the Poisson processes in NNN can proceed as dis-
cussed previously in Section III, because the Kr channels
are associated with independent standard Poisson pro-
cesses Nk(ω). To this end, let K be the power set of
{1, . . . ,Kr}; for uuu ∈ K, the conditional expectation of
g(XXX(t,NNN)) given NNNuuu = nnnuuu becomes

E {g(XXX(t,NNN)) | NNNuuu = nnnuuu} =

E

g
XXX(t0) +

∑
j∈uuu

νννjnj(ti) +
∑
j∈uuu∼

νννjNj(tj , ω)

 .

(15)

Observe that given nnnu, the physical times and sequence
of firing reaction channels remains in general stochastic,
that is dependent on NNNuuu∼ , even for the channels Rj with
index j ∈ uuu, owing to the definition of the scaled time tj :
the conditioning fixes the sequence of firing channels only
in the unscaled time. However, V {E {g(XXX(t,NNN)) | NNNuuu}}
does measure the variability in g(XXX(t)) induced by the
underlying stochastic processes Nj(ω) with j ∈ uuu, and so
characterizes the variance caused by the inherent stochas-
ticity in channels Rj , j ∈ uuu. As a result, the sensitiv-
ity indices defined above can be used to quantify and
characterize the impact of individual or group of reac-
tion channels on the variability of g(XXX(t)). Even though
the indices are not characterizing a sensitivity with re-
spect to some changes in the definition of the propensity
functions associated to the channels (case of parametric
studies), but rather characterize a contribution to the in-
herent stochasticity of the system, we shall continue to
refer to them as sensitivity indices.

B. Implementation details

We complete the section by discussing the practical
implementation of the Monte Carlo procedure for the es-
timation of the sensitivity indices of g(XXX(t,NNN)), and drop
the time dependence of XXX for simplicity.

In addition to the classical mean and variance estima-
tions for g(XXX(NNN)), the Monte Carlo estimation of sensi-
tivity indices involves correlations of the form (see (13)
and (14))

Cuuu =
1

M

M∑
i=1

g(XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu∼ ))g(XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu∼ )),

(16)

whereNNN I,(i) andNNN II,(i) are elements of two independent
sample sets of NNN(ω).

Direct sampling of the vector of Kr independent stan-
dard Poisson processes is generally not practical, as it
would require the storage of a prohibitively large num-
ber of firing times for each channel. Instead, it is more
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convenient to construct the Poisson processes “on the
fly”, as shown in Algorithm 2, where the next unscaled
firing time τ+

j for channel j is determined only when it

actually fires (that is when the unscaled time τj reaches
τ+
j ).

However, for the correct MC estimation of the corre-
lation in (16), it is crucial to ensure that the sequence
of (unscaled) firing times τ+

j remains the same for the

channels j ∈ uuu when computing XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu∼ ) and

XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu∼ ). In other words, the same sequence of
time increments between the successive firing events of
channel j ∈ uuu must be repeated; because the time in-
crement between two successive firing events for channel
j is simulated by means of the pseudo-random number
generators RGj , as shown in line 20 of Algorithm 2, this
implies that the generator RGj must reproduce the same
sequence of pseudo-random numbers rj when computing

g(XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu∼ )) and g(XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu∼ )), whenever
j ∈ uuu. On the contrary, for a channel index j /∈ uuu, two
independent sequences of random numbers rj have to be
used. The control of sequence of pseudo-random num-
bers delivered by RGj can be classically enforced through
the “seed” of the generator. In this context, the Poisson
process Nj(τ) is totally determined by RGj and its seed,
sj . For such generators, consistent solutions

XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu∼ ) and XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu∼ )

are obtained by calling Algorithm 2 twice, with the same
initialization (seeding) RGj(sj) if j ∈ uuu, and two random
and independent realizations RGj(s

I
j ) and RGj(s

II
j ) for j ∈

uuu∼.
The whole procedure for the Monte Carlo estimation

of the whole set of Kr first and total-order sensitivity
indices S{i} and T{i} is schematically illustrated in Algo-
rithm 3, in the case of g(XXX) = g(XXX(t = T )). Note that
Algorithm 3 is not optimized; in particular the compu-
tationally intensive part of the algorithm, namely the
(Kr + 1) calls to NRA can be carried out in parallel.
Nonetheless, the present formulation provides a general
framework that can be easily adapted to the estimation
of generic sensitivity indices associated to uuu ∈ K, and to
other functionals g(XXX).

