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Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition
to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally
achieved by mean of sensitivity analyses in which one characterizes the variability with the uncertain kinetic
parameters of the first statistical moments of model predictions. In this work, we propose an original global
sensitivity analysis method where the parametric and inherent variability sources are both treated through
Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and
stochastic reaction channels. The conceptual development only assumes that the inherent and parametric
sources are independent, and considers the Poisson processes in the random-time-change representation of
the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm
is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity
indices characterizing the importance of the various sources of variability and their interactions. The birth-
death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness
of proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local
derivative-based sensitivity analysis method classically used for this type of systems.

PACS numbers: 82.20.Wt, 82.40.Bj
Keywords: stochastic simulator, variance decomposition, Poisson process, chemical reaction networks, para-
metric uncertainty

I. INTRODUCTION

Stochastic models are widely used in many scien-
tific fields, including population dynamics, queues and
social-network studies, biosciences, and chemical sys-
tems. Stochastic modeling is necessary when determinis-
tic models are not able to capture important features of
the dynamics, for instance when large-scale effects of un-
resolved small-scale fluctuations occur, or when systems
are subjected to important inherent noise. Regarding
chemical modeling, which are the focus of the present
work, deterministic models are usually unsuitable for de-
scribing the evolution of small systems where reactive
species are present in small amounts, such that stochas-
tic fluctuations have great effects on the system response
and carry important meaning.

Chemical system modeling requires the selection of a
reaction mechanisms (or pathways), that is the set of re-
actions between the species constituting the system, and
the definition of propensity (or intensity) functions that
relate the current state of the system to the probability
of occurrence of a reaction in the next infinitesimal time
interval. Algorithms and stochastic simulators can then
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be designed for the generation of paths, or trajectories, of
the system’s stochastic dynamics. Sample sets of paths
can be used to compute, à la Monte Carlo, the statistical
moments of some model output or, more generally, the
expected value of some functional of the stochastic state.

Typically, the propensity functions involve kinetic pa-
rameters, such as thermodynamic variables and reaction
parameters, e.g., the mixture temperature and pressure,
the rate constants, the pre-exponential factors and the
activation energies of the Arrhenius law. Often, these
kinetic parameters are not well known and must be con-
sidered as uncertain. In this case, it is critical to assess
the impact of the uncertain kinetic parameters on the
model predictions.1 Classically, this is achieved by per-
forming a sensitivity analysis (SA), which, roughly speak-
ing, measures the variability of a model prediction when
the uncertain parameters are varied.

A number of SA methods have been proposed for un-
certain chemical systems.2,3 Restricting the discussion to
the case of stochastic models, SA methods have been
mostly limited to the assessment of parametric variabil-
ity in the first statistical moments (mean and variance)
of the model output due to the uncertain kinetic param-
eters. Along these lines, one can distinguish between
the local and global SA methods. The former essentially
consist in the characterization of the variability in the
statistical moments, based on their derivatives with re-
spect to the kinetic parameters at some nominal values
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(see for instance Refs. 4–7).

Global SA (GSA) methods, on the other hand, aim
at accounting for the uncertainty effects when the pa-
rameters vary over their whole range. The GSA meth-
ods are often based on second-order characterizations of
the variability (with respect to the parameters) using
the so-called Sobol or ANOVA decompositions.8,9 The
Sobol decomposition can be determined efficiently rely-
ing on a projection step, where the dependences of the
moments are first represented as Polynomial Chaos (PC)
expansions,10,11 before computing the partial variances
and so-called sensitivity indices.12,13

More recently, we have proposed in Ref. 14 a differ-
ent approach for GSA, for parametric uncertainties in
stochastic systems. Compared to the classical approaches
discussed above, the idea is to treat the inherent stochas-
ticity of the system as an additional and independent
source of uncertainty in the Sobol decomposition. Within
this framework, one proceeds directly with the decompo-
sition of the stochastic model output, and not with the
decomposition of its statistical moments. This paradigm
shift enables a much more detailed and finer GSA, such
the assessment of the partial variances associated to the
interactions between parameters and inherent stochastic-
ity, a task that is not possible for a GSA of the moments.

In the GSA method proposed in Refs. 14 and 15, the
decomposition of the variance was performed by rely-
ing on PC expansions of the individual random trajec-
tories. This was possible owing to the smoothness (dif-
ferentiability) of the stochastic trajectories with respect
to the parameters. Such path-wise smoothness is not
to be expected in general for the systems considered in
the present work, either because of strong non-linearities
and bifurcations, or because of the discrete nature of the
stochastic state spaces (typically, the system state is in-
teger valued). Another important challenge in extending
the GSA method of Refs. 14 and 15 to stochastic simula-
tors, as explained later, comes from the need to perform
conditional re-sampling of the trajectories. Resampling
trajectories conditioned on fixed kinetic parameter values
is straightforward in the context of stochastic simulators.
In contrast, the meaning of resampling trajectories con-
ditioned on fixed “values” of the inherent stochasticity
must be clarified and properly defined, prior to be imple-
mented in a stochastic simulator.

This issue was recently addressed in Ref. 16, where
it has been proposed to identify a particular realization
of the inherent stochasticity with the corresponding re-
alization of the standard Poisson processes appearing
the so-called random-time-change representation of the
dynamics.17 Adopting this definition, we were able in
Ref. 16 to perform an analysis of the relative influences
of different reaction channels on the total variability of
some model outputs of a stochastic simulator.

In the present paper, we generalize the methodology in
Ref. 16 to propose a GSA method for stochastic simula-
tors having additionally uncertain parameters. In doing
so, we aim to preserve the ability to perform a global

variance decomposition, namely one that is not simply
based on SA of statistical moments. Achieving this new
capability for stochastic simulators requires us to de-
vise effective means to distinguish between the effects
of parametric uncertainty and state-dependent stochas-
tic variability, and to quantify their joint contributions.
The presently proposed methodology enables us to over-
come associated challenges, and in addition offers several
key features. First, the method is global and can be
applied to models having arbitrary levels of parametric
uncertainty as well as inherent variability. Second, the
method enables a detailed GSA, through the quantifi-
cation of the partial variances due to individual parame-
ters or groups of parameters, randomness in individual or
groups of the channel dynamics (inherent stochasticity),
and finally the interaction between arbitrary groupings of
parameters and random channels. Finally, the method is
purely based on conditional sampling of the model and
is then easily amenable to stochastic simulators relying
on a random-time-change formulation, as well as being
trivially implemented in parallel.

The outline of the paper is as follows. In Sec. II, we
briefly discuss the stochastic simulators and introduce
the modified next reaction method, which is subsequently
used to perform the conditional sampling of the stochas-
tic model. Sec. III details the proposed GSA method,
starting with a discussion of the parametric and inherent
variabilities in Sec. III A. The Sobol-Hoeffding variance
decomposition and the associated sensitivity indices are
introduced in Sec. III B, starting from the simple sep-
aration of parametric uncertainty and random channels
variability and leading to the computation of general sen-
sitivity indices. A numerical algorithm performing the
GSA and its practical implementation are described in
Sec. III C. The proposed method is illustrated based
on two simple stochastic models, namely the birth-death
process, in Sec. IV, and the Schlögl model, in Sec. V. The
results of the GSA are contrasted with a local-derivative-
based SA in order to highlight the robustness and rich-
ness of the proposed method. Concluding remarks are
provided in Sec. VI.

II. STOCHASTIC CHEMICAL SYSTEMS AND
SIMULATOR

In this section, we review background materials on
the stochastic modeling of chemical systems and relevant
simulation methods. In Sec. II B, we introduce the Mod-
ified Next Reaction Method (MNRM) which is the basis
of subsequent developments.

A. Stochastic chemical systems

Let (Ω,Σ, µ) be a probability space, where Ω is the
event space, Σ denotes a σ-algebra on Ω, and µ is a prob-
ability measure. We consider a chemical reaction sys-
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tem involving Ms chemical species, labeled S1, . . . , SMs
,

whose evolutions in continuous time are discrete and
stochastic. The random state of the system is X :
[0, T ] × Ω → NMs

0 , where the i-th component Xi(t) is
the number of molecules of species Si at time t. The
state vector X evolves through Mr reactions channels,
R1, . . . , RMr , each characterized by a propensity or inten-
sity function aj and a stoichiometric vector νj . The stoi-
chiometric vector νj ∈ ZMs prescribes the changes in the
population of the reactant species due to the occurrence
of a reaction in channelRj , and are therefore independent
of the state and time. The propensity functions, on the
contrary, are dependent on the system state and thermo-
dynamical conditions and, therefore, they change in time.
For simplicity, we shall restrict ourselves to well-stirred
systems at constant temperature and pressure, such that
the propensity functions can be expressed as aj(X(t); c)
where c = (c1, . . . , cNc

) ∈ RNc is a vector of real val-
ued kinetic parameters which are not time dependent.
For τ � 1, aj(X(t); c)τ is the probability that, given
the current system state X(t), a reaction along channel
Rj occurs during the small time interval (t, t + τ ]. In
other words, the random process X(t) is a continuous-
time Markov chain defined by the set of transition prob-
abilities: for j = 1, . . . ,Mr,

P [X(t+ τ) = X + νj |X(t) = X] = aj(X; c)τ. (1)

Note that the propensity functions and stoichiometric
vectors of the reaction channels must satisfy a non-
negativity assumption, meaning that the dynamic can
not produce a population with negative size.

