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Abstract. This paper gives an overview of the use of Polynomial Chaos expansions to represent
stochastic processes in numerical simulations. Several methods are presented to perform arithmetic
on, as well as to evaluate polynomial and non-polynomial functions of variables respresented with
Polynomial Chaos expansions. These methods include Taylor series, a newly developed integration
method as well as a sampling based spectral projection method for non-polynomial function eval-
uations. A detailed analysis of the accuracy of the Polynomial Chaos representations, and of the
different methods for non-polynomial function evaluations is performed. It is found that the integra-
tion method offers a robust and accurate approach to evaluate non-polynomial functions, even when
very high order information is present in the PC expansions.
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1. Introduction. Stochastic processes and orthogonal polynomials are intimately
related [24]. Early on, N. Wiener [26] discussed the role of Hermite polynomials
and homogeneous chaos in the integration theory with respect to Brownian motion.
Recent developments in uncertainty quantification (UQ) have explored the use of
Polynomial Chaos (PC), based on a suitable choice of orthogonal polynomial and its
associated stochastic process, for stochastic representation of uncertainty. Polynomial
chaos [5,26] is a member of the set of homogeneous chaos, first defined by Wiener [26].
It has since received increasing attention in a range of contexts [6,7,20,21]. Ghanem
and Spanos [16] implemented a PC expansion in terms of Hermite polynomials of
Gaussian random variables with a finite element method for UQ. This was applied
in the modeling of transport in porous media [11], solid mechanics [12,14] and struc-
tural [15] applications. The utility of the Hermite-Gauss PC for modeling non-
Gaussian processes was also investigated in [13,23]. Le Mâıtre et al. [18,19] extended
the application of these techniques to thermo-fluid applications in the context of low
Mach number flow. Xiu et al. [29] used generalized PC [28] for stochastic UQ in the
modeling of flow-structure interactions, and for diffusion problems [27], where they
examined various classes of orthogonal polynomials in the Askey scheme [3,4,24] and
their associated stochastic processes. Debusschere et al. [8–10] used PC for UQ in
the context of electrochemical flow in microfluidic systems. Reagan et al. [22] used
PC for UQ in a Hydrogen-Oxygen reaction system. In these applications, stochastic
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dimensions are introduced to represent the variability in the model parameters due to,
for example, experimental uncertainty or random variability in a material property.

In the specific case of intrusive spectral stochastic UQ methods, the PC expan-
sions for model parameters and variables are substituted into the governing equations.
Using a Galerkin projection method, evolution equations are obtained for the spec-
tral coefficients in the PC expansions. In this approach, all mathematical operations
that are applied to the variables in the governing equations are now applied to the
PC expansions that represent those variables. While elegant, the resulting “stochastic
arithmetic” poses a number of challenges. These challenges include the accuracy of the
(truncated) PC representations, truncation errors in the pseudo–spectral evaluation
of polynomial functions and the evaluation of non-polynomial functions.

A first issue is the accuracy of the PC representations of random variables with
probability density functions (PDFs) that deviate from the PDF of the random process
that is associated with the chosen orthogonal polynomials insert ref. to Field and
Grigoriu . For example representing strictly positive variables that have small mean
values and large uncertainties can pose severe challenges for the accuracy and stability
of the PC representation. Specifically, unless “sufficiently” high PC order is used, it
is difficult to avoid non-zero probabilities of negative values of these variables under
these conditions, which can destabilize the governing equations, e.g., negative density
or temperature. Under conditions with severe non-linearity, a sufficiently high PC
order may be too computationally expensive to be practical.

Closely related to this are truncation errors, which frequently surface in the eval-
uation of high-order powers of random variables. In order to perform polynomial
function evaluations of random variables represented with PC expansions, high pow-
ers of those variables may be required. A pseudo–spectral approach is used in this
work to calculate such high powers efficiently, as will be discussed below. However,
this methodology can introduce non-negligible truncation errors if the order of the
PC representation is not sufficiently high.

Non-polynomial function evaluations of PC variables present a challenge since the
Galerkin projection method cannot be applied directly to determine the PC coeffi-
cients of the function result. One approach to circumvent this is to use Taylor series
approximations for the non-polynomial functions. While this approach is straightfor-
ward and generally cost-effective, it can become grossly inaccurate when high order
PC expansions are required to represent the physical variability. For many functions,
this approach is also limited by the theoretical range of convergence of the Taylor
series. In this work, we discuss the shortcomings of this approach and we develop a
more robust and accurate technique that evaluates non-polynomial functions by inte-
grating their derivatives. This approach can be applied to all functions u(x) where du

dx
can be expressed as a rational function of x and/or u(x). As a third option, sampling-
based methods such as the non-intrusive spectral projection method [15,19,22] can be
used to accurately evaluate functions of PC variables. However, those methods can be
very computationally expensive and do not scale well with the number of stochastic
dimensions in the problem. Therefore, this paper focuses mainly on the “intrusive”
Taylor series and integration approaches, which operate directly on the PC coeffi-
cients, even though we will use sampling-based methods to evaluate the accuracy of
those intrusive methods.

In the next section, we introduce the mathematical formulation for various ele-
mentary operations on PC expansions of random variables, as well as the Taylor
series, integration, and sampling approaches for non-polynomial function evaluations.
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We also highlight the main aspects of the implementation of these operations. Next,
we discuss in detail issues regarding PC representation accuracy and truncation errors
as well as a rigorous comparison between the various sampling, Taylor series, and in-
tegration approaches for non-polynomial function evaluations. The main conclusions
are summarized at the end.

