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Abstract

A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed for stochastic differential
equations driven by additive or multiplicative Wiener noise. It is shown that for this setting, a Galerkin
formalism naturally leads to the definition of a hierarchy of stochastic differential equations governing the
evolution of the PC modes. Under the mild assumption that the Wiener and uncertain parameters can be
treated as independent random variables, it is also shown that the Galerkin formalism naturally separates
parametric uncertainty and stochastic forcing dependences. This also enables us to perform an orthogonal
decomposition of the process variance, and consequently identify contributions arising from the uncertainty in
parameters, the stochastic forcing, and a coupled term. Insight gained from this decomposition is illustrated
in light of implementation to simplified linear and non-linear problems; the case of a stochastic bifurcation
is also considered.
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1. Introduction

The simulation of complex systems frequently necessitates the simulation of stochastic differential equa-
tions. Well-known examples include chemical kinetics [14, 15, 16, 17, 18, 28, 11], small-scale hydrodynam-
ics [21, 42, 3, 10], as well as large-scale ocean and atmosphere models relying on stochastic parametrizations
of unresolved scales [4, 20, 27]. In many cases, one is also faced additional challenges associated with the lack
of complete knowledge of model parameters, or generally with uncertain model data. These uncertainties
compound the challenges of simulating the stochastic dynamics. Conversely, in the presence of irreducible
noise, the problems of quantifying the impact of uncertainties, assessing sensitivities, calibrating parameters
and assimilating data, become even more daunting.

A basic challenge in the simulation of stochastic systems involving uncertain parameters concerns the need
to quantify the impact of uncertain model parameters on the resulting properties or dynamics. Classically,
this has been restricted to analyzing the behavior of low order moments, namely the mean and variance
of the solution or of selected observables. Various approaches have been applied for the purpose of mean
and variance analysis, typically combining sampling methods to account for stochastic forcing, with either
sampling techniques or functional representations to account for uncertain model inputs [36, 37, 31, 32, 29,
30, 1].

In this work, we introduce a new methodology for simulating and analyzing stochastic differential equa-
tions in the presence of uncertain inputs. We restrict our attention to the situations in which the forcing is
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continuous, more specifically on stochastic differential equations driven by additive or multiplicative Wiener
noise. Under the mild assumption that the Wiener noise and uncertain parameters can be treated as inde-
pendent random variables, this setting enables us to rely on L2 theory, defined on an abstract probability
space in which an “event” can, in its simplest form, be conceptually associated with a specific realization
of both the Wiener process and of the uncertain vector of data inputs. Within this framework, we rely on
polynomial chaos (PC) representations [41, 5, 12, 23] to represent uncertain model inputs and their impact
on the solution, and show that implementation of a Galerkin formalism naturally leads to the definition
of a hierarchy of stochastic differential equations governing the evolution of the PC modes of the overall
solution. A key advantage of this approach is that, in addition to providing a complete characterization of
the stochastic modes of the solution, it also enables us to perform an orthogonal decomposition of the process
variance, and consequently identify contributions arising from the uncertainty in parameters, the stochastic
forcing, and a coupled term.

Combined, our reliance on an L2 characterization of the impact of uncertain parameters, our ability
to perform an orthogonal decomposition of the variance, and the mild assumptions on the nature of the
stochastic forcing distinguish the present construction from relevant recent efforts. In particular, Chen et
al. [6] considered the case of on an uncertain structure subjected to random forcing, focusing on situations
in which noise can be suitably represented by a finite set of canonical random variables. This enabled
them to approach the problem in terms of unified treatment of the uncertain structural properties and
the stochastic forcing, specifically using an extended random vector that represents their impact. Within
this framework, a sampling based probability density approach is developed to capture the response of the
uncertain structure to random excitation. While the approach is shown to be quite effective, its extension
to situations involving non-smooth stochastic forcing terms is generally challenging, and the approach does
not afford a decomposition of the process variance into individual orthogonal components.

The modelling of stochastic systems using functional representations has also been subject of recent
efforts, namely based on PC, dynamically orthogonal (DO) decompositions, as well as hybrid PC-DO ap-
proaches [7, 33, 35, 34]. In [7, 33], the methodology exploits the smooth character of the stochastic source
terms, which leads to compact modal representations that are evolved by simulating governing equations
for the modal coefficients. While the works in [7, 33] do not simultaneously address parametric uncertain
and random fluctuations, the framework can naturally accommodate both sources. However, extension of
the methodology to situations involving non-smooth stochastic forcing, and to enable a decomposition of
the solution variance does not appear to be evident. The recent developments in [35, 34] also rely on DO
decomposition, but evolve the DO modes based on deriving governing equations for the mean and covariance
of the solution, and using an appropriate closure for the evolution of covariance. This framework allows one
to consider consider mild assumptions on structure of the stochastic noise, similar to what we consider in
the present work. On the other hand, extension of the methodology to incorporate parametric uncertainties
and to isolate contributions of uncertain parameters and random forcing is not obvious.

In order to illustrate the features of the present constructions, we focus on the case of a stochastic
ordinary differential equation, with uncertain inputs parametrized using a low-dimensional germ (number of
independent inputs). Section 2 briefly outlines the setting adopted for the governing system, and introduces
basic definitions and notations. Section 3 then introduces the framework for parametric uncertainty, and
the functional representations used to express the dependence of the solution on these parameters, as well
as the Galerkin formalism used to describe the stochastic dynamics governing the coefficients in the PC
representation. In section 4, we outline how this machinery can be implemented to construct an orthogonal
decomposition of the variance of the solution. Insight gained from this decomposition is illustrated in Section
5, namely in light of implementations to simplified linear problems, and in Section 6 using simulations of a
non-linear problem involving an unstable fixed point. Major conclusions are summarized in Section 7.

2. Stochastic Ordinary Differential Equation (SODE) with Parametric Uncertainty

Consider the generic stochastic ordinary differential equation (SODE),

dX(t, ω) = C(X(t, ω))dt+D(X(t, ω))dW (t, ω), (1)
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where X : (t,Ω) ∈ T ×Ω 7→ R is a real-valued stochastic process, T
.
= [0, Tf ] with Tf > 0, and W (t, ω) is the

Wiener process. The functions C : R 7→ R and D : R 7→ R+ are are the drift and diffusion coefficient respec-
tively. Equation (1) is complemented by an initial condition, say X(t = 0, ω) = X0(ω). The developments
below can be readily extended to the case of non-autonomous SODEs.

2.1. Parametric uncertainty

In most settings, one focuses on the simplified situation where the stochasticity of the system is solely
induced by the Wiener process. In the present work, we consider the generalized situation where the initial
condition, the drift and the diffusion coefficient also depend on an uncertain parameter vector, U , whose
coordinates have known probability law. The continuous SODE is then recast as:

dX(t, ω) = C(X(t, ω), U(ω))dt+D(X(t, ω), U(ω))dW (t, ω), X(t = 0, ω) = X0(U(ω)). (2)

The fundamental assumption supporting the subsequent developments is that the random parameters U(ω)
of the SODE and the Wiener process W (t, ω) are independent. As a result, the stochastic process X(t, ω)
can be seen as a functional of two independent random quantities, the Wiener process W (t, ω) and the model
parameters U(ω). Our objective is then to compute X(t, ω), and to express the solution in a format that
enables us to perform a sensitivity analysis of the solution to different sources of uncertainty.

2.2. Discrete form

Classical SODEs are solved by simulation techniques, such as Monte-Carlo methods. To this end, consider
a time mesh ti = i∆t, i = 0, 1, 2, . . . , Nt and ∆t ≡ Tf/Nt. On this mesh, the stochastic process can be
discretized as Xi(ω) = X(ti, ω). For simplicity of the exposition, we rely on the simplest time integration
scheme to solve (2). Specifically, using the Euler forward scheme, the discrete solution, Xi is given by:

Xi+1(ω) = Xi(ω) + C(Xi(ω), U(ω))∆t+D(Xi(ω), U(ω))∆W i(ω) i = 0, 1, . . . , Nt − 1. (3)

where ∆W i(ω), i = 1, 2, . . . are independent identically distributed (iid) Gaussian random variables with
zero mean and variance ∆t.

Sampling based or Monte-Carlo (MC) methods can be used to simulate realizations of Xi, from which
one can estimate various quantities of interest, moments, correlations, expectation of some functionals of
X, etc. . . In its simplest form, the MC method consists in generating M pseudo-random sequences of the
Wiener increments, {∆W i

j , i = 0, . . . , Nt − 1, j = 1, . . . ,M}, together with independent sampling of U ,
{Uj , j = 1, . . . ,M}, where j refers to the sequence sample index. For each j, one then solves

Xi+1
j = Xi

j + C(Xi
j , Uj)∆t+D(Xi

j , Uj)∆W
i
j , i = 0, 1, . . . , Nt − 1, (4)

to obtain a set of M trajectories {Xj , j = 1, . . . ,M} of X(t, ω). Finally, given a functional g, one can
estimate the expectation of g(X) through

E {g(X)} ≈ 1

M

M∑
j=1

g(Xj). (5)

For the purpose of uncertainty analysis, and in order to separate the effects of the Wiener process and of
the parametric uncertainty, it is often necessary to proceed from MC estimates of a conditional value of X.
For instance, one may be interested in computing the variance of the expectation of X conditioned on U ,
that is V {E {X | U}}. Using the independence of U and W , the MC estimate requires a nested approach
where one first solves, for a fixed realization Uk of the parameters, the M resulting trajectories according to

Xi
j,k = Xi−1

j,k + C(Xi−1
j , Uk)∆t+D(Xi−1

j,k , Uk)∆W i
j , i = 1, 2, . . . , Nt, (6)
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and then using the predictionsXj,k to estimate the conditional expectation E {X | Uk} ≈ 1
M

∑M
j=1Xj,k = µk.