The Chemical Master Equation18,19 (CME) describes
the evolution of the probability distribution of the
stochastic state vector X(t); it is expressed as

∂Pt,t0 [x|x0]

∂t
=
∑Mr

j=1(aj(x− νj ; c)Pt,t0 [x− νj |x0]

− aj(x; c)Pt,t0 [x|x0]). (2)

In the CME (2), we denoted Pt,t0 [x|x0] the probability
of the system to reach a state x at time t ≥ t0, know-
ing that it is in a state x0 at time t0. Equation (2) has
no general explicit solution, and its numerical solution is
too costly to compute in most cases, especially when Ms

exceeds a few units. One has then resort to a simulation
method to generate sample trajectories from the distri-
bution that is the solution of Eq. (2) without having to
explicitly solve the CME. One classically uses so-called
exact simulation algorithms to compute such trajectories
and estimate the expected value of some functional, G,
of the random system state, through

E [G(X)] =

∫
Ω

G(X(ω))dµ(ω) = lim
M→∞

1

M

M∑
i=1

G(X(i)),

where ω ∈ Ω denotes a particular random event and X(i)

are sampled trajectories of X. Consequently, relying on
a simulator or solving the CME is equivalent, although

using stochastic simulators has an inherent sampling er-
ror as a finite number M of paths can be generated. Note
that there also exist inexact stochastic simulation algo-
rithms, that produce trajectories according to an approx-
imation of the CME solution. Such approximate simula-
tors are not considered in this work.

B. Modified Next Reaction Method (MNRM)

One of the best-known exact simulation methods is
the Stochastic Simulation Algorithm (SSA) which was
first introduced by Gillespie.20,21 Several modifications
and variants of the original SSA have been proposed to
improve its computational efficiency and adapt the algo-
rithm to specific properties and characteristics of the sim-
ulated system (see for instance Refs. 22 and 23). For the
purpose of decomposing the variance, as pursued below,
a fine distinction and control of the individual channels
dynamics is required.16 The standard SSA is not suitable
for purpose of performing the variance decomposition,
because the algorithm combines all channels dynamics
to determine the next reaction time and the first firing
channel. For this reason, we consider the Modified Next
Reaction Method24 (MNRM) (see Algorithm II.1) which
is a slightly modified version of the original Next Reaction
Method (NRM).25 The MNRM is an exact simulation al-
gorithm making explicit the respective contributions of
the Mr channels in the evolution of the system state.
This characteristic is subsequently exploited to perform
the variance decomposition, as discussed in Sec. III.

The algorithm uses Kurtz’ random time-change (RTC)
representation17 to simulate exact paths, expressing the
random state X(t) through:

X(t) = X(t0) +

Mr∑
j=1

νjYj(tj), (3)

where Yj are independent unit-rate Poisson processes
with respective scaled times tj given by

tj =

∫ t

t0

aj(X(s); c)ds, j = 1, . . . ,Mr. (4)

Equation (3) shows that the change in the state, from
the initial condition X(t0), is proportional to the num-
ber of times (Yj) that each channel has fired, times their
respective stoichiometric vectors νj . The random num-
ber of times a channel has fired is identified as the value
of a standard (unit rate) Poisson process, evaluated at
a scaled time given by the integral of the propensity (or
intensity) function along the trajectory. Hence, in the
MNRM, the randomness is encapsulated in the Poisson
processes describing the channels’ dynamics. This cru-
cial point was exploited in our previous paper,16 where
control of the realizations of the Poisson processes was ex-
ploited to perform a variance decomposition and analyze
the variability induced by different reaction channels.
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An algorithm for the simulation of the stochastic evo-
lution governed by Eq. (3) can be easily set up, remark-
ing that both the system state X(s) and the propen-
sity functions aj(X(s); c) remains constant between suc-
cessive reactions. Denote t+j > tj the scaled time at

which Yj jumps from Yj(tj) to Yj(tj) + 1, the main idea
of Algorithm II.1 is that, given the current state X(t),
scaled times tj and paths of Poisson processes Yj , we
can determine from (4) the (physical) time increments
dtj = (t+j − tj)/aj till Yj(tj) jumps to Yj + 1. The min-
imal dtj hence determines both the time and reaction
channel that will first fire. Therefore, it suffices to keep
track of the set of t+j and tj to simulate trajectories of
the system, as shown in Algorithm II.1.

Algorithm II.1 Modified Next Reaction Method

Function MNRM(X0, T, {νj}, {aj}, c,RG)

Input: Initial condition X0, final time T , stoichiometric vec-
tor {νj}, propensity functions {aj}, vector of kinetics pa-
rameters c, and initialize pseudo-random number genera-
tors RG = (RG1, . . . ,RGMr )

Output: State X(T )
1: for j = 1 to Mr do
2: Draw rj from RGj

3: tj ← 0, t+j ← − log(rj) {set next reaction times}
4: end for
5: t← 0, X ←X0

6: loop
7: for j = 1 to Mr do

8: Evaluate aj(X; c) and dtj =
t+j −tj

aj

9: end for
10: Set l = argminjdtj {pick next reaction}
11: if t+ dtl > T then
12: Break {final time reached}
13: else
14: X ←X + νl {update the state vector}
15: t← t+ dtl {advance time}
16: for j = 1 to Mr do
17: tj ← tj + ajdtl {update scaled times}
18: end for
19: Get rl from RGl and set t+l ← t+l − log(rl) {next

reaction time}
20: end if
21: end loop

We remark that the time-marching method depicted
in Algorithm II.1 does not require the storage of all the
sequences of jumping times t+j . Instead, the sequences
are determined on the fly using the random number gen-
erators (see line 19). In practice, the sequences of jump-
ing times are entirely determined by the seeds initializ-
ing the pseudo-random number generators RGj , and the
same sequences of random (unscaled) jumping times can
be reproduced by reseeding the pseudo-random number
generators accordingly. Another important remark con-
cerning Algorithm II.1 is that it considers Mr distinct
random number generators RGj , one for each reaction
channel. This may appear unnecessary, in view of the ad-
vancement in time performed in Algorithm II.1 as a sin-

gle random number generator would be enough. In fact,
the use of different random number generators allows for
the control of the individual Poisson processes and con-
sequently enable the variance decomposition which re-
quires to reproduce exactly sequences of jumping times,
as explained below. To this end, the possibility of iden-
tifying the sequence of jumping times for a channel to
the random seed of its generator is critical for the com-
putational efficiency because it alleviates the burden of
storing sequences of sampled tj .

III. GLOBAL SENSITIVITY ANALYSIS

In this section, we introduce the variance decompo-
sition method and the related global sensitivity analy-
sis. As discussed in the introduction, our method differs
from the classical sensitivity analysis Refs. 4–7 of stochas-
tic systems, that are usually based on the estimation of
the local sensitivity of selected statistical moments with
respect to uncertain system parameters. Our method,
on the contrary, aims at providing a direct second-order
(variance-based) characterization of the respective vari-
abilities induced by the uncertain parameters, globally,
and quantifying separately the inherent stochasticity due
to the channels. To this end, we build of the approach
originally proposed in Ref. 16, which focused on the vari-
ance decomposition over the reaction channels without
considering parametric uncertainty.

We start by discussing parametric uncertainties in the
context of stochastic reaction networks in Sec. III A.
The decomposition of the variance and the uncertainty
characterization using sensitivity indices are detailed in
Sec. III B. Finally, in Sec. III C, we describe a Monte
Carlo sampling approach for the estimation of the sensi-
tivity indices and we provide a brief outline of the algo-
rithm and implementation used in the present work.

