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Abstract We investigate two methods to build a polynomial approximation of a model output depending on some
parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse
grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control
of the error along different subsets of parameters may be needed for instance in the case of a model depending on
uncertain parameters and deterministic design variables. We first consider a nested approach where an independent
adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed
adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and
introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions.
Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior
and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube
ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that
whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of
parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to
achieve similar projection error. In addition, the global approach is better suited for generalization to more than two
subsets of directions.

Keywords Uncertainty Quantification · Polynomial Chaos · Adaptive Sparse Grids · Pseudo-Spectral Approximation ·
Chemical Kinetics

1 Introduction

Recent computational experiences [29,28] have clearly put into evidence that the availability of accurate model sur-
rogates can provide substantial advantages in inference or parameter problems. This stems from the fact that it is
substantially more effective to evaluate the surrogate than the model itself, especially when the complexity, scale, or
dimensionality of the model is large. These advantages have in fact been demonstrated in different settings, including
stochastic approaches based on random sampling of the surrogate [41], or in variational approaches where the surrogate
is evaluated iteratively [40].
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Another situation where the availability of suitable surrogates is advantageous concerns problems of optimal exper-
imental design. Frequently, these aim at maximizing the information gain from a set of experiments [27], with estimates
involving integrals over both the space of experimental design variables and the space of random parameters [2,18,36].
In these and other settings, it is highly desirable to have available global surrogates that provide suitable representations
of quantities of interest (QoIs) as function of both deterministic design variables and of random model inputs. This topic
is central to present work.

We specifically focus on a polynomial chaos methodology in our approach to such constructions. Polynomial chaos
expansions (PCEs) are Fourier-like expansions that express the dependence of QoIs on random inputs in terms of a series
of orthogonal basis functions. They are orthogonal with respect to the canonical random variables used to parametrize
the uncertain model inputs [14,24]. PCEs have been effectively used in a variety of applications (e.g. [22,30,26]) and
have proven to be effective in forward and inverse problems [19,28,41] and sensitivity analyses [42,1,6].

We focus on so-called non-intrusive techniques, which essentially amount to performing an ensemble of determinis-
tic model simulations to estimate the expansion coefficients. Various methods have been used for this purpose, including
regression techniques [17], compressed sensing [8], and non-intrusive spectral projection (NISP) [33,25,24]. Of these,
we will exclusively consider NISP techniques, which rely on quadratures to project the QoIs onto the polynomial basis.

In this context, we explore two approaches for constructing a global polynomial representation of QoIs. The first is
a nested approach, similar to that developed by Eldred et al. [10,9] who relied on nested iterations between two spaces
(“aleatory-epistemic” uncertainty) with the goal of interval estimation. In our work, we seek for a global representation
over the product space. Specifically, we perform an adaptation in a first set of directions (“outer directions”), and at
each of the corresponding grid points perform NISP in the remaining directions (“inner directions”). To accommodate
potentially high-dimensional parametrization, we rely on an adaptive pseudo-spectral construction (aPSP) with well-
established sparse tensorization concepts [38,12]. The aPSP method [5,4] eliminates internal aliasing by applying a
Smolyak-type sparse tensor-product approximation to the projection operator instead of the classical quadrature approx-
imation. The aPSP also accommodates non-isotropic sparse grid adaptation wherein the tensorization set is iteratively
refined using a greedy algorithm [13,4]. The aPSP has been shown to reduce the number of model evaluation needed
for the construction while increasing accuracy [44] and has been applied in practical settings [18,41,40].

An alternative approach is also explored, namely by considering the product space of two subsets of parameters
(e.g. design variables and stochastic parameters). In this second approach, we perform a single adaptive projection in a
product space allowing for increased sparsity in the quadrature grids. However, unlike the nested approach, there is no
longer direct control of the fidelity of the representation in the two subsets of parameters individually. To overcome this
hurdle, we develop a Sobol decomposition [39,16] of the projection surpluses to derive directional indicators to tune
adaptation and termination criteria.

This paper is as organized follows. In Section 2, we introduce polynomial chaos expansions (PCEs) and outline the
construction of the aPSP algorithm. In Section 3, we present the two approaches for obtaining a global representation
of QoIs in terms of two independent sets of parameters. In Section 4, we employ a simple test problem to assess the
performance of the two techniques, and to analyze the quality of resulting representations. In Section 5 we perform
a large-scale demonstration for a stiff chemical system involving three design variables and 22 stochastic parameters.
Major conclusions are summarized in Section 6.

2 Background

2.1 Polynomial Chaos Expansions

One of our main objectives in the present work is to determine an approximation of a QoI, F , depending on a high-
dimensional random vector, ξξξ , in a PC basis given by multivariate polynomials in ξξξ . This section discusses the frame-
work used for this purpose.

2.1.1 Polynomial Chaos Basis

In this work, we restrict our attention to PCEs based on a suitable parameterization of model inputs in terms of a
d−dimensional real-valued random vector ξξξ

.
= (ξ1 · · ·ξd). The random vector ξξξ is assumed to have independent com-

ponents; we denote Ξ
.
= Ξ1×·· ·×Ξd ⊆ Rd the range of ξξξ and ρ : Ξ 7→ R+ its probability density function,

ρ(ξξξ )
.
= ρ1(ξ1) · · ·ρd(ξd),

∫
Ξi

ρi(ξi)dξi = 1 for i = 1, · · · ,d. (2.1)

For given ρ and Ξ , we introduce L2(Ξ ,ρ) the space of real-valued, second-order random variables in ξξξ , such that

U(ξξξ ) ∈ L2(Ξ ,ρ)⇔‖U‖L2(Ξ ,ρ) < ∞, ‖U‖2
L2(Ξ)

.
= 〈U,U〉 , (2.2)



Hierarchical Sparse Adaptive Sampling 3

where 〈·, ·〉 denotes the natural inner product in L2(Ξ ,ρ):

∀U,V ∈ L2(Ξ ,ρ)2, 〈U,V 〉 .=
∫

Ξ

U(ξξξ )V (ξξξ )ρ(ξξξ )dξξξ . (2.3)

For i = 1, · · · ,d, let {ψ i
0,ψ

i
1, . . .} be the set of orthonormal polynomials based on the measure ρi, where the lower index,

k, in ψ i
k refers to the polynomial degree, such that ψ i

0 = 1. For kkk = (k1 · · ·kd) ∈ Nd
0 , we define

Ψkkk(ξξξ )
.
=

d

∏
i=1

ψ
i
ki
(ξi), (2.4)

the d-variate polynomial in ξξξ whose total degree is |kkk| .= ∑
d
i=1 ki. Therefore, the measure ρ defined in (2.1) induces the

type of multivariate polynomials Ψkkk in (2.4). It is immediate to verify that {Ψkkk,kkk ∈ Nd
0} is an orthonormal polynomial

basis of L2(Ξ ,ρ).
The Polynomial Chaos (PC) approximation of F ∈ L2(Ξ ,ρ) is

F(ξξξ )≈ ∑
kkk∈K

fkkkΨkkk(ξξξ ), (2.5)

where K ⊂Nd
0 is a prescribed set of multi-indices defining the truncated PC basis and fkkk are deterministic coefficients.

In this work we restrict ourselves to the case of uniform probabilitiy measures, leading to constant densities, ρi, and a
basis corresponding to the tensorization of translated and rescaled Legendre polynomials ψ i

k. Note, however, that the
methodology may be naturally extended to any tensorized orthonormal basis. In the following, we shall omit, when not
necessary, references to specific dimensions i = 1, · · · ,d.

