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Uncertainty quantification in chemical systems
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SUMMARY

We demonstrate the use of multiwavelet spectral polynomial chaos techniques for uncertainty quantifica-
tion in non-isothermal ignition of a methane–air system. We employ Bayesian inference for identifying the
probabilistic representation of the uncertain parameters and propagate this uncertainty through the ignition
process. We analyze the time evolution of moments and probability density functions of the solution. We
also examine the role and significance of dependence among the uncertain parameters. We finish with
a discussion of the role of non-linearity and the performance of the algorithm. Copyright q 2009 John
Wiley & Sons, Ltd.

Received 30 June 2008; Accepted 1 December 2008

KEY WORDS: uncertainty quantification; polynomial chaos; multiwavelet; chemistry; ignition

1. INTRODUCTION

Uncertainty quantification (UQ) is a pre-requisite for truly predictive computations of physical
models, enabling assignment of confidence in model predictions. This is particularly true for
models involving significant uncertainty in model structure, parameters, geometry, inputs, initial
and/or boundary conditions. It is also especially true for models with strong non-linearities that
can amplify relatively small parametric uncertainties, leading to large uncertainties in predictions.
These qualities are very much present in chemical systems. Detailed chemical kinetic models
typically involve a large number of uncertain parameters, including reaction rate constants and
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thermodynamic parameters, many of which are poorly known. They also involve strong non-linear
dependence on temperature, through high activation energy Arrhenius reaction rate exponentials.

Under conditions where uncertainties are small, UQ methods based on sensitivity analysis [1–3]
and variance propagation [1, 4–6] have been used effectively. When larger uncertainties are present,
local sensitivity methods are not adequate. In this context, probabilistic methods provide a more
accurate means of UQ, presuming sufficient information for probabilistic characterization of rele-
vant uncertain parameters. Recent years have seen a significant development in the use of spectral
polynomial chaos (PC) [7–12] techniques for probabilistic UQ. Ghanem and Spanos [13] provided
the first demonstration for the use of PC expansions (PCEs) for the representation of random vari-
ables (RVs) for probabilistic UQ in computational models. This methodology has been successfully
used for UQ in a variety of physical systems [14–22]. Investigations have employed both sampling-
based ‘non-intrusive’ collocation methods [17, 23, 24] where relevant Galerkin projections are
computed numerically, and ‘intrusive’ methods involving Galerkin projection reformulation of
governing equations [13]. The original PC formulation of Wiener [7] is a spectral expansion in
terms of Hermite polynomial functionals of Gaussian RVs. Where necessary, we refer to this
construction specifically as the Wiener–Hermite (WH) PC. This construction was extended to a
generalized polynomial chaos (GPC) representation [25], employing a range of orthogonal poly-
nomials in the Askey scheme [26, 27], coupled with associated RV bases. GPC constructions
have been used successfully in various physical systems [25, 28, 29]. PC methods have also been
extended to employ local expansions in terms of compact-support bases on block-decomposed
stochastic spaces [30–33]. These constructions have proven most effective for dealing with strong
non-linearities and bifurcations. Other local constructions have also been developed, employing
Lagrange interpolants [34–41].

There have been numerous applications of UQ in the context of chemical systems, employing
various methodologies. Turanyi et al. [6] used sensitivity information coupled with variance prop-
agation [4] for UQ in computations of a methane flame. Phenix et al. [42] used a collocation-based
PC method [43, 44], where PCE modes of model outputs are found by solving an algebraic
equation system, and applied it in the context of a super-critical water oxidation reactor. Reagan
et al. [24] used non-intrusive PC UQ, employing Latin Hypercube sampling, applied to the same
H2–O2 system of [42], for ignition and one-dimensional flame studies. Extraction of sensitivity
information from PC UQ results in this system was outlined in [45]. Further, Reagan et al. [46]
presented an intrusive reformulation of the governing equations of a chemical system using global
WH PC. They illustrated the challenges with this system, particularly the need for high order for
stability, although no specific finite order was found to be satisfactory. This challenge with the
handling of chemical systems using global PC led to the development of local multiwavelet PC
UQ methods by Le Maı̂tre et al. [30, 31] and their application to isothermal ignition [32].