A. Parametric and stochastic uncertainties

As mentioned before, stochastic systems can involve
two sources of randomness. On the one hand, the ran-
dom dynamics associated to the reaction channels lead
to inherent variability that can not be reduced. On the
other hand, the definition of the reaction networks in-
volves several kinetic parameters that are usually esti-
mated within a finite confidence level only. To properly
apprehend stochastic simulations, it is therefore impor-
tant to assess the respective impacts of these inherent and
parametric uncertainties on the variability of a quantity
of interest, G(X), related to the system output.

A typical situation of parametric uncertainty, consid-
ered in this work, is the case of propensity functions
aj not perfectly known, but involving some uncertain
parameters. Practical examples of uncertainties in the
propensity functions will be given in the following sec-
tions; we can already mention the case of uncertainties
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in the reacting mixture temperature and pressure, in the
Arrhenius activation energies, rate constants and pre-
exponential factors of the different reaction channels. In
these situations, it is relevant to treat the uncertain pa-
rameters as random quantities. To this end, we shall de-
note by C(ω) ∈ RNc the uncertain vector of random pa-
rameters in the propensity functions aj (recall that ω ∈ Ω
is a random event). We shall also denote pC : RNc 7→ R+

the probability density function of C. As a result of the
uncertainty in the parameters of the aj , the dynamics
given by Eq. (3) are random, because of the stochastic
nature of the Poisson processes Yj , and also because of
the scaled times in Eq. (4) which involve propensity func-
tions with now random coefficients C. Specifically, in the
case of random parameters C, we have

aj : NMs
0 × Ω→ aj(x;C(ω)) ∈ R+ j = 1, . . . ,Mr.

In the following, we shall refer collectively to the set of
Nc random parameters C, as the uncertain kinetic pa-
rameters. We shall also assume that the components of
C are independent random variables. Consequently, the
scaled times tj are given by:

tj =

∫ t

t0

aj (X(s);C(ω)) ds j = 1, . . . ,Mr.

For convenience, we shall write the stochastic state as
X(t,Y ,C) to underline its dependence on the random
Poisson processes Y and random parameters C. The
main difference between the two sources of variability
(inherent and parametric), is that while the channel vari-
ability cannot be reduced, the parametric uncertainty
can eventually be reduced by a better estimation of the
propensity function parameters. A fundamental assump-
tion of the proposed method is that Y and C are in-
dependent. This assumption will allow us to decompose
the variance as outlined below; it also implies that the
inherent stochastic nature of the system is not dependent
on the kinetic parameters. It does not mean, however,
that the stochastic dynamics are not dependent on the
parameters. In the remainder of the section, we discuss
how to separate and quantify the variance associated to
the two sources of randomness.

B. Variance decomposition and sensitivity indices

We begin by introducing the Sobol-Hoeffding (SH)
decomposition8 of a functional of several independent
random variables. The decomposition is further ex-
ploited to derive an expression for the sensitivity indices,
which will provide us with a measure of the impact of the
distinct sources of uncertainty on the process.

Recall that we consider Y and C as independent
random quantities defined on the probability space
(Ω,Σ, µ). Let G : Ω → G(X(Y ;C)) ∈ R be a second-
order random functional of the stochastic process, i.e.
E
[
G(X(Y ;C))2

]
<∞. With a slight abuse of notation,

we shall denote G(X(Y ;C)) simply as G(Y ,C). The
SH decomposition separates the function G(Y ,C) into
independent and orthogonal elements, as follows

G(Y ,C) = Ḡ+Gpar(C) +Gch(Y ) +Gmix(Y ,C) (5)

where Ḡ is a constant, Gpar(C) is a random functional
that depends only on the parameters, Gch(Y ) depends
only on the Poisson processes, and Gmix(Y ,C) depends
on both random inputs. The pairwise orthogonality be-
tween the functions on the right-hand-side of Eq. (5) en-
sures the uniqueness of the decomposition. These func-
tionals are given by Ḡ = E [G],

Gpar(C) = E [G|C]− E [G] ,

Gch(Y ) = E [G|Y ]− E [G] ,

Gmix(Y ,C) = G(Y ,C) + E [G]− E [G|Y ]− E [G|C] .

In the previous expressions, the conditional expectations
are defined by

E [G(Y ,C)|C = c] =

∫
Ω

G(X(Y ,C = c))dµ(ω),

E [G(Y ,C)|Y = y] =

∫
Ω

G(X(Y = y,C))dµ(ω),

where c and y are deterministic realizations of the pa-
rameters and the Poisson processes respectively. Because
the decomposition in Eq. (5) is orthogonal, the variance
of G(Y ,C) can be split according to

V [G] = Vpar + Vch + Vmix, (6)

where Vpar = V [Gpar], Vch = V [Gch] and Vmix = V [Gmix]
are called the partial variances. These partial variances
account for the variability due to parameters, the reac-
tion channels and the interactions between them, respec-
tively. Finally, the Sobol sensitivity indices are obtained
by normalizing partial variances:

Spar =
Vpar

V [G]
, Sch =

Vch

V [G]
Smix =

Vmix

V [G]
.

The indices Spar and Sch are the fractions of the vari-
ance in G explained by the parametric uncertainty and
stochastic channel dynamics, respectively. The index
Smix accounts for the fraction of the variance due to the
interactions between the parametric and channel vari-
abilities. To measure the total impacts of parametric
uncertainty and channel stochasticity, we introduce the
total indices

Tpar =
Vpar + Vmix

V [G]
, Tch =

Vch + Vmix

V [G]
.

The decomposition of the variance of G(Y ,C) above
can be generalized to perform finer sensitivity analyses
and measure, for instance, the impact of a subset of
reaction channels, of a single parameter, or some joint
effects of channel(s) and parameter(s), provided that
the components of C are mutually independent (recall
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that the Poisson processes Yj of different channels are
independent). In this case, the random vector U =
(Y1, . . . , YMr

, C1, . . . , CNc
) has components Ui(ω) which

are all mutually independent. We shall set NU = Mr+Nc
the total number of variability sources, defined as the sum
of the number of reaction channels and uncertain kinetic
parameters. With a slight abuse of notation, we shall now
denote G(X(Y ;C)) as G(U). The general SH decom-
position can immediately be generalized by considering
the variability sources in the random vector U . Let us
denote the index set U = {1, . . . , NU} and PU its power
set. For u ⊆ U, let u∼ = U \ u be its complement in U.
With these notations, the generalized SH decomposition
of G is

G(U) =
∑

u∈PU

Gu(Uu), (7)

where the Gu(Uu) are mutually orthogonal random func-
tionals, each depending only on the subvector of U hav-
ing components U i with i ∈ u. These functionals are
recursively defined by:

Gu(Uu) = E [G|Uu]−

(∑
v⊂u

Gv(Uv)

)
,

with the conditional expectations given by

E [G(U)|Uu = uu] =

∫
Ω

G(uu,Uu∼(ω))dµ(ω). (8)

Due to the orthogonality of SH decomposition in Eq. (7),
and observing that G∅ = E [G], the variance of G(U) can
be expressed as

V [G] =
∑

u∈PU\∅

Vu, Vu = V [Gu(Uu)] . (9)

Similarly, “first-order” and total sensitivity indices asso-
ciated to variability sources in u can be defined by ex-
tending the previous expressions according to

Su =
Vu

V [G]
, Tu =

v∩u6=∅∑
v⊆PU

Sv = 1− Su∼ . (10)

C. Monte Carlo algorithm

We now show how to estimate the sensitivity indices
by means of Monte Carlo sampling and we briefly discuss
the practical implementation of the sampling method.

1. Monte Carlo estimation of the sensitivity indices

In this work, we rely on the method of Homma and
Saltelli26 (see also Ref. 9) to estimate the sensitivity in-
dices. For simplicity, we restrict the exposition to the

separation of the effects associated to the channels, on
the one hand, and kinetic parameters, on the other hand.
The task is then to estimate Spar, Sch and Smix.

The Monte Carlo estimation makes use of independent
sample sets for both the Poisson processes and the kinetic
parameters. The estimation of the partial variances is de-
rived from evaluations of the functional G(Y ,C) at se-
lected sample points resulting from the appropriate com-
bination of the sample sets.

Let Y and C denote two sample sets of M indepen-

dent realizations Y (i) and C(i) of the Poisson processes
and kinetics parameters, respectively, and where the su-
perscript 1 ≤ i ≤ M refers to the sample index. As
discussed at the end of Section II B, the sampling of the
Poisson processes in Y simply amounts to sampling (in-
dependently) the seeds of the random number generators
that yields the respective sequences of jumping times in

Y (i). On the other hand, the sampling of C amounts to

drawing random vectors C(i) from the probability den-
sity function pC . Standard methods, such as probabilis-

tic transformations, can be used to generate the C(i).
From these sample sets, the Monte Carlo estimators of
the expectation and variance of G are

ÊG
.
=

1

M

M∑
i=1

G(Y (i),C(i)),

V̂G
.
=

1

M − 1

M∑
i=1

G(Y (i),C(i))2 − ÊG
2
.