2.1.2 Non-Intrusive Spectral Projection

To determine the coefficients in (2.5), we consider so-called non-intrusive methods where the coefficients of a quantity
of interest F are determined from a finite ensemble of deterministic model evaluations (or realizations) for different
values of ξξξ ∈ Ξ [24]. We focus on the Non-Intrusive Spectral Projection (NISP) [33,25] approach, which consists of
requiring the approximation error F(ξξξ )−∑kkk∈K fkkkΨkkk(ξξξ ) to be orthogonal to the span of the polynomial basis. Using
the orthonormal character of the basis, this leads to〈

F− ∑
kkk′∈K

fkkk′Ψkkk′ ,Ψkkk

〉
= 0⇒ fkkk = 〈F,Ψkkk〉=

∫
Ξ

F(ξξξ )Ψkkk(ξξξ )ρ(ξξξ )dξξξ ∀ kkk ∈K . (2.6)

Classically, the integrals in the right-hand side of (2.6) are approximated using an Nq point quadrature rule of the form

fkkk =
∫

Ξ

F(ξξξ )Ψkkk(ξξξ )ρ(ξξξ )dξξξ ≈
Nq

∑
q=1

F(ξξξ
(q)
)Ψkkk(ξξξ

(q)
)w(q), (2.7)

where the {ξξξ (q)
,q = 1, · · · ,Nq} is the set of quadrature points having associated weights w(q). Equation (2.7) shows

that the main computational burden of NISP is to compute Nq model evaluations for F(ξξξ
(q)
), so the complexity of the

method is O(Nq). In traditional tensor-product quadratures, Nq scales exponentially with the number of dimensions d
(the so-called “Curse of Dimensionality”) and is intractable for all but very low dimensional problems [24]. This issue
has motivated the use of sparse grid methods [20], which significantly reduce the computation burden by reducing the
number of model evaluations to construct the PC approximation of F .

2.2 Sparse Pseudo-Spectral Projection

2.2.1 Direct Spectral Projection

The direct spectral projection approach is based on a straightforward tensor-product construction in which all integrands
are approximately identically using all available nodes and weights. This is briefly outlined below.

Consider Q1,Q2, . . . a sequence of 1-D quadrature formulas having increasing polynomial exactness, denoted pl for
Ql , that is ∫

G(ξ )ρ(ξ )dξ = QlG =
N(l)

∑
q=1

G
(

ξ
(q,l)
)

w(q,l)
1D , ∀G ∈ πpl ,
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where πpl the set of polynomials of degree less or equal to pl and N(l) is the number of points in the formula Ql . We call
l the level of the formula Ql . Prescribing the multi-index lll = (l1 · · · ld) ∈ Nd

+, the full-tensor-product (FT) quadrature of
an integrable function, G, can be written as follows:

QFT
lll G =

(
Ql1 ⊗·· ·⊗Qld

)
G =

N(l1)

∑
q1=1
· · ·

N(ld)

∑
qd=1

G
(

ξ
(q1,l1)
1 , · · · ,ξ (qd ,ld)

d

)
w(q1,l1)

1D · · ·w(qd ,ld)
1D

=
N(lll)

∑
q=1

G(ξξξ
(q,lll)

)w(q,lll)
lll (2.8)

where N(lll) = ∏
d
i=1 N(li). (Note that G generically denotes both univariate and multivariate functions.) The (FT) quadra-

ture rule can be used in (2.7) to compute the NISP coefficients fkkk, using G ≡ FΨkkk, kkk ∈K . We call using the same
quadrature rule to compute all the coefficients fkkk∈K , the Direct Spectral Projection (DSP).

Note that in the case of uniform probability measures, the use of nested sequences, for instance based on the
Clenshaw-Curtis [3,43], Fejer, [11] and Gauss-Patterson-Kronrod [23,31] rules, is often preferred. The complexity of
QFT

lll for such nested sequences is N(lll), and so it increases exponentially with d. Sparse grids mitigate this complexity by
first introducing the 1-D difference formulas between two successive level, ∆

Q
l = Ql−Ql−1, ∆Q1 = Q1, such that (2.8)

can be recast as

QFT
lll G =

(
Ql1 ⊗·· ·⊗Qld

)
G

=

((
l1

∑
i1=1

∆
Q
i1

)
⊗·· ·⊗

(
ld

∑
id=1

∆
Q
id

))
G =

l1

∑
i1=1
· · ·

ld

∑
id=1

(
∆

Q
i1
⊗·· ·⊗∆

Q
id

)
G

= ∑
iii∈L FT

lll

(
∆

Q
i1
⊗·· ·⊗∆

Q
id

)
G = ∑

iii∈L FT
lll

∆∆∆
Q
iii G, (2.9)

where L FT
lll = {iii ∈ Nd

+, i j ≤ l j for j = 1, · · · ,d} is the (FT) multi-index set of tensorizations of 1D difference formulas,
i.e. of ∆l’s. (We shall refer to these simply as “tensorizations”.) The sparse quadrature rule QL is finally constructed by
considering the summation over a subset L of tensorized quadrature differences:

QL G = ∑
iii∈L

∆∆∆
Q
iii G, L ⊂L FT

lll . (2.10)

The set of tensorizations L must be admissible in the sense that the following condition holds [13,12]

∀ iii = (i1 · · · id) ∈L : i1≤ j≤d > 1⇒ iii− ê j ∈L ,

where {ê j, j = 1, · · · ,d} is the canonical unit vectors of Nd
0 . This admissibility condition is necessary to preserve the

telescopic property of the sum of quadrature differences. In the following, we denote by G (L ) the set of nodes in the
sparse grid,

G (L )
.
=
⋃

iii∈L

{(
ξ
(q1,i1), · · · ,ξ (qd ,id)

)
,1≤ q j ≤ N(i j),1≤ j ≤ d

}
, N(L ) = |G (L )|, (2.11)

where | · | is the cardinality of a set.
A quadrature rule QL is said to be sufficiently exact with respect to a polynomial multi-index set K when for any

couple (kkk,kkk′) ∈K ×K , the basis orthonormality conditions is recovered using the discrete inner product:

〈U,V 〉QL

.
= QL (UV ) (2.12)

In other words, QL is sufficiently exact if for any (kkk,kkk′) ∈K ×K , we have:

〈Ψkkk,Ψkkk′〉QL
=

{
1 when kkk = kkk′

0 otherwise

This immediately implies that when U and V belong to the space spanned by the basis, their discrete and continuous
inner products coincide. If QL is not sufficiently exact, severe and detrimental “internal aliasing” effects will ensue
when performing DSP [44,4]. (By internal aliasing, we refer to errors in numerical inner product between elements
lying in the span of the basis, whereas external aliasing occurs as a result of truncation.) In the case of FT quadratures,
the largest set, K ∗(lll), for which internal aliasing errors vanish can be easily determined from the degrees of polynomial
exactness of the 1-D sequence, using the so-called half-accuracy set. Specifically, K ∗(lll) is given by

K ∗(lll) =
{

kkk ∈ Nd
0 : ki ≤ pli/2, i = 1, · · · ,d

}
. (2.13)



Hierarchical Sparse Adaptive Sampling 5

We shall denote by PFT
lll F the (FT) projection operator of F ∈ L2(Ξ ,ρ) onto the span of {Ψkkk,kkk ∈K ∗(lll)}, namely

PFT
lll F .

= ∑
kkk∈K ∗(lll)

fkkkΨkkk(ξξξ ), fkkk = QFT
lll (FΨkkk). (2.14)

An immediate consequence of using the sparse quadrature formula with L ⊂L FT
lll , is that QL is not sufficiently exact

with respect to K ∗(lll), as the sparse formula is not able to exactly integrate the product of high-order monomials.
We can still define largest sets K ∗(L ) for which the sparse quadrature is sufficiently exact, but these sets are usually
non-unique leading to ambiguous maximal internal aliasing-free projection spaces. In any case, we observe that the
use of sparse quadrature in place of FT ones, while reducing the complexity (|G (L )| � ∏

d
j=1 N(l j)), leads also to a

significant reduction of the polynomial space allowing for internal aliasing-free DSP (|K ∗(L )|� |K ∗(lll)|). The sparse
pseudo-spectral projection (PSP) method presented below allows one to consider polynomial spaces larger than defined
K ∗(L ), for the same sparse grid G (L ) and without introducing internal aliasing.