The present work explores the first utilization of the intrusive multiwavelet PC UQ method
[32] in the context of non-isothermal ignition of a hydrocarbon chemical system. The role of
temperature is key in many chemical systems of practical interest in combustion. Particularly,
the non-linearity of the Arrhenius chemical source term, as exhibited by both the pre-exponential
constant and the activation energy exponential, presents significant challenges to efficient and
robust PC UQ computations. We also address the evaluation of a probabilistic representation of
uncertain chemical model parameters from data, with particular emphasis on the exploration and
use of inherent correlation, and associated linear dependence, between the parameters. While
the importance of such correlations has been highlighted in sensitivity and variance propagation
uncertainty studies in chemical models [4], their relevance has not been addressed in hitherto
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full probabilistic UQ studies in these systems. We highlight the crucial need for using the true
dependence relationships among the parameters for accurate estimation of uncertainty in chemical
model predictions.

In the following, we begin by a discussion of inference of Arrhenius model parameters from data.
We then proceed to the forward propagation of uncertainty in a chemical model. We briefly outline
the basics of PC and the multiwavelet construction, before describing the Galerkin reformulation
of the governing equations of the present chemical system. This is followed by a demonstration
of the method in the context of methane–air ignition, and a discussion of the results, examining
the time evolution of the uncertain solution and the key role of dependence relationships among
the parameters. We finish with a discussion of the performance of the scheme in the context of
strong non-linearity.

2. INFERENCE OF UNCERTAIN ARRHENIUS PARAMETERS

We focus on the ignition of a stoichiometric methane–air mixture under constant atmospheric
pressure. An accurate description of methane–air chemistry requires a detailed chemical kinetic
model accounting for all relevant elementary reaction steps and intermediates, typically involving
more than 50 chemical species and hundreds of reactions. For the present purpose of demonstrating
UQ in non-isothermal ignition, we employ a global single-step irreversible reaction model for
simplicity. While this model excludes any realistic chemical details, it retains the fast time scale and
strong non-linearity of ignition with suitable choices of the global reaction rate parameter constants.

We begin by calibrating the global model parameters using the detailed GRImech3.0 [47]
chemical kinetic model for methane–air. We solve the ignition problem using the detailed chemistry
model, starting from the same initial condition that will be used for the global model solution,
providing what, for the present purposes, is the ‘exact’ solution to the problem.

In a practical setting, where reaction rate parameters are found empirically from experimental
observations, the resulting uncertainty in the inferred parameters reflects the noise and sparsity
of the data, as well as the model structure. In the present context, we seek to infer global model
parameters with meaningful uncertainty, i.e. with uncertainty that does reflect model structure and
some presumed noisy data. We define the ‘data’ to be the CH4 mass fraction solution found using
the detailed GRImech3.0 model, with added Gaussian noise to represent experimental instrument
noise. The number of data points, and the amplitude of added noise, is chosen to arrive at a measure
of uncertainty in the inferred global model parameters. The purpose of this exercise is to examine
the structure of the joint probability density function (PDF) that might be observed among these
parameters from an actual experiment and to proceed with the forward UQ problem using such a
PDF structure.

The single-step global irreversible reaction is simply written as

CH4+2O2→CO2+2H2O (1)

If this were an elementary forward reaction, its rate of progress would be given by the product
of the reactants concentrations, each raised to its stoichiometric coefficient, multiplied by the
temperature-dependent forward reaction rate k f (T ), given by an Arrhenius expression

k f (T )= AT ne−E/R0T (2)
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where A is the pre-exponential Arrhenius rate constant, n is the temperature exponent, E is the
activation energy, and R0=1.98598cal/molK is the universal gas constant. In the context of a
global rate expression, the rate of progress, R, may be generally written as

R=[CH4]x [O2]yk f (T ) (mol/cm3 ·s) (3)

where [·] denotes concentration (mol/cm3). The Arrhenius parameters, as well as the concentration
powers (x, y), are generally found by fitting to data or more detailed models [48, 49]. In the
following, with no loss of generality, we presume n=0 and (x, y)= (1,1), such that the pair of
parameters (A, E) are the key objects of inference.

Further, we presume a measurement model with Gaussian noise whose variance is proportional
to the signal amplitude. We represent the instrument noise as �∼N(0,�2), with a variance given by

�2= p+qY d
CH4

(4)

where p,q>0 are characteristic of the experiment and Y d
CH4

is the detailed chemistry computed
CH4 mass fraction. With stoichiometric initial conditions, and an initial temperature of 1050K,
the time evolution of Y d

CH4
, as well as the selected data points with added noise, is shown in

Figure 1. The noisy data is generated presuming ln p=−14, ln q=−10, in the noise model, such
that a 6� noise amplitude of ∼20% is observed at the initial high value of Y d