Repeating this process for each Uk, the variance V {E {X | U}} can be estimated through

V {E {X | U}} ≈ 1

M − 1

M∑
k=1

µ2
k −

(
1

M

M∑
k=1

µk

)2

. (7)

We observe that this procedure may not necessarily use the same sample set size for W and U , and that
different sample sets of the Wiener processes can be used for different parameter samples Uk (in particular
for parallelization and error balancing). The main observation is that, regardless of the details of the MC
sampling method selected, distinguishing between the effects of parameter uncertainty and intrinsic noise
(Wiener) requires successive averaging, and consequently information loss. This has motivated the approach
proposed below where such conditional sampling is avoided.

3. Hybrid Galerkin-MC Method for SODEs with Parametric Uncertainty

In this section, we propose an alternative approach to account for parametric uncertainty in SODEs. We
first introduce Wiener-like (functional) expansions for random quantities depending on uncertain parameters
only. We then introduce an extension of such functional expansions, namely to represent the solution of
SODEs also involving irreducible noise.

3.1. Functional expansion

We shall assume in the following that the uncertainty vector, U , is parameterized by a uncertainty germ
of N real-valued independent random variables ξξξ = {ξ1, . . . , ξN}. In other words, U(ω) = U(ξξξ(ω)). We
denote, respectively, by Ξi ∈ R and pi the range and density of ξi, i = 1, . . . ,N, and by Ξ ∈ RN the range
and pξξξ the joint-density of ξξξ. Elements of ξξξ being independent, Ξ and pξξξ have product structures

Ξ =

N∏
i=1

Ξi, pξξξ(x1, . . . , xN) =

N∏
i=1

pi(xi),

∫
Ξ

pξξξ(xxx)dxxx =

N∏
i=1

(∫
Ξi

pi(xi)dxi

)
= 1.

Let L2(Ξ, pξξξ), or simply L2 when no confusion is possible, be the space of second-order functionals in ξξξ,
equipped with the inner product and associated norm denoted 〈·, ·〉 and ‖ · ‖L2 respectively:

∀U, V ∈ L2(Ξ, pξξξ), 〈U, V 〉 .=
∫

Ξ

U(xxx)V (xxx)pξξξ(xxx)dxxx; ‖U‖L2

.
= 〈U,U〉1/2 <∞⇔ U ∈ L2(Ξ, pξξξ).

Introducing an orthonormal basis {Ψk(ξξξ); k ∈ N} for L2(Ξ, pξξξ) any second-order randon variable U(ξξξ) can
be expanded as

L2(Ξ, pξξξ) 3 U(ξξξ) =
∑
k∈N

[Uk] Ψk(ξξξ).

The coefficients [Uk] are also referred to as modes of U . Classical choices for the basis functionals are the
set of multivariate polynomials or multiwavelets in ξξξ (see section 5). The orthonormality of the basis is
expressed as:

〈Ψk,Ψl〉 =

∫
Ξ

Ψk(xxx)Ψl(xxx)pξξξ(xxx)dxxx = δkl =

{
1 k = l,

0 otherwise.

Returning to our problem of computing X(t, ω) governed by Eq. (2), we first observe that X depends
on the uncertain parameters U(ξξξ(ω)) and on the Wiener process W (t, ω), which as previously noted are
assumed independent. If X ∈ L2(Ξ, pξξξ) for t > 0 and for almost any trajectory of W (t), we are lead to
consider the separated representation,

X(t, ω) =
∑
k∈N

[Xk] (t, ω)Ψk(ξξξ(ω)), (8)

where the random processes [Xk], k ∈ N, are independent of ξξξ, but are functions of W (t, ω).
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3.2. Hybrid Galerkin sampling method

We now need to derive equations that enable us to determine the stochastic processes [Xk] (t, ω). We
follow the stochastic Galerkin approach proposed in [12] for this purpose. Specifically, we introduce the
expansion (8) into Eq. (2) and project the resulting equation on the stochastic basis, taking the inner
product in L2(Ξ, pξξξ) with each of the functional Ψk. Using the orthonormality of the basis functionals, we
obtain for all k ∈ N

d [Xk] (t, ω) =

〈
C

(∑
l∈N

[Xl] (t, ω)Ψl(ξξξ), U(ξξξ)

)
dt,Ψk(ξξξ)

〉

+

〈
D

(∑
l∈N

[Xl] (t, ω)Ψl(ξξξ), U(ξξξ)

)
dW (t, ω),Ψk(ξξξ)

〉
.

Using the fact that W (t, ω) is independent of ξξξ, the above equation can be recast as

d [Xk] =

〈
C

(∑
l∈N

[Xl] Ψl, U

)
,Ψk

〉
dt+

〈
D

(∑
l∈N

[Xl] Ψl, U

)
,Ψk

〉
dW, ∀k ∈ N.

For computational purposes, this infinite sequence of coupled problems must be truncated. Assuming that
the expansion of X is truncated to its first P + 1 terms, we get the following system of P + 1 coupled
stochastic differential equations:

d [Xk] = [Ck] ([X0] , . . . , [XP ])dt+ [Dk] ([X0] , . . . , [XP ])dW, k = 0, . . . , P (9)

where we have denoted

[Ck] ([X0] , . . . , [XP ])
.
=

〈
C

(
P∑
l=0

[Xl] Ψl, U

)
,Ψk

〉
, (10)

[Dk] ([X0] , . . . , [XP ])
.
=

〈
D

(
P∑
l=0

[Xl] Ψl, U

)
,Ψk

〉
. (11)

This system of SODEs has to be complemented by initial conditions which are simply obtained by projecting
the initial data on the stochastic basis

[Xk] (t = 0) =
〈
X0,Ψk

〉
. (12)

Aggregating the modes into vectors, we finally have to solve

dXXX = CCC(XXX)dt+DDD(XXX)dW, XXX(t = 0) = XXX0, (13)

where XXX0 is given in component form by Eq.(12).

Again, the system of SODEs can be solved using standard Monte-Carlo simulation, introducing a time
scheme and generating trajectories for the Wiener-process. We emphasize that the modes [Xk] are all driven
by a unique Wiener process. Following the notations of section 2.2, the time-discretized system for the Euler
method becomes

XXXi+1(ω) = XXXi(ω) +CCC(XXXi)∆t+DDD(XXXi)∆W i(ω), i = 0, 1, . . . (14)

For the j-th sample trajectory of the discretized Wiener process increments, {∆W i
j = W i+1(ωj)−W i(ωj), i =

0, 1, . . . }, we obtain the following discrete approximation

Xi
j(ξξξ) ≈

P∑
k=0

[Xk]ijΨk(ξξξ), (15)

5



where the vector of expansion coefficients XXXi
j = ([X0]ij , · · · , [XP ]ij)

T solves Eq. (14). We emphasize that

Xi
j(ξξξ) in Eq. (15) is still a random quantity, being dependent on the model parameters.

The main computational difficulty in solving the system comes from the projection of the drift and
diffusion coefficients appearing in Eqs. (10)-(11). To this end, one can rely for instance on pseudo-spectral
projection methods (see discussions in [9, 23]). This point will be further discussed in the result sections on
the basis of the examples provided.

4. Variance Decomposition of noise / parameter contributions

In this section, we provide expressions to retrieve the second-order properties of the uncertain stochastic
process from its PC expansion. Having determined the conditional expectations and variances, we introduce
the Sobol-Hoeffding (SH) decomposition of the process, to separate X into orthogonal functionals in the
parameters, noise and coupled contribution. The SH decomposition is further exploited to derive the expres-
sion of the sensitivity indices, allowing for a fine analysis of the impact of the distinct sources of randomness
on the process. Finally, we briefly discus computational aspects for Monte-Carlo estimation of the variance
decomposition. In the remainder of the section, we drop the time dependence to simplify the notation.

4.1. Mean and Total Variance

The mean of the process, X̄ = E {X}, is immediately obtained from the PC expansion of X as follows

E {X} ≈ E

{
P∑
k=0

[Xk] Ψk

}
=

P∑
k=0

E {[Xk]}E {Ψk} = E {[X0]} . (16)

Here, we used the convention Ψ0 = 1 and exploited the independence of the random PC coefficients [Xk] (ω)
(functions of W only) and basis random functionals Ψk(ξξξ(ω)). In other words, the mean of the process is
equal to the average value of the first component of the vector-valued random process XXX. Similarly the
(total) variance of the process, V {X}, is given by

V {X} = E
{

(X − E {X})2
}
≈ E


(

P∑
k=0

[Xk] Ψk − E {[X0]}Ψ0

)2


= E

([X0]− E {[X0]})2 − 2 ([X0]− E {[X0]})
P∑
k=1

[Xk] Ψk +

(
P∑
k=1

[Xk] Ψk

)2


= V {[X0]}+

P∑
k=1

E
{

[Xk]
2
}
. (17)

The above expression shows that the total variance of the process is given by the sum of the variance of the
first PC coefficient [X0] (ω) and the second moments of the higher-order (P > 0) PC coefficients.