2.2.2 Sparse Pseudo-Spectral Projection

The sparse PSP method relies on the definition of a sequence of 1-D projection operators [5,4]. Let {Pl≥1} denote the
sequence of 1-D projection operators associated to the sequence {Ql≥1} of 1-D quadrature, where

Pl : F(ξ ) 7→ PlF(ξ )≡
pl/2

∑
k=0

fkψk(ξ ) ∈ πpl/2, fk =
N(l)

∑
q=1

f (ξ (q))ψk(ξ
(q,l))w(q,l)

1D . (2.15)

Note that Pl≥1 is free of internal aliasing, owing to the dependence with l of the projection spaces, which ensures that
the quadrature is sufficiently exact. Consider for l ≥ 1 the difference of successive 1-D projection operators,

∆
P
l=1 = P1, ∆

P
l>1 = Pl−Pl−1,

such that Pl = ∑
l
i=1 ∆Pi. The FT projection operator in (2.14) can be recast in terms of a sum of tensorized difference

projection operators as follows

PFT
lll F =

(
Pl1 ⊗·· ·⊗Pld

)
F

=

((
l1

∑
i1=1

∆
P
i1

)
⊗·· ·⊗

(
ld

∑
id=1

∆
P
id

))
F =

l1

∑
i1=1
· · ·

ld

∑
id=1

(
∆

P
i1 ⊗·· ·⊗∆

P
id

)
F

= ∑
iii∈L FT

lll

(
∆

P
i1 ⊗·· ·⊗∆

P
id

)
F. (2.16)

The sparse PSP operator PL is finally obtained by considering a summation over an admissible subset L ⊂ L FT
lll of

tensorized difference projection operators. This results in

PL F = ∑
iii∈L

∆∆∆
P
iii F, ∆∆∆

P
iii F .

=
(
∆

P
i1 ⊗·· ·⊗∆

P
id

)
F. (2.17)

The key point here is that the sparse PSP operator in (2.17) involves a telescopic sum of differences in the projection
of F onto subspaces of increasing dimensions, where each individual (FT) tensorized quadrature projection is evaluated
without internal aliasing. As a result, the sparse PSP in (2.17) is free of internal aliasing. Further, PL F belongs to
the span of {Ψkkk,kkk ∈K (L )}, where K (L ) =

⋃
iii∈L K ∗(iii). We have K (L ) ⊇K ∗(L ) and the projection space of

the sparse PSP is usually significantly larger than that of the DSP, while the two methods have the same complexity
relying both on the same sparse grid G (L ). Note, however, that the global sparse quadrature rule QL is generally not
sufficiently accurate with respect to K (L ). The inclusion of the sets K (L ) and K ∗(L ) is illustrated in Fig. 2.1.

2.3 Adaptive Pseudo-Spectral Projection

The PSP method does not, in itself, guarantee a low projection error if the projection space is not rich enough (external
aliasing). To address this issue, we adapt the method proposed in [13] to the context of the sparse PSP. The adaptive
PSP method was first introduced in [4,44] and subsequently used in [41,18] in the context of Bayesian inference and
experimental design. The algorithm is explained in detail in [44,4,18] and is only briefly outlined below.

We begin by defining two distinct multi-index sets, the set O of old multi-indices and the set A of active multi-
indices, such that L = O ∪A is admissible, and A is O-admissible, that is

∀lll ∈A , li > 1⇒ lll− êi ∈ O, for i = 1, · · · ,d.
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Fig. 2.1 Comparison of polynomials multi-index sets for DSP and PSP using a quadrature rule QL in d = 2 dimensions. Points are multi-
indices (k1,k2) such G ∈ πk1 ×πk2 is exactly integrated by QL . Multi-indices of the DSP set K ∗(L ) are below the blue line, while elements
of the PSP set K (L ) are below the red-line. In this illustrative example, L is the region bounded by the indices (0,4), (1,2), (2,2), (3,1), (4,1)
and (6,0). The Gauss-Kronrod-Patterson rule is used to determine the depicted boundaries of K (L ) and K ∗(L ).

The set A contains the multi-indices available for adaption. Associated with each lll ∈ A is a refinement indicator
ε(lll) ≥ 0. In view of (2.17), a natural measure for the contribution of a tensorization lll ∈ L to the projection is the
L2(Ξ ,ρ) norm of the associated tensor-product-delta-operator; we take

ε(lll) .
=
∥∥∥(∆

P
l1 ⊗·· ·⊗∆

P
ld

)
F
∥∥∥

L2(Ξ ,ρ)
. (2.18)

The indicator ε(lll) is then the L2-norm of the projection surplus associated to lll. At each iteration of the adaptive algo-
rithm, the critical multi-index lll∗ ∈A with the highest indicator ε(lll) is selected. lll∗ is removed from A and added to O .
Then, each of the d multi-indices of the forward neighborhood of lll∗,

F (lll∗) .
= {lll+i = lll∗+ êi, i = 1, · · · ,d}, (2.19)

is added to A provided that L ∪{lll+i } remains O-admissible. Note that none of the forward neighbors of lll∗ may be
admissible to complete A . When new multi-indices are added to A , the sparse grid G (O ∪A ) and projection PO∪A F
are updated (involving model evaluations at the new grid points only), and the indicators ε(lll) of the new multi-indices
are computed. The adaptive procedure can then be repeated.

Also associated with the adaptive procedure is a convergence estimator, η(A ), defined as

η
2(A ) = ∑

lll∈A
ε

2(lll). (2.20)

As discussed in [4], η(A ) is usually an acceptable surrogate for the projection error. Therefore, the adaptivity continues
until η < Tol or A = /0, where Tol> 0 is a user defined error tolerance.

3 Methodology

The aPSP algorithm introduced above does not inherently distinguish between the individual directions, ξi. In many
situations, however, we would be interested in a finer control of the projection error along certain directions. This is
the case for instance when the set of input variables is made of subsets of variables having different origin and nature
(uncertainty sources). To remain general, we then consider a partition of ξξξ into two independent sets of variables ξξξ u,
and ξξξ p with respective ranges Ξu and Ξp, densities ρu and ρp, such that

Ξ = Ξu×Ξp, ρ(ξξξ ) = ρu(ξξξ u)×ρp(ξξξ p).

We shall denote du and dp the dimensions of Ξu and Ξp, and we seek to construct in an adaptive way a PCE F(ξξξ =
(ξξξ p,ξξξ u)) ≈ ∑kkk∈K fkkkΨkkk(ξξξ ) of some quantity of interest F , while somehow controlling the errors along ξξξ u and ξξξ p

independently.

3.1 Nested Projection

In the Nested Projection (NP), the aPSP method of Section 2.3 is applied in a nested fashion, allowing for independent
control of the convergence in ξξξ u and ξξξ p.
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3.1.1 Nested PC expansion

For F(ξξξ p,ξξξ u) ∈ L2(Ξp,ρp)⊗L2(Ξu,ρu), the nested expansion consists in considering first a truncated spectral expan-
sion of F(ξξξ p, ·) with respect to ξξξ u, referred to hereafter as the inner expansion:

F(ξξξ p,ξξξ u)≈ ∑
kkk∈Ku

f kkk(ξξξ p)Ψkkk(ξξξ u), ξξξ p fixed. (3.1)

We then perform a PC expansion in ξξξ p (outer expansion) of the coefficients f kkk(ξξξ p) in Equation (3.1), namely

f kkk(ξξξ p)≈ ∑
jjj∈Kp

ckkk
jjjΨjjj(ξξξ p). (3.2)

Substituting Equation (3.2) into Equation (3.1), we obtain the global PC expansion of F(ξξξ p,ξξξ u):

F(ξξξ p,ξξξ u)≈ ∑
kkk∈Ku

∑
jjj∈Kp

ckkk
jjjΨjjj(ξξξ p)Ψkkk(ξξξ u). (3.3)

Note that multi-indices in the two sets Ku and Kp have different sizes in general. We pursue this idea of nested expansion
in the context of the PSP method, as outlined below.

3.1.2 Inner projection

Let G (Lp) = {ξξξ p
(i)
, i = 1, · · · ,N(Lp)} be an admissible sparse grid in Ξp, see (2.11). We call G (Lp) the outer sparse

grid. At each node, ξξξ p
(i), of the outer grid the aPSP is employed to approximate G(i)(ξξξ u)

.
= F(ξξξ p

(i)
,ξξξ u), thus providing:

G(i)(ξξξ u)≈ ∑
kkk∈K (i)

u

g(i)kkk Ψkkk(ξξξ u). (3.4)

Note that this construction is purely local at ξξξ p
(i) and involves evaluations of F at a fixed value ξξξ p = ξξξ p

(i) ∈ Ξp.
The adaptation of the inner sparse grid uses refinement indicators εin based on G(i)(ξξξ u) in Equation (2.18). The inner
adaptation is carried out until a prescribed termination criterion Tolu is reached. The same criterion Tolu is used for
all nodes of the outer sparse grid. Therefore, different outer nodes ξξξ p

(i) may use different inner sparse grids to support

the aPSP of their local functions G(i). We denote G
(i)
u = G (L

(i)
u ) the resulting inner sparse grid at node ξξξ p

(i), and

K
(i)
u

.
= K (L

(i)
u ) the multi-index set of polynomial tensorizations in the approximation of G(i).