Consider now independent replicas of the sample sets Y

and C , denoted respectively Ỹ and C̃ , with elements

Ỹ
(i)

and C̃
(i)

respectively defined as discussed previ-
ously. The original sample sets and their replicas can be
appropriately combined to obtain Monte Carlo estimates

V̂par and V̂ch of the partial variances of G; we use:

V̂par =
1

M − 1

M∑
i=1

G(Y (i),C(i))G(Ỹ
(i)
,C(i))− ÊG

2
,

V̂ch =
1

M − 1

M∑
i=1

G(Y (i),C(i))G(Y (i), C̃
(i)

)− ÊG
2
.

The sensitivity indices are finally estimated as follows

Ŝpar =
V̂par

V̂G
, Ŝch =

V̂ch

V̂G
, Ŝmix = 1− Ŝpar − Ŝch.

The MC estimators above can be extended to compute
sensitivity indices Su associated with different groupings
u the input variables, for instance the individual effects
of a variable, Uu = (Yj) or Uu = (Cj). The estimate

Ŝu can be immediately achieved using the appropriate
combination of the original sample set and replicas. For
instance, the estimation of the partial variance Vu asso-
ciated to Cj involves the estimator

Vu =
1

M

M∑
i=1

G(Y (i),C(i))G(Ỹ (i),
˜̃
C

(i)

),



7

where
˜̃
Ck

(i)

= C̃k

(i)
for k 6= j and

˜̃
Cj

(i)

= Cj
(i). We

estimate the total sensitivity indices Tu using the rela-
tion Tu = 1− Su and the Jansen formula27 which, while
also based on combining two replicas of sample sets, was
shown to be more accurate.28

2. Implementation details

We have just seen that the Monte Carlo estimation
of the sensitivity indices involves multiple evaluations of
the quantity of interest for suitable combinations of sam-
ples set of the Poisson and kinetic parameters. Algo-
rithm III.1 provides a sketch of a practical implemen-
tation in the case of the simple channel and parametric
separation. The algorithm can be easily adapted to han-
dle the estimation of more general sensitivity indices Su

and Tu. It is adapted from the original algorithm pro-
posed in Ref. 16 for the separation of the variance due
to different channels (without parametric uncertainty).
Specifically, instead of combining different samples sets
for the individual Poisson processes Yj , Algorithm III.1
combines different samples sets of the vector of Poisson
processes Y and parameter C.

Algorithm III.1 GSA for stochastic chemical reactions

Function MNRM-GSA(M,X0, T, {aj}, {νj},C)

Input: Number M of samples, initial condition X0, final
time T , propensity functions {aj} and stoichiometric vec-
tor {νj}, random kinetic parameters C.

Output: Ŝpar, Ŝch and Ŝmix

1: ÊG ← 0, V̂G ← 0, {init mean and variance}
2: V̂par ← 0, V̂ch ← 0 and V̂mix ← 0 {init partial var}
3: for i = 1 to M do
4: Draw seeds S and replicas S̃ for the random number

generators
5: Draw c and replicas c̃ from density pC
6: X ← MNRM(X0, T, {νj}, {aj}, c,RG(S))
7: Xch ← MNRM(X0, T, {νj}, {aj}, c̃,RG(S))

8: Xpar ← MNRM(X0, T, {νj}, {aj}, c,RG(S̃))

9: ÊG ← ÊG +G(X)

10: V̂G ← V̂G +G(X)2

11: V̂ch ← V̂ch +G(X)G(Xch)

12: V̂par ← V̂par +G(X)G(Xpar)
13: end for
14: ÊG ← ÊG/M

15: V̂G ← V̂G/(M − 1)− ÊG

2

16: V̂par ← V̂par/(M − 1)− ÊG

2
, V̂ch ← V̂ch/(M − 1)− ÊG

2

17: Ŝpar = V̂par/V̂G, Ŝch = V̂ch/V̂G and Ŝmix = 1− Ŝpar − Ŝch

To this end, within the main loop of the MC sampler
(loop over i), two vectors of seeds are first independently

drawn (S and its replica Ŝ, see line 4). These seeds are
subsequently used to initialize the random number gener-
ators of the stochastic simulator, so as to appropriately
set the sequence of jumping times of the Poisson pro-
cesses and individual reaction channels. Second, two in-

dependent realizations of the parameters are drawn from
the density pC (c and c̃, see line 5). In the present work,
we shall consider independent Cj with uniform distribu-
tions, such their sampling is straightforward.

The trajectories X(Y , c), X(Y , c̃) and X(Ỹ , c̃) are
then determined using the MNRM Algorithm II.1 (see
lines 6-8); the statistic and correlations of the functional
G(X) between these trajectories are subsequently accu-
mulated, before proceeding to the next sample. Finally,
the sensitivity indices of G are estimated when M sam-
ples have been computed.

We remark that the procedure depicted in Algo-
rithm III.1 aims at clarifying the sampling procedure and
is not designed in view of optimizing the computational
efficiency. In particular, it is possible the parallelize the
main loop of the algorithm.

IV. BIRTH-DEATH EXAMPLE

We illustrate the variance decomposition and global
sensitivity analysis presented in Sec. III on one of the sim-
plest stochastic reaction network: the birth-death (BD)
process. A more complex reaction network will be con-
sidered in Sec. V.

A. Birth-death model

The BD system models the dynamic of a single species
S (Ms = 1), evolving through Mr = 2 reaction channels,
simply indexed as Rb and Rd, according to

� B−→S, S
D−→�. (11)

The first reaction channel describes the spontaneous cre-
ation (birth) of individuals, at a time-rate B; the second
channel describes the disappearance (death) of individ-
ual at a rate proportional to the population size times the
time-rate D. In the following, we shall consider the birth
and death rates as uncertain parameters, that is C1 = B
and C2 = D, and proceed with their modeling as two
independent random variables having uniform distribu-
tions. For simplicity, we shall directly denote B and D
the two uncertain parameters in the rest of this section.
We denote µB and σB (resp. µD and σD) the mean and
standard deviation of the birth rate (resp. death rate).
The variability ranges of the two rates are characterized
by their coefficients of variation, CoVB = σB/µB and
CoVD = σD/µD. For simplicity the two coefficients of
variation will be set equal to CoVB = CoVD = CoV,
such that the two channels have comparable amounts of
parametric variability. Finally, the propensity functions
are given by

ab(x;B) = B(ω), ad(x;D) = D(ω)x.

By Eqs. (3) and (4), and from the stoichiometric coef-
ficients associated to the BD model, the state can be
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rewritten as the difference between two Poisson pro-
cesses,

X(t, ω) = X(t0) + Yb(tb)− Yd(td) (12)

where the scaled times are given by

tb(ω) =

∫ t

t0

B(ω)ds, td(ω) =

∫ t

t0

D(ω)X(s)ds. (13)

Unless specified otherwise, we set µB = 200, µD = 1 and
CoV = 0.1. The initial population size at t0 = 0 is set to
zero.

1. Channel variability

Figure 1 illustrates the effects of channel variability.
Specifically, in the three plots of the figure, we condition
the trajectories to a fixed value of the kinetic parameters
B(ω) = µB and D(ω) = µD. In Figure 1(a), we re-
port different trajectories obtained using the MNRM al-
gorithm, and generating different realizations of the Pois-
son processes Yb and Yd. The trajectories of X(t) quickly
grow from the initial condition X = 0 and converge to
an invariant distribution as t increases. The invariant
distribution corresponds to a Poisson distribution with
mean population size µB/µD (see below). For different
realizations of the Poisson processes, all trajectories have
qualitatively the same behavior and asymptotically fluc-
tuate around this terminal expected value.

In Figure 1(b), not only we sample trajectories con-
ditionally on the parameters mean values, but we also
condition the dynamics on a particular realization of the
Poisson process associated to channel Rd. Therefore, the
trajectories plotted reflect the variability induced by the
birth channel Rb only. It can be observed that, compared
to trajectories in Figure 1(a), the set of trajectories in
Figure 1(b) is more correlated. A similar behavior is re-
ported in Figure 1(c), where instead of conditioning the
system on the mean parameters and a particular realiza-
tion of Yd, it is now conditioned on a realization Yb(ω)
of the birth channel. Note that the conditioning of the
channels in the last two plots is based on the realizations
of Yb and Yd corresponding to the trajectory reported
with a thick magenta line all plots.