4.2. Conditional expectations and variances

One advantage of the PC expansion of the uncertain stochastic process is that it enables us to readily
determine of the conditional expectations and variances. For instance, the conditional expectation X given
ξξξ = ηηη is simply expressed as:

E {X | ξξξ = ηηη} ≈ E

{
P∑
k=0

[Xk] Ψk

∣∣∣∣∣ ξξξ = ηηη

}
=

P∑
k=0

E {[Xk]}E {Ψk | ξξξ = ηηη} =

P∑
k=0

E {[Xk]}Ψk(ηηη). (18)
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Additionally, the dependence with respect to the uncertain parameters of the W -average of the process,
denoted µX(ξξξ), is simply retrieved from the PC expansion by averaging the coefficients:

µX(ξξξ) = E {X | ξξξ} =

P∑
k=0

E {[Xk]}Ψk(ξξξ). (19)

Further, the conditional variance of X given that ξξξ = ηηη can be expressed as:

V {X | ξξξ = ηηη} = E
{

(X − E {X|ξξξ = ηηη})2
∣∣ ξξξ = ηηη

}
≈ E


(

P∑
k=0

[Xk] Ψk −
P∑
k=0

E {[Xk]}Ψk(ηηη)

)2
∣∣∣∣∣∣ ξξξ = ηηη


=

P∑
k,k′=0

[E {[Xk] [Xk′ ]} − E {[Xk]}E {[Xk′ ]}] Ψk(ηηη)Ψk′(ηηη) =

P∑
k,k′=0

[CXXX,XXX ]k,k′Ψk(ηηη)Ψk′(ηηη),

where we have denoted [CXXX,XXX ] the covariance matrix of the random vector XXX(ω). From this expression, the
PC expansion of the W -variance of X as a function ξξξ can be obtained:

Σ2
X(ξξξ) ≈

P∑
k=0

[
Σ2
X,k

]
Ψk(ξξξ),

[
Σ2
X,k

]
=

P∑
m,n=0

[CXXX,XXX ]m,n 〈ΨmΨn,Ψk〉 . (20)

Conversely, the expectation of X conditioned on W = W (ω) is

E {X | W = W (ω)} ≈ E

{
P∑
k=0

[Xk] Ψk

∣∣∣∣∣ W = W (ω)

}

=

P∑
k=0

E { [Xk] | W = W (ω)}E {Ψk} = [X0] (ω). (21)

In other words, the parameter-average of X given a realization W (ω) of the noise is equal to the corre-
sponding realization of the coefficient [X0] (ω). Similarly, the conditional variance V {X | W = W (ω)} can
be expressed according to:

V {X | W = W (ω)} = E
{

(X − E {X | W = W (ω)})2
∣∣∣ W = W (ω)

}
≈ E


(

P∑
k=0

[Xk] Ψk − [X0] (ω)

)2
∣∣∣∣∣∣ W = W (ω)

 =

P∑
k=1

[Xk]
2

(ω). (22)

Therefore, the variance in X due to the parameter given that W = W (ω) is obtained by the corresponding
sum of the squares of the PC coefficients, but the first one.

4.3. Sobol–Hoeffding decomposition

At this point, we have derived from the PC expansion of X expressions for expectations and variances
conditioned onW and ξξξ, respectively. We now make use of these expressions to perform the SH decomposition
of X [38]. Our objective, based on the fact that X can be seen as a second-order random functional depending
on two independent sources of randomness, the noise W and the parameters ξξξ, is to decompose X into

X = X̄ +Xpar(ξξξ) +Xnoise(W ) +Xmix(ξξξ,W ), (23)

where X̄ is the global mean of X, Xpar is function of ξξξ (parameters) only, Xnoise is function of W (noise)
only and Xmix depends on both ξξξ and W . Requiring the orthogonality of the decomposition makes it unique,
and the functionals are then given by the conditional expectations as follows [38]:

Xpar(ξξξ) = E {X | ξξξ} − X̄, (24)

Xnoise(W ) = E {X | W} − X̄, (25)

Xmix(ξξξ,W ) = X + X̄ − E {X | ξξξ} − E {X | W} . (26)
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The orthogonal character of the decomposition can be easily verified observing that E {E {X | W}} =
E {E {X | ξξξ}} = X̄. Using the previous expressions for the conditional expectations in terms of the PC
coefficients of X, we obtain:

Xpar(ξξξ) =

P∑
k=1

E {[Xk]}Ψk(ξξξ), (27)

Xnoise(W ) = [X0]− E {[X0]} , (28)

Xmix(ξξξ,W ) =

P∑
k=1

([Xk]− E {[Xk]}) Ψk(ξξξ), (29)

providing explicit expressions for the SH decomposition of X in terms of the PC coefficients.

4.4. Sensitivity Analysis

The orthogonality of the SH decomposition (23) leads to a natural decomposition of variance of X into
partial variances:

V {X} = Vpar + Vnoise + Vmix, V•
.
= V {X•} for • = par,noise,mix. (30)

The expression of these partial variances, in terms of the stochastic vector XXX is immediate:

Vpar =

P∑
k=1

E {[Xk]}2 , Vnoise = V {[X0]} , Vmix =

P∑
k=1

V {[Xk]} . (31)

These partial variances can be normalized by the total variance V {X} to construct the so-called sensitivity
indices used for global sensitivity analysis of X. Specifically, the two first-order sensitivity indices Spar and
Snoise, given by

Spar
.
=

Vpar

V {X}
, Snoise

.
=

Vnoise

V {X}
,

respectively measure the fraction of the variance in X that arises solely to the two independent sources
of variability: the uncertain paramaters and the noise. The second order index Spar,noise = Vmix/V {X}
measures the fraction of the variance caused by the interaction effects between the noise and the parametric
uncertainty. Often, global sensitivity analysis (SA) is based on the first order (defined above) and total
sensitivity indices, namely

Tpar =
Vpar + Vmix

V {X}
≥ Spar, Tnoise =

Vnoise + Vmix

V {X}
≥ Snoise.

The interpretation of the sensitivity indices is as follows. Whenever Tpar (resp. Tnoise) is small, the parametric
uncertainty (resp. noise) is deemed to have a negligible impact on the variability of X. When Tpar/Spar ≥ 1
(resp. Tnoise/Snoise ≥ 1) is close to 1, the effect of the parametric (resp. noise) is said to be essentially additive
(exactly additive when equal to 1). In fact, the model is said purely additive when Spar + Snoise = 1. We
observe that the interaction of the parameters and noise is here entirely characterized by the second-order
index Spar,noise. When Spar,noise = 0, the noise and parametric uncertainty have additive effects on the model.

Also, in many situations the parametric uncertainty affects distinct and independent components of
the model, for instance independent uncertainty in the drift function C on the one hand, and the diffusion
coefficient on the other hand. In such a case, one may want to perform a finer sensitivity analysis to compare
the impact of different uncertainty sources (and noise). The proposed decomposition above can be extended
to perform this type of analysis. The procedure is outlined below.

Recall that the uncertainty in the model is parametrized using a set of N independent r.v., ξξξ = {ξ1, · · · , ξN}.
Denoting N = {1, · · · ,N} the set of uncertain dimensions, we assume that N can be partitioned into a set
D of d ≤ N distinct sets Di, referring to independent sources of uncertainties:

D = {D1, · · · ,Dd},
d⋃
i=1

Di = N , Di ∩ Dj 6=i = ∅.
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Then for u ⊆ D, we denote its complement u∼
.
= D \ u and ξξξu = {ξu1 , · · · , ξu|u|}, where in this context | · |

is the cardinality of the set. For instance, ξξξ can be separated into two independent subsets ξξξ = {ξξξC, ξξξD}
related to the uncertainty in the drift and diffusion respectively, so D = {C, D} with cardinality 2, and u

can be ∅, C, D and C ∪ D. The SH decomposition over D of a functional F ∈ L2(Ξ, pξξξ) can be expressed as∑
u⊆D Fu(ξξξu), where the summation involves 2|D| elements. The elements are defined recursively from the

conditional expectations as follows:

Fu(ξξξu) = E {F | ξξξu} −
∑
v(u

Fv(ξξξv).

Returning to our problem, we already have the decomposition of X into parametric, noise and mixed con-
tribution. To further separate contributions of subsets of parameters, say C and D, we just have to deal with
Xpar and Xmix, Xnoise being independent of ξξξ. We then have to introduce the SH decompositions over D of
Xpar and Xmix,

Xpar(ξξξ) =
∑
u⊆D
u6=∅

Xpar
u (ξξξu), Xmix(ξξξ,W ) =

∑
u⊆D
u6=∅

Xmix
u,W (ξξξu,W ), (32)

to obtain the generalized SH decomposition of X, over D:

X = X̄ +
∑
u⊆D
u6=∅

Xpar
u (ξξξu) +Xnoise(W ) +

∑
u⊆D
u6=∅

Xmix
u,W (ξξξu,W ).

The extended definition of the first order and total sensitivity indices, retaining the separation of parametric
and noise contribution for convenience, becomes

Su =
V {Xpar

u }
V {X}

, Tu = Tpar
u + Tmix

u , Tpar
u =

∑
v⊆D
u∈v

V {Xpar
v }

V {X}
, Tmix

u =
∑
v⊆D
u∈v

V
{
Xmix

v,W

}
V {X}

Tnoise = Tnoise
noise + Tmix

noise, Tnoise
noise =

V {Xnoise}
V {X}

, Tmix
noise =

∑
u⊆D
u6=∅

V
{
Xmix

u,W

}
V {X}

. (33)

Observe that Tnoise takes the same value as before, but its expression with summation over elements u

provides an effective means to analyze the impact of different uncertain parameters on the mixed term
contribution.

It remains to make explicit the expressions of the partial variances appearing in the definition of the first
order and total sensitivity indices. This turns out to be easier than expected if we consider the expressions
of the functionals Xpar and Xmix provided in (27) and (29). Since these functionals are expressed as PC
expansions in ξξξ, with coefficients in terms of the components ofXXX, their decompositions in (32) only amounts
to the decomposition of the basis functional Ψk(ξξξ). In the case of PC expansions with basis resulting from
the tensorization of orthogonal families of univariate polynomials, the SH decomposition of Ψk over D is
explicit [8], allowing for the explicit decomposition of a PC expansion. Specifically, we have

F (ξξξ) =

P∑
k=0

[Fk] Ψk(ξξξ) =
∑
u⊆D

Fu(ξξξu), Fu(ξξξu) =
∑

k∈K(u)

[Fk] Ψk(ξξξ),

where K(u) ⊆ {1, · · · , P} is the set of indices k for which Ψk(ξξξ) is a polynomial of degree greater than zero
ξξξu and exactely zero in ξξξu∼ :

k ∈ K(u)⇒ Ψk(ξξξ) = Ψk(ξξξu) 6= Ψ0.