CH4
. With this initial

temperature, and a stoichiometric mixture, ignition occurs in ∼0.5s, as shown in Figure 1.
With given noisy measurements of YCH4(t) over a range of time, best-fit values of A and E can

be inferred using a suitable regression procedure. In order to infer probabilistic representations
of the parameters, i.e. a joint PDF that describes their marginal distributions and correlations,
we resort to a Bayesian parameter estimation strategy [50–52]. We define the inference problem
on a four-dimensional parametric space, namely (ln A, ln E, ln p, ln q), where the noise model
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Figure 1. Decay of the mass fraction of methane during ignition of a stoichiometric methane–air mixture.
The solid line is the detailed-chemistry solution found using GRImech3.0. The symbols are the ‘data’
points chosen at fixed time intervals from the detailed solution, and with added Gaussian random noise,

to simulate experimental measurement noise.
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parameters are treated as hyperparameters to be inferred along with the main parameters of interest
(ln A, ln E). Bayes theorem is written as follows for this system [50]

p(P|D)∝ p(D|P)�(P) (5)

where P= (ln A, ln E, ln p, ln q) is the parameter vector, p(P|D) is the sought-after ‘posterior’
distribution, i.e. the joint PDF over the parameters given the data, p(D|P) is the likelihood function
determined from the forward model of the system with the above noise model, and �(P) is the
prior, encapsulating known information about the parameters prior to observation of data. We use
uniform priors for all four parameters.

The posterior distribution can be explored using a Metropolis–Hastings Markov Chain Monte
Carlo (MCMC) procedure [50, 53–55]. Conventional MCMC employs a fixed pre-specified
‘proposal’ distribution at each step of the chain. Depending on the unknown structure of the
posterior, the proposal distribution can have a significant impact on the convergence rate of the
MCMC procedure. This was indeed the case in the present work, where very poor ‘mixing’, and
therefore convergence, was observed with the conventional procedure. As a result, it was necessary
to resort to an adaptive MCMC procedure [56, 57] to ensure accurate and efficient exploration of
the posterior distribution. The adaptive algorithm discovers the covariance structure of the posterior
and uses it, with an adaptively optimized scale factor, as the MCMC proposal distribution. The
scale factor is optimized to achieve an acceptance probability of 0.2. The adaptive algorithm is
ergodic, retaining convergence of the Markov chain to the stationary posterior distribution.

We choose starting conditions for the MCMC chain near the expected solution from the simulated
data and run a sufficiently long chain to explore the posterior. The extent of ‘good’ mixing in the
chain is illustrated in Figure 2, where successive samples of the four parameters are shown over
a 10K long segment of the chain. This degree of mixing is observed consistently after the first
5–10K samples. Statistics are drawn from a roughly 2×106 long chain.

The resulting marginal PDFs for ln A and ln E are shown in Figure 3, indicating nearly Gaus-
sian statistics, with means of �ln A =34.10316 and �ln E =10.817866; and standard deviations of
�ln A=2.28×10−3 and �ln E=6.86×10−5. The joint marginal PDF of (ln A, ln E), p(ln A, ln E |D),

500000 502000 504000 506000 508000 510000
MCMC Sample number

Figure 2. MCMC sampling during a 10K number of samples, illustrating the degree of mixing in the
chain among the four parameters, arranged as (ln A, ln E, ln p, ln q) from the top down.
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Figure 3. Marginal PDFs of ln A and ln E found using the Bayesian analysis.

Figure 4. Joint marginal PDF of (ln A, ln E) found using the Bayesian analysis.

exhibits a narrow ridge along a straight line in the (ln A, ln E) plane, as can be seen in Figure 4.
This PDF structure suggests a high degree of correlation between the two parameters, and therefore
a degree of linear dependence between them. This dependence is inherent in the forward model and
the physics of the system: the higher the pre-exponential constant A, the larger the activation energy
E must be to remain consistent with the data. The posterior PDF is quite narrow, even with the
high degree of noise evident in Figure 1. This long narrow ridge led to the convergence challenges
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with the conventional non-adaptive MCMC procedure. The adaptive procedure performs well by
learning and using a proposal distribution with the same covariance structure as the posterior PDF.
On the other hand, the strong correlation, and evidence for linear dependence between ln A and
ln E , serves to, in fact, simplify the forward UQ problem in the present context. It is a reasonable
approximation to presume a perfect correlation and employ a single stochastic degree of freedom to
represent uncertainty in both ln A and ln E , with a linear relationship between them. Specifically,
if we presume �∼N(0,1), and we approximate the marginal PDFs of ln A and ln E as Gaussians,
then having a single degree of freedom in the statistics of A and E leads to the requirement

A = exp(�ln A+�ln A�) (6)

E = exp(�ln E +�ln E�) (7)

We will employ this dependence relationship for representing the uncertain A and E in the forward
UQ problem below.