2. Parametric variability

Similarly to the previous exercise, we now condition
the trajectories of X(t) on the same realizations used pre-
viously to condition on Yb and Yd; the MNRM algorithm
is then applied for different realizations of the kinetic
parameters B and D. We also report in Figure 2 the
previous trajectory corresponding to the expected rate
parameters µB and µD, shown again with a thick ma-
genta line.

Figure 2(a), which should be contrasted with Fig-
ure 1(a), illustrates the effect of sampling the kinetic
parameters only. It is seen that this results in a vari-
ability of the trajectories that is significantly higher than
the variability obtained sampling only the Poisson pro-
cesses. Moreover, about the trajectories in Figure 2(a)
highlight the fact that the parametric variability induces
trajectories that are significantly more correlated than
for the channels variability. The parametric uncertainty
is also seen to have a greater impact on the population
size, with fluctuations of the trajectories around a time-
averaged that changes from a trajectory to another. The
variability among trajectories of the asymptotic time-
average contrasts with the previous case of the channels
variability, where the trajectories fluctuate around the
same value.

To gain further insight into the effects of the uncertain
kinetic parameters, we subsequently also condition the
trajectories on D = µD or B = µD, see Figure 2(b) and
2(c) respectively. It is seen that the correlation struc-
ture between the sampled trajectories are significantly
different depending on the sampled parameter, B or D.
In particular, it is seen that considering variability in B
only (Figure 2(b)) induces trajectories that remain very
correlated in time, while for a variability in D only (Fig-
ure 2(c)) a time shift between the trajectories is also vis-
ible. These different effects can be understood from the
structure of the solution as expressed in (12) and (13).
From the plots, the variability of the trajectories reported
in Figure 2(c) appears larger than in Figure 2(b), sug-
gesting a more important impact of the uncertainty in
D, than in B, on the variability of X. However, the ex-
periments reported in this section are not sufficient to
confidently draw such a conclusion: the complete vari-
ance decomposition must be performed to properly assess
the relative importance of each of the variability sources.

B. Variance decomposition

The variance decomposition is performed using Algo-
rithm III.1, and its generalization. We take advantage of
the BD model simplicity to accurately estimate the par-
tial variances, using large sample sets with M = 5 · 107.

We start by performing the simple parametric / chan-
nel variance decomposition, on the quantity of interest
consisting of the system state, G = X(t), at different
times t. Figure 3 reports the evolution with t of the to-
tal variance of X and its decomposition in parametric
(Vpar), channels (Vch) and mixed (Vmix) contributions.
The results in Figure 3(a) focus on the early transient
stage for t < 10. We see that the variability in X(t) is
clearly dominated by the parametric uncertainty, except
at the early stages, t < 0.5, where the channels variabil-
ity is larger than parametric variability. The results also
indicate that for t > 5 the total and parametric variances
are essentially constant, the latter accounting for roughly
80% of the former.
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FIG. 1. Trajectories of the DB system conditioned on B = µB and D = µD.
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(c)Also conditioned on B = µB .

FIG. 2. Trajectories of the DB system conditioned on channels realization Y (ω) = y.

In contrast, the channels’ partial variance Vch is seen
to reach a maximum for t ≈ 2.5 and then progressively
decreases while the variance associated to mixed effects
monotonically increases. Inspecting Figure 3(b), which
reports the evolution of the partial variances over an
extended time range, we observe that Vch continues to
decrease and eventually becomes negligible at t ≈ 100,
while the variability of the mixed effects levels to 20%
of the total variance. These evolutions can be under-
stood from Eq. (13): as time advances, the impact of the
uncertain parameters on the scaled times becomes more
and more pronounced such that Vmix increases and Vch

decreases.

To gain additional insight into individual effects of the
parameters and the channels, we provide in Figure 4 the
complete separation of the partial variances Vpar, Vch and
Vmix. Figure 4(a) shows the decomposition of Vpar into
pure contributions from B and D, and mixed effects of
B and D. It is seen that the partial variances VB and
VD become very close for t > 6, while the interaction
between the two parameters remains negligible.

Regarding the decomposition of Vch into contributions
of the two channels and their interaction, we observe in
Figure 4(b) that the two variances VYb

and VYd
decay at

the same rate and remain sensibly equal, while the mixed
contribution VYb,Yd

≈ 0 denotes a negligible interaction
between the two channels. It should be remarked that

this finding is seemingly in contradiction with the finding
reported in our previous work,16 where the interaction
between the two channels was increasing over time with
asymptotically VYb

≈ VYb,Yd
and VYd

≈ 0. However, no
parametric uncertainty was considered in Ref. 16.

Figure 4(c) indicates that mixed effects are still exist-
ing in the present system, but they essentially consist in
interactions between parameter B and the two channels:
Vmix ≈ VB,Yb

+ VB,Yd
. Note also that third order vari-

ances, e.g. VB,Yb,Yd
, are negligibly small and are thus not

reported.

Figure 5 reports the evolution of the total sensitivity
indices TB,D,Yd,Yd

scaled by the total variance. The re-
sults in Figure 5(a) correspond to CoV = 0, with all
the variability due to the channels and a larger effect
of Yb compared to Yd. In Figure 5(b), corresponding to
CoV = 0.015, a low contribution of the parameters is vis-
ible with a more noticeable impact of B compared to D,
but the variability due to the two channels remains pre-
dominant. The total variance is also seen to be slightly
higher than for CoV = 0.0.

Increasing CoV to 0.05, in Figure 5(c), we see that the
birth rate parameter B becomes the dominant source of
variability for t > 2.5, while parameter D and the chan-
nels have comparable impact. Note also that the variance
is larger than previously observed. Finally, Figure 5(d)
corresponding to CoV = 0.15 shows that in this case
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FIG. 3. Evolution of the components of the total variance of
the birth-dead model for t ∈ [0, 10].

most of the variability is due to the kinetic parameters,
which contribute roughly equally at t ≈ 10. The total
contribution of the channels is small and dominated by
interactions with the parameters. We also observe that
the total variance is up to 10 times larger for CoV = 0.15
compared to the case of CoV = 0.

We have just seen that the different variabilities inX(t)
increase with CoV, making difficult the quantitative com-
parison of their relative impacts. We provide in Figure 6
the dependence on CoV of the first order (Figure 6(a))
and total (Figure 6(b)) sensitivity indices of X at a fixed
time t = 10. The figures show that as CoV increases, the
first order sensitivity indices associated to the channels,
SYb

and SYd
decrease in favor of SB and SD which become

dominant for CoV >∼ 0.05. A similar trend is reported
for the total sensitivity indices, shown in Figure 6(b),
though TYb

and TYd
decrease with a slower rate than SYb

and SYd
, denoting the emergence of stronger interactions

between the parametric and channel variabilities and the
emergence of non-additive effects.
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FIG. 4. Decomposition of the partial variances Vpar (a), Vch

(b) and Vmix (c), into contributions from the uncertain kinetic
parameters B and D, and channel Yb and Yd.

C. Comparison with local sensitivity estimates

The proposed method is global, in the sense that
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FIG. 5. Total sensitivity indices of X(t) scaled by V [X(t)], for different values of the coefficient of variation CoV of the rate
parameters B and D as indicated.

it measures the variabilities induced by the considered
sources, either parametric or inherent, over the whole
events set. It also provides a natural and objective way
to compare the respective influences of different variabil-
ity sources. These characteristics are contrasted with
the classical approaches of local sensitivity measures, in-
volving derivatives at nominal points, and which can be
limited to low variability levels. In addition, comparing
local sensitivity associated to different sources may be
difficult, as it usually involves derivatives with respect to
different quantities, sometimes hardly comparable (tem-
perature, pre-exponental factor, . . . ).

Our objective in this section is to demonstrate that
our approach is consistent, and agrees with the local
derivative-based parametric sensitivity estimates when
the coefficient of variation of the kinetic parameters goes
to zero. Specifically, considering again for quantity of
interest G(X) = X, we introduce the local sensitivity

index,4 associated to the birth rate parameter, as follows

LB(b, d) =
∂E [X|b, d]

∂b
= lim
h→0

E [X|b+ h, d]− E [X|b, d]

h
.

(14)
A similar expression can be written for LD(b, d). In fact,
for the birth-death process, the exact expression for the
conditional expectation in Eq. (14) is available:

E [X(t)|b, d] = x0e
−dt +

b

d
(1− e−dt).