Consequently, the partial variance V {Fu} =
∑
k∈K(u) [Fk]

2
. Assuming such polynomial basis for the expan-
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sion of X, we can derive the following expressions for the sensitivity indices of X:

V {X} Su =
∑

k∈K(u)

E {[Xk]}2 , V {X} Tpar
u =

∑
k∈T (u)

E {[Xk]}2 ,

V {X} Tmix
u =

∑
k∈T (u)

V {[Xk]} , V {X} Tmix
noise =

∑
u∈D
u6=∅

∑
k∈K(u)

V {[Xk]} , (34)

where T (u) ⊆ {1, · · · , P} is the set of indices k such that Ψk is of degree > 0 in ξξξu.

When general bases are considered, i.e. not smooth polynomial bases as for instance with the multi-
wavelet basis in Section 6, the computation of the sensitivity indices associated to u can be more involved
(see for instance [40]) but remains essentially based on linear operators acting on the PC expansion, which
can be efficiently implemented if the directional averages of the Ψk are known explicitly.

4.5. Computational Aspects

We now briefly discuss the computational procedure for estimating of the second-order characterization
of X and its sensitivity analysis. Based on the discussion above, it is clear that this task essentially consists
in computing the second order properties of the stochastic coefficient vector XXX. The vector is governed by
the coupled system of SODEs (13). Realizations of the stochastic vector can be obtained by solving (13) for
a sample set W = {Wj(t), j = 1, . . . ,M} of M independent realizations of the Wiener process, resulting in
a sample set X = {XXXj(t), j = 1, . . . ,M} of vector realizations. The usual (unbiased) estimators can be used
to estimate the first and second moment of the vector,

E {XXX} ≈ Ê {XXX} =
1

M

M∑
j=1

XXXj , [CXXX,XXX ] ≈ ̂[CXXX,XXX ] =
1

M − 1

M∑
j=1

XXXT
j XXXj − Ê {XXX}

T
Ê {XXX}.

For a vanilla Monte-Carlo sampling, it is well known that the errors on the empirical estimators will de-
cay as 1/

√
M such that a sufficiently large number of samples may eventually be needed for an accurate

characterization of the process. This aspect can be improved, for instance by employing Multi-Level Monte-
Carlo [13, 19], but we restrict in the following to basic MC sampling with low-order time-integration scheme,
and focus on the PC decomposition.

5. System with Linear Drift

This section illustrates the implementation of the PC decomposition and the application of the orthogonal
variance decomposition to quantify the impacts of stochastic forcing and uncertain parameters in the solution
of SODEs with linear drift term. A case with non-linear drift term will be considered in section 6, treating
a more complex model involving bifurcation near an unstable fixed point.

We start in section 5.1 by detailing the dynamics of the stochastic modes [X]k for a simple linear model
with additive noise, namely the Ornstein-Uhlenbeck (OU) process with uncertain parameters. In section 5.2
we generalize the OU model to the case of multiplicative noise (drift coefficient depending on X) and
highlight the impact of the multiplicative noise on the modes dynamics. In section 5.3 we illustrate the SH
decomposition of the uncertain stochastic process into mean, parametric, noise and mixed components, in
the multiplicative noise case, and finally report the the variance decomposition in section 5.4.

In the remainder of the section, we consider the model given by Equation (2) with the following generic
forms of the drift and diffusion terms:

C(X,U) = Q1 −X D(X,U) = (νX + 1)Q2 (35)

where Q1 and Q2 are independent, uniformly-distributed, random variables. This is symbolically expressed
as Qi ∼ U [µi, σi], where µi and σi respectively denote the mean and standard deviation of Qi. Thus, in this

10



case we are dealing with a random parameter vector U = (Q1, Q2). The Qi’s are parametrized in terms of
canonical independent random variables ξi defined over the interval [0, 1]. The orthonormal PC basis consists
of the appropriate tensorization of normalized Legendre 1D polynomials defined over the unit interval. We
use for initial condition X(t = 0) = 0 almost surely, and so the PC expansion of the solution at t = 0 is
given by Xα(t = 0) = 0 ∀α. Note that for ν = 0 a first-order expansion suffices to exactly represent X(ξ).

The system of SODEs is then solved by means of Monte Carlo simulation for t ∈ [0, 10] using the explicit
Euler scheme (see Appendix A) with a time step ∆t = 0.01.

5.1. Additive noise model

We start with the simple case of additive noise, ν = 0, corresponding to the OU process with uncertain
parameters, solution of

dX(ξξξ) = (Q1(ξ1)−X(ξξξ))dt+Q2(ξ2)dW.

Figure 1 shows typical paths (realizations) of [Xα] for the case ν = 0, µ1 = 1, µ2 = 0.1, and σ1 = σ2 =
0.05. Only the first three expansion coefficients [Xk=0,1,2] corresponding to polynomials Ψk with total degree
less or equal to 1 are computed, as all higher order coefficients are zero. The solution is then sought as

X(t, U(ξ1, ξ2), ω) = [X0](t, ω)Ψ0 + [X1](t, ω)Ψ1(ξ1) + [X2](t, ω)Ψ2(ξ2),

where Ψ0
.
= 1. The plots show a sample set of trajectories of [Xk](t, ω) as well as their range of variability,

depicted as the noise-averaged trajectories, E {[Xk]} (t), with ± 3 standard deviation bounds. For [X0] which
corresponds to the zero-order term, that is the parametric-averaged process, an exponential like transition
from 0 to the asymptotic value E {Q1} with superposed random fluctuations are reported (see left plot).
This dynamic is similar to the case of no-parametric uncertainty, with fluctuations induced by the noise, and
can be explained by the governing equation of the mode:

d[X0] =

〈
Q1(ξ1)−

2∑
k=0

[Xk]Ψk,Ψ0

〉
dt+ 〈Q2(ξ2),Ψ0〉 dW = (E {Q1} − [X0])dt+ E {Q2} dW.

In contrast, for [X1] in the center plot of Figure 1, which corresponds to the linear mode in ξ1 (Q1), no
random fluctuations are seen. This is expected for the considered model as the mode is governed by a
deterministic ODE, namely

d[X1] =

〈
Q1(ξ1)−

2∑
k=0

[Xk]Ψk,Ψ1

〉
dt+ 〈Q2(ξ2),Ψ1〉 dW = (〈Q1(ξ1),Ψ1〉 − [X1])dt.

This shows that for this model, there is no interaction between the uncertainty in the drift term (Q1) and
the diffusion term (drift coefficient Q2 and noise Wt). This property of the system may have been found out
expanding the variance of X as a function of ξ1 and ξ2, to discover that it does not depend on ξ1; however it
would require many samples to accurately estimate the variance at various parameter values. In the present
approach, on the contrary, this feature is immediately captured. Finally, one observes that trajectories for
[X2], which accounts for the uncertainty in the diffusion coefficient, are centered and contain noise only. In
fact, trajectories of [X2] obey the damped diffusion process:

d[X2] =

〈
Q1(ξ1)−

2∑
k=0

[Xk]Ψk,Ψ2

〉
dt+ 〈Q2(ξ2),Ψ2〉 dW = −[X2]dt+ 〈Q2,Ψ2〉 dW.

5.2. Multiplicative noise

We now consider a case with ν 6= 0. In this situation, the diffusion term involves a product between
the state, X, and the Wiener process, W , with a more complicated solution structure as a result. The
Galerkin procedure is applied here with a polynomial truncation at total order No = 5. The total number
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Figure 1: Sample set of few trajectories and variability ranges for the three coefficients [Xk](t, ω) of the solution of the model
defined by (35). An additive noise model is assumed, with µ1 = 1, µ2 = 0.1, σ1 = σ2 = 0.05, and ν = 0. The plots correspond
to k = 0, 1 and 2, arranged from left to right.

of modes in the solution expansion is then P + 1 = 21. We compute a total of 50,000 trajectories that are
subsequently used to estimate the W -averages of the [Xk] and their second moments. From these first and
second moments, the partial and conditional variances can be estimated.

Figure 2 shows typical paths (realizations) of [Xk] for ν = 0.2; the remaining parameters are identical to
those in Fig. 1. Only coefficients up to order 4 are shown, with total order increasing from top to bottom
and order in ξ1 decreasing from left to right. It is seen that the paths of [X0] (top plot) and [X2] (second
row, right plot) have a structure similar to those shown for the previous (additive) linear model. However,
[X1] (second row, left plot) now exhibits fluctuations, as one may have expected from the dependence of the
diffusion term on X. For the higher order terms, we remark that only coefficients associated to polynomials
with degree less or equal to 1 in ξ1 are non vanishing, owing to the structure of the uncertainty model.
Indeed, Q2(ξ2) having non-vanishing components along Ψ0 and Ψ2 only, that is Q2 = µ2Ψ0 + σ2Ψ2, the
projection of the diffusion term on Ψk becomes

Dk = ν

〈
Q2

∑
l

[Xl]Ψl,Ψk

〉
+ 〈Q2,Ψk〉

= νµ2

∑
l

[Xl] 〈Ψl,Ψk〉+ νσ2

∑
l

[Xl] 〈ΨlΨ2,Ψk〉+ µ2 〈Ψ0,Ψk〉+ σ2 〈Ψ2,Ψk〉

= νµ2

∑
l

[Xk] + νσ2

∑
l

[Xl] 〈ΨlΨ2,Ψk〉µ2δ0k + σ2δ2k, (36)

and the initial conditions being [Xk] = 0 for all k, we see that only a subset of coefficients are susceptible to
grow due to the diffusion term.

