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Non-Intrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic
Differential Equations∗
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Abstract. A Galerkin polynomial chaos (PC) method was recently proposed to perform variance decompo-
sition and sensitivity analysis in stochastic differential equations (SDEs), driven by Wiener noise
and involving uncertain parameters. The present paper extends the PC method to non-intrusive
approaches enabling its application to more complex systems hardly amenable to stochastic Galerkin
projection methods. We also discuss parallel implementations and the variance decomposition of
derived quantity of interest within the framework of non-intrusive approaches. In particular, a novel
hybrid PC sampling based strategy is proposed in the case of non-smooth quantities of interest
(QoIs) but smooth SDE solution. Numerical examples are provided that illustrate the decomposi-
tion of the variance of QoIs into contributions arising from the uncertain parameters, the inherent
stochastic forcing, and joint effects. The simulations are also used to support a brief analysis of the
computational complexity of the method, providing insight on type of problems that would benefit
from the present developments.
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1. Introduction. Stochastic differential equations are used to model complex systems and
phenomena in many different domains, such as biology [36], epidemiology [3], economics and
finance [2, 26], weather prediction [15], and building energy consumption [4]. In addition to
their inherent random dynamics, these stochastic models also involve parameters that are
often uncertain. As a result, the output of the random model is uncertain and depends on
both the inherent variability caused by the driving noise and the uncertain parameters.

The simplest approach type to analyze such stochastic systems, with or without uncertain
parameters, is the Monte Carlo method [1, 23]. Typically, MC methods involve a random
sampling step, to generate a sample set of model predictions, followed by a statistical anal-
yses to characterize the model output variability. The characterizations can include, among
others, the estimation of the expected values and statistical moments of QoIs, as well as vari-
ance decomposition to rank the importance of different uncertain model parameters [43, 10].
Although the implementation of MC methods is usually straightforward, it provides ran-
dom estimates with usually limited accuracy. Specifically, the order of convergence of MC
estimates is O(N1/2), where N is the number of samples. Therefore, MC methods can be
computationally expensive if accurate estimates are required.

To decrease the computational effort of MC methods, several improvements of the sam-
pling procedure have been introduced. These include Latin Hypercube Sampling (LHS) [24,
28], the Quasi-Monte Carlo (QMC) method [5, 12], the Markov Chain Monte Carlo method
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(MCMC) [25] and probability density evolution methods [7, 47]. None of these improved MC
methods exploits the possible smoothness in the model output with respect to the random
inputs to accelerate the estimation. The use of functional approximations in the context
of inherently stochastic systems with uncertain parameters was introduced more recently, in
particular using Polynomial Chaos (PC) expansions. Classically, the functional approxima-
tions exploit some regularity with respect to the random parameters to estimate sensitivity
coefficients. Since smoothness with respect to inherent noise is generally not to be expected,
functional approximations have been mostly limited to the investigation of the effects of un-
certain parameters on the model output statistics [32, 33, 34, 35, 39, 40]. Typically, the
dependence with the uncertain parameters of the two first moments of the stochastic model
output are characterized by means of functional approximations.

In a previous work [21], a new methodology was introduced to simulate and to analyze
SDEs in the presence of uncertain inputs. Under the assumption that the Wiener noise and
uncertain parameters could be treated as independent random variables, a PC [6, 20, 48]
representation of the stochastic process was performed. The resulting spectral representation
was exploited to perform an orthogonal decomposition of the variance of the process. As a
result, contributions arising from the uncertainty in parameters, the stochastic forcing, and a
couple term were identified. This methodology was focused on intrusive or Galerkin methods
to compute the stochastic modes. However, there are complex settings, industrial applications
and situations where only a black-box code is available. Therefore the implementation of
Galerkin is not always feasible. For this reason, in this work, we propose an extension of
the methodology in [21] to non-intrusive or sampling based methods, and to develop efficient
techniques that enable a global sensitivity analysis of the stochastic process.

The implementation of non-intrusive methods to analyze and simulate stochastic differen-
tial equations driven by Wiener noise is not a straightforward problem, since the robustness
of the estimations could be lost [39]. In particular, we rely on non-intrusive pseudo-spectral
projection method, and show that the implementation retains all the attractive features of non-
intrusive methods when the problem is smooth. We also exploit the fact that non-intrusive
methods enable us to focus on specific QoIs. For both smooth and non-smooth QoIs, we
present techniques for performing an orthogonal decomposition of their variance.

The outline of this paper is as follows. In Section 2, we fix the notation and briefly
discuss the background concepts used throughout the paper. We introduce the non-intrusive
projection method for the case of stochastic differential equations driven by Wiener noise
with parametric uncertainty in Section 2.2, detail its application to the computation of the
sensitivity indices in Section 2.3, and its implementation in Section 2.4. Then, in Section 3,
we carry out a validation of the NISP method with respect to Galerkin to show that all
the attractive features of the non-intrusive approach still hold in the presence of irreducible
noise when the problem is smooth. We further illustrate in Section 3.2 the application of
the approach to the case of smooth QoIs, amenable to direct non-intrusive projection. In
section 4, we describe how to perform indirectly the global sensitivity analysis of QoIs being
non-smooth functional of the smooth SDE solution, and discuss the potential improvement
brought by this indirect approach. Concluding remarks are provided in Section 5.

2



SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

2. Non-intrusive pseudo-spectral projection for SDEs with parametric uncertainty. In
this section, we first introduce the uncertain SDE problem and briefly introduce the back-
ground materials used throughout the paper. The non-intrusive projection method and the
variance decomposition approach used to characterize the variability of the model output are
respectively discussed in Sections 2.1, 2.2 and 2.3.

Let (Ω,Σ, P ) be a probability space where Ω is the event space, Σ denotes a σ-algebra on
Ω, and P is a probability measure. In this space, we consider the following SDE

dX(t, ω) = C(X(t, ω))dt+D(X(t, ω))dW (t, ω), X(t = 0, ω) = X(0), (2.1)

where X : (t, ω) ∈ T × Ω 7→ R is a real-valued stochastic process, defined in the time interval
T = [0, Tf ] with Tf > 0, and W (t, ω) is a Wiener process. The function C : R 7→ R is the
drift coefficient and D : R 7→ R is the diffusion coefficient. The Wiener process is the source
of their inherent stochasticity, inducing variability (randomness) in the the solution X.