Accounting for the initial condition, x0 = 0, we see that
the local sensitivity indices at the nominal parameter val-
ues are given by

LB(µB , µD) = (1− e−µDt)/µD,

and

LD(µB , µD) =
µB
µ2
D

(e−µDt(1 + µDt)− 1).

Thus, for large enough times, one gets in our case
LB(µB , µD) ≈ µ−1

D = 1 and LD(µB , µD) ≈ µB/µ
2
D =

200.
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FIG. 6. First and total order sensitivity indices of X at time
t = 10. Note the log scale.

In order to show how global and local sensitivity in-
dices relate to each other, we consider the case of the
birth rate, and assume a sufficient regularity of E [X|b, d]
with respect to b; we then have the following Taylor se-
ries,

E [X|b+ h, d] = E [X|b, d] + h
∂E [X|b, d]

∂b
+ O(h2).

From this expansion, one can easily establish the expres-
sion of the variance of the conditional expectation,

V [E [X|B,µD]] = L2
B(µB , µD)E

[
(B − µB)2

]
+ hot,

where hot stands for higher order terms involving higher
order moments in (B − µB), and that are assumed to
vanish faster than σ2

B when CoVB → 0. Therefore, it
follows that

lim
CoV→0

VB
σ2
B

= L2
B(µB , µD), (15)

with a similar expression in the case of the uncertain
death rate D. Note that these expressions hold in the

limit of a vanishing variability of all kinetic parameters.
A bias term, e.g. E [X|µB ] − E [X|µB , µD], would be
otherwise introduced.

In Figure 7 we check the validity of relation in Eq. (15)
in our computations, reporting as a function of the num-
ber of MC samples M the ratios of the partial variances,
VB and VD for X at time t = 10, with the respective vari-
ances of the parameters, σ2

B and σ2
D. Different values of

CoV are reported as indicated. The plots show that the
MC estimates of VB/σ

2
B and VD/σ

2
D are converging with

increasing number M of samples. However, the magni-
tude of the fluctuations are increasing as CoV decreases,
denoting an increasing sampling error. This trend can be
explained by the large number of samples needed to ac-
curately estimate the partial variances VB and VD when
the global variance becomes more and more dominated
by the channels’ partial variances.

Conversely, the sampling error is seen to converge
quickly with M when CoV is larger, but we should not
expect the ratios to necessarily converge to the exact
squared local sensitivity index, L2

B and L2
D which are

shown with dashed lines in the plots, because of the con-
tributions of higher order moments. This is a classical
trade-off problem, between bias and sampling errors, that
is also present in the numerical estimation of the local
sensitivity indices. In this context, one has to select an
appropriate value for h that leads to a small enough bias
in the approximation of the derivative by the difference
formula, and a small enough sampling error in the MC
estimate of the difference which demands more samples
as h decreases.

Different methods (see for instance Refs. 4, 6, and 7)
have been proposed recently to reduce and balance the
bias and sampling errors in the estimation of the local
sensitivity indices. In particular, correlations between
the estimates of the two expectations in the difference
formula (14) and multilevel Monte Carlo constructions
have been proposed to obtain accurate estimators of the
local sensitivity indices at a reduced cost; we plan to
adapt these techniques to improve the computational ef-
ficiency of the MC estimation of the global sensitivity
indices in future works.

Anyway, we emphasize that, in the case of finite CoV,
a difference between the ratios and the local sensitivi-
ties is not a limitation of our method. It underlines the
importance of accounting globally for the parametric un-
certainty effects, and reveals that a local characterization
is not appropriate. Further, even if a local sensitivity co-
efficient (say LB) agrees with its counterpart (VB/σ

2
B),

the presently developed global sensitivity analysis indi-
cates that the local index may fail to account for some
of the variability actually induced by the parameter (B).
Indeed, the parameter may by responsible for an addi-
tional variability through its interactions with the chan-
nels (and the other parameters). In this case, the total
sensitivity index is the appropriate measure of induced
variability and restricting the analysis to local indices
may be misleading.
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FIG. 7. Convergence with the samples set size, M , of the
ratios of partial to parametric variances VB/σ

2
B and VD/σ

2
D,

and different coefficient of variations as indicated. Also shown
are the exact theoretical values for CoV→ 0, denoted L2

B and
L2

D respectively.

V. SCHLÖGL MODEL

In this section we consider the Schlögl model,29 which
has Mr = 4 reaction channels, {Ri, i = 1, . . . , 4}, corre-
sponding to the reaction mechanism

B1 + 2S
C1



C2

3S, B2

C3



C4

S.

Species B1 and B2 are assumed in large excess with con-
stant population size, set respectively to x1 = x2/2 =
105. The stochastic state then reduces to the single evolv-
ing species S with Ms = 1. The uncertain propensity
functions are

a1(x;C) = C1x1x(x−1), a2(x;C) = C2x(x−1)(x−2),

a3(x;C) = C3x2, and a4(x;C) = C4x.

The parameters C1 to C4 in the definition of the propen-
sity functions are considered as independent random vari-
ables with uniform distributions. As previously, we define
the uniform distributions by their means µ1≤j≤Mr

and
coefficients of variation CoV; again the latter is taken
to be the same for all the parameters. Regarding the
expected values of the Ci, we set µ1 = 0.015, µ2 =
10−4/6, µ3 = 200, and µ4 = 3.5. Finally the initial con-
dition is X(t = 0) = 250.

A. Qualitative analysis

To gain an understanding of the qualitative impact of
the different sources of variability we select a reference
trajectory, corresponding to the mean value of the ki-
netic parameters and a specific realization of the Poisson
processes. This particular trajectory is plotted using a
thick magenta line in the following plots. We draw sam-
ples of trajectories conditioned on the same parameter
values or Poisson processes.

Figure 8(a) shows several trajectories of the state
conditioned on fixed values of the kinetic parameters
Cj(ω) = µj , and sampling of the Poisson processes Y .
Theses trajectories illustrate the random dynamics of the
system, that exhibit a bifurcation: starting from the ini-
tial condition, the system selects in an initial stage one
or the other branch, called lower and upper branches in
the following, and later fluctuates around the selected
branch. It is seen that the inherent (channels) variability
acts on both the branch-selection process and the subse-
quent fluctuations.

Figure 8(b) depicts trajectories of the system for sam-
pled values of the parameters, but conditioned on the
reference realization of the Poisson processes. The sam-
pling of the kinetic parameters uses CoV = 0.1. The plot
shows that although the trajectories are conditioned on
the same realization of the channel dynamics, the branch
selected changes from one sample of the kinetic parame-
ters to another. This behavior highlights the sensitivity
of the trajectories and of the branch selection process
with regards to both sources of variability.

In addition, qualitative differences are reported be-
tween the two sets of sampled trajectories in Figure 8.
First, it is seen that the variability level is much larger
when sampling the kinetic parameters, in Figure 8(b),
than when resampling the Poisson processes in Fig-
ure 8(a). More precisely, the fluctuation amplitudes
around the selected branches appear to be essentially the
same for the inherent and parametric resampling, but the
latter induces an additional variability by displacing the
location of the attracting branches.

The analysis of the inherent and parametric variability
can be further refined by distinguishing the elementary
effects of each channel and parameter. This is done by
resampling the Poisson processes, Yj , and kinetic param-
eters, Cj , one at a time. Our previous work16 focused on
the resampling of the Poisson processes Yj to investigate
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FIG. 8. Sampled trajectories of the Schlögl model: (a) con-
ditioned on the mean parameter values and, (b) conditioned
on a particular realization of the Poisson processes Y (ω).

the relative variability induced by the different channels
in absence of parametric uncertainty. The conclusion of
this analysis is briefly summarized in Figure 9, which
shows that channels R1 and R4 are the principal sources
of inherent variability in the state X, while R2 and R3 are
less important. This is explained by the selected branch
which depends more heavily on the processes Y1 and Y4

than on Y2 and Y3. Indeed, one can observe that for
all the resampled processes Y2 and Y3 the system has
selected the same (upper) branch.

Figure 10 shows the individual effect of each kinetic pa-
rameter on the reference trajectory. The resampling of Cj
uses increasing coefficients of variation: CoV = 0.05 (top
row), 0.10 (center row) and 0.15 (bottom row). Focus-
ing first on the case of the largest parametric variability
CoV = 0.15, we observe that the resampling of the refer-
ence trajectory leads to very different effects depending
on the considered parameter. Specifically, the resampling
of C1 and C2 induces a large variability of the resulting
trajectories. In fact, both the location of the attracting

branch and the time scale of the selection process are ev-
idently affected when C1 and C2 are resampled. On the
contrary, resampling C3 and C4 appears to essentially
affect the selected branch but not its location. Also, C4

seems to have a greater impact on the time scale to reach
the selected branch, compared to C3. Finally, we observe
that reducing the coefficient of variation CoV reduces the
variability in the trajectories obtained by resampling C1

and C2. This is due to the decreasing uncertainty in
the location of the attracting branches. A similar effect
can be seen on the time scale for reaching an attract-
ing branch and the exchange of attracting branch when
resampling C2 and C3 with a lower CoV.