V. EXAMPLES

In this section, we apply and illustrate the proposed
sensitivity analysis and variance decomposition methods
to well-known stochastic models.

A. Birth-Death model

The birth-death (BD) process25 involves a single
species S (Ms = 1) and Kr = 2 reaction channels:

∅ b−→S, S
d−→∅,

ALGORITHM 3. Computation of the first and total-order
sensitivity indices S{j} and T{j} of g(XXX(T )).
Procedure Compute SI(M,XXX0, T, {νννj}, {aj}, g)

Require: Sample set dimension M , initial condition XXX0, fi-
nal time T , state-change vectors {νννj}, propensity func-
tions {aj} and functional g

1: µ← 0, σ2 ← 0 . Init. Mean and Variance
2: for j = 1 to Kr do
3: S(j)← 0, T(j)← 0 . Init. first and total-order SIs
4: end for
5: for m = 1 to m = M do
6: Draw two independent set of seeds sssI and sssII

7: XXX ← NRA(XXX0, T, {νννj}, {aj}, RG1(sI1), . . . , RGKr (sIKr
))

8: µ← µ+ g(XXX), σ2 ← σ2 + g(XXX)2 . Acc. mean and
variance

9: for j = 1 to Kr do
10: XXXS ← NRA(XXX0, T, {νννj}, {aj}, RG1(sII1 ), . . . ,
11: . . . , RGj(s

I
j ), . . . , RGKr (sIIKr

))

12: XXXT ← NRA(XXX0, T, {νννj}, {aj}, RG1(sI1), . . . ,
13: . . . , RGj(s

II
j ), . . . , RGKr (sIKr

))
14: S(j)← S(j) + g(XXX)× g(XXXS) . Acc. 1-st order
15: T(j)← T(j) + g(XXX)× g(XXXT) . Acc. total order
16: end for . Next channel
17: end for . Next sample
18: µ← µ/M , σ2 ← σ2/(M − 1)− µ2

19: for j = 1 to Kr do

20: S(j)← S(j)

(M−1)σ2 − µ2

σ2 . Estim. 1-st order

21: T(j)← 1− T(j)

(M−1)σ2 + µ2

σ2 . Estim. total order

22: end for
23: Return S(j) and T(j), j = 1, . . . ,Kr . First and

total-order sensitivity indices S{j} and T{j} of g(XXX(T ))

with propensity functions

a1(x) = b, a2(x) = d× x.

We set b = 200, d = 1, and use M = 1, 000, 000 Monte
Carlo samples to compute the estimates presented in this
section.

Figure 1 reports typical trajectories of the system for
the initial condition X(t = 0) = 0. The plot shows the
transient growth of X toward its asymptotic distribution,
which is the Poisson distribution with mean b/d = 200.
As depicted in Figure 2, the histogram of X(t = 8) is
very close to the asymptotic distribution.

For this simple model with only two reaction channels,
Rb and Rd, the analysis of the variance for g(X(t)) =
X(t) yields only three terms corresponding to the two
first-order sensitivity indices S{b} and S{d}, and the

mixed contribution S′{b,d}
.
= V

{
X{b,d}

}
/V {X}; we have

T{b} = S{b} + S′{b,d}, T{d} = S{d} + S′{b,d},

and S{b} + S{d} + S′{b,d} = 1.