In the present paper, we also consider uncertain drift and diffusion coefficients through
the introduction of random parameters Q(ω) in the definitions of these two functions. The
SDE (2.1) is consequently rewritten as

dX(t, ω) = C(X(t, ω), Q(ω))dt+D(X(t, ω), Q(ω))dW (t, ω), X(t = 0, Q(ω)) = X(0)(Q(ω)).
(2.2)

The SDE solution X has now two sources of randomness: the inherent noise induced by Wiener
process and the uncertain parameters Q. Our objective is to perform a global sensitivity
analysis to quantify the respective impact of these two sources of randomness on the overall
variability.

2.1. Polynomial chaos expansion. In the following, it is assumed that the random param-
eters Q are parametrized using a finite-dimensional random germ, ξ = {ξ1, · · · , ξN}, whose
components are independent, canonical, real-valued independent random variables. Hence
Q(ω) = Q(ξ(ω)). Let Ξ ⊆ RN denote the range of the random vector ξ(ω), and pi the proba-
bility density function (pdf) of ξi, for i = 1, . . . , N . By virtue of the independence of the ξi’s,
the joint pdf of the random vector ξ is

pξ(ξ1, . . . , ξN ) =
N∏
i=1

pi(ξi). (2.3)

Let L2(Ξ, pξ) be the space of square-integrable functionals in ξ, endowed with the following
inner product and associated norm

∀U, V ∈ L2(Ξ, pξ), 〈U, V 〉 =

∫
Ξ
U(ξ)V (ξ)pξ(ξ)dξ, ‖U‖L2 = 〈U,U〉1/2 . (2.4)

Any functional U ∈ L2(Ξ, pξ) has a PC expansion of the form [6]:

U(ξ) =
∑

α∈NN0

[Uα]Ψα(ξ), (2.5)
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where the coefficients [Uα] are called modes or PC coefficients of U , α = (α1, . . . , αN ) is a
multi-index, and the Ψα(ξ) are multivariate orthonormal polynomials. The polynomials are
mutually orthogonal with respect to the inner product:

〈Ψα,Ψβ〉 = δαβ =

{
1 α = β,

0 α 6= β.
(2.6)

Classically, the polynomial Ψα is the product of one-dimensional polynomials defined through

Ψα(ξ)
.
=

N∏
i=1

ψiαi(ξi), (2.7)

where {ψiα, α ∈ N0} is a complete orthonormal set (with respect to the density pi), and ψiα is
a polynomial of degree α. In practice, the expansion of U in (2.5) is truncated to a finite set
A of multi-indices,

U(ξ) ≈ Û(ξ)
.
=
∑
α∈A

[Uα]Ψα(ξ). (2.8)

We shall denote P = |A | .= card (A ), and call P the dimension of the PC basis.

2.2. Non-intrusive method. Consider U ∈ L2(Ξ, pξ). We seek to approximate U by a
function in the subspace SA spanned by the polynomial basis {Ψα,α ∈ A }. For a non-
intrusive method, the expansion coefficients [Uα] in (2.8) are determined from a set of evalua-
tions of U(ξ) at selected points ξj ∈ Ξ. The sample set of evaluation points ξj , as well as the
expansion coefficients, can be determined in different ways. These include the so-called col-
location methods [27, 30], which consist in multivariate interpolations, and quadrature-based
methods [22], which roughly consist in approximating the L2-inner product by discrete quadra-
ture rules. In the present work, we rely on non-intrusive projections which are quadrature
based approaches, but the developments proposed below can be easily extended to collocation
methods.

In the non-intrusive Spectral Projection (NISP) method [22, 31] one defines Û as the
orthogonal projection of U in SA , leading to the P conditions〈

U −
∑
β∈A

[Uβ]Ψβ,Ψα

〉
= 0, ∀α ∈ A . (2.9)

Equivalently, using the orthogonality of the polynomials, these conditions can be expressed as

[Uα] = 〈U,Ψα〉 , ∀α ∈ A . (2.10)

Upon the introduction of a suitable quadrature rule to approximate the inner product, with
points ξj and weights wj , one obtains

[Uα] = 〈U,Ψα〉 ≈
NQ∑
j=1

wjU(ξj)Ψα(ξj), (2.11)
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where NQ is the number of quadrature points. Denoting U = (U(ξj))j=1,...,NQ the vector
containing the values of U at the quadrature nodes, [U ] = ([Uα])α∈A the vector of PC
coefficients of U , the NISP method can be recast as

[U ] = PNISPU , PNISP ∈ R(P+1)×NQ . (2.12)

In (2.12) the NISP operator PNISP has for entries

PNISP
αj = wjΨα(ξj), α ∈ A , 1 ≤ j ≤ NQ.

A minimal requirement for PNISP is that it is exact for any U ∈ SA . This requirement
translates in the following conditions on the quadrature rule underlying the NISP method:

NQ∑
j=1

wjΨα(ξj)Ψα′(ξj) = δαα′ , ∀α,α′ ∈ A . (2.13)

For such a quadrature rule and polynomial basis, PNISP is free of internal aliasing and the
projection error due to the substitution of the continuous inner product with the quadrature
rule reduces to external aliasing (that is aliasing error with the component of the function
orthogonal to SA ). In practice, the quadrature rule is first constructed and A is subsequently
defined as the largest set of polynomial muti-indices satisfying (2.13). Operating this way
provides a great flexibility in the construction of the quadrature rule, possibly withing an
adaptive framework to come-up with anisotropic rules (and polynomial bases). Sparse grid
methods [13, 16], based on generalized Smolyak formula [41], are in particular crucial to enable
the application of NISP methods in high dimensions.

In the present work we rely on an improved variant of the sparse grid projection, called
the Pseudo-Spectral Projection (PSP), that was proposed in [8, 9]. The PSP method uses
sparse tensorization of one-dimensional projection operators at different levels to construct
a sparse (multi-dimensional) projection operator. The crucial difference between the PSP
and SP methods, is that the projection at different levels uses different quadrature rules and
projection basis. Doing so, PSP achieve exactness for generally larger multi-index sets A
than for the NISP method, with higher order polynomial spaces for the same set of points.
This results in a lower projection error for similar computational complexity. Further, the
PSP can be written as in (2.12), but with an alternative operator PPSP.

In the following we shall denote PNI a generic non intrusive projection operator, with-
out referring explicitly to the actual non-intrusive method considered. The linear operator
PNI then maps the model solutions at the NQ grid points to the P coefficients of the PC
approximation.