2. Formulation and Implementation.

2.1. Polynomial Chaos Expansions. Under specific conditions [24], a stochas-
tic process can be expressed as a spectral expansion in terms of suitable orthogonal
eigenfunctions with weights associated with a particular density. A well-studied ex-
ample is the Wiener process (Brownian motion) which can be written as a spectral
expansion in terms of Hermite polynomials and the Normal distribution. Other ex-
amples include Charlier polynomials and the Poisson distribution, and the Laguerre
polynomials and the Gamma distribution [24]. In the present context, we will gener-
ally refer to these spectral expansions as Polynomial Chaos (PC) expansions following
Wiener [26], and we will exclusively focus on the Hermite-Gauss PC. Moreover,
while these expansions are infinite series, we will consider only PC expansions trun-
cated at some suitably high order.

Consider a real second-order random variable a, i.e., a Lebesgue-measurable
mapping from a probability space (Ω,Θ, P ) into IR, where Ω is the set of elementary
events, Θ a σ-algebra on Ω and P a probability measure on (Ω,Θ) [16]. This random
variable can be approximated by its truncated Hermite-Gauss PC expansion as
follows [16,26]:

â =
P
∑

k=0

akH
N
k (ξ). (2.1)

In this expansion N ∈ IN∗ is the dimension of the stochastic space, ξ = (ξ1, . . . , ξN )
where the ξi are assumed to be uncorrelated random variables with a Gaussian distri-
bution, the HN

k ∈ IR[X1, X2, . . . , XN ] are N -dimensional Hermite polynomials, and
the coefficients ak are the (deterministic) spectral coefficients, here called PC coeffi-
cients. For example, if only one stochastic dimension is considered, one-dimensional
Hermite polynomials, which belong to IR[X], are used and the first of them are given
in normalized form as:

H1
0 = 1, H1

1 = X, H1
2 = X2 − 1, H1

3 = X3 − 3X, . . . (2.2)

In any case, for an M -th order PC expansion with N stochastic dimensions, the total
number of terms P + 1 with order less or equal to M is given by

P + 1 =
(M +N)!
M !N !

. (2.3)

For the sake of brevity, the compositionHN
k (ξ), divided by the highest order coefficient

of HN
k , is called the kth N -dimensional Polynomial Chaos, denoted Ψk (to avoid heavy

notations, the superscript N vanishes: the considered dimension will be known from
the context).

Using the orthogonality of the Hermite polynomials with respect to the Gaussian-
weighted expectation

〈f〉 =
1

(2π)N/2

∫

IRN
f(η1, η2, . . . , ηN ) exp

[

−
∑N
i=1 η

2
i

2

]

dη1dη2 · · ·dηN (2.4)
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the coefficients ak can be calculated by a Galerkin projection operation onto the
PC basis:

(∀k ∈ {0, ..., P}) ak =
< aΨk >

< Ψ2
k >

(2.5)

Note that the expectations < Ψk >= 0 for k > 0. The 0th-order PC coefficient for
each variable is the mean, whereas the higher order coefficients represent stochastic
variability around this mean.

For the sake of simplicity, we will use the term PC variable to denote the truncated
PC expansion of a random variable. Also, for any random variable a, the mapping (·)k
returns the kth PC coefficient of a. When giving specific examples of PC expansions,
the shorthand notation a(a0, a1, a2, . . . , aP ) will be used to list the PC coefficients
of a, defined as follows:

a =
P
∑

i=0

aiΨi = a(a0, a1, a2, . . . , aP ) (2.6)

2.2. Elementary Operations on PC variables. The most basic operations on
PC variables are additions and subtractions, which are performed by adding/subtracting
the corresponding PC coefficients of the variables being added/subtracted. Multiplica-
tions of PC variables, however, are a little less straightforward. Consider two random
variables, a and b, with their respective PC approximations:

â =
P
∑

i=0

aiΨi (2.7)

̂b =
P
∑

j=0

bjΨj (2.8)

Note that no assumption has been made about a and b being independent. We need
to determine the coefficients ck in the PC representation of c = ab. Since there is no
way to directly compute ̂a b, we assume ĉ = â̂b, which is a reasonable assumption as
long as the PC expansions for a and b are sufficiently high order to properly represent
those random variables. Substituting the appropriate PC expansions into ĉ = â̂b gives

ĉ =
P
∑

k=0

ckΨk (2.9)

=
P
∑

i=0

aiΨi

P
∑

j=0

bjΨj . (2.10)

Note that c is expressed using a PC expansion of the same order P as a and b, even
though the right hand side product in Eq. 2.10 has twice the order. The ck coefficients
are therefore obtained with a Galerkin projection, which minimizes the error of the
resulting PC representation within the space spanned by the basis functions up to
order P . First, (2.10) is multiplied with Ψk. After taking the expectation of both the
left and right hand side terms, invoking the orthogonality property of the Ψ’s, and
rearranging terms, one obtains:

(∀k ∈ {0, ..., P}) ck =
P
∑

i=0

P
∑

j=0

Cijkaibj (2.11)
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with

(

∀(i, j, k) ∈ {0, ..., P}3
)

Cijk ≡
〈ΨiΨjΨk〉
〈Ψ2

k〉
(2.12)

Since the 3rd-order tensor Cijk is only a function of the Ψi’s, it needs to be calculated
only once during a preprocessing step and can be stored for use throughout the com-
putations. The implementation of (2.11) also takes advantage of the fact that this
tensor is sparse, reducing the amount of storage and CPU time needed.

A similar procedure could also be used to determine the PC expansion for the
product of three stochastic variables d = abc. This would give the spectral coefficients
dk as

(∀l ∈ {0, ..., P}) dl =
P
∑

i=0

P
∑

j=0

P
∑

k=0

Dijklaibjck (2.13)

where

(

∀(i, j, k, l) ∈ {0, ..., P}4
)

Dijkl ≡
〈ΨiΨjΨkΨl〉
〈Ψ2

l 〉
(2.14)

Instead of this fully spectral approach, however, we use a pseudo-spectral construction
to calculate products such as d = abc by repeated use of the two-term product func-
tion. First the product ab is calculated with (2.11), and the (P -truncated) result of
this multiplication is multiplied similarly with c to give the PC expansion for d. The
advantage of this pseudo-spectral approach is that it does not require the evaluation
and storage of the 4th-order tensor Dijkl, it is more efficient, and is easy to generalize
to products of any number of variables.