B. Global sensitivity analysis

The previous exercises with different resampling of the
channel processes and kinetic parameters highlight the
complex structure governing the effects and interactions
between inherent and parametric variability sources.
This complexity stresses the need for quantitative and
generic methodologies enabling the quantification and
importance ranking of individual sources, as performed
below, in order to fully understand the variability in the
model output. It also underlines the importance of the
global sensitivity approach, as the stochastic model re-
sponse can substantially depend on the input uncertainty
level (CoV).

1. Variance decomposition

As for the birth-death example, we start by perform-
ing the parametric / channel variance decomposition, for
the system state G(X) = X(t); unless otherwise noted
CoV = 0.1. The MC estimators of the partial vari-
ances reported in this section use sample sets with size
M = 106.

Figure 11 depicts the time evolution of decomposition
of V [X(t)], into parametric, channels and mixed con-
tributions, for t ∈ [0, 8]. The results show that, for
this value of CoV, the variability in X(t) is predomi-
nantly caused by the uncertainty in the kinetic parame-
ters, which accounts for up to 80% of the total variability.
The remaining fraction of the variance is essentially due
to the mixed effects, particularly for t > 2 where the
channels contribution Vch is negligible. The dominance
of Vpar is explained by the parametric impact on the at-
tracting branch locations; changing the kinetic param-
eters immediately affects the asymptotic time-averages
and even possibly the selected branch, causing significant
variability. The reason for the low contribution of Vch to
V [X] is less obvious and requires additional analysis, as
further discussed below.

To have a better perception of the structure of the
total variability in the model state, we present in Fig-
ure 12 the time evolution of the first-order partial vari-
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(d)Resampling of Y4.

FIG. 9. Trajectories of the Schlögl model in which the kinetic parameters fixed to their mean values, and the only source of
variability is due to the Poisson process specified in the caption. The reference trajectory is shown with a thick magenta line.
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(i)Resampling C1.
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(l)Resampling C4.

FIG. 10. Trajectories of the Schlögl model in which the Poisson processes are fixed and the only source of variability is due
to the parameter specified in the caption. First row corresponds to CoV = 0.05, second row to CoV = 0.10 and third row to
CoV = 0.15. The reference trajectory is shown with a thick magenta line.

ances. Starting with the first-order partial variances as-
sociated with the kinetic parameters, VC1

to VC4
, shown

in Figure 12(a), we observe that the parameter having
the largest effect on X(t) is C1, accounting for roughly
50% of the parametric variance, followed by C4 (≈ 25% of
Vpar) and C2 (≈ 10% of Vpar), while the single effect of C3

is relatively small. The two dominant parameters are in
fact associated with the propensity functions of the two
channels that were shown in Ref. 16 to be responsible for
most of the state variability. The figure also reports the
sum of the first order partial variances VCi , which is seen

to amount to roughly 85% of Vpar, indicating the presence
of some interactions between the parameter variabilities,
independently of the interactions with the channels. In
words, the effects of the parameters are not additive.

Figure 12(b) depicts the evolution of the first-order
partial variances, VYi

, associated with the reaction chan-
nels. Again, channels Y1 and Y4 are seen to dominate
the two other channels in terms of first-order partial vari-
ances. It is remarked that the partial variances VYi

are
lower than their parametric counterparts, VCi

, and that
the interactions between channels appear to be less pro-
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FIG. 11. Decomposition of the variance V [X(t)], for t ∈ [0, 8],
in parametric, channels and mixed contributions. Case of the
Schlögl model with CoV = 0.1.

nounced than the interactions between parameters, as∑
i VYi

is close to Vch . Regarding the time behavior,
the partial variances associated with the channels are ob-
served to initially grow, reaching a maximum for t ≈ 1,
then decrease progressively to roughly half of their max-
imum values and become constant. The initial growth
phase corresponds to the stage where the system evolves
from the initial condition to the randomly selected at-
tracting branch, with an increasing effect of the inher-
ent stochasticity during the selection stage. Shortly after
the branch has been selected, not only the interactions
between the channels develop, as in the case of certain
parameters,16 but the interactions with the parameters
becomes more and more pronounced, with a resulting
significant reduction of the first-order partial variances,
VYi

.

Interactions between the channels and the parameters
can be assessed from the plots of Figure 13. In Fig-
ure 13(a) we report the total effects associated with each
parameter Ci and its interactions with the channels, that
is the total contribution of Ci to Vmix. It is seen that once
more the parameters C1 and C4 have the highest con-
tributions to Vmix while C2 and C3 have contributions
roughly one half smaller. Further, the sum of these total
contributions largely exceeds Vmix indicating the impor-
tance of not only interactions between the Ci and the
channels stochasticity, but also of the joint interactions
between the set of parameters and channels. In fact, the
partial variances due to the interaction between single
parameter Ci, only, and all Poisson processes Y are all
very low compared to Vmix (not shown). Similarly, one
can compute the total contribution of individual chan-
nels Yi to Vmix. Because Vch is small we directly report
in Figure 13(b) the time evolution of the total contribu-
tions of the Yi to the total variance. Compared to the
corresponding first-order partial variances VYi

, shown in
Figure 12(b), we see that the total channel contributions
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FIG. 12. Time evolution of the first-order partial variances.
The top plot corresponds to partial variances associated with
the parameters, Ci, whereas the bottom plot depicts partial
variances associated with the reaction channels’ Poisson pro-
cesses, Yi.

are significantly higher and exhibit a different behavior
in time, monotonically increasing to asymptotically con-
stant values. Again, channels R1 and R4 are found to
contribute roughly equally and twice as much as chan-
nels R2 and R3.

2. Total sensitivity indices

Provided in Figure 14 are the total sensitivity indices
of X(t), associated with the kinetic parameters Ci and
channels Poisson processes Yi. The total sensitivity in-
dices are scaled by the total variance V [X(t)], and are
reported for different coefficients of variation, CoV = 0,
0.05, 0.1 and 0.15.

Figure 14(a), where CoV = 0.0, corresponds to the
case of a model having no parametric uncertainty as
studied in Ref. 16. The total sensitivity indices TCi

of
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FIG. 13. Time evolution of the total contributions of each Ci

to the partial variance Vmix (top plot) and total contribution
to the variance of the channels Yi (bottom plot).

the parameters are then 0, and the variability is princi-
pally due to channels R1 and R4 roughly equally, and
to a lesser exteny to channels R2 and R3. Increasing
the coefficient of variation of the kinetic parameters, we
observe successively in Figure 14(b)-14(d) that the total
sensitivity indices of the parameters, TCi , become pro-
gressively dominant compared to the total sensitivity in-
dices of the channels, TYi

. It is remarked that the total
sensitivity indices of the parameters do not increase pro-
portionally with the squared coefficient of variation, as
one would have expected for a linear parametric depen-
dence. Also, the total variances due to the channels are
seen to slightly diminish with increasing CoV. Regarding
the parametric total indices TCi

the plots indicate that
TC1

> TC4
> TC2

> TC3
for the whole range of CoV

values presented, and that TC1
becomes more dominant

as CoV increases.

C. Local sensitivity analysis

We finally contrast the outputs of the global sensitivity
analysis above with those of a local sensitivity character-
ization. It should be clear that a local characterization of
the Schlögl model is prone to be inappropriate, because of
the complicated non-linear behavior of the system, which
involves third-order reactions, and the non-trivial depen-
dencies on the parameters. Although trajectories of the
model have complex dependencies with respect to the
uncertain kinetic parameters, the statistical moments of
the quantity of interest may behave well and smoothly
as the parameters changes; conducting derivative-based
local approaches is then quite legitimate.

However, we show below that using local information
does not necessarily provide a useful characterization of
the variability in the quantity of interest. In particu-
lar, following the local approach previously introduced
in Sec. IV C for the birth-death model, we wish to esti-
mate by ṼCi

the first-order variances VCi
associated with

the uncertain kinetic parameters, using (see Eq. (15))

ṼCi = L2
Ci
σ2
i , (16)

where LCi
is the derivative, with respect to the i-th ki-

netic parameter, of the averaged quantity of interest at
the parameter mean values Ci = µi. In our case, LCi

is then the derivative of the mean population size, since
G(X) = X. It should be clear that relying on moments
to characterize the influence of parameters can be of lim-
ited relevance, because of the branching nature of the
Schlögl model. Specifically, the average trajectory and
its sensitivity to parameters is not necessarily represen-
tative of the system response, especially after the system
has selected one or the other branch.