Figure 3 shows the evolution of the first-order and to-
tal sensitivity indices of X for t ∈ [0, 8]. To appreci-
ate the transient dynamic, the sensitivity indices have
been scaled by the variance V {X} whose evolution is
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FIG. 1. Birth-Death model: Selected trajectories of X(t)
generated using Algorithm 2.
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FIG. 2. Birth-Death model: Histogram of X(t = 8). Results
are based on 1 million realizations of the Poisson Process,
Algorithm 2.

also provided. For the each reaction channel, the scaled
first-order and total sensitivity indices are reported as a
colored strip (red for Rb and blue for Rd) spanning ver-
tically the interval [V {X} S,V {X} T], so the extent of
the strips is equal to V

{
X{b,d}

}
. The results show that

at early times during the transient (t < 1) the variabil-
ity in X is predominantly caused by the birth channel
stochasticity, whereas the death channel induces a vari-
ability that grows in time at a much lower rate. This
can be explained by the fact that Rb is a zero-order re-
action with constant rate, whereas Rd is a first-order re-
action and thus requires a sufficiently large population
X to fire at a significant rate. Further, during this tran-
sient stage, the dynamics are essentially additive since
S{b} + S{d} ≈ 1. For 1 ≤ t ≤ 4, the variability induced
by Rd only, measured by S{d}, continues to grow with
the population size (recall that E {X} = V {X} for this
model) and becomes eventually close to, but lower than
S{b}. In the mean time, the mixed effects also increase,
as reflected by the growing extent of the strips. Finally,
for t > 4, interval for which the variance has essentially
achieved its asymptotic value (V {X} ∼ 200), the first
order sensitivity index S{b} becomes constant while the

mixed effect S{d} starts to decrease with a very low rate.
The slow decay of S{d} underlines the slow emergence of
an increasingly important mixed contribution of the two
channels on the variability of X.
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FIG. 3. Birth-death model. First-order and total sensitivity
indices of the birth-death model and t ∈ [0, 8]. For clarity,
the sensitivity indices have been scaled by V {X(t)}.

To illustrate the channels interaction, we provide in
Figure 4 the time evolution up to t = 500 of the first-
order sensitivity indices S{b} and S{d}, together with the
interaction term S′{b,d} = 1−S{b}−S{d}. The figure shows

that while the variability induced by Rb remains constant
for large t and amounts to 50% of the overall variance,
the sole impact of channel Rd monotonically decays to
the benefit of the mixed term. Again, this behavior is
explained by the different natures of the two channels.
First, because channel Rb is a zero-order reaction, the
stochasticity that it induces is independent of the state X
and therefore becomes asymptotically constant, account-
ing for half the variance. Second, equations (2) and (3)
indicate that the contribution of channel Rd (a first-order
reaction) to the dynamics of X, involves not only the in-
trinsic stochasticity of the standardized Poisson process
Nd, but also the variability of the scaled-time td which
involves the path-integral of X(t). As a result, the vari-
ance due to Nd(td) involves also the variability brought
by channel Rb, through its effect on X(t), and our com-
putation quantifies how the sole effect of the variability
of Nd monotonically decays while the interaction of the
two channels grows.

B. Schlögl model

The Schlögl model26 has Kr = 4 reaction channels,
expressed according to:

B1 + 2S
c1


c2

3S, B2

c3


c4
S.

Species B1 and B2 are assumed in large excess with
constant population over time: XB1

= XB2
/2 = 105.

The stochastic state then reduces to the single evolving
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FIG. 4. Birth-death model. Long-time evolution of the first-
order sensitivity indices, and of the mixed interaction term.
Note the log-scale in time.

species S with Ms = 1. The propensity functions are
given by

a1(x) =
c1
2
XB1x(x− 1), a2(x) =

c2
6
x(x− 1)(x− 2),

and

a3(x) = c3XB2 , a4(x) = c4x.

We set c1 = 3×10−7, c2 = 10−4, c3 = 10−3, and c4 = 3.5,
so that the dynamics involve a zero-order reaction (chan-
nel R3), a first-order reaction (channel R4), a second-
order reaction (channel R1) and a third-order reaction
(channel R2). In addition, we use the deterministic ini-
tial condition X(t = 0) = 250.