3. FORWARD UQ IN IGNITION

We use a mutiwavelet (MW) PC construction for the representation of random quantities over a
block-decomposed stochastic space. We use this construction in an intrusive UQ context, employing
Galerkin projection to arrive at reformulated governing equations for the PC modes. The method
is outlined in detail in [30–32] and is briefly summarized below.

3.1. PC basics

We begin by defining a probability space (�,S, P), where � is a sample space,S is a �-algebra on
�, and P is a probability measure on (�,S). Further, define �={�i (�)}∞i=1 as a set of independent
standard normal RVs on �. Then we have that any RV X :�→R with finite variance can be
represented as a doubly infinite spectral expansion in terms of the Wiener PC functionals [7, 13, 58].
This PCE may be written compactly as [13]

X (�)=
∞∑
k=0

�k�k(�1,�2, . . .) (8)

where �k are the multi-dimensional Hermite polynomials, orthogonal with respect to the inner
product

〈u(�)v(�)〉=
∫
�
u(�)v(�)dP=

∫
u(�)v(�)p�(�)d� (9)

where p�() is the PDF of �. The definition of � as Gaussian, and this orthogonality constraint,
dictates that the �k are Hermite polynomials. Alternate pairs of RVs and corresponding orthogonal
polynomials are given by the Askey scheme [26, 27]. This representation applies generally to
random fields/processes X (x, t,�) with finite variance, where the PC mode strengths become
spatially/temporally dependent, �k(x, t).
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In a computational context, the PCE is truncated in both order p and dimension n, resulting in
a finite PCE(n,p)

X (�)≈
P∑

k=0
�k�k(�1,�2, . . .,�n) (10)

with P+1= (n+ p)!/n!p! terms. Note that orthogonality of the �k allows the evaluation of the
PC mode strengths employing Galerkin projection, namely

�k = 〈X�k〉
〈�2

k〉
(11)

This construction can be used to reformulate the governing equations of any given model with
uncertain inputs/parameters, arriving at equations for the PC mode strengths of the solution. For
illustration, consider an ordinary differential equation (ODE) system

du

dt
=g(u;	) (12)

where u∈RN , g() :RN →RN is a smooth function, u(t=0)=u∗, and 	∈RL is a parameter
vector. Then, given known PCEs(n,p) for u∗ =∑P

k=0 u
∗
k�k and 	=∑P

k=0 	k�k , assuming unknown

PCE(n,p) for u=∑P
k=0 uk�k , and applying Galerkin projection to the ODE system, we get

duk
dt

= 〈g(u;	)�k〉
〈�2

k〉
, k=0,1, . . ., P (13)

where the right-hand side can be evaluated using spectral or pseudo-spectral constructions [59].

3.2. MW polynomial chaos

The MW extension of the above construction on a block-decomposed stochastic space results
in a distinct PC representation on each block. Let �=[a1,b1]×· · ·×[an,bn] be the space of
�={�1, . . .,�n} where �d has the PDF �d(�d) and CDF pd(�d), and consider a partition of �
into M non-overlapping subdomains �m =[am1 ,bm1 ]×· · ·×[amn ,bmn ], m=1,2, . . .,M . Given the
independence of the �i , the PDF of � on each block is defined as

�m(�)=
n∏

d=1
�m
d (�d) (14)

with

�md (�d)= �d(�d)

pd(bmd )− pd(amd )
(15)

Then, with the CDF of �d on block m defined as pmd (�d |�d ∈[amb ,bmb ])=∫ �d
amd

�m
d (�′)d�′, and

defining the RV xmd uniformly distributed on [0,1], it is seen that the RV (pmd )−1(xmd )∈[amb ,bmb ]
and has the PDF �md . On any block �m , we can locally expand any second-order RV u in terms
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of xm ={xm1 , xm2 , . . ., xmn }. Specifically, the MW(n,p) PCE for u, with first-level directional details,
on �m is given by [31]

u= ∑

∈�

um
 �m

 (xm)+

n∑
d=1

p∑
i=0

umd,iDi (x
m
d )=

P∑
k=0

ukW
m
k (xm) (16)

where 
= (
1, . . .,
n) is a multi-index composed of non-negative integers

�=
{
(�1, . . .,�n)