3.1.3 Outer projection

For the outer sparse grid, we again rely on the aPSP scheme, but with refinement indicators εout based on H(ξξξ p) ≡
‖F(ξξξ p, ·)‖L2(Ξu,ρu). The function H(ξξξ p) is unknown but needs only be evaluated at the nodes ξξξ p

(i) of G (Lp), where we
can take as a surrogate the norm of the approximation of G(i)(ξξξ u). This leads to

H(ξξξ p
(i)
) = ‖G(i)‖L2(Ξu,ρu) ≈

√
∑

kkk∈K (i)
u

(g(i)kkk )2.

The adaptation of the outer sparse grid is carried out until the termination criterion Tolp is reached. Since the inner
projections are performed locally, the points ξξξ p

(i) support approximations of G(i) defined over generally different poly-

nomial subspaces of L2(Ξu,ρu), as prescribed by K
(i)
u . A “global” polynomial subspace of L2(Ξu,ρu) can be defined

as the union of all the K
(i)
u ,

Ku(Lp)
.
=

N(Lp)⋃
i=1

K
(i)
u , (3.5)

and extending the inner approximations as follows

G(i)(ξξξ u)≈ ∑
kkk∈Ku(Lp)

g̃(i)kkk Ψkkk(ξξξ u), g̃(i)kkk =

{
g(i)kkk kkk ∈K

(i)
u ,

0 otherwise.
(3.6)

The definition of Ku(Lp) enables us to define the global polynomial expansion of F , simply by performing the PSP of
the set of inner PC coefficients {g̃(i)kkk ,kkk ∈Ku(Lp)}, defined at each node ξξξ p

(i) of the outer sparse grid. This operation
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results in a vector of coefficients, c jjj
kkk, with kkk ∈Ku(Lp) and jjj ∈Kp(Lp), where Kp denotes the multi-index set of the

projection subspace associated with the H-adapted outer sparse grid. This leads to the global representation:

F(ξξξ p,ξξξ u)' ∑
jjj∈K (Lp)

∑
kkk∈Ku(Lp)

c jjj
kkkΨjjj(ξξξ p)Ψkkk(ξξξ u). (3.7)

Note that by construction, we end up with an expansion based on a full summation over the multi-indices in Kp(Lp)
and in Ku(Lp), in other words with a structure that is reminiscent of fully tensorized constructions. As previously
discussed, this is achieved by setting some (non computed) inner expansion coefficients to zero, see Equation (3.6).
Though this could potentially result in errors, it is anticipated that these coefficients would primarily affect higher-order
modes having small amplitudes only. Nonetheless, we will examine this issue in Section 4 based on results obtained for
an idealized test problem.

Though the fully tensored nature of the ξξξ p and ξξξ u spaces is expected to be computationally demanding, an advantage
of the nested projection is that it provides a clear handle on convergence in the two spaces separately. Note, however,
this does not readily translate into estimates of convergence for the global representation in Equation (3.7). Finally, we
also note that the outer and inner projections may be inverted in the nested projection depending on the nature of the
problem, and that the approach could conceptually be extended to any number of parameter spaces.

3.2 Product Space Projection

In this alternative approach, we focus on expanding F(ξξξ ), with ξξξ = (ξξξ p,ξξξ u). However, applying directly the adapted
PSP method to F(ξξξ ) would treat all parameters equally. This equal treatment may raise potential issues. For example,
F may exhibit larger variations with ξξξ p than with ξξξ u, and consequently the adaptation may ignore essential variations
with ξξξ u. Irrespective of whether such issue arises, it is desirable to incorporate means to separately assess resolution
along distinct dimensions, as well as criteria that enable us to tune adaptation along these dimensions.

3.2.1 Theoretical considerations

Recall that the aPSP involves two distinct sets of tensorizations, O and A , which defines the projection of F through

PO∪A F = ∑
lll∈O

∆∆∆
P
lll F + ∑

lll∈A
∆∆∆

P
lll F,

where ∆∆∆
P
lll F is called the projection surplus associated with the tensorization lll. Therefore, the second sum in the equation

above represents the global projection surplus associated with the active set A of tensorizations available for adaptation.
This global projection surplus, denoted δPA F , belongs to the polynomial subspace defined by the multi-index set
K (A ), i.e.

δPA F ≡ ∑
lll∈A

∆∆∆
P
lll F = ∑

kkk∈K (A )

δ fkkkΨkkk(ξξξ ), K (A ) =
⋃

lll∈A
K ∗(lll).

We are now in position to measure the relative contributions of ξξξ p and ξξξ u, by means of the orthogonal Sobol decompo-
sition of δPA F (see Appendix A), that is formally

δPA F(ξξξ ) = (δPA F) /0 +(δPA F)p(ξξξ p)+(δPA F)u(ξξξ u)+(δPA F)p∪u(ξξξ p,ξξξ u).

The squared norm of the global projection surplus is then equal to the squared norms of the functions in the decomposi-
tion of δPA F ; we have

‖δPA F‖2
L2(Ξ ,ρ) =V A

/0 +V A
p +V A

u +V A
p∪u, (3.8)

where V A
/0 = (δPA F)2

/0, while other terms can be easily computed form the PC expansion of δPA F , as explained in
Appendix A.2. Further, V A

/0 is the squared surplus of the projection on the mean mode and it is usually small compared to
the other contributions to the norm of the global surplus. The partial variance V A

p (resp. V A
u ) then measures the available

projection surplus along directions in p (resp. in u) only, whereas V A
p∪u is the measure along the mixed directions. The

partial estimates can be used to tune the adaptation strategy and to gauge accuracy control along the p and u directions.
For instance, if V A

u becomes less than a certain tolerance value, we can decide to prevent the adaptive process to further
enrich the sparse grid along the hyperplane Ξu of Ξ .
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3.2.2 Construction of directional indicators

Though feasible, the decomposition of the different contributions to the (squared) norm of the available projection
surplus in (3.8) induces some computational overheads, as it requires first the PC expansion of δPA F which involves
a summation of all the projection surpluses ∆∆∆

P
lll F for lll ∈ A . We would prefer to derive indicators of the available

surpluses along the p, u and mixed directions, through a summation of local indicators associated with each lll ∈ A . A
first simplification is obtained by performing locally the Sobol decomposition of each of the projection surpluses,

∆∆∆
P
lll F = ∑

kkk∈K ∗(lll)
δ f kkk

kkk Ψkkk(ξξξ )⇒‖∆ P
lll F‖2

L2(Ξ ,ρ) =V lll
/0 +V lll

p +V lll
u +V lll

p∪u,

and derive upper-bounds for the decomposition of the available surplus using

V A
/0 ≤ ∑

lll∈A
V lll

/0 , V A
p ≤ ∑

lll∈A
V lll
p , V A

u ≤ ∑
lll∈A

V lll
u , V A

p∪u ≤ ∑
lll∈A

V lll
p∪u.

We shall consider in the following the case where the polynomial exactness of the 1-D quadrature formulas at level
l = 1 is p1 ≤ 1. This is a common situation in sparse grid methods that for efficiency generally use a low number of 1-D
points at the first level, typically N(1) = 1 (the first tensorization lll = (1, · · · ,1) involves N(1)d points, so a low value
is mandatory for large d). In this case, the 1-D projection operators P1F ∈ π0 (see equation 2.15), corresponding to the
projection onto the space of constant functions. The following observation allows for a simple definition of the surplus
decomposition: the surplus ∆∆∆

P
lll F having li = 1 is a function independent of the variables ξi. Further, for multi-indices

lll = (lllp, lllu), where lllp and lllu are sub-multi-indices related to directions p and u respectively, the projection surplus ∆∆∆
P
lll F

is a function of a subset of variables in ξξξ p (resp. ξξξ u) only, if |lllp| > dp and |lllu| = du (resp. |lllp| = dp and |lllu| > du).
That is, at least one index of lllp is greater than 1 and all indices of lllu equal 1. Since by construction the multi-index
(1, · · · ,1) /∈A , this suggests the partition of A into three disjoint subsets

A = Ap∪Au∪Ap,u,

where

Ap
.
= {lll = (lllp, lllu) ∈A , |lllu|= du}, Au

.
= {lll = (lllp, lllu) ∈A , |lllp|= dp}, (3.9)

and Ap,u
.
= A \ (Ap∪Au).