We note from Figure 2 the fast decay in the magnitude of the non-vanishing coefficients [Xk], which
demonstrates the convergence of the PC expansion of X. We also note that some low order coefficients have
distributions that appear roughly symmetric about the mean value, while high-order ones tend to exhibit long
tails, reflecting the symmetry breaking of the multiplicative diffusion term. This can be better appreciated
from the plots of Figure 3, which depict the estimated marginal probability density functions of some of
the coefficients [Xk] at time t = 10. The densities are estimated using classical Kernel-density-estimation
(KDE) based on a Gaussian kernel and using a large sample set of 100,000 MC realizations. We observe that
modes k = 0, 1, 2 and 4 indeed follow an essentially Gaussian distribution (with a small skewness toward
higher values) while the other modes affected by the noise have significantly skewed distributions. Further,
normalized distributions for [X5] and [X8], and [X9] and [X13], are indistinguishable. The similar densities
between some of the modes [Xk](t, ω) is explained by the structure of the system, which induces complete
dependences between them, namely affine relations.

To better appreciate the dependence between the modes [Xk], we provide in Figure 4 samples of the
2D projection for the centered and (component-wise) normalized vector XXX(t, ω) at t = 10. Specifically, the
plots show realizations of (normalized) [Xk] versus [Xk′ ], for some couples (k, k′) to illustrate the underlying
dependences between components. Whenever the realizations align on the x = y axis, an affine relation
between [Xk] and [Xk′ ] can be inferred. This is presently the case for any of couple (k, k′) where [Xk] and
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Figure 2: Sample trajectories of [Xk], 0 ≤ k ≤ 14. The total order ranges from 0 (top row) to 4 (bottom row), with and
decreasing order in ξ1 from left to right. A multiplicative noise model is assumed, with Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], and
ν = 0.2.

[Xk′ ] have the same reduced distribution. Therefore, Figure 4 only depicts the realizations for couples based
on indices corresponding to distinct types of distributions, namely for couples based on the indices k = 0,
5, 9 and 14. The structures in the projections plotted in Figure 4 highlight the strong dependences between
the modes and reflect their non-linear coupling. In fact, the stochastic solution vector XXX(t, ω) belongs to
a low-dimensional manifold of RP+1 which converges asymptotically at large time, as the stochastic vector
converges to its asymptotic distribution.
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Figure 3: Probability density functions of the modes [Xk] at t = 10. The modes have been centered and normalized to facilitate
the comparison; the standard Gaussian distribution is also reported for reference. A multiplicative noise model is assumed,
with Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], and ν = 0.2.

5.3. SH decomposition of X

We now apply the SH decomposition of X in parametric, noise and mixed contributions, based on results
obtained for the previous model with ν = 0.2. Figure 5 (left) shows samples of X trajectories for different
ξξξ(ω) and a fixed realization of the noise W ; conversely, the right plot depicts trajectories of X for different
realizations of the noise at a fixed value of the parameters. These plots illustrate how the uncertain parameters
and the noise affect the process in a different fashion. In contrast to the variability due to the noise W , all
realizations in the left plot have a similar structure in their fluctuations when varying the parameters.

Figure 6 illustrates the SH decomposition of X into Xpar, Xnoise and Xmix. Starting from a sample set
of trajectories of X(ω) (top left), the top right and bottom left plots respectively show the corresponding
realizations of the conditional expectations, E {X | ξξξ(ω)} = X̄ + Xpar(ξξξ(ω)) and E {X | W (ω)} = X̄ +
Xnoise(W (ω)). It is seen that Xpar and Xnoise have dramatically different characters: while Xpar is smooth in
time, Xnoise exhibits substantial fluctuations (in fact, realizations are nowhere differentiable in t). Finally, the
bottom right plot depicts the corresponding trajectories of the mixed contribution Xmix, which is interpreted
as a correction, depending on ξξξ, of the intrinsic fluctuations in Xnoise.

In Figure 7, we provide the surface response with respect to the model parameters of the conditional mean
and variance of X at t = 10. The left (resp. right) plot shows µX(ξξξ)−E {X} = Xpar(ξξξ) (resp. Σ2

X(ξξξ)) given
by (19) (resp. (20)). For clarity, the horizontal axes show the values of the drift Q1(ξξξ) and diffusion Q2(ξξξ)
parameters. It is observed that the local W -average of X essentially depends only on the drift parameter
Q1(ξξξ). In contrast, the W -variance of X depends predominantly on the uncertain diffusion coefficient Q2(ξξξ).

5.4. Analysis of the variance

Figure 8 shows the partial variances Vpar, Vnoise and Vmix and the total variance V {X} for the multi-
plicative model with parameters Q1 ∼ U [1, σ1], Q2 ∼ U [0.1, σ2], and ν = 0.2. Four cases are contrasted.
The top-left panel corresponds σ1 = σ2 = 0, i.e. the case of a model having no parametric uncertainty. As a
result, all partial variance terms except Vnoise are zero, and the only variability in the SODE solution is due
to the stochastic nature of W . The bottom left panel corresponds to σ1 = 0.05 and σ2 = 0, so the diffusion
coefficient is deterministic. In this case, the W-averaged asymptotic solution, E {X | W}, is clearly subject
to parametric uncertainty such that, in addition to Vnoise, Vpar is also non zero. However, the variance of the
mixed term Vmix remains several order of magnitude lower that the other partial variances; in other words,
there is negligible joint effect of the noise and parametric uncertainty. On the contrary, the cases σ1 = 0 and
σ2 = 0.05 (top-right) lead to a vanishing partial variance Vpar and a significant mixed variance Vmix. Indeed,
in the absence of noise the solution would be deterministic, and the uncertainty in the model parameters
only intervenes in the diffusion coefficient, which triggers the mixed term. Finally, for σ1 = σ2 = 0.05
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Figure 4: Projections in the planes ([Xk], [Xk′ ]) of realizations of the centered and normalized solution vector XXX at time t = 10,
for selected indices k and k′ as indicated. A multiplicative noise model is assumed, with Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], and
ν = 0.2.
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a fixed realization of W . The right plot shows trajectories for samples of W at a fixed value of the parameters. A multiplicative
noise model is assumed, with Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], and ν = 0.2.
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Figure 6: Sample set of trajectories of X and its SH functions, computed using the PC expansion. The top left plot shows
trajectories X(ω). The top right and bottom left plots show the corresponding trajectories of Xpar(ξξξ(ω)) + E {X} and
Xnoise(W (ω)) + E {X}. The bottom right plot shows the realizations of Xmix(ξξξ(ω),W (ω)). A multiplicative noise model
is assumed, with Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], and ν = 0.2.
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Figure 7: Dependence with respect to the model parameters Q1(ξξξ) and Q2(ξξξ) of the (centered) conditional mean µX(ξξξ) =
E {X | ξξξ} − E {X} and variance Σ2

X(ξξξ) = V {X | ξξξ} at time t = 10. A multiplicative noise model is assumed, with Q1 ∼
U [1, 0.05], Q2 ∼ U [0.1, 0.05], and ν = 0.2.

(bottom-right) all the partial variances become non-zero. In fact, for this setting Vpar and Vmix have similar
values, while the partial variance Vnoise, due to W alone, remains the dominant contributor to the total
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variance. The increase in the total variance as more parametric uncertainties are introduced can also be
appreciated from these plots.
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Figure 8: Evolution of the components of the total variance. A multiplicative noise model is assumed, with Q1 ∼ U [1, σ1] and
Q2 ∼ U [0.1, σ2], and ν = 0.2. Shown are decompositions obtained for different values of the standard deviations σ1 and σ2, as
indicated.

In order to gain additional insight into the effect of the mean diffusion coefficients, additional computa-
tions are performed, namely by fixing µ1 = 1, σ1 = 0.1, σ2 = 0.05, ν = 0.2, and varying µ2; specifically, we
use µ2 = 0.1, 0.2 and 0.3. The partial variances obtained for all three cases are reported in Figure 9. The
results shows that, with all other parameters fixed, the intrinsic contribution of the noise W to the solution
variability becomes increasingly important as the mean value of the diffusion coefficient increases. On the
contrary, the purely parametric part Xpar as well as the mixed contribution Xmix have constant magnitude,
highlighting the constant variability in the model parameters in all the three cases.
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Figure 9: Evolution of the components of the total variance. A multiplicative noise model is assumed, with Q1 ∼ U [1, 0.05] and
Q2 ∼ U [µ2, 0.05], and ν = 0.2. Shown are variance decompositions obtained for different values of the mean of the diffusion
coefficient µ2. Left: µ2 = 0.1; center: µ2 = 0.2; right: µ2 = 0.3.

We conclude these section by remarking that the proposed decomposition of the variance could be refined
to assess separately the respective contributions to the variance of the individual components of the germ,
ξ1 and ξ2. This would allow us to hierarchize the effects of the parametric uncertainties in the drift and
diffusion coefficients. Such study is not presented here as the results are immediate, namely because the
mixed contribution always depends only marginally on the drift parameter Q1 (ξ1).
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6. Stochastic Bifurcation Problem

We now consider a more complex system, starting from the deterministic ODE

dx

dt
= F (x), F (x) = −γ(x− a)(x− b)(x− c) (37)

where a, b, c and γ are known parameters satisfying 0 < a < b < c, and γ > 0. The ODE is completed with
the initial condition, x0 ≡ x(t = 0). A straightforward analysis reveals that the dynamics exhibit three fixed
points x = a, x = b, and x = c, the second fixed point x = b being unstable.

Figure 10 depicts trajectories of the deterministic system starting from different initial conditions for the
values a = 10, b = 20, c = 30 and γ = 0.01. The results illustrate that when x0 > c the system rapidly
approaches the stable fixed point x = c, and when x0 < a the system rapidly approaches the stable fixed
point x = a. Meanwhile, starting the neighborhood of x = b, the system will diverge towards x = c or x = a,
according to whether c > x0 > b or a < x0 < b.
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Figure 10: Sample trajectories for the deterministic model system (37), starting from different initial conditions. Solutions are
obtained using a = 10, b = 20, c = 30 and γ = 0.01.