∣∣∣∣ n∑
d=1

�d�p

}
(17)

and there is a one-to-one correspondence between the Wm
k and the �m


 and Di terms. Further

�m

 (xm)≡

n∏
d=1

�
d (x
m
d ) (18)

where

�i (x)=
Li (2x−1)

Li
, i =0,1, . . ., p (19)

and Li () is the Legendre polynomial of degree i defined on [−1,1], namely

L0(x)=1, L1(x)= x and Li+1(x)= 2i+1

i+1
xLi (x)− i

i+1
Li−1(x) (20)

and the Li = (2i+1)−1/2 are normalization factors ensuring orthonormality of the �i () over [0,1],
such that

〈�i (x),� j (x)〉≡
∫ 1

0
�i (x)� j (x)dx=
i j (21)

Note also that

〈�i (x)〉≡
∫ 1

0
�i (x)dx=0 for i>0 (22)

The first-level directional wavelet details Di , which can be constructed following [31], are
piecewise polynomial functions with degree less than or equal to p, satisfying, for 0�i, j�p

〈Di (x),D j (x)〉 ≡
∫ 1

0
Di (x)D j (x)dx=
i j (23)

〈D j (x), x
i〉 = 0 (24)

where the last condition ensures 〈D j (x),�i (x)〉≡0, ∀i, j . Given the mutual orthonormality
constraints on � and D, Equations (21), (23), (24), we have

um
 = 〈u�m

 〉m (25)

umd,i = 〈uDi 〉m,d (26)
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where 〈〉m,d is the above one-dimensional expectation applied on block m in direction d, whereas
〈〉m is the multi-dimensional expectation on block m, given by

〈u�m

 〉m =

∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
n

u �
1 . . .�
n dx
m
1 . . .dxmn (27)

and where

〈�m
� �m

� 〉m =
n∏

d=1
〈�m

�d�
m
�d

〉m,d (28)

Note further that, on �m , the local expectation of u is given by

〈u〉m =um0,...,0 (29)

and its local variance is given by

�2m(u)= �̂2m+
n∑

d=1
�̃2m,d (30)

where

�̂2m ≡ ∑

∈�

(um
 )2, �̃2m,d ≡
p∑

i=0
(umd,i )

2 (31)

with �=�\{0, . . .,0}. The global mean is given by

〈u〉=
M∑

m=1
〈u〉mVm (32)

where

Vm =
n∏

d=1
(pd(b

m
d )− pd(a

m
d )) (33)

is the probability of � being in block �m . The global variance is

�2(u)=
M∑

m=1
[�2m(u)+(um0,...,0−〈u〉)2]Vm (34)

Finally, note that the block refinement algorithm [31] relies on a measure of the magnitude of the
uncertainty captured in the first-level details along a given direction relative to the total uncertainty
in a given block. Using the local variances defined above, this measure, on block m and in
direction d, is given by

�dm = �̃m,d

�m
(35)

The refinement algorithm splits a block in two equal halves along direction d if

�dm��/Vm (36)

where � is a chosen threshold.
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With this basic outline of the multiwavelet PC construction, we proceed next to the specific
implementation for the set of governing equations at hand.

3.3. PC reformulation of the governing equations

The PC reformulation of the full chemical source term was presented in [46]. Here, we present
specifics relevant to the present context.

We write the set of equations governing the homogeneous ignition of a mixture of N -species
in terms of the species mass fractions {Yi}Ni=1 and temperature T . Specifically

dYi
dt

= wi

�
for i =1,2, . . .,N (37)

dT

dt
= wT

�cp
(38)

where the ideal gas state equation provides the density � as

�= P0W

R0T
(39)

and where R0=8314.51J/kmolK is the universal gas constant, W =1/
∑N

i=1YiWi is the molar
mass of the mixture, Wi is the molar mass of species i , and P0 is the pressure. Assuming constant
atmospheric-pressure ignition, we set P0=101325Pa. Further, cp =∑N

i=1Yicpi is the mixture
specific heat, where cpi (T ) (J/kgK) is the specific heat of species i . The chemical source term
for the energy equation is given by wT =−∑N

i=1hiwi , where hi (T ) (J/kg) is the enthalpy of
species i . Finally, wi (Y1, . . .,YN ,T ) is the chemical source term for species i . The full formulation
of wi for a general chemical kinetic system is outlined elsewhere, e.g. [46]. For the present
discussion, and as stated earlier, we presume a simple single-step global irreversible reaction
mechanism for methane (Equation 1), such that the methane–air system includes only the N =5
species {CH4,O2,CO2,H2O,N2}. With the reaction rate of progress as specified in Equation (3),
and denoting the concentration of species i with ci =�Yi/Wi , we have

wi =Wi�iR=Wi�i c
x
1c

y
2k f (T ) (40)

where �i is the stoichiometric coefficient of species i in the reaction, namely �i ∈{−1,−2,1,2,0}.
More specifically, with x= y=1 and a zero temperature exponent, we have

wi =Wi�i c1c2Ae
−E/R0T (41)