The estimator η of the available surplus norm is broken accordingly, resulting in

η
2(A ) = ∑

lll∈A
ε

2(lll) = η
2
p +η

2
u +η

2
p,u, η

2
• = ∑

lll∈A•
ε

2(lll). (3.10)

Note that having lll ∈ Ap,u does not imply that it is associated to a projection surplus depending necessarily on a set
of variables belonging to both ξξξ p and ξξξ u, nor that its Sobol decomposition yields (∆∆∆ P

lll F)p = (∆∆∆ P
lll F)u = 0, because of

external aliasing and quadrature error. Nonetheless, the indicators ηp, ηu and ηp,u can effectively be used to construct
directional stopping criteria in the adaptive procedure. The main advantage of using the proposed indicators, compared
to performing the actual Sobol decomposition of the global projection surplus in (3.8), is that the update of the η’s
during the adaptive process is immediate, because the indicators ε(lll) are easy to compute (locally) and do not change
when new tensorizations are introduced in the sparse grid.

3.2.3 Adaptive strategies

The directional adaptive methods proposed below follow the usual incremental completion of the tensorizations set,
adding to O the critical tensorization lll∗ with the highest indicator ε , and completing A \ {lll∗} with elements of the
forward neighbors of lll∗ maintaining the O admissibility. The process is repeated until A = /0 (exhaustion of available
tensorization) or η2 < Tol, where Tol is a user defined global tolerance. Here, we further restrict the set of admissible
tensorizations for the completion of A , whenever a convergence is achieved along the p or u directions. To this end, we
first introduce two convergence criteria associated to the p and u dimensions,

Cp(ηp,ηp,u)< Tol2
p, Cu(ηu,ηp,u)< Tol2

u,

where Cp and Cu are appropriate combinations of the directional and mixed indicators, such that C•(η•,ηp,u) ≤ η2 for
•= p,u. For instance, one may consider

C•(η•,ηp,u) = η
2
• +α η

2
p,u, 0≤ α ≤ 1. (3.11)

Note that the tolerances Tolp and Tolu, and the parameter α should generally be carefully selected, particularly when
the estimates Cp and Cu have disparate magnitudes.
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If none of the directional criteria is satisfied, we apply the classical method using all forward neighbors F (lll∗) =
Fp(lll∗)∪Fu(lll∗), with Fp(lll∗)

.
= {(lll∗p + êi, lll∗u), i = 1, · · · ,dp} the p-forward neighbors of lll∗ and similarly for their

u−counterpart Fu(lll∗). On the contrary, when the p (resp. u) directional criterion is satisfied, we only consider F̃p ⊆Fp

(resp. F̃u ⊆ Fu) forward neighbors. Different reduction strategies can be conceived. In the computational examples
below, we investigate the following two alternatives:

T1: Restrict the inclusion of the forward neighbors in converged directions to only tensorizations of levels lower or equal
to the highest levels reached in these directions. Specifically, denoting • = p or u, the restricted forward neighbors
are defined by

F̃•(lll∗)≡

{
{lll ∈F•(lll∗), lll• ≤ l̃ll•,} C• < Tol•,

F•(lll∗) otherwise,

where l̃ll• is defined component-wise as the largest •-multi-index in O ∪A , i.e.

(l̃•)i = max
lll•∈O∪A

(l•)i, 1≤ i≤ d•.

Likewise, the inequality between two multi-indices, lll ≤ lll′, is understood component-wise, that is for multi-indices
with length d

lll ≤ lll′⇔ li ≤ l′i for 1≤ i≤ d.

Note that in general, strategy T1 leads to the inclusion of additional forwards neighbors with either mixed p− u

dependence such that lll∗• ≤ l̃ll•, or dependence only in directions other than •.
T2: The second strategy is more radical in that no tensorizations along converged directions are considered for the

completion of A . That is,

F̃•(lll∗)≡

{
/0 C• < Tol•,

F•(lll∗) otherwise,
.

The adaptation proceeds classically by completing A \ {lll∗} with the elements of F̃p(lll∗)∪ F̃u(lll∗) maintaining the O
admissibility.

The two strategies T1 and T2 are schematically illustrated in Fig. 3.1 in the case of an achieved directional con-
vergence, where it is assumed Cp = ηp < Tolp. Notice that in Fig. 3.1 (b) the tensorization (3,2) is added, but not
in Fig. 3.1 (e), where tensorization (2,3) is added despite the halting line because it belongs to the u-forward neigh-
borhood of lll∗. Note also that in Fig. 3.1 (a) and (d), lll∗ = {3,1} for which no forward neighbor is added because of
O-admissibility ((3,2) missing) and because the p direction has converged (l̃llp = (3)). However, when lll∗ is removed
from A we have Ap = /0, making ηp = Cp = 0. This is not a concern since this only occurs after convergence in that
dimension.

Adaptation continues until either both ηp ≤ Tolp and ηu ≤ Tolu or, until the global η ≤ Tol. Unlike the nested
adaptation, the product-space adaption has both independent convergence metrics and a global convergence metric. Also,
whereas extension of the nested adaptation approach to greater than two spaces is not recommended, the product-space
construction trivially lends itself to any number of spaces or groupings of dimensions.

Note that the present aPSP scheme with directionally tuned refinement naturally exploits sparse-tensorization in
the product space, and is consequently expected to be more efficient than the nested algorithm. This is achieved at
the potential expense of a coarser control of the resolution properties along the p and u directions. The effect of this
compromise is examined in the analysis below, together with a comparative analysis of the performance of the two
algorithms.

4 Test Problem

4.1 Test Problem Definition

In order to examine the behavior of the methods presented in Section 3, we made use of the two-dimensional (d = 2)
test function,

F(ξξξ ) = F(ξ1,ξ2) =

(
1+

1/3
2ξ1 +ξ2 +7/2

)
exp

[
−
(

1
2

(
ξ2−

1
5

)
(ξ2 +1)

)2
]
, ξξξ ∈ [−1,1]2, (4.1)

allowing us to rapidly evaluate performance and to conduct error analyses. The function F (Fig. 4.1) was designed so as
to exhibit a mixed dependence in ξ1 and ξ2 and a greater dependence on ξ1 as measured by the Sobol sensitivity indices
of F which are S{1} = 0.531, S{2} = 0.199, and S{1,2} = 0.270 (see Appendix A). Because the nested method adapts
differently the inner and outer directions, we shall call (1,2)-Nested method the case where the inner-loop acts on ξ2 (that
is u = {2}) and the outer-loop acts on ξ1 (p = {1}), whereas for the (2,1)-Nested method the roles of these directions
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Fig. 3.1 Schematic demonstration of strategy T1 (top plots, a-c) and T2 (bottom plots, d-f) for the case η2
p < Tolp. Shown in blue is A , and

in green is O . The red box denotes lll∗ and the thick-brown line represents the halting-condition imposed by the two strategies.

are exchanged. To illustrate the quantities of interest driving the adaptation in the (1,2)-Nested method, Fig. 4.1 also
depicts for a set of values ξ

(i)
1 the cross-sections F(ξ

(i)
1 ,ξ2) = G(i)(ξ2) used for the inner-loop adaptation, as well as the

outer-loop quantity of interest H(ξ1) = ‖F(ξ1, ·)‖L2([−1,1]).
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(a) Function F (b) Functions for the (1,2)-Nested methods.

Fig. 4.1 The plot in (a) shows the 2D surface F(ξ1,ξ2). The plots in (b) depict the functions used in the (1,2)-Nested method: cross-sections
G(i)(ξ2) for selected values of ξ

(i)
1 , as indicated (four top plots), and the function H(ξ1) for outer-loop adaptation (bottom).
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4.2 Error Analysis

Let us denote here F̃(ξξξ ) the PCE surrogate of F obtained with one of the adaptive projection methods, and Z(ξξξ ) the
error function:

Z(ξξξ ) .
= F(ξξξ )− F̃(ξξξ ) = F(ξξξ )− ∑

kkk∈K
f̃kkkΨkkk(ξξξ ). (4.2)

Introducing the exact (but unknown) PC expansion of F , Z can be split into two orthogonal contributions:

F(ξξξ ) = ∑
kkk∈Nd

0

fkkkΨkkk(ξξξ ) ⇒ Z(ξξξ ) = ∑
kkk∈K

(
fkkk− f̃kkk

)
Ψkkk(ξξξ )︸ ︷︷ ︸

Internal aliasing

+ ∑
kkk∈Nd

0\K
fkΨk(ξξξ )︸ ︷︷ ︸

Projection error

.