For the present settings, the system exhibits a bifur-
cation with two attracting branches. This is illustrated
in Figures 5 and 6, which depict selected trajectories of
X(t) and the empirical histogram of X(t = 8) respec-
tively. The bi-modal character of the solution at t = 8
is clearly evidenced, with a first peak at x ∼ 100 that is
well separated from a second peak occurring at x ∼ 600.
Also note the different spreads of the distributions, as
the second peak is significantly broader than the first.

We first examine sensitivity indices of the Kr reaction
channels on g(X(t)) = X(t). For each channel, Figure 7
shows the ranges [S{j}(t), T{j}(t)] scaled using the state
variance V {X(t)} as scaling factor. Also plotted is the
sum of the first-order contributions. Focusing first on the
first-order indices, we observe that for t ≤ 8, we have

S{3} ≈ S{2} < S{4} ≈ S{1}.

Since most of the variance arises from the bi-modality of
the solution, this suggests that channels R1 and R4 are
the primary contributors to the solution branch selection.
Figure 7 also indicates that up to t ≈ 2 the system dy-
namics are essentially additive, while at later times mixed
interactions between channels become increasingly signif-
icant. In fact, it is seen that the variance induced by the
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FIG. 5. Schlögl model. Selected trajectories of X(t) showing
the bifurcation in the stochastic dynamics.
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FIG. 6. Schlögl model. Histogram of X(t = 8) based on
one million realizations of the Poisson Process Algorithm 2,
highlighting the bimodal nature of the stochastic solution.

first-order effects, V {X}×
∑Kr

j=1 S{j}, i.e. by the individ-
ual channels without interaction, is essentially constant
for t > 4 while the total variance continues to grow as
interaction contributions develop. At t = 8, X is close
to its asymptotic distribution, and the importance of the
mixed effects in all the channels, T{j} − S{j}, can be ap-
preciated from the extents of the colored strips in the
plots. Again, mixed effects for channels R1 and R4 ap-
pear to be comparable, but significantly larger than they
are in channels R2 and R3.

To gain further insight into the structure of the vari-
ability, the characterization of high-order partial vari-
ances is needed. For the present model with K = 4 we
can afford to estimate all first-order sensitivity indices Suuu,
uuu ∈ K, from which the partial variances V {Xuuu} can be re-
trieved. We provide in Figure 8 the second-order partial
variances V {Xuuu} for |uuu| = 2. It is seen that they all as-
sume relatively low values (. 500) except for V

{
X{1,4}

}
which asymptotically peaks at approximately 3, 500, con-
firming the preponderance of these two channels. Note
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FIG. 7. Schlögl model. Sensitivity indices scaled by the local
variance as well as the total variance and sum of first-order
variance. The estimates are based on sample sets of one mil-
lion trajectories of the NRA.

also that V
{
X{2,3}

}
is estimated to be zero, so not only

these two channels have lower first-order variance, but
also have no second-order interaction.

Regarding the higher-order partial variances for |uuu| >
2, reported in Figure 9, we observe again that V {Xuuu}
have significant values only for {1, 4} ∈ uuu. The partial
variance V

{
X{1,2,3,4}

}
, which quantifies the variability

due to the interaction between all the channels, becomes
asymptotically dominant over all other partial variances
except V

{
X{1,2,4}

}
and V

{
X{1,3,4}

}
, underscoring the

importance of complex high-order interactions between
the channels. Further, unlike the third-order partial vari-
ances, V

{
X{1,2,3,4}

}
has not yet converged at t = 8,

highlighting the slower time scales at which full interac-
tions develop.
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FIG. 8. Schlögl model. Evolution of second-order partial
variances. The estimates are based on sample sets of one
million trajectories of the NRA.

To support our conclusion that channels R1 and R4

are the main sources of stochasticity, through their
role as the dominant mechanism for selecting the bi-
furcation branch, we provide in Figure 10 sample sets
of trajectories of X for t ∈ [0, 8] conditioned on
the Poisson processes (N1, N4) and (N2, N3) respec-
tively. In Figure 10(a) we show, for 9 realizations
(n1, n4) of (N1(ω), N4(ω)), 10 trajectories of X. Simi-
larly, Figure 10(b) depicts, for 9 realizations (n2, n3) of
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FIG. 9. Schlögl model. Evolution of third-order and fourth-
order partial variances. The estimates are based on sample
sets of one million trajectories of the NRA.