We now return to the determination of the expansion coefficients of X(t, ω), solution
of (2.2). Note that in the remainder of the section, by a slight abuse of notation, we will write
X(t,W (ω), ξ(ω)), to explicitly highlight the dependence of X on the Wiener noise and the
uncertain parameters. As mentioned previously, it was proposed in [21] to use PC expansions
to account for parametric dependence of X. Along this line, the expansion coefficients are
random processes (functions of W ) and the approximation is expressed as

X(t,W, ξ) ≈
∑
α∈A

[Xα](t,W )Ψα(ξ). (2.14)
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For the non-intrusive approach, the stochastic processes [Xα](t,W ) for α ∈ A are in fact
determined by applying the discrete projection operator PNI to a set of NQ solutions of the
SDE corresponding to the parameter values Q(ξj):

[Xα](t,W ) =

NQ∑
j=1

PNI
αjX(t,W, ξj). (2.15)

In other words, to perform the NI projection, one has to solve a SDE at each of the NQ

sparse grid points and for the same Wiener process W . To this end, let us denote Y (t,W )
the random solution of the system of NQ stochastic differential equations

dY = C(Y )dt+D(Y )dW, (2.16)

where the drift and diffusion vectors are defined by

C(Y )
.
=
(
C(Y1, Q(ξ1)) . . . C(YNQ , Q(ξNQ))

)T
, D(Y )

.
=
(
D(Y1, Q(ξ1)) . . . D(YNQ , Q(ξNQ))

)T
.

In words, the j-th component of the drift and diffusion vectors are evaluated at the parameter
value Q(ξj) and the corresponding solution point of the sparse grid (Yj). The stochastic
system (2.16) is completed with the initial conditions,

(Y (t = 0))j = X(0)(ξj).

One key property of the system above is that the resolution of the components Yj are in fact
independent from one to another. This will enable efficient parallel procedure as discussed in
the next section.

The resolution of the stochastic system then proceeds classically by means of Monte Carlo
method to sample the Wiener process. Let us denote W (i) = W (ωi) a particular trajectory of
the Wiener process and Y (i)(t) the corresponding trajectory of the random vector Y (t,W (i)),
solving (2.16). The expansion coefficients of the corresponding trajectory of X(t) are finally
obtained through

[Xα](i)(t) =

NQ∑
j=1

PNI
αjY

(i)
j (t). (2.17)

Obviously, the resolution of (2.16) conditioned on W = W (i) requires the introduction of an
appropriate time discretization; in the present work we use for simplicity the classical Euler-
Maruyana method. Note that any more advanced integration method could be considered for
the generation of the trajectories Y (i)(t).

2.3. Variance decomposition. From the approximation of X(t,W, ξ) in (2.14), the objec-
tive is to apply a global sensitivity analysis, in particular to quantify the respective importance
of the noise W and parameters Q(ξ) on the variability of X at some time T . For notational
convenience, the reference to time is dropped in the remainder of this section, and we detail
only the expressions used in the analysis. A complete derivation of these expression can be
found in [21]. A review of classical sensitivity analysis can be found in [38].
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The variance-based global sensitivity analysis of X relies on its Sobol-Hoeffding (SH)
decomposition [42]:

X = X̄ +Xpar(ξ) +Xnoise(W ) +Xmix(ξ,W ), (2.18)

where X̄ = E {X} and

Xpar(ξ) = E {X|ξ} − X̄,
Xnoise(W ) = E {X|W} − X̄,
Xmix(ξ,W ) = X − X̄ − E {X|ξ} − E {X|W} .

It can be easily shown that the SH functions appearing on the right-hand-side of (2.18) are
mutually orthogonal. As such, the variance of X can be decomposed into the sum of the three
contributions,

V {X} = Vpar + Vnoise + Vmix, (2.19)

which are respectively identified as the (partial) variances due to the parametric uncertainty
(Vpar), to the Wiener noise (Vnoise) and their interactions (Vmix). Classically, the importance
of the different contributions is characterized using the so-called sensitivity indices, which are
simply the corresponding partial variances normalized by the total variance of X:

Spar =
Vpar

V {X}
, Snoise =

Vnoise
V {X}

, Smix =
Vmix

V {X}
. (2.20)

Having introduced previously the PC approximation of X, we now want to reuse this
approximation to obtain approximations of the sensitivity indices. We shall adopt here the
classical convention, defining Ψ0(ξ)

.
= 1 for some 0 ∈ A , such that all other polynomials have

vanishing expectation (by the orthogonality of the Ψα):

E {Ψα} =

{
1 α = 0,

0 α 6= 0.
(2.21)

We first restate a major assumption of this work, which is that the Wiener noise and the SDE
parameters are two independent random quantities. Therefore, the solution mean X̄

.
= E {X}

is approximated from its PC via

X̄ ≈
∑
α∈A

E {[Xα](W )}E {Ψα} = E {[X0](W )} .

Similarly the variance of X is approximated by

V {X} = E
{
X2
}
− X̄2 ≈

∑
α∈A

E
{

[Xα]2
}
− E {[X0]}2 . (2.22)

PC-based expressions can also be obtained for the parametric conditional expectations and
variances. Specifically, the conditional expectation and variance of X given ξ = η are ex-
pressed as:

E {X|ξ = η} ≈ E

{∑
α∈A

[Xα]Ψα|ξ = η

}
=
∑
α∈A

E {[Xα]}Ψα(η),

V {X|ξ = η} = E
{

(X − E {X|ξ = η})2|ξ = η
}
≈

∑
α,α′∈A

[CX,X]α,α′ Ψα(η)Ψα′(η),
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where [CX,X] ∈ RP×P is the covariance matrix of the expansion coefficients of X. Conditioning
X on a particular trajectory of W , say W (i), the following approximations can be similarly
derived:

E
{
X|W = W (i)

}
≈
∑
α∈A

E
{

[Xα]|W = W (i)
}
E {Ψα} = [X0](i),

V
{
X|W = W (i)

}
= E

{(
X − E

{
X|W = W (i)

})2
|W = W (i)

}
≈

∑
α∈A \0

(
[Xα](i)

)2
.

The approximated expressions of the partial variance Vpar and Vnoise can then be obtained
using the PC coefficients. This leads to

Vpar =
∑

α∈A \0

E {[Xα]}2 , Vnoise = V {[X0]} , (2.23)

from which it can be deduced using (2.22) and (2.23) that:

Vmix =
∑

α∈A \0

V {[Xα]} . (2.24)

2.4. Discussion and implementation. The developments above assume that the process
X can actually be expanded in the form (2.14). This means that X belongs to the space
of square integrable random variables in Q tensored with the space of squared integrable
functionals of W , that is using standard notation L2(Ξ, pξ)⊗ L2(R∞, pW ). For instance, this
requirement rules out the case of SDE solutions blowing up in time with finite probabilities. It
is also remarked that the expansion in (2.14) approximates the dependence of the solution with
respect to the finite set of uncertain parameters, with expansion coefficients still depending on
the infinite dimensional noise. Their dependence on W is, however, never computed; instead
the proposed approach (jointly) samples the expansion coefficients [Xα](t,W ) for realizations
W (i) of the noise. In fact, the approach is applicable as soon as the coefficients [Xα](W (i))
have second moment with respect to the sampled paths W (i), as detailed below.