Another decomposition, more relevant to the task of error control, consists of orthogonal Sobol decomposition (see
Appendix A) of Z according to:

Z(ξξξ ) = Z /0 +Z{1}(ξ1)+Z{2}(ξ2)+Z{1,2}(ξ1,ξ2).

The relative error norm, ζ , can then be decomposed into

ζ
2 .
=
‖Z‖2

L2

‖F‖2
L2

= ζ
2
/0 +ζ

2
{1}+ζ

2
{2}+ζ

2
{1,2}, (4.3)

where ζ• = ‖Z•‖L2/‖F‖L2 . Thus, ζ /0 measures the relative error on the mean, ζ{1} (resp. ζ{2}) measure the relative error
in direction ξ1 (resp. ξ2) only, and ζ{1,2} measures the relative error in mixed directions. Note that in higher dimension,
this decomposition of the error norm can be extended to arbitrary partitions of the dimensions.

Following the discussion in Appendix A.2, the relative errors can be easily computed from the PCE of Z and F .
Since for the present example an explicit PCE for F in (4.1) is not available, we instead construct a highly accurate
projection of F on a 90th total-order polynomial basis using full-tensored Gauss-Legendre rule having a total of 1002

quadrature points.

4.3 Behavior of the adaptive methods

In this section, we analyze and contrast the performance of the different adaptive schemes developed above. To this
end, computations are performed for the test problem, using the tolerances reported in Table 4.1. Recall that the nested
projection uses one tolerance for each direction, Tol{1} and Tol{2}, that serve as stopping criteria for the inner or
outer loops depending if the (1,2) or (2,1)-Nested method is considered. The aPSP uses a global tolerance Tol and the
aPSP-T1 and aPSP-T2 methods (see Section 3.2.3) have in addition two directional tolerances Tol1 and Tol2. When
Tol1 = Tol2 = 0, one recovers the original aPSP method and is then used as reference in the presented results.

Nested aPSP (reference) aPSP-T1,2
Tol – 10−5 10−5

Tol1 10−7 0 10−7

Tol2 10−9 0 10−9

Table 4.1 Tolerance values for different adaptive methods used for the test problem.

4.3.1 Adaptive Product Space Projection with directional criteria

Due to the low-dimensionality of the test problem, the product-space adaptation was performed for the tolerance values
in Table 4.1 with α = 0 in (3.11). Figure 4.2 depicts the squared projection surplus norms, η2, and their Sobol decom-
positions into pure and mixed contributions, during the adaptive process for the aPSP and aPSP-T1 methods. Results
for aPSP-T2 are not shown as they lead to results similar to those for aPSP-T1. The evolutions of the adaptation criteria
are reported, as a function of the number of evaluations of F required by the two methods. The plots show that the two
methods follow a similar path but that aPSP-T1 terminates earlier as the dimensional tolerances are met. In addition, it
is seen that η{1} in the aPSP-T1 method becomes zero after few adaptive iterations, for A{1} = /0, However, this occurs
after η{1} drops below the specified tolerance Tol1, indicated by a dashed line in Fig. 4.2(b), as we would have expected.
Note that for the two methods, η2

{1,2} � η{1},η{2} indicating that much of the remaining surplus is due to mixed terms.



Hierarchical Sparse Adaptive Sampling 13

 

 

η
2

{1,2}

η
2

{2}

η
2

{1}

η
2

P
ro
je
ct
io
n
S
u
rp
lu
s

Number of Function Evaluations
0 100 200 300

10−16

10−12

10−8

10−4

100

 

 

η
2

{1,2}

η
2

{2}

η
2

{1}

η
2

P
ro
je
ct
io
n
S
u
rp
lu
s

Number of Function Evaluations
0 100 200 300

10−16

10−12

10−8

10−4

100

(a) aPSP (b) aPSP-T1

Fig. 4.2 Relative projection surplus η2 and their Sobol decompositions versus the number of function evaluations for the test function in
Equation (4.1). Plotted in (a) are the results for aPSP (reference). Plot (b) shows the results of the aPSP-T1. The dashed line in (b) represents
the point at which the aPSP-T1 converge in direction {1}.

The results thus confirm that method aPSP-T1 is able to control the adaptivity for separate sets of directions, and to
control termination of the refinement along the corresponding dimensions.

To further illustrate the behavior of the directionally-tuned adaption, we plot in Fig. 4.3 the pseudo-spectral projec-
tion multi-index sets, L , the selection indicators ε(kkk) ∀ kkk ∈L , and the adaptive paths for (a) the aPSP, (b) the aPSP-T1
and (c) the aPSP-T2 methods. The number inside each box is the iteration at which each index is added. The results
indicate that, as expected for the present settings, the reference aPSP method does include more mixed multi-indices
(lll = (l1, l2) with l1, l2 > 1) compared to the other two methods, corresponding to a richer projection space. Indeed, for
aPSP-T1 and aPSP-T2 the adaptation halts refining sooner than aPSP along direction {1}, which is associated to a larger
Tol1 value, while still refining along direction {2} as for aPSP. The plots also highlight the effect of selecting strategy
T1 or T2, the latter being more aggressive in the sense that it results into a coarser multi-index set L with fewer mixed
tensorizations than for aPSP-T2.
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Fig. 4.3 Multi-index sets for the pseudo-spectral projection using (a) aPSP, (b) aPSP-T1 and (c) aPSP-T2 methods. Also shown are the
color-coded values of the norm of the projection surpluses ε(lll) while the iteration number at which that multi-index was added to L .

4.3.2 Nested Projection

We now focus on the behavior of the nested adaptation with the tolerance values reported in Table 4.1. The adaptation
was performed for both the (1,2) and (2,1)-Nested algorithms. Figure 4.4 presents the final grids of points where the
function has been evaluated, for the reference aPSP method and the two nested projection alternatives. The results
indicate that, in contrast to aPSP, the nested adaptations exhibit a nearly fully-tensorized grids of points between the
two spaces and a larger number of function evaluations as a consequence. The plots also illustrate how at different
outer-direction grid points, the inner-space grids are not necessarily identical.
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Fig. 4.4 Comparison of the final grids G (L ) for (a) aPSP method, (b) the (1,2)-Nested adaptation, and (c) (2,1)-Nested adaptation.

4.4 Error and Performance Analysis

Figure 4.5 shows the global error estimates, ζ 2, plotted against the number of function evaluations, for: (a) the (1,2)-
Nested method, (b) the (2,1)-Nested Method, (c) the aPSP method, and (d) the aPSP-T1 method. Results for aPSP-T2
are similar to those of aPSP-T1, and are consequently omitted. Plotted along with ζ 2 is its decomposition based on (4.3).

The results in Fig. 4.5(a) and 4.5(b) illustrate an intrinsic feature of the nested construction, namely that the error
associated with inner dimension is reduced immediately. This can be appreciated by the fact that ζ 2

{2} in Fig. 4.5(a) and
the ζ 2

{1} in Fig. 4.5(b) decrease rapidly. Meanwhile, the global error closely follows the error in the outer dimension.
Note that for the present example, the mixed-term error ζ{1,2} has a dominant contribution to the global error in both
the nested, aPSP and aPSP-T1 methods. This observation, however, need not hold in general, particularly in situations
when F has essentially an additive form: F(ξξξ p,ξξξ u)≈ Fp(ξξξ p)+Fu(ξξξ u).

The performance of the aPSP-T1 can be assessed by contrasting the results in Figs. 4.5(c) and 4.5(d). Specifically,
the results indicate that, consistent with the behavior of the η2 indicators in Fig. 4.2, the aPSP terminates with a lower
global error ζ 2; however, this comes at the cost of more function evaluations. The results also illustrate the effectiveness
of aPSP-T1 in guiding and halting the refinement in direction {1}, with a small impact on the global error. This feature
will prove especially useful in a higher dimensional applications, where tighter control on directional refinement can be
substantially advantageous.