At this point, it is important to emphasize that both in the single but especially
the repeated multiplications, the Galerkin projections onto a P + 1 term PC ex-
pansion are essentially truncations, which introduce additional approximation errors.
As will be shown in section 3.2, those truncation errors are negligible if the order of
the PC expansions is chosen sufficiently high to properly represent the result of the
multiplication. However, when performing repeated multiplications such as for the
calculation of high powers of PC variables, those truncation errors need to be taken
into account.

Another frequently used operation is the division of two random variables. A
robust and efficient algorithm to compute divisions was constructed as follows. Con-
sider again three stochastic variables, a, b, and c, with their respective PC expansions
given by (2.7–2.9). If we wish to evaluate a = c/b, then c = ab, which is given by
(2.11). This equation, assuming the coefficients ck and bj are known, is a system of
P + 1 linear equations in the unknown coefficients ai. Since it is a sparse system of
equations, we solve it efficiently with a GMRES iterative solver, from the SLATEC
library [2, 25]. This algorithm can also be used to calculate the inverse a = 1/b of a
stochastic quantity by setting c0 to 1 and all higher order coefficients to zero for c.

In a similar way, we can compute the square root of a PC variable. Considering
the PC variables a and b, b =

√
a implies a = b2, which is given by

(∀k ∈ {0, ..., P}) ak =
P
∑

i=0

P
∑

j=0

Cijkbibj (2.15)
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Given the coefficients ak, this corresponds to a system of P + 1 non-linear equations
in the unknown PC coefficients of b. Starting from an intial guess b̃ =

√
a0, this

system of equations can be solved efficiently using Newton’s method. Note however
that caution needs to be used with this algorithm, as it does not necessarily converge
to quantities that are strictly positive. In situations where this is an issue, other
algorithms that will be given in section 2.4 can be used.

2.3. TAYLOR Series Approach for non-Polynomial Function Evaluta-
tions. Using the algorithms described in the previous section, all polynomial func-
tions of PC variables, as well as divisions, can be readily evaluated. More challenging
however is the evaluation of non-polynomial functions of random variables such as the
exponential or the logarithm. One way to evaluate these functions is to expand them
in Taylor series around the mean of the argument.

For example, the exponential of a random variable a, with a PC expansion given
by (2.7), is computed as

eâ = ea0



1 +
NTay
∑

n=1

dn

n!



 (2.16)

where

d = â− a0 =
P
∑

i=1

aiΨi (2.17)

is the stochastic part of â. This Taylor series (2.16) theoretically converges for all
values of a. Similarly, the natural logarithm of a random variable a can be computed
as

ln â = ln a0 +
NTay
∑

n=1

dn

nan0
(−1)n+1 (2.18)

with a theoretical convergence range of |â− a0| < |a0|. The powers dn are calculated
in a pseudo-spectral way with the product formula (2.11) as dn = d dn−1, with dn−1

known from the previous term in the Taylor series. For all operations, the number
of terms NTay in the truncated series is chosen adaptively. Terms are added until
the maximum PC coefficient in the added term, divided by the mean of the function
result (PC coefficient 0) is less than a specified tolerance level in absolute value. For
the results shown in this work, a tolerance level of 10−15 was chosen.

As will be shown in the results section, the Taylor series approach works rea-
sonably well as long as the uncertainties in the field variables are moderate and the
probability density functions (PDFs) of those variables are not too skewed. For highly
skewed PDFs, however, high order PC expansions are required to capture this stochas-
tic information, and the evaluation of high power terms dn in the Taylor series can
become inaccurate. Also, if the uncertainty is so large that realizations of a have a
non-zero probability of falling outside the range of convergence for the Taylor series,
then the series will diverge as well. Note that since the PDF of a Gaussian variable
has tails that extend all the way to infinity, there is always a non-zero probability
that realizations of a Gaussian variable will fall outside the range of convergence of a
Taylor series. In theory, this would imply that only Taylor series with an infinite
range of convergence would converge for such random variables. In practice however,
if the probability of falling outside the convergence range is sufficiently small, the
numerical evaluation of the Taylor series will still give accurate results.



NUMERICAL CHALLENGES IN USING POLYNOMIAL CHAOS 7

2.4. Integration Approach for Non-Polynomial Function Evaluations.
To avoid the possible inaccuracies and divergence of Taylor series for non-polynomial
function evaluations of PC variables, a new approach has been developed in this work,
based on the integration of the derivative of the function to be evaluated.

For example, consider a deterministic x ∈ IR and a function u : x 7→ u(x), with
u(x) ∈ IR, which has the derivative g : x 7→ g(x) By definition of the derivative
operator, this means that the function u is a solution of the ordinary differential
equation

du
dx

= g (2.19)

Therefore, the value of u(x) for an argument x = a can be obtained by integrating

du = g dx (2.20)

from ã to a (where ã is an arbitrary starting point for the integration, with a known
function value u(ã)), resulting in

u(a)− u(ã) =
∫ a

ã

g dx (2.21)

Now consider the case where x, u(x), and g(x) are random variables with the following
PC expansions:

x =
P
∑

j=0

xjΨj (2.22)

u(x) =
P
∑

i=0

uiΨi (2.23)

g(x) =
P
∑

i=0

giΨi (2.24)