A stochastic variant of the above deterministic system is considered next, namely by including an additive
stochastic forcing term, leading to the SODE

dX = F (X)dt+ δdW = −γ(X − a)(X − b)(X − c)dt+ δdW, (38)

where δ > 0 is an additional parameter controlling the noise level, and as before W is a Wiener process. The
SODE is again completed by an initial condition X0 = X(t = 0).

Figure 11 depicts trajectories of the stochastic system governed by (38), all starting from the deterministic
initial condition, X(t = 0) = b. These trajectories are obtained using a = 10, b = 20, c = 30 and δ = 1. The
results indicate that, due the stochastic forcing, the point x = b is no longer a fixed point of the system,
and that the stochastic system is rather characterized by two attracting branches, x = a and x = c. After a
transient time, X(t) selects one of the two attracting branches and asymptotically fluctuates around it (with
a very low probability of switching from one attracting branch to another). Here, because of the symmetric
settings of the model, there is an equal probability to select one or the other attracting branch.

6.1. Parametric uncertainty

To analyze the combined effect of parametric uncertainty and stochastic forcing, we extend the formula-
tion by considering two independent uncertain parameters, characterizing the initial condition, X0, and the
forcing amplitude, δ. Specifically, we set X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5], where R[x, y] denotes the
uniform distribution over the range [min(x, y),max(x, y)]. The other parameters of the system are held fixed
to a = 10, b = 20, c = 30 and γ = 0.01 throughout the rest of the section. The uncertain parameters X0

and δ are respectively parameterized by independent canonical uniform random variables ξ1 and ξ2, both
defined over the unit interval [0, 1], such that

X0 = X0(ξ1), δ = δ(ξ2), ξξξ = (ξ1, ξ2) ∈ Ξ = [0, 1]2, pξξξ(xxx) =

{
1 xxx ∈ Ξ

0 otherwise
.
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Figure 11: Sample trajectories for the model system (38), with a = 10, b = 20, c = 30, γ = 0.01, and δ = 1. In all cases, the
initial condition coincides with x0 = b, namely the unstable fixed point of the corresponding deterministic system.

In Figure 12, we start by illustrating the dynamics of the system when the uncertain parameters vary,
namely by plotting the evolution of the state, X, for selected realizations of the uncertain parameters
X0(ξ1), δ(ξ2), and for a set of realizations for the Wiener process. The two plots at the left of Figure 12
depict trajectories of X for different realizations of the noise, using 7 different deterministic initial conditions
distributed in the range [17.5, 22.5] and two noise levels δ = 0.65 (top) and δ = 1.35 (bottom). For these
two plots, time runs up while X(t) is reported along the horizontal axis, with a shift to separate the cases
of different initial conditions (the unstable point b is reported for reference). It is seen that when X0 is far
from b, the trajectories are going to the closest attracting branch with high probability. On the contrary,
when X0 comes closer to b, the noise is able to drive X toward the farthest attracting branch with increasing
probability. In addition, comparing the top and bottom plots, it can be seen that the higher the noise level,
the higher the probability to reach the farthest attracting branch (though it never exceeds the probability
of selecting the closest).

 0

 2

 4

 6

b b b b b b b

t

 0

 2

 4

 6

b b b b b b b

t

 10

 20

 30

 0  2  4  6

X
(t

)

t

 10

 20

 30

 0  2  4  6

X
(t

)

t

Figure 12: Sample trajectories for the model system (38), with a = 10, b = 20, c = 30, and γ = 0.01. The left plots show for
a sample set of realizations of W , the trajectories of X (time running up) for different deterministic initial conditions equally
distributed around b in the range [17.5, 22.5] and two noise levels δ = 0.65 (top plot) and δ = 1.35 (bottom). The right plots
show for two realizations of W (top and bottom), the corresponding trajectories of X for a random sample set of values of X0

and δ in their uncertainty range.

Shown in each of the two plots at the right of Figure 12 are trajectories of a fixed realization of the Wiener
process but a random sample set of the parameters X0 and δ. Again, trajectories that start away from the
unstable point x = b tend to be rapidly attracted towards the closest attracting branch. On the other hand,
realizations starting close to X = b may be attracted towards either attracting branch. As for the linear
drift problems above, it is seen that, with W held fixed, the noise introduces small scale fluctuations that are
highly correlated as the parameters change. However, due to the bifurcation in the system, the continuity
of X with respect to the uncertain parameters is lost as t increases. This is evidenced by the absence of
trajectories in between the two attracting branches for large enough time.
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6.2. Stochastic Multi-Resolution Scheme

As remarked above, the bifurcation induces a loss of continuity of X with respect to the random parame-
ters. This characteristic prevents us from using a PC expansion, X(t, ω) =

∑
k [Xk] (t, ω)Ψk(ξξξ), on classical

spectral polynomial basis, {Ψk, k ∈ N}, because of slow convergence and Gibbs phenomena in truncated
simulations. To tackle the potential lack of regularity in the solution, given W , we consider a stochastic
multi-wavelet (MW) discretization [22, 24] of X in the uncertain parameters, instead of a smooth polynomial
approximation. The MW basis consists in the tensorization of Alpert’s hierarchical basis [2] and results in
a piecewise polynomial approximation over a uniform partition of Ξ. The MW basis is hierarchical in the
sense that it consists of mutually orthogonal functionals corresponding to details at different scales.

The discretization is controlled by two parameters, the resolution level, Nr, and the polynomial order,
No. Specifically, Nr ≥ 0 controls the finest scales of details in the hierarchy. It corresponds to a piecewise
approximation over subdomains resulting from Nr recursive dyadic partitions of Ξ along each of its dimension.
For the present problem with 2 independent random variables, ξξξ = (ξ1, ξ2), the domain Ξ is partitioned into
22Nr non-overlapping subdomains (squares) having equal size. Meanwhile, No ≥ 0 controls the polynomial
order of the approximation over each of the subdomains. The situation with No = 0 corresponds to the
so-called Wiener-Haar expansion of X (see [22]). Overall, the total dimension of the MW space in our 2D
problem is 22Nr(No + 1)2 which becomes very large as No and Nr are increased. The approximation can be
expressed as

X(t, ω) =
∑

k∈SNr,No

[Xk] (t, ω)Ψk(ξξξ),

where SNr,No is the set of MW indices and Ψk are now the orthonormal MW basis functions.

To maintain a reasonable computational complexity an adaptive procedure is needed (see [25]). The
adaptive procedure exploits the facts that the initial condition is smooth (in fact linear in ξ1) and that the
solution may develop in time a bifurcation which is however localized in Ξ for a given realization of W . As
a result, for each realization of the noise, the corresponding solution has a sparse representation in the MW
basis since most details are negligible, i.e. X(t) is compressible in the MW basis. In the present work, we rely
on a multi-resolution scheme following the anisotropic adaptive strategy introduced in [40]. The principle of
the adaptive strategy is quite simple and consists in constructing, for each sample of W (ω), subsets of active
MW indices Si(ω) ⊆ SNr,No at every time t = i∆t; the approximation thus becomes

X(t = i∆t, ω) ≈ Xi(ω) =
∑

k∈Si(ω)

[Xk]
i
(ω)Ψk(ξξξ).

Starting from an initial coarse set S0(ω) = S1,No, which allows here for an exact representation of the initial
condition if No ≥ 1, we defined recursively the (random) sequence of sets S0(ω) 7→ S1(ω) 7→ S2(ω) 7→ · · · , by
successive enrichments (completions), that is Si+1(ω) ⊇ Si(ω), constrained by Si+1(ω) ⊆ SNr,No. Practically,
we rely on the directional enrichment indicator proposed in Section 4.2 of [40] to enrich Si(ω) to Si+1(ω).
Essentially, the directional enrichment indicator checks the decay rates of the MW coefficients along each
ξi to decide the introduction of additional detail basis functions in the discretization. Figure 13 illustrates
the adaptation of the MW expansion of X for Nr = 6. It presents for 2 realizations of W the adapted MW
discretizations at the final time, t = 6. The discretizations are plotted as the partitions of Ξ into subdomains
supporting smooth polynomial approximations, here set to No = 2. On the right of the partitions, the
corresponding realization of the surface response of X are plotted as function of X0(ξ1) and δ(ξ2). The figure
illustrates how the adaptive strategy refines the MW space in areas of Ξ where X exhibits a bifurcation with
steep dependence with respect to ξξξ.

Note first that the enrichment is applied at every time iteration, owing to a low computational cost, when
the discretization in fact mostly evolves during the transient stage only, and not much after the attracting
branch has been selected. Second, the dimension of the MW basis monotonically grows as there is no
coarsening step in the adaptation. This is justified again by the present dynamics of the system, because
the location of the bifurcation in the Ξ domain does not evolve after the selection of the attracting branch,
owing to the large separation c − a relative to the size of Wiener fluctuations (controlled by δ), which
makes branch-switching very unlikely (in fact never observed in our simulations). This point is illustrated

20



ξ 2

ξ1

 18
 19

 20
 21

 22

 0.5

 1

 1.5

 10

 20

 30

X

X
0δ

X

ξ 2

ξ1

 18
 19

 20
 21

 22

 0.5

 1

 1.5

 10

 20

 30

X

X
0δ

X

Figure 13: Illustration of the adaptive MW computations for two realizations W (ω) of the noise (top and bottom). The plots
show for t = 6 the partitions of Ξ into subdomains supporting smooth polynomial approximations, and the surface plots of
the corresponding approximations of X(t = 6, ω) as a function of X0(ξ1) and δ(ξ2). The results are obtained using a MW
approximation with Nr = 6, No = 2, and parameters X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5].

in Figure 14 which shows, for two realizations of the noise, the surface responses of X(t, ω) as function of
X0(ξ1) and δ(ξ2), at time t = 1, t = 3 and t = 6. These plots show that when the attracting branch is
selected, the dynamics reduces to surface responses exhibiting dependences with respect to the parameters
that become steeper as time increases; this behavior reflects the decreasing probability of having X ≈ b. The
plots also indicate that simulations for longer times would require an increasing resolution level Nr as X is
asymptotically discontinuous. However, for the present settings, numerical tests have shown that Nr = 6
was enough to have a sufficient accuracy in the neighborhood of the bifurcation up to t = 6, especially in
light of the error due to the finite sampling of W .