Finally, contrasting the results in Figs. 4.5(a) and (b) with those in Figs. 4.5(c) and (d), the following general
conclusion can be drawn from the test example. First, all adaptive methods exhibit a similar complexity, in the sense
that the global errors have similar decay rates with the number of function evaluations. Second, the nested method offers
an efficient means to reduce at a minimal cost the error along the inner direction. Third, the aPSP-T1,2 methods offer
flexibility to balance and halt the adaptation along specific directions.

Finally, we examine the impact of setting to zero the αk
i coefficients in Equation (3.6) in the nested construction at

outer grid points where these coefficients are not defined. To this end, we performed a computation where the missing
coefficients were actually computed by means of an inner projection based on the union of the inner grids at all outer
points. In other words, the nested grid was completed to a full-tensorization grid, requiring additional evaluations of
the function. For the present example and other numerical tests (not shown) it was found that the resulting improve-
ment in the global error was marginal while the completion of the grid could require a significant number of functions
evaluations, with an overall degradation of the efficiency. This point is illustrated for the present example in Fig. 4.6.

5 High-Dimensional Problem

This section illustrates the behavior of the methods outlined above for a high-dimensional combustion chemistry problem
that has motivated their development. The problem consists in the optimal design of shock-tube ignition experiments,
and thus makes use of global surrogates that describe the dependence of key experimental observables (i.e. QoIs) on
both uncertain rate parameters (to be calibrated by yet unperformed experiments) and design variables (to be optimally
selected based on prior information).

The shock tube experiment presently considered focuses on methane ignition. The reaction model is based on the
GRI-Mech 3.0 [37] mechanism, involving 57 neutral species and 325 neutral species reactions. The model is augmented
with ion-chemistry mechanism developed by Prager et. al [32], including 11 charged species and 67 ionic reactions.

Since we are primarily interested in characterizing the performance of adaptive constructions, we focus on a single
experimental observable, namely the peak electron concentration that is achieved during the ignition event. The uncertain
parameters concern the rate constants of 22 reactions that were deemed especially relevant based on a reaction pathway
analysis. Details of this analysis are beyond the scope of the present work, and will be described elsewhere [21]. The
ranges of the uncertain reaction rates are specified in terms of factors, as summarized in Table 5.1(a). Based on these
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Fig. 4.6 Comparison of the global error ζ 2 versus number of function evaluations, for the nested method (solid line) and its completion to
full-tenzorization (dotted line).

factors, the uncertain rates are parametrized using independent random variables that are uniformly distributed in the
interval [−1,1]. This leads to a 22-dimensional germ ξξξ u. We assume that the initial pressure is atmospheric, and focus
on three-design variables, namely the initial temperature, and the initial concentrations of CH4 and O2. Thus, the design-
variable vector, ξξξ p, is three-dimensional, and the ranges of its components are specified in Table 5.1(b). We associate
with ξξξ p a constant weight ρp. Once design variables are selected, the evolution of the system for a specific realization
of the germ ξξξ u is obtained using an extended version of the TChem software [35,34]. The problem is then set in terms
of the germ ξξξ = (ξξξ u,ξξξ p) ∈ [−1,1]22+3 with density ρξξξ = 2−25.

We applied the nested, aPSP and aPSP-T1 methods using the the tolerance values listed in Table 5.2. These values
were set so as to obtain a suitably accurate approximation of the selected QoI. Also note that in the present case, du is
significantly larger than dp; consequently, we used lower tolerance values for the u directions than for the p directions.

We initially ran the aPSP-reference and found that the QoI exhibits a large sensitivity to the design variables ξξξ p. This
can be appreciated from Fig. 5.1, which provides the first-order and total sensitivity indices, estimated from the PCE
after the algorithm has converged. The results clearly illustrate the dominant contribution of the design variables to the
overall variance of the peak electron concentration. The results also indicate that for the present case there appears to be
only a small contribution in the mixed term, specifically accounting for about 4% of the total variance; not surprisingly,
the computed first-order and total sensitivity indices for the individual parameters have close values.

We examined (not shown) the behavior of the aPSP and aPSP-T1 methods during the adaptation. The aPSP-T1
method followed a similar path to the aPSP, converging early in the p direction while the p directions are subsequently
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ID Reaction Uncertain Range
326 CH + O⇔ HCO++ E− ±50%
328 HCO++ H2O⇔ H3O++ CO ±50%
330 H3O++ E−⇔ H2O + H ±25%
331 H3O++ E−⇔ OH +H +H ±25%
332 H3O++ E−⇔ H2 +OH ±25%
333 H3O++ E−⇔ O +H2 +H ±25%
336 HCO++ CH3 ⇔ C2H3O++H 2±

338 H3O++ CH2CO⇔ C2H3O++ H2O ±25%
340 C2H3O++ O⇔ HCO++ CH2O ±50%
349 OH++ O⇔ HO2 +E− ±50%
350 OH−+H⇔ H2O+E− 2±

353 OH−+ CH3 ⇔ CH3OH + E− 2±

361 O−+ H2O⇔ OH−+OH 2±

366 O−+ H2 ⇔ H2O + E− 2±

369 O−+ CO⇔ CO2 + E− 2±

006 O + CH⇔ H + CO ±25%
049 H + CH⇔ C + H2 1.5±

091 OH + CH⇔ H + HCO ±25%
093 OH + CH2 ⇔ CH + H2O ±25%
125 CH + O2 ⇔ O + HCO ±50%
126 CH + H2 ⇔ H + CH2 ±50%
127 CH + H2O⇔ H + CH2O 3±

(a) Uncertain Parameters (ξξξ u-space)

Design Parameter Interval
Temperature (K) [2250,2750]

CH4 Mole Fraction (%) [0.5,2.0]
O2 Mole Fraction (%) [0.2,0.75]

(b) Design Variables (ξξξ p-space)

Table 5.1 (a) Uncertainty in rate parameters, and (b) ranges of design variables, for the CH4+O2 shock-tube ignition problem. The uncertainty
in the rate parameters are specified either in terms of a percentage are relative, or as a multiplicative factor. In all cases, the distributions are
represented in terms of canonical random variables uniformly distributed over [−1,1].

Nested aPSP (reference) aPSP-T1
Tol – 2.75×10−3 2.75×10−3

Tolp 3.50×10−3 0 3.50×10−3

Tolu 2.50×10−3 0 2.50×10−3

Table 5.2 Tolerance values for the Nested-(p,u), aPSP (reference), and aPSP-T1 methods with α = 0.1 in Equation (3.11).

refined. We also examined whether the similar adaptation paths were affected by the selected tolerance values, namely
by rerunning aPSP-T1 with larger values of Tolp, thus forcing the refinement along the p directions to terminate earlier.
However, this had little impact on the grid refinement path, even after the specified Tolp value was reached. This is not
surprising, in light of the fact that the contribution of the mixed terms is small.

The projection surplus, η2, and its Sobol decomposition are plotted in Fig. 5.2. For both the aPSP and the aPSP-T1
adaptations, η2

p immediately and rapidly decays as the sparse grid is adapted, whereas the mixed direction surplus is
clearly dominant. The results also indicate that behavior of the projection surplus and its Sobol components are very
similar for both algorithms. This is consistent with our earlier observation that the adaptation of the sparse grids evolve
similar for both algorithms, though aPSP-T1 evidently terminates earlier.

Similarly to what we observed with the two-dimensional test function in Section 4, the dimensionally guided adap-
tation affected the adaptive refinement path only slightly. Both aPSP and aPSP-T1 exhibit similar decay of the error
indicators with the number of model realizations, and as further discussed below similar behavior for errors estimates
obtained from independent samples. However, with the selected tolerances, aPSP-T1 terminated with 3411 model evalu-
ations, whereas aPSP required 5651 realizations to reach termination. This illustrates the flexibility of directional criteria
in tuning adaptation (and as further illustrated below resolution), along specific dimensions.
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We performed the nested adaptation with the 22 uncertain parameters (ξξξ u) as the inner dimensions and the 3 design
paramaters (ξξξ p) as the outer dimensions. The adaptation was allowed to proceed until both Tolu and Tolp values were
met (recall that the nested construction does not involve a global tolerance estimate). As discussed earlier, different grid
locations in the ξp space admit different adaptations into ξξξ u. The dependence of the number of inner grid points at
each point in ξξξ p domain is visualized in Fig. 5.3. Notice that, towards some boundaries of ξξξ p domain, inner grids are
generated with many more points than in other areas. Despite the flexibility afforded in locally adapting at each outer
point, at termination the nested method required a total 76,411 model evaluations. This is over one order of magnitude
larger than what was required by the aPSP methods to achieve a comparable error.