Observe that the expressions in (2.23) and (2.24) involve only the expectations and vari-
ances of the expansion coefficients of X. Their computations involve averaging over the Wiener
measure only, and can therefore be estimated by means of MC sampling. Specifically, the ex-
pectation and variance of the PC coefficients [Xα](W ) can be estimated through the classical
formulas:

E {[Xα]} ≈ ̂E {[Xα]} .= 1

NW

NW∑
i=1

[Xα](i), V {[Xα]} =
1

NW − 1

NW∑
i=1

(
[Xα](i)

)2
− ̂E {[Xα]}

2
,

(2.25)

where we have denoted NW the number of MC samples W (i) of the Wiener process. Re-
calling that [X](i) is given by (2.17), where Y (i) is the solution of (2.16) using W = W (i).
The resolution of (2.16) can be achieved by any solver suitable to the solution of stochastic
differential Equations [17]. In the present work we used the Euler-Maruyama method, but
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higher order methods (e.g. Milstein [29] or Runge-Kutta [44]) or a correction method (e.g.
Wong-Zakai’s [14, 46]) could be considered as well. In fact, future works should consider the
problem of selecting a solution method for Y (i) that induces an error consistent with the
projection error on the PC basis. Assuming that the cost of solving the SDE for Y (i) is inde-
pendent of the realization W (i), for instance when using a fixed time-discretization, one can
estimate the computational complexity of estimating the partial variances as O(NW × NQ).
This complexity estimate only assumes a computational cost independent of the parameter
values for solving the SDE given W = W (i). However, one can further exploit the possibility
of computing independently the NQ components of Y (i). In other words, the computation

of the set of trajectories {Y (i)
j (t); j = 1, . . . , NQ; i = 1, . . . , NW } can be made in parallel as

long as the trajectories W (i) of the Wiener process are consistently generated for different
non-intrusive points ξj . This is in particular the case for pseudo-random sequences entirely
determined by a seed and when using the same time-discretization for all the non-intrusive
points.

In the present work, we have tested two parallel strategies. In the first strategy, different
MC realizations of the PC coefficients of X were generated in parallel, solving (sequentially)

system (2.16) and applying (2.17) to get the whole set of coefficients [Xα](i) at once. Note
that the resolution of (2.16) could be performed in parallel as well, corresponding to a fine-
grained parallelization. In the second strategy, the parallelization was implemented over the

non-intrusive points, generating in parallel sample sets {Y (i)
j , i = 1, . . . , NW }. This was made

possible by reusing consistently the same set of NW seeds for the random number generator at

each of the non-intrusive points. Note, again, that the problems for Y
(i)
j could also be solved

in parallel for different i (fine-grained parallelization). Both parallel implementations are
completely equivalent, in the sense that they produce the same results. The second strategy
is more demanding in terms of memory since it requires us to store in memory all the solutions

Y
(i)
j to subsequently compute the PC coefficients [Xα](i) and estimate their first two moments

needed for the variance decomposition. On the contrary, the first parallelization on W (i)

seems better suited because the estimators of the partial variances can be computed on the
fly, without having to store [Xα](i). However, the second approach may be computationally
more efficient depending on the hardware architecture and infrastructure available.

Finally, it is emphasized that the PC decomposition can conceptually be performed for
any functional of X (provided it has W -almost surely finite second moments). This feature is
further discussed and illustrated in the following sections.

3. Validation. In this section we present a validation of the proposed NI approach. The
accuracy of the solution is also contrasted with the Galerkin solution constructed using the
methodology proposed in [21].

3.1. Test problem. Let us consider the process governed by the following SDE

dX(W, ξ) = (Q1(ξ)−X(W, ξ))dt+ (νX(W, ξ) + 1)Q2(ξ)dW, (3.1)

with uncertain parameter Q and the initial condition X(t = 0) = 0 almost surely. Note
that for ν = 0, X is the Ornstein-Uhlenbeck (OU) process. We set in this section ν = 0.2
so the problem has multiplicative noise. The random functions Q1 and Q2 are assumed
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to be independent and uniformly distributed, according to Q1 ∼ U ([0.95, 1.15]) and Q2 ∼
U ([0.02, 0.22]). These two functions are then parametrized using two independent random
variables, ξ1 and ξ2, having uniform distributions on the unit interval. Then ξ = (ξ1, ξ2) ∼
U ([0, 1])2.

To monitor the convergence of the approximation, we shall report the normalized L2 error
norm defined by

ε(t) =
‖X̂(t)−X(t)‖
‖X(t)‖

, (3.2)

where X and X̂ are the exact and PC approximations of the SDE solution, and ‖.‖ is the
L2-norm with respect to W and ξ given by:

‖U(W, ξ)‖2 = E
{
U2
}1/2

. (3.3)

We focus on the error at t = 10 and drop the reference to the time in the notation of the
error. The error norm is evaluated by means of a MC sampling as follows. First we draw
a trajectory W (i) and construct the PC approximation X̂(i) =

∑
α∈A [Xα](i)Ψα(ξ) through

the PSP method as described above. Then we draw at random ξ(i) in the unit square and
solve for X(i) the stochastic differential equations for the noise trajectory W (i) and drift and

diffusion function given by Q1(ξ
(i)
1 ) and Q2(ξ

(i)
2 ). The error norm is finally estimated as

ε2 ≈
∑M

i=1 |X̂(i)(ξ(i))−X(i)|2∑M
i=1 |X(i)|2

, (3.4)

for sufficiently large M (in practice few millions of samples are used to estimate the error).
In addition to the MC sampling, the resolution of the SDE for the sampled values of the
parameters and the Wiener noise requires a time-discretization. To obtain consistent error
estimates, all computations use the same time step ∆t = 0.01 for the integration of the
differential equations.

Below, we investigate the evolution of the error in the PSP approximation when using
different levels of the sparse grid. The different levels correspond to quadratures consisting in
(sparse) tensorizations of the one-dimensional Féjèr rule. The resulting projection bases have
maximal degree (2`−1), where ` ≥ 1 denotes the PSP level. Table 3.1 reports the dependence
on the PSP level ` of the number of sparse grid points NQ and the dimension of the PC basis
P in the computations presented below.