To support these claims, we provide in Figure 15 a
comparison of the first-order and total-order variances as-
sociated with the four uncertain kinetic parameters Ci,
and the local estimate ṼCi as defined above. In prac-
tice, we estimate the derivatives LCi of E [G(X] with a
large Monte Carlo sample set (typically M = 106 sam-
ples) using different values for h in Eq. (14) to optimize
the tradeoff between bias and sampling error. The errors
in ṼCi reported below were estimated to be roughly 5%.
Figure 15(a) corresponds to the case of CoV = 0.1 at an
early time t = 0.1, where the system has not yet clearly
selected the random branch. For such a short time, the
distribution of G(X) for the nominal kinetic parameters
is still uni-modal and the local approach is meaningful.
Indeed, the estimates ṼCi

are not far from the first-order
partial variances VCi

, as one would expect. However, it is
already observed that the variability due to the interac-
tions of Ci with other parameters and inherent stochas-
ticity is not accounted by ṼCi

, although these interac-
tions amounts to roughly half of the induced total vari-
ability. Figure 15(b) provides the same comparison but
at a later time, t = 4. At this time, the system has, with
high probability, already selected its attracting branch:
the distribution of G(X) for the nominal parameters is
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FIG. 14. Total sensitivity indices TCi and TYi , scaled by the total variance, versus time. Plotted are results for different values
of CoV as indicated.
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FIG. 15. Comparison of the first order partial variances VCi , total order partial variances VTCi
= V [X]TCi and local estimates

ṼCi using (16). Plots corresponds to CoV = 0.1 for t = 0.1 (left) and t = 4 (center), and CoV = 0.5 for t = 4 (right).

bimodal, and the derivative of its expected value is not
representative of the effects of the parameters. Specifi-
cally, we see that the estimates ṼCi

completely overesti-
mate not only the first-order partial variances VCi

, but

also the total variances induced by parameter Ci, namely
the V [X]TCi

. It could be argued that, though the local
estimates of the variances are far off the actual partial
variances associated with the parameters, the local ap-
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proach is still capable of ranking the relative importance
of the kinetic parameters. This is, however, not true in
general, as can be seen in Figure 15(c) which reports the
previous variances at t = 4, in the case of a coefficient of
variation CoV = 0.5: the global sensitivity analysis indi-
cates that the most important source of variability is C2

(because of non-linear saturation effects), whereas with
the local approach the ranking is obviously the same as
for CoV = 0.1, because in the local approach it is inde-
pendent of CoV.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have extended the variance decompo-
sition approach proposed in Ref. 16 to perform sensitivity
analysis in stochastic simulators having uncertain param-
eters. The parametric uncertainty is treated as an addi-
tional source of variability, assumed to be independent of
the inherent stochasticity of the reaction channels. This
assumption permits the decomposition of the variance
of second-order quantities of interest derived from the
system state, distinguishing between different variabil-
ity sources, in particular the channel randomness and
the parametric contributions. The approach differs from
the classical parametric sensitivity analyses based on the
parametric dependences of some statistical moments of
the quantities of interest. It offers practical means to
fully characterize the complex interplays between inher-
ent sources of noise and individual uncertain parameters
effects, through the evaluation of global sensitivity in-
dices associated with an arbitrary set of parameters and
random channels.

A Monte Carlo algorithm has been proposed and im-
plemented to illustrate the computation of these sensi-
tivity indices. It has been applied to simple stochas-
tic systems, namely the birth-death and Schlögl models.
Through these examples, we have shown that inherent
and parametric variability sources influence the model
output in a different fashion. In particular, the impact
of uncertain parameters becomes more pronounced when
their coefficients of variation are increased. In contrast,
the inherent variability due to the reaction channels is
less affected by the amount of parametric uncertainty,
demonstrating the irreducibility of the channels stochas-
ticity.

Numerical examples have also highlighted the impor-
tance of a global sensitivity approach, as opposed to local
sensitivity methods using derivatives with respect to the
uncertain parameters of statistical moments. In particu-
lar, our computations showed that first-order derivatives
of the first moment was not able to properly account for
the interactions between parameters, and is not suitable
to assess the global variability induced by a given param-
eter, even for moderate uncertainty levels. To some ex-
tent, these limitations can be remedied considering high-
order and mixed derivatives, a global-derivative-based
approach30 or more advanced representations of the para-

metric dependencies of the moments.31–33 We advocate
for the simplicity and generality of the global variance
decomposition method, as other sensitivity approaches
may miss the characterization of the variance incurred
due to the stochasticity of the channels, which is es-
sential for a complete understanding of the stochastic
dynamics. The advantages afforded by global sensitiv-
ity approach are thus regarded as highly beneficial in a
range of applications. Specifically, besides providing an
effective means for avoiding the limitations of local sen-
sitivity analyses and moment based approaches, which
were highlighted above based on simple model simula-
tions, the presently approach also offers the capability
of quantifying the impact of parametric uncertainties,
the inherent stochasticity of individual channels and of
groups of channels, as well mixed effects involving re-
ducible and irreducible sources of uncertainty. Examples
where these features would be of special importance in-
clude the analysis of system robustness, model reduction,
and parameter calibration.4,34–38

The application of the proposed method to complex
stochastic systems remains challenging because of the
sampling effort. Even though the method is trivial to
implement in parallel, future works should focus on the
improvement of the methods to lower its computational
complexity. Specifically, the results presented in this
work relied on exact simulators, such that the errors in
the MC estimation of the sensitivity indices are directly
related to the sampling error. As for any standard MC
method, a rate in 1/

√
M is expected for the convergence

of the sensitivity indices, and a large enough samples set
must be used to properly explore both the parametric
and Poisson processes domains and reduce the variance of
the estimators. Note that a different number of samples
M could be used depending on the considered sensitivity
indices, as their estimators may have fairly different vari-
ances. In any case, the convergence with the number of
samples is slow and we plan to reduce the computational
complexity of Algorithm III.1 in the future, by relying
on Multi-Level Monte Carlo strategies.39–41 Specifically,
we envision to alleviate the computational cost of esti-
mating the correlations, between quantities of interest at
different parameter values and Poisson processes, using
multi-level estimators. The main difficulty in designing
such a Multilevel Monte Carlo approach for the estima-
tion of the sensitivity indices will be the enforcement of
consistent realizations for the channels Poisson processes
in tau-leaping approximations.23,42–44 Indeed, one would
need to sample the same realization of a Poisson process
for different time step and parameter values, and not just
to generate highly correlated but distinct realizations of
the Poisson process. This can be achieved via a condi-
tional sampling of the Poisson process increments. This
would necessitate devising a multi-level procedure capa-
ble of balancing the sampling and the bias errors of a
set of estimators for the sensitivity coefficients. Progress
along this direction will be reported elsewhere.
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Appendix A: Glossary

Ω, ω ∈ Ω Event space, random event

µ,Σ Probability measure, σ−algebra

Ms Numbers of chemical species

S1, . . . , SMs
Chemical species

Xi Random number of Si molecules

X = (X1 . . . XMs) Random state vector

Mr Number of reaction channels

R1, . . . , RMr
Reaction channels

Yj Poisson process of channel Rj
Y = (Y1 . . . YMr

) Vector of Poisson processes

aj Propensity functions of channel Rj
νj Stoichiometric vector of channel Rj
t, tj Time and scaled time of channel Rj
RGj Random number generator for Yj
Nc Number of kinetic parameters

c,C Deterministic and uncertain vectors

of kinetic parameters

pC(c) Probability density function of C

NU = Mr +Nc Total number of stochastic sources

U = (C,Y ) Vector of all stochasticity sources

G(X) Second order random functional

E [·] ,V [·] Expectation and variance operators

Vpar Variance of G due to parameters (C)

Vch Variance of G due to the channels (Y )

Vmix Variance of G due to joint effects

Spar,ch,mix First order sensitivity indices

Tpar,ch,mix Total order sensitivity indices

u ∈ {1, . . . , NU} Subset of stochastic sources

Su, Tu First and Total order sensitivity indices

associated to u

VSu , VTu Scaled version of the sensitivity indices

LCi
Local sensitivity index

V̂•, T̂•, Ŝ•, . . . Monte Carlo estimates

ṼCi Estimate of VTCi
based on LCi

CoV Coefficient of Variation

B,D Uncertain birth and death rates
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