(N2(ω), N3(ω)), 10 trajectories of X. The results indi-
cate that given the Poisson processes of channels R1 and
R4 the stochastic system tends to select more systemati-
cally one of the two attracting branches of the dynamics.
In contrast, the branch selection appears to be less influ-
enced by channels R2 and R3.

C. Michaelis-Menten model

The Michaelis-Menten system27 has Ms = 4 species
and Kr = 3 reaction channels, and is expressed according
to:

S1 + S2

c1


c2
S3, S3

c3→S4 + S2.

The system models the creation of a product S4 through
the binding of the enzyme S2 with the substrate S1; S3

is an intermediate species which can dissociate back into
enzyme and substrate (channel 2) or decompose to prod-
uct S4 and enzyme S2 (channel 3). Note that X2 + X3

is a conserved quantity. The propensity functions of the
model are given by a1(xxx) = c1x1x2, a2(xxx) = c2x3, and
c3(xxx) = c3x3,. We set c1 = 0.0017, c2 = 10−3 and
c3 = 0.125, and use as initial conditions X1(t = 0) = 300,
X2(t = 0) = 120 and X3(t = 0) = X4(t = 0) = 0.

Figure 11 shows selected stochastic trajectories of the
state vector. Qualitatively, the trajectories initially show
a fast increase in the population of the intermediate
species, S3, with a decay in substrate and enzyme con-
centrations, respectively X1 and X2. When X3 is large
enough, S3 starts to decompose producing S4, whose
population grows monotonically. As S4 is produced, the
substrate and intermediate species populations are pro-
gressively exhausted. As t→∞, (i) all the substrate will
eventually by consumed into product, i.e. X4 → X1(t =
0); and (ii) the intermediate species population X3 will
vanish thus releasing the enzyme, thus X2 → X2(t = 0).

Figure 12 shows the time evolution of the first-order
and total sensitivity indices of the three reaction chan-
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(a) Conditioned on N1 and N4

(b) Conditioned on N2 and N3

FIG. 10. Schlögl model. Trajectories of X(t) conditioned on
(a) N1(ω) = n1 and N4(ω) = n4, and (b) N2(ω) = n2 and
N3(ω) = n3. Each sub-plot shows 10 conditionally random
trajectories for fixed realizations n1 and n4 in (a), and n2 and
n3 in (b).
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FIG. 11. Michaelis-Menten model. Selected trajectories of
the state vector XXX for t ∈ [0, 60].

nels, for species (a) S1, (b) S2 and (c) S4 using decom-
positions of g(XXX) = Xi with i = 1, 2 and 4 respec-
tively. Also plotted for each species is the scaled sum
of first-order indices. Because of the conservation rule
X2 + X3 = const, the sensitivity indices for S2 and S3

are equal, and so the results for S3 are not shown. Start-
ing with S1 (Fig. 12a), we see that the binding process R1

is initially the main source of stochasticity; the variabil-
ity due to the decomposition process R3 then catches-up
at later time, and even becomes dominant for t ∈ [10, 20],
before decaying to zero, while the effect of R1 decays at a
slower rate. At the time of maximum of variance in X1,
the two channels R1 and R3 contribute roughly equally
to the variability. In contrast, the variability induced by
channel R2 (dissociation of S3) is always negligible. It is
also interesting to note that the effects of the channels
are essentially additive.

Regarding S2 (Fig. 12b), we first remark that, again,
channel R2 induces a negligible fraction of the variance.
Second, as for S1, channel R1 is initially the dominant
source of uncertainty, but R3 catches up sooner, and then
remains the main factor in V {X2}. Further, interaction
effects between channel R1 and R3 appears to have a
more significant impact on the variability of S2 than for
S1.

Finally, the sensitivity analysis for the product species
S4 (Fig. 12c) highlights the dominance of channel R3 on
the variability at all time. In addition, the variability
in X4 caused by channel R2 is negligible, and so are the
interaction effects.