` 1 2 3 4 5

NQ 5 17 49 129 321
P 3 8 20 48 112

Table 3.1: Number of sparse grid points and dimension of the PC basis for the 2-dimensional
sparse PSP based on Féjèr’s rule.

The left plot of Figure 3.1 shows the dependence of the L2 error defined in (3.4) on the
PSP level. It is seen that the approximation error has an exponential decay with the PSP level
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and reaches machine precision for ` ≥ 4. This fast convergence highlights the smoothness of
the dependence of the trajectories of X with respect to the uncertain parameters appearing in
the definition of the process. The behavior of the non-intrusive approach is further illustrated
in the right plot of Figure 3.1 which quantifies the difference between the PSP and Galerkin
solutions of (3.1). The Galerkin solution is computed using the method presented in [21].
Specifically, the right plot depicts the norm of the difference between the PSP and Galerkin
solution, normalized by the norm of the exact solution. For each estimate, the Galerkin
solutions use the same PSP basis (A ) as in the corresponding PSP solution. These plots
indicate that the PSP and Galerkin methods yield comparable convergence rates and error
levels.
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(a) PSP approximation error

1 2 3 4
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r
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(b) Difference between PSP and Galerkin

Figure 3.1: Left: error norm ε versus PSP level ` for the approximation of X governed by (3.1)
at time t = 10. Right: norm of the difference between the Galerkin and PSP approximations
at t = 10 versus the PSP level `. The estimates are normalized by the norm of the Galerkin
solution.

3.2. Direct NI projection of QoIs. Compared to the Galerkin method used in [21], the
present NI approach has the advantage of allowing for the direct approximation of some
functionals of X. As an example, assume that we are not interested in X, but in some derived
quantity such as the integral of X over t ∈ [0, 10]. Figure 3.2a shows several trajectories of X,
solution of (3.1), corresponding to different parameter values of Q(ξ) but a single realization
W (i) of W . Clearly, the integral

A(W, ξ)
.
=

∫ 10

0
X(t,W, ξ)dt. (3.5)

has variability due to W and ξ. (For fixed W (i), the dependence of A on ξ is illustrated in
Figure 3.2b.) This integral can be estimated by a large variety of methods; for simplicity,
we use here a simple trapezoidal rule with fixed time step for the SDE integration. Each
trajectory of the noise, W (i), has an associated vector of SDE solutions at the sparse grid
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points Y (i)(t), from which one can directly obtain the PC coefficients of A(i)(ξ):

A(W (i), ξ) ≈ Â(W (i), ξ) =
∑
αA

[Aα](i)Ψα(ξ), [Aα](i) =

NQ∑
j=1

PNI
αjA

(i)
j , A

(i)
j =

∫ 10

0
Y

(i)
j (t)dt.

It is seen that this direct projection of A consists in first estimating the QoI at each sparse
grid point ξj , followed by a projection of these values. Such an approach is not possible in
the Galerkin approach as no governing equation would be available for this QoI. This feature
is one of the attractive aspects of NI methods.

t
0 2 4 6 8 10

X
(t
,W

(i
) ,
ξ
)

0.2

0.6

1

1.4

(a) Trajectories of X(W (i), ξ)

1
0.5

ξ1
0

0

0.5

ξ2

10

9

8

1

A
(W

(i
) ,
ξ
)

(b) Response surface of A(W (i), ξ)

Figure 3.2: (a) Different trajectories of X, for a fixed noise W (i) and different realizations of
Q(ξ). (b) A(i)(ξ) versus ξ1 and ξ2 for fixed W (i).

We first check the convergence of the direct PSP projection of A, presenting in Figure 3.3a
the difference A(W (i), ξ) − Â(W (i), ξ) as function of ξ for different PSP levels. Figure 3.3b
shows the normalized approximation error ‖A − Â‖, as expressed in (3.2) with A instead of
X, as a function of PSP level (left plot) and number of sparse grid points (right plot). The
results demonstrate the fast convergence of the PSP approximation, and indicate that even
with ` = 1 the PSP may be sufficiently well-converged for the purpose of performing the
variance decomposition.

The sensitivity indices of A are then estimated from a sample set of NW realizations of the
PC coefficients [Q](i)α (see Sections 2.3 and 2.4). Figure 3.4 illustrates the dependence of Spar,
Snoise and Smix on NW . For validation and comparison purposes, also shown are estimates
obtained using a pure MC sampling strategy [37], based on sampling jointly W and ξ and
without relying on PC projection. The plots show that the results of the PSP and direct MC
methods asymptotically agree when NW increases. It can also be seen that the effect of the
PSP level for ` > 1 is barely visible, as one would have expected from the fast convergence
of the PSP approximation for this problem. Also note that the level of fluctuations in the
random estimates of the sensitivity indices is much smaller for PSP than with MC. This may
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Figure 3.3: (a) A − Â versus ξ for fixed W (i). Plotted are 2D surfaces for ` = 1, 2 and 3
arranged from left to right. (b) Normalized L2 error versus ` (left) and log(NQ) (right).

be explained by the fact that the PC expansion yields an “exact” ξ sampling for each W (i)

with an improved convergence as a result for the estimators of Spar, Snoise and Smix. In fact,
if A was independent of W , using NW = 1 would be enough to capture all the variability
in A. This can be appreciated from Fig. 3.4, where dashed lines are used to depict error
curves for the same problem, but with a reduced diffusion coefficient (Q2(ξ) ∼ [0.02, 0.03])
and consequently a lower noise influence.

To analyze the effect of “exact” ξ on the sensitivity estimates, we plot in Figure 3.5a the
standard errors (SE) of the PSP and direct MC methods against NW . The SE are estimated
by means of bootstrapping [11]. The results indicate that PSP has lower error than MC for
the same number of samples NW . In particular, we observe a difference of four orders of
magnitude between the two methods. However, the reduction of the SE will not necessarily
produce computational savings since the PSP requires the resolution of NQ SDEs for each
sample W (i). The PSP cost is estimated as NQ ×NW , that is total number of solves for the
SDE to construct the PSP approximation, when it is just 3NW for MC for the three sensitivity
indices as explained in Appendix A. Hence, the reduction in the SE in the PSP estimators
may not necessarily translate in an improvement of the overall computational efficiency if NQ

is large. Figure 3.5b shows the evolution of the SE in the MC and PSP approaches as function
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Figure 3.4: Spar, Snoise and Smix versus NW of W for different PSP levels. Also shown for
comparison are the estimators for a direct MC approach (without PSP approximation, labeled
MC). The solid lines correspond to the settings of Section 3.1, whereas dashed lines correspond
toresults obtained using PSP with a reduced diffusion coefficient Q2(ξ) ∼ U [0.02, 0.03].

of their respective cost. Plotted are results obtained for the two previous settings, i.e. with
high and low noise levels. In both cases and for all three indices, it is seen that the PSP
approach out performs the classical MC estimation.