We could intuitively use the same procedure as in the deterministic case above to
evaluate u(x), however, differential operators do not readily extend to the case where x
is a random variable Need a reference . To deal with this issue, we explicitly write x,
u, and g as random processes, i.e.,

x = x(s, θ) =
P
∑

j=0

xj(s)Ψj(θ) (2.25)

u = u(s, θ) =
P
∑

i=0

ui(s)Ψi(θ) (2.26)

g = f(s, θ) =
P
∑

i=0

gi(s)Ψi(θ) (2.27)

where s : IR → IR4 parameterizes the path across the deterministic space of PC
coefficients and θ denotes the dependence on the underlying random process. In
particular, if s, x, u and g are assumed to be smooth enough (namely, analytical),
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then the integration becomes path-independent and we can integrate from s1 to s2

with
∫ s2

s1

∂u

∂s
ds =

∫ s2

s1

g
∂x

∂s
ds. (2.28)

Substituting the PC expansions for u, g and

∂x

∂s
=

P
∑

j=0

dxj
ds

Ψj (2.29)

leads to,

P
∑

i=0

Ψi

∫ s2

s1

dui
ds

ds =
∫ s2

s1

P
∑

i=0

giΨi

P
∑

j=0

dxj
ds

Ψj ds (2.30)

or

P
∑

i=0

Ψi(ui(s2)− ui(s1)) =
P
∑

j=0

∫ s2

s1

P
∑

i=0

ΨiΨjgi
dxj
ds

ds. (2.31)

Then, multiplying by Ψk, taking expectations, and dividing by < Ψ2
k >, we obtain

uk(s2)− uk(s1) =
P
∑

j=0

∫ s2

s1

P
∑

i=0

Cijkgi
dxj
ds

ds. (2.32)

Finally, consider the integral defined for any given (j, k) ∈ {0, ..., P}2 as follows:

Ijk =
∫ s2

s1

P
∑

i=0

Cijkgi
dxj
ds

ds. (2.33)

Since g = g(x), then gi = gi(x) = gi(x0, x1, · · · , xP ). In the evaluation of Ijk, only
one x-coefficient, xj is varied, while xr 6=j are kept constant. Thus, in this context,
gi = gi(xj ;xr 6=j) = gi(xj), such that

(

∀(j, k) ∈ {0, ..., P}2
)

Ijk =
∫ xj(s2)

xj(s1)

P
∑

i=0

Cijkgidxj (2.34)

and

(∀k ∈ {0, ..., P}) uk(s2)− uk(s1) =
P
∑

j=0

∫ xj(s2)

xj(s1)

P
∑

i=0

Cijkgidxj . (2.35)

Thus, to evaluate u(x) for a given argument x = a, with a given PC expansion
a =

∑P
i=0 aiΨi, we choose a suitable ã =

∑P
i=0 ãiΨi where u(ã) is known. Then

choosing xj(s1) = ãj , and xj(s2) = aj for j = 0, . . . , P , we have that each coefficient
uk of the function result u(a) is found as a summation of P + 1 coupled integrals

(∀k ∈ {0, ..., P}) (u(a))k = uk = (u(ã))k +
P
∑

j=0

∫ aj

ãj

P
∑

i=0

Cijk gi dxj . (2.36)
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The feasibility of this integration approach for evaluating u(a) depends, of course,
on two conditions. First, we need to be able to evaluate u(ã) and second, we need to
be able to evaluate g(x) at all points along the integration path. The first condition
is met most easily by taking a0, the mean coefficient of a, as the starting point ã for
the integration. This way, u(a0) is a regular operation on a deterministic scalar a0,
and u(a) is obtained by integrating (2.36), with all ãj 6=0 = 0.

The second condition puts restrictions on the derivative function g. As discussed
in the previous sections, we can readily evaluate polynomials, as well as divisions and
square roots of PC variables. Therefore, g can be evaluated if it can be written in
terms of these elementary operations applied to x as well as u, since u is known at the
current point from the integration along the preceding part of the integration path.
For example, this algorithm is applicable to the evaluation of the functions u = ex,
u = e−x

2
, and u = ln(x) as follows:

ea − eã =
∫ a

ã

u dx (2.37)

e−a
2
− e−ã

2
=
∫ a

ã

−2xu dx (2.38)

ln(a)− ln(ã) =
∫ a

ã

dx
x

(2.39)

Also, an alternative way to evaluate the square root function is

√
a−
√
ã =

∫ a

ã

dx
2u

(2.40)

By extension, arbitrary powers of PC variables can be obtained as:

u = xy = ey ln(x) (2.41)

where both x and y can be PC variables.
For the implementation in the current work, a straight line path from ã to a has

been chosen for the integrals (2.36). In this way, the distance along the integration
path for all stochastic coefficients can be parameterized using a single variable s:

xj = (aj − ãj)s+ ãj (2.42)

with s evolving from 0 to 1. The integrals (2.36) can therefore be reformulated as a
system of (P+1) ordinary differential equations (ODEs) in the integration variable s.
This system of ODEs is solved efficiently using the DVODE [1,17] package.

The examples given in the results section below show the accuracy of this inte-
gration approach, even for situations where the Taylor series approach breaks down.
A drawback, however, is the relatively high cost of integration. Besides making the
ODE integration routines more efficient, another way to speed up this approach is
to choose the starting point for the integration intelligently. As mentioned above,
for a one–time evaluation of a non–polynomial function, the starting point for the
integration is typically the mean coefficient of the PC variable, as this facilitates the
evaluation of the function at the starting point. However, for subsequent evaluations
of the same function for slightly different arguments, previous function evaluations
may supply better starting points. Consider for example the calculation of the pH of
a buffer solution in a temporally evolving microfluidic system. At each time step, this
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requires the evaluation of pH= − log[H+], with [H+] the hydrogen ion concentration
represented as a PC variable. If this concentration does not change very rapidly in
time, then the [H+] from the previous time step will be very close in stochastic space
to [H+] at the current time step. Therefore, this concentration from the previous time
step, with its corresponding value of log[H+], may be a better starting point for the
integration (2.36) than the mean coefficient of [H+] at the current time step.