As a consequence of the adaptive MW discretization, realizations of the discrete process Xi are known
as functions of ξξξ over subspaces Si(ω) depending on the noise W (ω). However, these realizations of Xi can
be eventually projected (in fact, injected) in SNr,No defining

X(t = i∆t, ω) ≈ Xi(ω) =
∑

k∈SNr,No

[Xk]
i
(ω)Ψk(ξξξ), [Xk]

i
(ω) =

{
[Xk]

i
(ω) k ∈ Si(ω),

0 otherwise.

Doing so, and using Ψ0 = 1, we are back to the assumptions of Section 4 and the analysis can be performed
as previously.

6.3. Analysis of the variance

Based on a sampling of W , we generate samples of the stochastic MW coefficients that are used to
perform the Sobol decomposition of X and the analysis of the variance. The following results use a sample
set to 20,000 independent trajectories of the Wiener process, and a 2nd order Runge-Kutta scheme for the
time discretization of the system of SODEs for the MW coefficients (see Appendix A) with ∆t = 0.01. As
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Figure 14: Responses surfaces of X(t, ω) as function of X0(ξ1) and δ(ξ2) at time t = 1, 3 and 6 as indicated, and for two
realizations of the noise (top and bottom rows). The computations use an adaptive MW discretization with SNr,No, Nr = 6
and No = 2, and uncertain system parameters X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5].

mentioned previously, computations use Nr = 6 and No = 2 for the adaptive multi-wavelet discretization of
each noise realization.

We start by analyzing in Figure 15 the conditional expectations E {X | ξξξ} = Xpar(ξξξ) +E {X}. Focusing
first on the response surface plots of the conditional expectation at t = 1, 3 and 6 (top row) it is seen that,
contrary to the case of individual realizations of the noise (see plots of Figure 14 for comparison) the ξξξ-
dependence of E {X | ξξξ} remains smooth. This reflects the averaged effect of the noise which, by moving the
bifurcation, smoothes it out. This is also illustrated in the bottom plot of Figure 15, which depicts trajectories
of the conditional expectation for a random sample set of ξξξ. This plot, which should be contrasted with
the two individual W -realizations in the left plots of Figure 12, is populated in between the two attracting
branches, because for a fixed value of ξξξ one or the other branch may be selected depending on W , and so on
average it lies in between. These results also point that the W -average of the MW coefficients vector XXX(t, ω)
is very sparse and could be computed in a MW space of low resolution with significant computational savings
(although computation of individual realizations requires sufficiently large Nr).

Figure 16 depicts the conditional variance V {X | ξξξ} = Σ2
X(ξξξ) for three different times t = 1, 3 and 6.

Again, the conditional variance is plotted as function of the uncertain parameters X0(ξ1) and δ(ξ2). We
observe that irrespective to the initial condition, the W -variance of X increases with δ as one would expect.
However, for t ≥ 3 the variance conditioned on ξξξ has a magnitude, particularly for initial conditions around b,
exceeding by far the amount suggested by the fluctuations around each of the branches reported in Figure 11.
This is again explained by the effect of the noise on the selection of the attracting branch. When X0 ≈ b,
each branch has a roughly equal probability of being selected, such that the variance for t → ∞ becomes
. ((c− b)2 + (a− b)2)/2 = 100. Due to this mixing effect of the noise, the closer X0 to b and the larger δ,
the higher the conditional variance.

The conditional variance Σ2
X(ξξξ) presented above can not allow one to estimate the variance in X due

to the noise only, because of the information loss incurred with the conditional expectation. Indeed,
E {V {X | ξξξ}} = Vnoise + Vmix, such that the averaging of Σ2

X combines the pure noise and mixed con-
tributions to the variance, without possibility of subsequently separating them. To compute the partial
variances Vnoise and Vmix, it is necessary to go through the Sobol decomposition of X as discussed in Sec-
tion 4. The time evolutions of the partial variances of X are shown in Figure 17. The results indicates that
the parametric uncertainty is responsible for most of the variance at any time t, as Vpar dominates all other
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Figure 15: Conditional expectation E {X | ξξξ}. The top plots present the surface response of the conditional expectation as a
function of X0(ξ1) and δ(ξ2) at selected times, as indicated. The bottom plot depicts trajectories of E {X | ξξξ} for a sample set
of ξξξ. The computations use an adaptive MW discretization with SNr,No, Nr = 6 and No = 2, and uncertain system parameters
X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5].
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Figure 16: Conditional variance Σ2
X(ξξξ) at selected times, as indicated. The conditional variance is plotted as a function of the

uncertain initial condition X0(ξ1) and noise level δ(ξ2). The computations use an adaptive MW discretization with SNr,No,
Nr = 6 and No = 2, and uncertain system parameters X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5].

partial variances. The pure noise contribution Vnoise is seen to initially be larger than Vmix, but levels off
at t ≈ 2.5, while Vmix continues to increase, becomes larger than Vnoise for t ≥ 3 and barely achieves its
asymptotic value for t = 6 (as for Vpar). The differences in the response time scales between the curves of
Vpar and Vmix in the one hand, and Vnoise on the other hand, can be explained as follows. The pure noise
variance quickly saturates because the mixing effect of the noise on the branch selection occurs during the
early transient only, while it essentially only induces fluctuations of the trajectory toward the selected branch
later on (see Figure 11). On the contrary, the time scale of Vpar and Vmix curves is related to the characteristic
time of the noise-free system, which is governed by γ, and corresponds roughly to the average characteristic
time of the deterministic system to reach the closest stable branch for the set of initial conditions.

To complete the analysis of the variance in the bifurcation system, we change the range of variation for
the noise level from [0.5, 1.5] to [1.5, 2.5], still with a uniform distribution. Therefore, the range of δ has the
same extent, but δ has now a expected value twice as large as previously. By increasing the average noise
level, we expect an enhanced W mixing of the trajectories over a larger range of initial conditions. This can
be verified in Figure 18, whose results should be compared with those of Figure 15; specifically, the surface
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Figure 17: Partial variances of the stochastic process X(t). The computations use an adaptive MW discretization with SNr,No,
Nr = 6 and No = 2, and uncertain system parameters X0 ∼ R[17.5, 22.5] and δ ∼ R[0.5, 1.5].

responses of the conditional expectation E {X | ξξξ} (top plots) now exhibit less variability with respect to X0.
Also, the ξξξ-sample set of trajectories for E {X | ξξξ} (bottom plot) does not extend anymore over the whole
range [a, b] denoting that even for the extreme values of X0 the noise induces a non vanishing probability of
selecting the attracting branch farthest from the starting point X0. In addition, the lower ξ-variability in
E {X | ξξξ} in Figure 18, compared to Figure 15, indicates a lower partial variance Vpar as we will seen later.
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Figure 18: Conditional expectation E {X | ξξξ}. The top plots present the surface response of the conditional expectation as a
function of X0(ξ1) and δ(ξ2) at selected times, as indicated. The bottom plot depicts trajectories of E {X | ξξξ} for a sample set
of ξξξ. The computations use an adaptive MW discretization with SNr,No, Nr = 6 and No = 2, and uncertain system parameters
X0 ∼ R[17.5, 22.5] and δ ∼ R[1.5, 2.5].

Figure 19 presents the surface response of Σ2
X(ξξξ) for t = 1, 3 and 6. The structures of the surface

responses are similar to the previous case with a lower average noise level (see Figure 16), but with a less
marked peak for X0 ≈ b for t > 1. In fact, Σ2

X(ξξξ) presents less variabilities with ξξξ than previously. Note
also that the maxima in Σ2

X are larger than previously observed for t = 1 and t = 3 (that is at intermediate
time in the transient), while the maxima are essentially equal for the two cases at t = 6. Again, this trend
is explained by the higher mixing during the transient stage for higher average noise level. On the contrary,
when the system converges toward its asymptotic limit, and the dynamics reduce to fluctuations around
the attracting branches, the magnitude of the stochastic fluctuations have a less significant impact on the

24



variance (also because the local distributions around each attracting branches are skewed toward the unstable
point). Finally, comparison of the Σ2

X plots in Figures 16 and Figure 19 indicates that the total variance
due to the noise is larger for the case with larger average δ, since its ξξξ-averages are larger.
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Figure 19: Conditional variance Σ2
X(ξξξ) at selected times, as indicated. The conditional variance is plotted as a function of the

uncertain initial condition X0(ξ1) and noise level δ(ξ2). The computations use an adaptive MW discretization with SNr,No,
Nr = 6 and No = 2, and uncertain system parameters X0 ∼ R[17.5, 22.5] and δ ∼ R[1.5, 2.5].

At this point, it can be concluded that increasing the expected value of δ while keeping a constant
variability range yields a lower partial variance Vpar and a larger total variance due to the noise E

{
Σ2
X

}
=

Vnoise +Vmix. It remains to determine the effect of increasing E {δ} on the overall variance V {X}, and how it
changes the partial variances Vnoise and Vmix. For the first point, the left plot in Figure 20 compares the total
variances and total contribution of the noise to the variance (sum of Vnoise and Vmix) for the two expected
values of δ. It shows that as previously stated, the total noise contribution increases significantly from the
case E {δ} = 1 to E {δ} = 2. For the total variance however, it is seen that during the transient (t < 3)
increasing E {delta} increases V {X} (labelled Vtot in the plot), though by a small fraction. On the contrary,
when the system approaches its equilibrium (t > 3), the increase of E {δ} results in a slightly lower total
variance. Again, the small decay with increasing E {δ} of the asymptotic total variance can be explained by
the skewness (toward the unstable point) in the distributions of the fluctuations around the two attracting
branches.
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Figure 20: Left: comparison of the total variances V {X} and total noise contributions Vnoise + Vmix to the variance, for
two expected values of E {delta} = 1 and 2. Right: partial variances of the stochastic process X(t) for the case E {δ} = 2.
The computations use an adaptive MW discretization with SNr,No, Nr = 6 and No = 2, and uncertain system parameters
X0 ∼ R[17.5, 22.5], and δ ∼ R[0.5, 1.5] or δ ∼ R[1.5, 2.5].