4. Case of Non-Smooth QoI. In contrast to the example of the time integral in Sec-
tion 3.2, the smoothness (with respect to uncertain parameters) of the SDE solution does not
necessarily translate to smooth quantities of interest. As an example, we continue to consider
the solution, X, of the SDE in (3.1), but focus on the variance decomposition of the exit time
corresponding to the exit boundary X = c. The quantity of interest, denoted T is now defined
by

T (W, ξ) = min
t>0
{X(t,W, ξ) > c}. (4.1)

In the following we set c = 1. Figure 4.1 shows trajectories X up to their respective exit
times T . Again, these trajectories correspond to the same realization W (i) of the noise but
different random realizations of the uncertain parameters Q(ξ). We observe that even for a
fixed realization of the noise, the variance of T (·, ξ) can be very large as for some parameter
values X quickly exits, while for other cases it takes a very long time to hit the exit boundary.
In fact, the dependence of the exit time on the random parameters is not expected to be
continuous, as an infinitesimal change in the parameter values can lead to finite delay in T .

4.1. Indirect PSP approximation. The non-smooth dependence of T (W (i), ξ) with re-
spect to both of its arguments results in a compromised convergence of its PC approximation.
Specifically, the direct expansion of T over bases of globally smooth polynomial Ψα exhibits
a slow convergence rate with the polynomial degree of the expansion, and therefore would
require a prohibitively large number of sparse grid points. This is illustrated in Figure 4.2
which shows the direct PSP approximation of T (W (i), ξ), computed as in Section 3.2. As the
PSP level ` increases, the directed PSP projection of T (W (i), ξ) does not converge, at least
not as fast as reported in the experiments of the previous section. Instead, the approximation
is seen to be plagued by higher and higher frequency oscillations as ` is increased, denoting
the emergence of Gibbs phenomena. For the highest PSP level reported (` = 5 in the bottom
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Figure 3.5: Standard Errors in the sensitivity indices of A, using the direct PSP with NQ = 5
and standard MC methods. The solid lines correspond to the settings of Section 3.1, whereas
the dashed lines correspond to the reduced diffusion coefficient Q2(ξ) ∼ U [0.02, 0.03]. The top
rows present the SEs as function of NW , whereas the bottom rows show their dependences on
the computational cost.

right plot of Figure 4.2), we remark that although the number of sparse grid points is signifi-
cant (NQ = 321), the approximation error on the exit time is still very large, in particular for
small values of ξ1 and ξ2. In fact, these situations correspond to a low asymptotic expected
value for X (less than the exit level) and small diffusion coefficient. For this combination, the
probability of W (i) to push X up to the exit boundary is small, with large expected exit time
T as a result.

Even though the mapping X 7→ T (X) is not smooth, with the detrimental effects just un-
derlined, we can still exploit the smoothness of X and the fast convergence of X̂ to accurately
estimate the sensitivity indices of the exit time T . The key idea is to substitute the exact exit
time T (or its direct non-intrusive approximation), with the surrogate T̃ = T (X̂), indirectly
constructed through

T (W, ξ) ≈ T̃ (W, ξ) = min
t>0
{X̂(t,W, ξ) > c = 1}, X̂(t,W, ξ) =

∑
α∈A

[Xα](t,W )Ψα(ξ). (4.2)

In essence, given a noise trajectory W (i) we first approximate the PSP approximation of
X(W (i), ξ) and use this PSP approximation to approximate the exit time T (W (i), ξ). There-
fore, this approach is termed indirect. To demonstrate the validity of the indirect approach,
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Figure 4.1: Several trajectories of the solution of the SDE, stopped when hitting the exit
boundary X = 1. Shown are trajectories for the same noise realization W (i), and different
parameter values Q(ξ).
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Figure 4.2: Direct PSP approximation of T (W (i), ξ) for different levels ` as indicated. Also
shown as circles are the sparse grid points used in the PSP constructions.

we present in Figure 4.3 the approximated exit time T̃ defined from (4.2). The plots shows
the dependence on ξ of T̃ (W, ξ), for a single realization of W and different levels ` in the
approximation of X (top row), as well as the corresponding indirect approximation errors
T − T̃ . It is seen that for this realization W of the noise, a PSP expansion of X at level ` = 2
is enough to obtain an absolute indirect error in the exit time of less that 10−5 .

We remark that the indirect approximation of T (·, ξ), for any ξ ∈ Ξ, requires the con-
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Figure 4.3: Indirect approximation T̃ of the exit time through (4.2) (top row) and absolute
indirect approximation error T − T̃ (bottom row). The plots correspond to a fixed trajectory
W of the noise and different PSP levels ` as indicated.

struction of X̂(t, ·, ξ) up to a time tf , when the system has exited for all values of ξ. It implies
that the whole set of NQ PSP points are integrated up to (at least) time tf .

To better appreciate the convergence of the indirect approximation T̃ based on (4.2),
Figure 4.4 shows the convergence of the L2 error norm (following (3.2) with T instead of
X). The left plot shows the dependence of the error norm on the number of levels ` in the
PSP approximation of T ; the right plot depicts the same error norm but as a function of the
number of PSP points NQ (note the log-scale). The two plots look similar as NQ increases
roughly exponentially with `. They demonstrate the exponential convergence rate of the
indirect approximation for this non-smooth QoI; specifically, approximation within machine
precision is achieved for just ` = 4 levels.

4.2. Estimation of the Sensitivity indices. We now turn to the estimation of the partial
variances and sensitivity indices of the exit time T . Contrary to the direct approximation,
where PC coefficients of T would be available, the expressions of the partial variances in (2.23)
and (2.24) can not be used for the indirect approximation, and an alternative approach is
needed to estimate Vpar, Vnoise and Vmix. The indirect approximation of the exit time pro-
vides natural means of proceeding by Monte Carlo sampling, where instead of sampling T
one samples T̃ . The Monte Carlo sampling for the estimation of the sensitivity indices was
proposed in [37], and is briefly summarized in the Appendix. For simplicity, the estimation
of the partial variance Vnoise is considered here. As shown in Section A, the MC estimation of
Vnoise requires the estimation of a correlation of the form E {T (W, ξ)T (W, ξ′)}, where ξ and ξ′

are two independent replicas of the uncertain parameters. The MC estimate can be expressed
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Figure 4.4: L2 error norms of the direct and indirect PSP approximations of T .

as

E
{
T (W, ξ)T (W, ξ′)