2.5. Sampling Approach for Non-Polynomial Function Evaluations. An
alternative approach for evaluating non-polynomial functions of PC variables involves
the use of sampling. In this context, the evaluation of the spectral modes (uk) of
u =

∑P
k=0 ukΨk = f(x), where x =

∑P
k=0 xkΨk, and the xk’s are known, can be done

as follows.

• Sample values of ξ = (ξ1, ξ2, · · · , ξN ), based on the known random variable
distributions of the ξi’s.

• For each sample ξj , evaluate Ψk = HN
k (ξj), xj , and uj = f(xj).

• Summing over all samples, evaluate the expectations required for the Galerkin-
projection

(∀k ∈ {0, ..., P}) uk =
< uΨk >

< Ψ2
k >

(2.43)

where the best means of evaluation of the expectation depends on the sam-
pling strategy.

• With the uk’s thus computed, assemble the PC expansion for u.

We have used this Non-Intrusive Spectral Projection (NISP) approach in previous
works [15,19,22]. It is non-intrusive in the sense that it does not require reformulation
of the function f , or more generally of the governing equations of a given model.
One key aspect of this algorithm is the sampling, or quadrature, strategy. Recall that
these expectations < f > are given by (2.4), and therefore involve primarily numerical
quadrature formulae. Straightforward Monte Carlo (MC) approaches to quadrature
are optimal when the random processes at hand have a uniform distribution, and
the number of stochastic dimensions is large. However, we are not dealing with
uniformly distributed quantities. Given this, the simplest construction involves the
use of Latin Hypercube (LH) sampling of the vector of Normal random variables ξ. In
this case, < f > is simply evaluated as the arithmetic mean of the set of realizations
of f [22]. On the other hand, a more efficient quadrature construction, for small
N (∼< 5), uses Gauss-Hermite (GH) quadrature,

∑

i wifi, for the evaluation of
the integrals in < f > [19]. Based on the degree of polynomial exactness of these
quadrature rules, M + 1 sample points in each stochastic dimensions are sufficient
to correctly integrate the expectations in (2.43) provided u is represented well with
an PC expansion of order M . Therefore, this methodology is very useful to generate
accurate PC representations of f(x). However, while efficient for small N , the dense
tensor product implementation of GH in multiple dimensions leads to an exponential
increase in the number of samples such that its performance for N > 10 is worse than
LH. In the present work, we exclusively employ N = 1, and therefore will use GH for
the NISP evaluations of PC expansions.

2.6. Uncertainty Quantification Toolkit. As part of the current work, all
the operations described above, among many others, have been implemented in a UQ
toolkit library. This UQ toolkit greatly facilitates the development of new source code



NUMERICAL CHALLENGES IN USING POLYNOMIAL CHAOS 11

−2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0
x

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
 D

en
si

ty

x = (1.0,0.7,0.1,0.02)

Fig. 3.1. PDF of the variable x with the
PC expansion x(1.0, 0.7, 0.1, 0.02)
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Fig. 3.2. PDF of x2 as obtained from di-
rect sampling (DS), as well as from NISP/GH
with both 3rd and 5th order PC. The 5th order
PC expansion represents the exact PDF well.

for stochastic operations, as well as the conversion of existing deterministic routines
into stochastic ones. Essentially, existing deterministic routines can be converted by
replacing deterministic variables with PC variables where necessary, and replacing the
mathematical operators that act on those variables with the appropriate stochastic
equivalents from the UQ toolkit library.

3. Numerical Results.

3.1. Accuracy of PC Representations with Gaussian basis functions. In
performing operations on PC variables, it is important to take into account the accu-
racy of the PC representation itself. To represent a random variable with a Gaussian
PDF, a first order PC representation is sufficient (mean + standard deviation) when
using Gaussian basis functions. However, variables with a highly skewed PDF can
require considerably higher order terms in order to be properly represented with a PC
expansion. For example, Fig. 3.1 shows the PDF of a variable x given by a third order
PC expansion x(1.0, 0.7, 0.1, 0.02) (see Eqn. (2.6) for the definition of this notation).
This variable has a mean of 1.0 with a coefficient of variation of about 70 %, and
higher order terms that cause the PDF to be asymmetric. Figure 3.2 shows the PDFs
of the square of this variable, as obtained with various sampling methods. With the
“direct sampling” (DS) approach, the PDF of x2 is obtained by sampling the PDF
of x, calculating x2 for each sample, and compiling the PDF of the results through
binning and normalizing. With the NISP/GH approach, the PC representation of
x2 is generated using Gauss-Hermite quadrature (see section 2.5) and the PDF of
x2 is then obtained by sampling the resulting PC expansion. Since the NISP/GH
approach, with a sufficient number of sample points, gives an exact projection onto
the PC basis functions, the resulting PDFs highlight the accuracy of PC expansions
with a given order to represent random variables. As can be seen in Fig. 3.2, the 3rd

order PC expansion is not accurate enough to represent the PDF of x2. However, a
5th order expansion is of high enough order as the associated PDF coincides with the
directly sampled PDF.
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3.2. Truncation Errors. As explained in section 2.2, integer powers xn of PC
variables can be obtained through repeated multiplications in a pseudo-spectral ap-
proach. For example, x4 is conceptually obtained as

x4 = ((x ∗ x) ∗ x) ∗ x (3.1)

where each multiplication is performed using (2.11). As mentioned in section 2.2,
each one of those stochastic multiplications involves a truncation via a Galerkin
projection of a quantity up to order 2M onto a PC basis up to order M . This implies
that information in xn of order higher than M will get lost. In this section, we show
that this procedure may affect the accuracy of the lower order coefficients in xn as
well and investigate the importance of these truncation errors.