Overall, it can be concluded that channel R2 (disso-
ciation of S3) has essentially no impact on the variabil-
ity of XXX. In fact, repeating the simulation disregarding
channel R2 (i.e. setting c2 = 0) yields essentially simi-
lar variances (not shown), implying that for the present
setting the dissociating process can be neglected, and
the system accordingly simplified. However, this is not
necessarily the case in general, e.g. when system parame-
ters are changed. To demonstrate this claim, we provide
in Figure 13 the same analysis as above, but now using
c2 = 25 × 10−3. Globally, the increase in c2 leads to a
significant contribution of channel R2 to the variance of
X1, X2, and X3, and to a lesser extent to the variance of
X4. The increase in the dissociation rate also results in a
noticeable increase in the effects of interaction terms on
the variance of X1 and X2.

VI. DISCUSSION AND CONCLUSIONS

This work focused on the development of methods
and algorithms that enable an orthogonal decomposition
of the variance of in the functional of the output of a
stochastic simulators. The key to this development con-
sists in formulating the stochastic dynamics as being gen-
erated by independent standardized Poisson processes.
At the manageable expense of representing the individual
Poisson processes, this enables us to identify individual
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FIG. 12. Michaelis-Menten model: First-order and total sen-
sitivity indices S{j} and T{j} for j = 1, . . . , 4. Plots are a
generated for (a) X1, (b) X2 and (c) X4. The estimates are
based on a sample set of one million trajectories of the NRA.

realizations of the channels dynamics, and subsequently
apply a Sobol decomposition with respect to the chan-
nels of the functional variance. A Monte-Carlo sampling
approach was adopted for this purpose. This leads to an
algorithm having a complexity that is linear in the num-
ber of conditional variances (sensitivity indices) that one
wishes to compute. In addition, each conditional variance
can be computed in parallel (lines 9–16 in Algorithm 3).

Implementation of the algorithms resting on this foun-
dation was illustrated through application to simple
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FIG. 13. Michaelis-Menten model: same as in Figure 12 but
with c2 increased 25 folds.

stochastic systems, namely the birth-death, Schlögl, and
Michaelis-Menten models. The computations were used
to demonstrate the possibility of quantifying contribu-
tions of individual Poisson processes associated with el-
ementary reactions to the variance of species concentra-
tions, of characterizing the role of mixed interactions, and
consequently assessing the variability of the functional to
reaction pathways.

While the scope of the computations performed was
restricted to simple demonstrations, the methods devel-
oped in this work can be readily applied to investigate
broader questions. An interesting area to explore would
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consist in investigating more complex functionals of the
solution. Examples would include variance decomposi-
tion of arrival, exit, means hitting times, reaction time
scales, progress variables and full path functionals.

In addition, a number of possible algorithmic improve-
ments and fundamental extensions can be conceived from
the methodology and algorithms presented in the paper.
In particular, complex systems involving large numbers
of channels and species would benefit from the incorpo-
ration of more elaborate time-integrators; for instance,
if an unaffordable number of elementary reactions fires
before reaching the final time, tau-leap methods4–6,28,29

should be considered to accelerate the simulations. Ex-
tending our methodology to tau-leap methods will re-
quire consistent time-approximations for the individual
realizations of the Poisson processes associated with each
channel. It would also be beneficial to rely on improved
sampling strategies and variance reduction methods, such
as multi-level Monte Carlo,30–32 to reduce the number
of simulations needed to estimate the sensitivity indices.
On the fundamental side, interesting generalizations in-
clude the potential of leveraging the present approach
for the purpose of model reduction,33–36 and for quanti-
fying the impact of uncertainties that may affect system
parameters.22,37–43 In particular, such extensions would
offer the promise of accounting for and distinguishing
between the impacts of parametric sensitivity and irre-
ducible noise,43 as well as providing estimates where re-
duced model approximations are valid. These topics are
the subject of ongoing work.
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O.M. Knio. Simplified CSP Analysis of a Stiff Stochastic ODE
System. Computer Methods in Applied Mechanics and Engineer-
ing, 217-220:121–138, 2012.
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