}
≈ 1

N

N∑
i=1

T (W (i), ξ(i))T (W (i), ξ′(i)). (4.3)

In this approach, one jointly samples (twice) both the Wiener and parameter spaces. Thus
for each element of the sum in (4.3), the SDE needs be solved twice using the same noise
W (i) but two parameters values Q(ξ(i)) and Q(ξ′(i)). We propose in the following to rely
on the indirect exit time approximation T̃ in place of T . Replacing T will introduce a bias
that can be controlled by increasing the accuracy of the approximation (increasing ` in the
PSP approach). In addition, the statistical independence of the noise and parameters is here
exploited to recast the MC estimate (4.3) into the following form

E
{
T (W, ξ)T (W, ξ′)

}
≈ 1

NW

NW∑
i=1

 1

Nξ

Nξ∑
j=1

T̃ (W (i), ξ(i,j))T̃ (W (i), ξ′(i,j))

 . (4.4)

In (4.3), ξ(i,j) and ξ′(i,j) are two independent random samples. The main difference be-
tween (4.3) and (4.4) is that for each sample W (i) of the noise, the later formula uses multiple
samples (Nξ) of the parameters. A similar expression can be derived for the correlation
appearing in Vpar, with a sum over Nξ samples ξ(i,j).

The two approaches are contrasted in Figure 4.5, which depicts the sensitivity indices
computed using (4.3) (labeled MC in the plot) and using (4.4) for different PSP levels. Two
computational cases are reported. First, the case of the process with significant noise level
with Q1 ∼ U [0.95, 1.05], Q2 ∼ U [0.02, 0.22] and ν = 0.2 in the top row and, second, the case
with Q1 ∼ U [0.95, 1.05], Q2 ∼ U [0.02, 0.03] and ν = 0.0, corresponding to a low noise OU
process, in the bottom row. The plots show the convergence with ` of the indirect approach.
In fact for the additive noise case, the PSP approximation of X with ` = 1 is exact such
that the estimates of the sensitivity indices are unbiased. We also observe the much faster
convergence of the indirect approach, which exhibits much smaller statistical fluctuations

18



SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

compared to the classical MC estimates. The improvement in the random estimates of the
sensitivity indices is due to the effect of the ξ-averaging in the indirect approach, which used
here Nξ = 2000. Obviously, when using Nξ = 1 the two approaches are equivalent and no gain
in the convergence with NW is then reported (not shown). Clearly, the improvement of the
indirect approach is the more significant in the case of the OU process with low noise impact
as one would have expected. Indeed, most of the variance is then explained by the parametric
variability and, Vnoise + Vmix being small, the sampling error is less important.
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Figure 4.5: Sensitivity indices Spar, Snoise and Smix versus the number, NW , of noise samples
for different PSP levels. Also shown for comparison are the standard MC estimators (labeled
MC). The two rows corresponds to different systems with parameters given in the text.

To better appreciate the gain achieved by the proposed indirect approach, we present in
Figure 4.6 the evolutions with the number of noise samples NW of the standard error in the
sensitivity indices (i.e. the standard deviation of the random estimates of Spar, Snoise and
Smix). The curves reported in Figure 4.6 confirm and quantify the previous claim that the
indirect approach has systematically a lower standard error than the classical MC estimator
for the same number of noise samples. Specifically, to obtain comparable standard error, the
estimation of Spar using the indirect approach requires roughly a hundred time less samples
than the classical MC estimator. This is the immediate benefit of the ξ-averaging. For the
two other indices, Snoise and Smix, the magnitude in the reduction of their standard errors
depends on the effect of the noise on the exit time, and is less pronounced when this effect is
large.

This trend can be explained by observing that the stronger the noise effects, the larger the
number of W samples to reduce the sampling error, and the beneficial impact of ξ-averaging
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Figure 4.6: Standard errors in the sensitivity indices of the exit time, as a function of the
number of samples NW , for the indirect PSP and standard MC approaches. The indirect PSP
method uses Nξ = 2000. The solid lines correspond to the multiplicative noise process with
large noise, whereas the dashed lines correspond to the low additive noise case (OU process).

(using Nξ samples for each W (i)). Figure 4.7 illustrates this trend, namely by plotting the
standard errors as function of NW for different values of Nξ. For Nξ = 2, the error has
similar behavior as for classical MC (dashed line). Increasing the number of samples Nξ,
the standard error is seen to first improve, and then to level-off when the W -sampling error
becomes dominant. It is also seen that the benefit of the PSP approach is more significant for
Spar than for the two other indices.
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Figure 4.7: Standard errors in the sensitivity indices of the exit time versus the number of
samples NW , for the indirect PSP with different values of Nξ, and standard MC approach.
The results correspond to the process with large level multiplicative noise.

To complete the results on the treatment of non-smooth QoIs using indirect PC approxi-
mations, we discuss the efficiency of the approach. In fact, the reduction of the standard error
in the random estimate of the sensitivity indices will not necessarily yield computational sav-
ings. Indeed, if the possibility of reducing the number of noise sample is essential to improve
the efficiency of the estimates, one needs to account for the overhead inherent in the deter-
mination of the PC approximation of X given W (i). In many situations, this overhead will
be proportional to the number of sparse grid points NQ involved in the PSP approximation.
This overhead must then be compared with the improvement in the standard error result-
ing from the ξ-averaging. For the present tests on the exit time, the PSP overhead is even
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more important than just the number of sparse grid points, because the approach requires
us to integrate system 2.16 up to tf , time at which the trajectories corresponding to sample
points ξ(i,j) have exited. For a fixed noise realization W (i), the last exit time tf is random
(because ξ(i,j) is random) with an expected values that increases with Nξ. Indeed, denoting
T (i,j) = T (W (i), ξ(i,j)) we have

t
(i)
f = max

j=1,...,Nξ
T (i,j), E

{
t
(i)
f

}
= Tf (Nξ) ≥ E

{
T (i,j)

}
.