To validate the results we generated a Monte-Carlo ensemble consisting of 4096 realizations. An additional 8192
simulations were performed in order to obtain estimates of the Sobol decomposition of the relative error, ζ 2, between the
Monte-Carlo sample and the sparse adaptive algorithm. The ζ 2 values, and their Sobol decompositions thus estimated,
are presented in Fig. 5.4.

The results of Fig. 5.4(a) demonstrate how the MC estimates of the error in the inner directions are quickly reduced,
whereas the global error is predominantly dictated by the refinement in outer dimensions. This is in stark contrast to the
behavior seen for the aPSP methods, where the first-order contributions ζp and ζu both drop rapidly at early stages of the
adaptation while the decay of the global error follows that the mixed term. The results also indicate that the error control
afforded by the nested method comes at the expense of a large computational cost, namely requiring more than an order-
of-magnitude increase in the number of model realizations. Figure 5.4(c) demonstrates the effectiveness of the aPSP-T1
method in terminating adaptation along u directions. The results also illustrate the flexibility of specifying directional
criteria, which for the presently selected values result in termination of aPSP-T1 with significantly smaller number of
model evaluations than aPSP. Finally, we note that for all three methods, the error estimates obtained based on the MC
sample drop to very small values as the iterations converge to their specified tolerances. This provides confidence in the
validity of all three methods and in the suitability of the resulting surrogates.

6 Conclusion

Two approaches were developed for obtaining a global surrogate of QoIs involving parameters belonging to different
spaces. The first approach relied on a nested construction where the two spaces were adapted separately. Specifically,
at each realization of the outer variables, an adaptive Smolyak pseudo-spectral projection was performed in the inner
space. The local PC coefficients at the outer grid points were then projected in the outer space.
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The second approach was based on considering a suitable product space combining all parameters, and on per-
forming an adaptive pseudo-spectral projection in this product space. In addition, we developed a decomposition of the
convergence indicator η , which enabled us to tune adaptivity along individual dimensions. Two versions of the adaptive
algorithm were developed for this purpose, allowing to terminate refinement along specific directions when specified
directional tolerances are met.

The validity of the construction was analyzed, including a Sobol-decomposition of the error between the constructed
surrogate-based estimates and the true model. We analyzed both approaches in light of applications on a simple test
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problem, as well as detailed simulations of a shock-tube ignition problem involving 3 design variables and 22 uncertain
rate parameters.

Computational tests indicated that the nested approach affords great flexibility in controlling the error in individual
sets of parameters, first reducing the error of the inner expansion locally at each point of the outer variables sparse
grid, and then reducing the error of the outer expansion and consequently the global representation. However, this
flexibility, which is gained from the tensorized construction of the nested approach, comes at the expense of larger
computational burden. In contrast, the adaptive pseudo-spectral projection refinement in the product-space approach
enabled the construction of suitable surrogates at a smaller cost compared to the nested algorithm. The tests also reveal
that directional tuning algorithm can provide an effective means of resolution control, affording appreciable savings over
unconstrained refinement.

Both the nested and product-space approaches offer many avenues for further improvement. Specifically, the nested
approach is not limited to performing pseudo-spectral projections in both the inner and outer space. The incorporation
of other methods for constructing surrogates, such as collocation or regression, would potentially constitute avenues for
improvement. In particular, the use of regularized solvers such as compressed sensing [7,8] appear to be promising,
namely for reducing the required number of model evaluations. The product-space approach with the decomposed error
indicators also offers promising areas for further extensions. For instance, the tolerances used for tuning adaptivity could
be dynamically adjusted, to guide refinement towards specific hyperplanes of the parameter space. Another possibility
would be to incorporate cost functions into the sparse grid refinement algorithm, so as to optimally exploit computational
resources. Such extensions will be considered in future work.

A Global Sensitivity Analysis

A.1 Sensitivity indices

Following notation of Section 2, consider F : ξξξ ∈Ξ 7→ F(Ξ)∈ L2(Ξ ,ρ), where ξξξ = (ξ1 · · ·ξd) is a vector of d independent real-valued random
variable with joined density ρ . Let D = {1, · · · ,d} and for u ∈ D denote |u| = Card(u) and u∼ = D \ u, such that u∪u∼ = D , u∩u∼ = /0.
Given u ∈D we denote ξξξu the sub-vector of ξξξ with components (ξu1 · · ·ξu|u| ), so ξξξ = (ξξξuξξξu∼ ). Under the stated assumptions, the function
F(ξξξ ) has a unique orthogonal decomposition of the form [15]

F(ξξξ ) = ∑
u∈D

fu(ξξξu), 〈 fu, fv〉= 0 if u 6= v. (A.1)

The functions fu can be recursively expressed as [39]

fu(ξξξu) = E{F | ξξξu}− ∑
v∈D
v(u

fv(ξξξv),

where E{F | ξξξu} is the conditional expectation of F given ξξξu, namely

E{F | ξξξu}=
∫

F(ξξξuξξξu∼ )ρ(ξξξu∼ )dξξξ∼.

The decomposition (A.1) being orthogonal, the variance of F , V{F}, is decomposed into

V{F}= ∑
u∈D
u 6= /0

Vu, Vu = V{ fu} . (A.2)

The partial variance Vu measures the contribution to V{F} of the interactions between the variables ξξξu. Since there are 2d such partial
variances, the sensitivity analysis is usually reduced to a simpler characterization, based on first and total-order sensitivity indices associated
to individual variables ξi or group of variables ξξξu. The first-order, Su, and total-order, Tu, sensitivity indices associated to ξξξu are given by [16]

V{F}Su = ∑
v∈D
v⊆u

Vv = V{E{F | ξξξu}} , V{F}Tu = ∑
v∈D

v∩u 6= /0

Vv = V{F}−V
{
E
{

F | ξξξu∼

}}
. (A.3)

The first-order index Su is then the fraction of variance that arises due to the individual variables in ξξξu and their mutual interactions, only;
the total-order sensitivity index Tu is the fraction of the variance arising due to the variables in ξξξu, their mutual interactions and all their
interactions with all other variables in ξξξu∼ . Clearly, Su ≤ Tu, and Tu = 1−Su∼ [16].

A.2 Sensitivity indices of PC expansion

The partial variances and sensitivity indices of F can be easily computed from the PC expansion of F in the form (2.5)

F(ξξξ )≈ ∑
kkk∈K

fkkkΨkkk(ξξξ ),

where K is the multi-index set of polynomial tensorizations as discussed in section 2.1 (see (2.4)). Owing to the linear structure and polynomial
form of the PC expansion, one can easily partition K into distinct subsets Ku contributing to the PC expansion of fu(ξξξu) [42,6]. Specifically,
the PC approximation of fu is

fu(ξξξu)≈ ∑
kkk∈Ku

fkkkΨkkk(ξξξ ), Ku
.
= {kkk ∈K ;k1≤i≤d > 0 if i ∈ u,k1≤i≤d = 0 if i /∈ u}.
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Observe that K /0 = {(0 · · ·0}). Then, ∀u ∈D ,u 6= /0, we have Vu ≈ ∑kkk∈Ku
f 2
kkk , while the variance of F is approximated by

V{F} ≈ ∑
kkk∈K \K /0

f 2
kkk .

The approximations for the first and total-order sensitivity indices Su and Tu can be easily derived through (A.3), by taking the corresponding
unions of subsets Kv. For instance, in the case of singleton u= {i}, we have

S{i} ≈
1

V{F} ∑
kkk∈K S

{i}

f 2
kkk , K S

{i}
.
= {kkk ∈K ;ki > 0,k j 6=i = 0}, (A.4)

T{i} ≈
1

V{F} ∑
kkk∈K T

{i}

f 2
kkk , K T

{i}
.
= {kkk ∈K ;ki > 0}. (A.5)
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