To evaluate the accuracy of the integer power xn of a PC variable x with a specified
order M , comparisons were made between the (P + 1) coefficients of xn as obtained
with the pseudo-spectral approach and the corresponding (P + 1) coefficients of xn as
obtained with higher order NISP/GH calculations. The errors in the PC coefficients
obtained from the pseudo-spectral approach were quantified using a root-mean-square
(RMS) measure, calculated as:

Erms =

√

√

√

√

P
∑

i=0

[

(yNISP/GH)i − (yPS)i
]2
< Ψ2

i > (3.2)

where yNISP/GH is the NISP/GH approximation and yPS is the pseudo-spectral ap-
proximation of the quantity y considered. Note that this RMS measure only considers
the (P+1) lowest order modes, even though the NISP/GH approximations in this sec-
tion were calculated with a higher order PC representation for accuracy. In this way,
the RMS measure (3.2) evaluates the accuracy of the PC representation of xn within
the space covered by the basis functions up to order P . Considering x = x(1.0, 0.2),
with its PDF shown in Fig. 3.3, the RMS error in the pseudo–spectral PC coefficients
of xn is shown in Fig. 3.4 xn as a function of n for two different orders of the PC
representation. For low values of n, the RMS error in the PC coefficients of xn is
negligible, indicating that the (P + 1) coefficients of xn are properly calculated with
the pseudo-spectral construction. For n larger than M + 1, however, the RMS er-
ror increases dramatically. Apparently, the order of the PC representation becomes
too low for these high powers of x and the absence of the higher order coefficients
required to properly represent xn affects the lower order coefficients. Note that the
errors in the PC coefficients are still fairly small. For example, the PS approximation
of x5 with third order PC and the NISP/GH approximation with fifth order PC are
respectively:

x5
PS = (1.4240, 1.2448, 4.4800× 10−1, 8.1920× 10−2) (3.3)

x5
NISP/GH = (1.4240, 1.2448, 4.4800× 10−1, 8.3200× 10−2,

8.0000× 10−3, 3.2000× 10−4) (3.4)

The error in the modes of x5
PS shows up only in the second significant digit of the

third order term. However, as shown in Fig. 3.5, there is a rather large differ-
ence between the PDF sampled from the x5

PS PC expansion and the directly sam-
pled PDF. The PDF sampled from x5

PS does agree with the PDF sampled from
the x5

NISP/GH PC expansion that has been truncated after the 3rd order terms, i.e.
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Fig. 3.5. PDF of x5 as obtained by direct sampling (DS), pseudo-spectral (PS) calculation with
3rd order PC, as well as the sampling of the NISP/GH result truncated after the 3rd. The low order
PC expansion results in finite probabilities for negative values of x5.

(1.4240, 1.2448, 4.4800 × 10−1, 8.3200 × 10−2). This indicates that the small error in
the resolved coefficients is less important than the absence of the higher order terms
in the PC expansion.

The observations above seem to suggest that PC expansions with a given order
M can represent powers xn with n not larger than M+1. However, in general, x may
have significant higher order information to begin with, instead of the Gaussian x
that was used in this specific example. The more higher order information is present
in x, the higher the order of the PC expansions will need to be in order to properly
represent xn. Therefore, the representation of xn may break down for powers of x
that are smaller than M + 1. To make sure that a sufficiently high order PC has
been used in a calculation, it is therefore recommended to repeat the calculations
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Fig. 3.6. PDF of the variable x given by
the PC expansion x(1.0, 0.2,−0.01, 0.005)
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the order M of the expansion used. Both Tay-
lor series and the integration approach give
the same results.

with increasingly higher order PC representations, until the results do not change any
more.

As will be shown in the following section, the inability of low order PC expansions
to represent high powers of PC variables will affect the accuracy of Taylor series
approximations for non-polynomial function evaluations of PC variabiles when many
terms are required to reach convergence.

3.3. Non-Polynomial Function Evaluations. In this section, the evaluation
of non-polynomial functions of PC variables is studied. Comparisons are made be-
tween the NISP/GH, Taylor series and integration approaches for both the evalua-
tion of exponentials and logarithms.

3.3.1. Exponentials. First, consider a PC variable x, given by the PC expan-
sion x(1.0, 0.2,−0.01, 0.005). This variable has a moderate uncertainty of about 20 %
and a slightly skewed PDF, as shown in Fig. 3.6. The PC expansion representing
exp(x) was calculated using both the Taylor series and integration approaches for
increasing orders M of the PC expansions. Each time, the root-mean-squared (RMS)
difference was calculated between the resulting PC coefficients and the result of a
NISP/GH evaluation of exp(x) with the same order PC representation. As shown in
Fig. 3.7, both the Taylor series and integration approaches give the same results at
each order M . Also, except for the fourth order calculation, the RMS difference with
the NISP/GH approach decreases monotonically with the order of the PC represen-
tation. To properly interpret these results, it is important to note that contrary to
the analysis in section 3.2, the NISP/GH results here are not necessarily the exact
solution. In section 3.2, a sufficiently high order PC representation and excess quadra-
ture points were used in order to get an exact evaluation of the integrals in (2.43).
In this section, however, the same order PC expansion is used in the Taylor series,
integration, as well as the NISP/GH method. For random variables with very high
order information, this means that the quadrature integrations in (2.43) will not be
exact. In practice though, the NISP/GH method generally gives very accurate results,
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Fig. 3.8. Comparison of the PDF of exp(x) as generated with the different methods using 3rd

order PC representations. All methods give the same result.

especially when the uncertainties and non-linearities are moderate. For the current
example, all three approaches are very accurate, even for low order PC approxima-
tions. Figure 3.8 compares the PDFs generated by sampling the PC representations
from the NISP/GH, integration and Taylor series approaches with the directly sam-
pled PDF of exp(x). Even with the low, third order PC approximation, all PDFs are
indistinguishable from the directly sampled PDF.