This shows the existence of a trade-off between the reduction of the standard error with
increasing Nξ and the increase of the expected computational cost per NW sample with Nξ.
Deciding a priori of the optimal choice for Nξ highly depends on the problem considered,
specifically on the relative importance of the contributions to the variance (which we actually
aim at characterizing) and the computational cost of building the non-intrusive approximation.
We illustrate this trade-off in Figure 4.8, which shows the standard errors of Figure 4.6, plotted
against the actual computational cost. The computational cost was estimated as the sum of the
number of sparse grid points times the number of time steps performed till all the Nξ samples
have exited. In these numerical experiments we used Nξ = 2000 and the computational cost
is compared to the direct MC cost which reflects only the number of time steps to exit. It
is seen that the efficiency of the indirect approach is less pronounced than when monitoring
the standard error as a function of NW . In particular, in the case with the largest noise
effects, the indirect approach can be less effective that the classical MC estimation for Vnoise.
Note, however, that having constructed the PSP of X(t) for a given W (i) gives access to many
more information than just the sensitivity indices considered here. For instance, one could
compute all sensitivity indices (e.g. separating the contributions of the drift and diffusion) at
no additional cost, whereas the MC approach would require many more computations.
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Figure 4.8: SE errors in the sensitivity indices of the exit time versus the global cost of the
indirect PSP and standard MC methods. The indirect PSP method uses Nξ = 2000. The
solid lines correspond to the multiplicative noise process with large noise, whereas the dashed
lines correspond to the low additive noise case (OU process).

5. Conclusions. In this work we have proposed an adaptation of the spectral Galerkin
approach presented in [21] to non-intrusive or sampling-type methods to perform variance
decompositions in uncertain SDEs. Here, we have relied on the non-intrusive pseudo-spectral
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projection (PSP) method to compute the Polynomial Chaos expansion coefficients of the
uncertain SDE solution. We have shown using an elementary example that the PSP with
Galerkin methods yield comparable errors and have similar convergence rate, and that PSP
exhibits the advantages of the non-intrusive methods making it more suitable for more complex
problems. In particular, the non-intrusive approaches can be more easily implemented in
parallel, compared to the Galerkin method, and we have discussed possible parallel alternatives
depending on the available computational infrastructure.

We have also exploited to non-intrusive character of the approach to perform global sensi-
tivity analysis of QoIs that correspond to functionals of the stochastic solution. The cases of
smooth and non-smooth QoIs were distinguished. For the case of smooth QoI (with respect
to the uncertain parameters of the SDE), a direct NI projection can be performed, and the
sensitivity indices can be computed from their expansion coefficients directly. We have com-
pared our results with a MC sampling method, and report that our PSP approach exhibits
a significantly lower standard error in the estimated sensitivity coefficients for same number,
NW , of SDE noise samples. We pointed out that this improvement is due to the essentially
“exact” ξ-averaging, which comes at the cost of having to solve a set of NQ SDEs for each sam-
ple W (i) of the noise. This suggests that the relative efficiency of the proposed non-intrusive
method depends on the problem considered, balancing the reduction in the variance of the
sensitivity indices estimators, with the number of NQ additional solves needed to construct
the PSP approximation. For the case of a non-smooth QoI, we have shown that the direct
non-intrusive projection on a spectral bases results in a very slow convergence. This fact was
avoided by introducing a NI strategy, termed indirect, which consists in first constructing the
spectral approximation of the SDE solution, and secondly sampling this approximation to
generate realizations of the QoI. These samples of the QoI can then be used in a classical MC
sampling method to estimate the sensitivity indices. This methodology was illustrated for
the case of the exit time as QoI. We found that as expected the proposed approach has lower
standard error than a classical MC estimator, for the same number NW of noise samples.
This improvement is due to the possibility of estimating efficiently conditional averages (with
respect to the noise realization). However, we have shown that for the exit time example, the
computational cost of building the SDE solution approximation could not only be a function
of the number of non-intrusive points, NQ, but can also be affected by the number of sam-
ples used to estimated the conditional averages of the QoIs. Situations of low noise effects,
relatively to parameter uncertainty, are the most favorable to the proposed method. Further,
assuming that the computational cost is dominated by the non-instrusive approximation of
the SDE solution, the proposed approach has a cost essentially independent of the number
of sensitivity indices being estimated, in contrast to the Monte Carlo method whose cost is
proportional to the number of indices sought.

To complete the discussion, let us stress that computational savings are obtained only
if the determination of accurate PC expansions is feasible at a cost (number of simulations)
significantly less than that is needed by a direct MC method to sample the parameter space
with the same accuracy. This may not be the case for all models and parametric variabilities;
in particular, parametric bifurcations and bimodal solution models are generally expected to
necessitate higher dimensional projection spaces, namely to accommodate discontinuities (see
for instance Section 6 of [21]). Projection on enriched spaces (e.g. multiwavelet spaces [18, 19])
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demands a significantly higher computational effort and would require the introduction of
adaptivity and multi-resolution procedures [45] to eventually achieve computational savings
in a non-intrusive framework.

Appendix. MC estimation of the sensitivity indices. We briefly recall the MC sampling
to estimate the sensitivity indices, using the Homma and Saltelli method [37]. We adapt the
notations to the problem considered here, namely the computation of the partial variances
associated to noise (W ), parametric (ξ), and mixed contributions. To this end, consider a
generic quantity of interest F (W, ξ). The estimators use two independent random sample sets
of realizations of (W, ξ), each with size N . We denote S and S̃ these two sample sets.

S = {(W (i), ξ(i)), i = 1, . . . , N}, S̃ = {(W̃ (i), ξ̃(i)), i = 1, . . . , N}. (A.1)

The partial variances Vpar and Vnoise can be estimated by combining the two sample sets as
follows:

Vpar ≈ V̂par =
1

N − 1

N∑
i=1

F (W (i), ξ(i))F (W̃ (i), ξ(i))− 1

N

N∑
i=1

F (W (i), ξ(i))2,

Vnoise ≈ V̂noise =
1

N − 1

N∑
i=1

F (W (i), ξ(i))F (W (i), ξ̃(i))− 1

N

N∑
i=1

F (W (i), ξ(i))2.

The first-order sensitivity indices are then estimated using

Spar ≈
V̂par

V̂ {F}
, Snoise ≈

V̂noise

V̂ {F}
, Smix ≈ 1− Spar − Snoise. (A.2)

In the previous equations, the estimation of the variance of F , V̂ {F}, follows the classical
MC estimator:

V̂ {F} .= 1

N − 1

N∑
i=1

F (W (i), ξ(i))2 − Ê {F}
2
, Ê {F} .= 1

N

N∑
i=1

F (W (i), ξ(i)). (A.3)

The MC estimation above can be extended to other sensitivity indices considering different
groupings and combinations of the sampled variables in the two initial sample sets S and S̃ .
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[18] O. Le Mâıtre, R. Ghanem, O. Knio, and H. Najm, Uncertainty propagation using Wiener-Haar
expansions, J. Comput. Phys., 197 (2004), pp. 28–57.

[19] O. Le Mâıtre, H. Najm, R. Ghanem, and O. Knio, Multi-resolution analysis of Wiener-type uncer-
tainty propagation schemes, J. Comput. Phys., 197 (2004), pp. 502–531.
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