The complete variance decomposition of X is presented in the right plot of Figure 20 for E {δ} = 2; and
should be contrasted with the decomposition of the variance for E {δ} = 1 reported in Figure 17. The main
differences in the partial variances concern first the important reduction of Vpar, which however remains
dominant with respect to Vnoise. Second, both the noise and mixed contributions to the variance have
significantly increased. However, contrary to the case with E {δ} = 1, it is seen that the asymptotic values
for Vnoise and Vpar are now very close. It can then be concluded that increasing E {δ}, keeping its variability
range constant, not only increases the part of variance incurred to the noise only, but also its interaction
with the parameters.
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7. Discussion and conclusions

This paper has developed a PC analysis of stochastic differential equations driven by additive or multi-
plicative Wiener noise. A Galerkin formalism was adopted, that naturally led to the definition of a hierarchy
of stochastic differential equations governing the evolution of the PC modes. The resulting representation
was exploited to perform an orthogonal decomposition of the process variance, and consequently identify
contributions arising from the uncertainty in parameters, the stochastic forcing, and a coupled term. Addi-
tional insight into the contribution of individual sources of uncertainty was gained through a Sobol–Hoeffding
decomposition of the PC representation itself. This naturally leads to the definition of sensitivity indices
that quantify the contributions of Wiener noise and of different sources of parametric uncertainty to the
total variance of the process.

Implementation of the present formalism was illustrated in light of two model problems. The first consid-
ers a linear system consisting of a scalar SODE with uncertain drift and diffusion coefficients. Simulations
were conducted to illustrate the implementation of the Galerkin formalism, which relied on a Wiener–
Legendre basis to represent the impact of parametric uncertainties. A variance analysis based on the re-
sulting PC representations was conducted, which demonstrated the ability to decompose the variance into
contributions from the Wiener noise and parameters alone as well as a mixed term that quantifies their inter-
action. The computations were also used to illustrate the ability to quantify sensitivities and consequently
isolate the impact of different sources of uncertainty.

In addition, a non-linear problem was also considered that involves an unstable fixed point. To capture the
discontinuity in a stochastic setting, the Galerkin methodology relied on a multiwavelet basis to represent the
impact of parametric uncertainty. Computed results were used to demonstrate the capability of capturing
and analyzing complex stochastic dynamics, namely in the present of stochastic forcing and parametric
uncertainties leading to steep variations and bifurcation.

We finally remark that the variance decomposition performed in the present study hinged on the availabil-
ity of a stochastic PCE. While we focused on applying a Galerkin methodology to construct such expansions,
this task could generally be achieved through sampling methods that enable one to compute, separately, the
solution moments with respect to the random parameters and the Wiener noise. A delicate aspect in the im-
plementation of non-intrusive methodologies, however, concerns the robustness of the estimates in presence
of Wiener noise. For instance, recent experiences [36] have shown that straightforward implementation of
projection methods to evaluate moments with respect to uncertain parameters can be prone to large errors
in the presence of noisy data, whereas Bayesian regression techniques [36, 37, 31, 32, 29, 30, 1] can effectively
overcome these hurdles, provided likelihood functions can be defined that suitably capture the effects of the
stochastic forcing.

The development of sampling-based methods and efficient algorithms that implement these methods
would be particularly attractive in complex settings where the implementation of Galerkin or intrusive
methodologies is not feasible. This would be the case when the model structure effectively precludes or
renders impractical the computation of averages over the stochastic process. Relevant examples include
molecular dynamics (MD) simulations or stochastic simulation algorithms (SSA). Whereas the generation of
multiple realizations of the solution for a given value of uncertain parameters is conceptually straightforward,
open questions still remain regarding how to investigate the dependence of the solution with respect to
the uncertain parameters for a fixed realization of the noise, and whether it is possible to decompose the
variance of the solution or of selected QoIs into contributions that isolate the impact of individual sources
of uncertainty. We plan to address these questions in future work.

A. Time-integration methods for Stochastic ODEs

In this work, we make use of different time-integration methods to compute the evolutions of the vector
XXX(t, ω) of expansion coefficients arising from the parametric discretization of X. Two different ways can be
taken for the derivation of time-integration schemes; the first one starts from the continuous problem for XXX
in (13) and proceeds with its time-discretization; the second one considers instead as a starting point the
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discrete time-scheme for the process X and proceeds with its stochastic Galerkin projection to derive the
discretized governing equation for the coefficients vector.

The two approaches may not be completely equivalent, because of truncation errors, and we start with
the second one.

Time-integration schemes for scalar ODEs. We shall detail the derivation of 3 integration methods in this
paper, the Euler, Milstein and (one) secon-order Runge-Kutta methods. Consider the (autonomous) SODE,

dX = C(X)dt+D(X)dW, X(t = 0) = X0.

The Euler method for solving this ODE can be expressed as

Xi+1 = Xi + C(Xi)∆t+D(Xi)∆W i, (39)

where ∆t > 0 is the time-step, Xi the approximate solution at time ti = i∆t, and ∆W i .= W (ti+1)−W (ti)
are the Wiener increments. The Euler method yields an error O(∆t1/2).

The Milstein method [26] involves an additional term accounting for the dependence of the drift coefficient
on X; it is expressed as

Xi+1 = Xi + C(Xi)∆t+D(Xi)∆W i +
1

2
D(Xi)Dx(Xi)((∆W i)2 −∆t), (40)

and has an error O(∆t). Here, we have denoted Dx(X) the derivative of D(X) with respect to X. It is clear
that the Milstein and Euler methods are the same in the case of additive noise (Dx = 0).

Finally, we shall also consider one second-order Runge–Kutta method [39],

Xi+1 = Xi +
[
C(Xi) + C(X̃i+1)

] ∆t

2
+
[
D(Xi) +D(X̃i+1)

] ∆W i

2
− 1

2
D(Xi)Dx(Xi)∆t. (41)

This is a two-stage method where the provisional value X̃i+1 corresponds to the one-step Euler method
applied to Xi, namely X̃i+1 = XiC(Xi)∆t + D(Xi)∆W i. It has an error O(∆t2) for essentially twice the
cost of the previous methods.

Galerkin projection of the time-integration schemes. Following the notation of Section 3 consider the expan-
sion X =

∑P
k=0 [Xk] Ψk and XXX ∈ RP+1 the vector of expansion coefficients.

The stochastic Galerkin projection of the Euler scheme in (39) gives

[Xk]
i+1

= [Xk]
i
+ [Ck] (XXXi)∆t+ [Dk] (XXXi)∆W i, k = 0, · · · , P (42)

where

[Ck] (XXX)
.
=

〈
C

(
P∑
l=0

[Xl] Ψl

)
,Ψk

〉
, and [Dk] (XXX)

.
=

〈
D

(
P∑
l=0

[Xl] Ψl

)
,Ψk

〉
,

are the projection coefficients of the drift term and diffusion coefficient.

For the Milstein scheme in (40), we obtain

[Xk]
i+1

= [Xk]
i
+ [Ck] (XXXi)∆t+ [Dk] (XXXi)∆W i +

1

2
[Mk] (XXXi)((∆W i)2 −∆t), (43)

where

[Mk] (XXX)
.
=

〈
D

(
P∑
l=0

[Xl] Ψl

)
Dx

(
P∑
l=0

[Xl] Ψl

)
,Ψk

〉
.

Finally, the Galerkin projection of the second-order Runge–Kutta scheme in (41) leads to

[Xk]
i+1

= [Xk]
i
+
[
[Ck] (XXXi) + [Ck] (X̃XX

i+1
)
] ∆t

2
+
[
Dk(XXXi) +Dk(X̃XX

i+1
)
] ∆W i

2
− 1

2
[Mk] (XXXi)∆t, (44)

where X̃XX
i+1

is the provisional coefficients vector solution of (42).
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Remarks. The projection of the three integration schemes above requires the evaluation of projections of
C(XXX), D(XXX) and possibly D(XXX)Dx(XXX) onto the stochastic basis. This may be an issue in case of highly
non-linear C and D. In the present work, where the drift term and diffusion coefficient considered are all
polynomials in X, these projections raise no major difficulties [9], except eventually for a significant com-
putational complexity in the case of large projection basis. Presently, for polynomials C and D with degree
> 1 in X, we rely on pseudo-spectral projection to maintain a reasonable computational complexity. The
pseudo-spectral projection of polynomial non-linearities rely on the Galerkin interpretation of each individ-
ual multiplication [23, 9]. These approximate projections yield truncation errors that must be monitored to
ensure they do not compromise the overall accuracy of the computation.

The development of the numerical time-integration schemes above was based on the Galerkin projection
of the discrete (in time) schemes. The time-discretization of the continuous equation for the vector XXX is an
alternative as we mentioned previously. For the Euler method, the two alternatives coincide. However, for
the Milstein and RK-2 methods, the two approaches may not exactly result in the same schemes, depending
on the choice of the method used for the projection of the non-linearities and inherent truncation errors.
In addition, if one considers applications of the Milstein or RK-2 methods to the whole system of ODEs,
the computation of the Jacobian of the vector of modes DDD is required. This Jacobian matrix will be large
for large expansion bases, but could eventually be computationally more effective than the projection of
the product D(XXX)Dx(XXX) in the integration schemes above. This point would require further analyses and
numerical experiments to investigate the respective merits of the alternatives.
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