The evaluation of exp(x) becomes more challenging when the uncertainty in x
increases and higher order modes create a more skewed PDF. Consider for example
the PC variable x(1.4, 1.1,−0.22, 0.04,−0.009, 0.004,−0.001) with its PDF shown in
Fig. 3.9. Similar to the previous example, the PC representations of exp(x) obtained
with the integration and Taylor series approaches are compared for increasing order
M in the PC expansions to the NISP/GH evaluations of exp(x) generated with the
same order PC expansions. For both the integration and Taylor series methods, the
RMS differences with the NISP/GH results are shown in Fig. 3.10. A first observa-
tion regarding these RMS differences is that they are considerably larger than in the
previous example (Fig. 3.7), indicating that the evaluation of exp(x) is indeed more
challenging. Second, for orders M higher than 9, the Taylor series breaks down due
to the large number of terms, and consequently high powers of x required to reach
sufficient accuracy in the Taylor series approximation. For the 9th order PC repre-
sentation, 130 terms are required for the Taylor series to reach sufficient accuracy
in this case. Given the limitations in the representation of xn with a given order PC
expansion, it is actually surprising that the Taylor series in this case holds up so
well. For higher order representations of exp(x), however, the terms in the Taylor
series start to grow above a certain power of x and the series does not converge any
longer. The integration approach, on the other hand, is able to evaluate exp(x), even
for large orders M in the PC representations. As M increases, the RMS difference be-
tween the integration approach and NISP/GH decreases in a general sense, although
not monotonically. Again, it is important to realize that the NISP/GH approach
does not necessarily represent the exact result, especially since the random variable
exp(x) in this case requires a very high order PC expansion in order to be properly
represented. Figure 3.11 illustrates this by plotting the PDF of exp(x) obtained by
direct sampling, and comparing this to the PDFs obtained by sampling the PC rep-
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Fig. 3.9. PDF of the variable
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between the PC coefficients of exp(x) for the
Taylor series and integration approaches com-
pared to the NISP/GH method, as a func-
tion of the order M of the expansion used.
The Taylor series breaks down for M > 9
whereas the integration approach gets closer to
the NISP/GH results for increasing M .

resentations generated with the other methods. As the directly sampled PDF shows
in this figure, the PDF of exp(x) has a long and smooth tail on the right side, but
has a very steep drop-off near zero, which is caused by the long tail towards negative
values in the PDF of x. This steep drop-off near zero requires a very high order PC
expansion to resolve. While the 6th order approximations with NISP/GH as well as
the integration and the Taylor series approach look fairly good overall in Fig. 3.11a,
zooming in on the origin in Fig. 3.11b reveals several discrepancies with the directly
sampled PDF. The NISP/GH result does not reproduce the steep drop-off near zero
and has a relatively large probability for (unphysical) negative values for exp(x). The
Taylor series and integration approach resolve the steep gradient near zero fairly
well, but have a large overshoot between 0 and 0.5. Increasing the order of the PC
expansions slowly improves the accuracy of the representation of exp(x). The PDFs
from the 19th order PC expansions, as shown in Fig. 3.11c and d, are in much better
agreement with the directly sampled PDF, although not perfect. An even higher order
PC expansion would be required to perfectly represent the random variable exp(x).
As explained above, the Taylor series approach is not able to generate these high
order representations, but the integration approach still works well. An alternative
way to compare the accuracy of the different methods is to look at the cumulative
distribution functions (CDFs) of the generated random variables. Figure 3.12 plots
the probability that exp(x) is smaller than a given value X, as a function of X, on
a logarithmic scale so that the left tail is emphasized. Even though there were some
differences in the PDFs for exp(x) between the different methods using 6th order PC
expansions, this figure shows that there is actually quite a good agreement between
all methods when looking at the CDFs. Apparently the differences get leveled out in
the integration of the PDF to get the CDF. The right tail of the PDF is harder to
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Fig. 3.11. Comparison of the PDF of exp(x) generated with the Taylor series, integration and
NISP/GH approaches to the directly sampled PDF: a) Approximations with 6th order PC expansions;
b) Same, but zoomed in on the origin; c) Approximations with 19th order PC expansions; d) Same,
but zoomed in on the origin.

match however, as shown in Fig. 3.13, which plots the probability of exp(x) > X as
a function of X. For the 6th order PC expansions in Fig. 3.13a, the results obtained
with the integration approach fall on top of the Taylor series results, which are very
close to the NISP/GH results. All of these methods fail to match the directly sampled
results however. With 19th order PC expansions, however, the NISP/GH results fall
almost on top of the directly sampled results. The integration approach also gives
a very accurate approximation of this tail while, as mentioned before, the Taylor
series approach fails for this high order.

3.3.2. Logarithms. As a first example of the evaluation of logarithms of PC
variables, consider the PC variable x(1.0, 0.1, 0.01, 0.001). The PC coefficients of x
have been chosen such that the PDF of x, as shown in Fig. 3.14 has finite probabilities
only for values of x that are sufficiently far away from zero and are within the range
of convergence of the Taylor series (2.18) for ln(x): |x− x0| < |x0|. As in the study
of the exponential function evaluations, the PC representations for ln(x) generated
with the Taylor series and the integration approach are compared to the NISP/GH
results for increasing order M of the PC representations, as shown in Fig. 3.15. Up to
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Fig. 3.12. Comparison of the tails of the CDF P (exp(x) < X) generated with the Taylor
series, integration and NISP/GH approaches to the directly sampled results.
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Fig. 3.13. Comparison of the tails of the CDF P (exp(x) > X) generated with the Taylor
series, integration and NISP/GH approaches to the directly sampled results: a) Approximations
with 6th order PC expansions; b) Approximations with 19th order PC expansions.
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Fig. 3.14. PDF of the PC variable
x(1.0, 0.1, 0.01, 0.001)
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Fig. 3.16. Comparison of the PDF of ln(x) generated with the Taylor series, integration and
NISP/GH approaches to the directly sampled PDF for 3rd order PC representations.
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Fig. 3.17. PDF of the PC variable
x(1.0, 0.4, 0.06, 0.002)
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Fig. 3.18. RMS difference between the
PC coefficients of ln(x) for the Taylor se-
ries and integration approaches compared to the
NISP/GH method, as a function of the order
M of the expansion used. The Taylor series
is not convergent for this case but the integra-
tion approach gives results that generally im-
prove for increasing M .

order 8, both the Taylor series and the integration approach rapidly get closer to the
NISP/GH results. However, above 8th order, the Taylor series stops converging as its
terms start to grow after a certain power of x. In the Taylor series implementation
in this work, the series is truncated at the point where its terms start to grow, and
therefore, the Taylor series data in Fig. 3.15 for M > 8 is from this truncated series
expansion. The integration approach levels off above 9th order, but in contrast with
the Taylor series approximations, the error does not grow significantly for higher
orders. All methods, however, are able to properly represent ln(x) with low order
PC expansions. As is shown in Fig. 3.16, all methods match the PDF generated by
direct sampling of ln(x). Therefore, the Taylor series approach would work fine for
this specific case, as long as a low order PC representation is used. The integration
approach does not suffer from this limitation though, and gives good results for any
order PC expansion.

In the second example of the calculation of ln(x), the PC coefficients of
x(1.0, 0.4, 0.06, 0.002) were chosen so that its PDF, as shown in Fig. 3.17, would stay
away from zero but allow values of x that are outside the convergence range of the
Taylor series for ln(x). Therefore, the Taylor series diverges after only about 4
terms for all orders M and the PC representation truncated at that point is inaccurate,
as illustrated in Fig. 3.18. The integration approach on the other hand, returns
considerably more accurate PC approximations for ln(x) and its results generally
improve with increasing order M , although not monotonically. As shown in Fig. 3.19,
the Taylor series, truncated after 4 terms, does not give a good agreement with the
exact PDF. The integration approach on the other hand matches the NISP/GH as
well as the directly sampled PDF, even for a low, 3rd order PC representation.

4. Conclusions. In this paper, we presented an overview of the use of Poly-
nomial Chaos expansions to represent stochastic processes in computations such as
intrusive spectral uncertainty quantifications. Major challenges in the use of those PC
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Fig. 3.19. Comparison of the PDF of ln(x) generated with the Taylor series, integration and
NISP/GH approaches to the directly sampled PDF for 3rd order PC representations. The integration
approach matches the NISP/GH and directly sampled results, whereas the Taylor series does not
converge.

representations include the accuracy of the representations as well as the evaluation of
polynomial and non-polynomial functions of variables represented by PC expansions.

Several methods were presented to perform “stochastic arithmetic” on PC vari-
ables and to evaluate functions of PC variables. Besides Taylor series and sampling-
based spectral projection methods, a new method was developed for non-polynomial
function evaluations. This new method is based on the integration of the derivative
of the function to be evaluated and is applicable to all functions u : x 7→ u(x) where
du
dx can be expressed as a rational function of x and/or u.

A rigorous comparison was performed between the Taylor series, integration,
and sampling-based methods for non-polynomial function evaluations. Taylor series
work well as long as the required order in the PC expansions to properly represent
the results is not too high, and as long as realizations of the PC variable can not fall
outside the range of convergence of the Taylor series. The integration method on the
other hand is a robust and accurate approach to evaluate non-polynomial functions,
even when very high order information is present in the PC expansions.
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labeling reactions in electrochemical microchannel flow: Numerical simulation and uncer-
tainty propagation, Phys. Fluids, 15 (2003), pp. 2238–2250.

[9] B. Debusschere, H. Najm, A. Matta, O. Knio, R. Ghanem, and O. Le Mâıtre, Study
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[19] O. Le Mâıtre, M. Reagan, H. Najm, R. Ghanem, and O. Knio, A stochastic projection
method for fluid flow II. random process, J. Comp. Phys., 181 (2002), pp. 9–44.

[20] F. Maltz and D. Hitzl, Variance reduction in monte carlo computations using multi-
dimensional hermite polynomials, J. Computational Phys., 32 (1979), pp. 345–376.

[21] W. Meecham and D. Jeng, Use of the wiener-hermite expansion for nearly normal turbulence,
J. Fluid Mech., 32 (1968), p. 225.

[22] M. Reagan, H. Najm, R. Ghanem, and O. Knio, Uncertainty quantification in reacting flow
simulations through non-intrusive spectral projection, Combustion and Flame, 132 (2003),
pp. 545–555.

[23] S. Sakamoto and R. Ghanem, Polynomial chaos decomposition for the simulation of non-
gaussian non-stationary stochastic processes, ASCE J. Eng. Mech., 128 (2002), pp. 190–
201.

[24] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Springer, 2000.
[25] W. Vandevender and K. Haskell, The SLATEC mathematical subroutine library, SIGNUM

Newsletter, 17 (1982), pp. 16–21.
[26] N. Wiener, The homogenous chaos, Amer. J. Math., 60 (1938), pp. 897–936.
[27] D. Xiu and G. Karniadakis, Modeling uncertainty in steady state diffusion problems via

generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering,
191 (2002), pp. 4927–4948.

[28] , The wiener-askey polynomial chaos for stochastic differential equations, SIAM J. Sci.
Comput., 24 (2002), pp. 619–644.

[29] D. Xiu, D. Lucor, C.-H. Su, and G. Karniadakis, Stochastic modeling of flow-structure
interactions using generalized polynomial chaos, ASME J. Fluids Engineering, 124 (2002),
pp. 51–59.