These equations are closed with the initial conditions Yi (t=0)=Y 0
i and T (t=0)=T 0.

From a numerical perspective, it is feasible in this system to enforce discrete mass conservation
by employing Equation (37) only for the first N−1 species, while the mass fraction of the N th
species, N2, is found from a mass conservation constraint, namely

YN =1.0−
N−1∑
i=1

Yi (42)

The reformulation of this system of equations using PC can be easily done using the pseudo-
spectral Galerkin-projection approach employed in [46, 59]. The original (truncated) system of
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N ODEs for (Y1, . . .,YN−1,T ) is transformed into a system of N(P+1) ODEs for the mode
strengths of the PCEs of these state variables, where (P+1) is the total number of terms in the
MW PCE in Equation (16). With Yi =∑P

k=0 Yi,kW
m
k , T =∑P

k=0 TkW
m
k , A=∑P

k=0 AkW
m
k , and

E=∑P
k=0 EkW

m
k , the new equation system can be written compactly as

dYi,k
dt

=
〈(

wi

�

)
Wm

k

〉
m

for i =1,2, . . .,N−1, k=0,1, . . ., P (43)

dTk
dt

=
〈(

wT

�cp

)
Wm

k

〉
m

, k=0,1, . . ., P (44)

The projection operations on the right-hand side can be evaluated given the algebraic forms of
each term employing the pseudo-spectral operations in [46, 59]. These implementations of the
pseudo-spectral construction were in the context of global PCEs. However, the formulation is
equivalent with the utilization of the proper tensor product coefficients relevant to each case and
has been similarly applied in the MW context in [32]. For illustration, and given its central role in
the computation, we illustrate the pseudo-spectral evaluation of the PCE for the chemical source
term, for x= y=1 and zero temperature exponent. Given the PCEs for the uncertain quantities E ,
T , A, c1, c2, the evaluation of the PCE modes of wi in block m, per Equation (41), is done using
the following steps:

s =
P∑

k=0
skW

m
k =− E

R0T
where sk =− 1

R0

〈
E

T
Wm

k

〉
m

∀k (45)

r =
P∑

k=0
rkW

m
k =es where rk =〈esWm

k 〉m ∀k (46)

k f =
P∑

k=0
k f,kW

m
k = Ar where k f,k =〈ArWm

k 〉m ∀k (47)

g =
P∑

k=0
gkW

m
k =c2k f where gk =〈c2k fW

m
k 〉m ∀k (48)

wi =
P∑

k=0
wi,kW

m
k =Wi�i c1g where wi,k =Wi�i 〈c1gWm

k 〉m ∀k (49)

Given the PCEs of any two uncertain quantities u and v, this sequence requires algorithms for
evaluating the PCE modes of u/v, eu , and uv. These algorithms are outlined in [59].

Further, we note that the mass conservation constraint is also transformed to

YN ,0 = 1.0−
N−1∑
i=1

Yi,0 (50)

YN ,k = −
N−1∑
i=1

Yi,k, k=1, . . ., P (51)
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as there is no uncertainty in the sum of the uncertain Yi ; it is a deterministic unity. All of this, of
course, is done on each block �m independently.

4. APPLICATION TO METHANE–AIR IGNITION

We set up the homogeneous ignition problem for the methane–air mixture with a deterministic
initial condition corresponding to a stoichiometric mixture at 1050K. Thus, the initial state vector is
(0.055,0.22,0,0,0.725,1050). Further, we set up the two uncertain parameters (A, E) dependent
on a single stochastic degree of freedom �, as in Equation (7). With n=1, the first summation in
Equation (16) has (p+1) terms, such that the total number of terms in the PCE is P+1=2(p+1).
We use fourth-order MW PC, i.e. p=4, and a block-refinement threshold �=0.005. As will be
seen, statistics of the uncertain ignition process computed with these values of p and � agree well
with sampled Monte Carlo (MC) statistics of the deterministic system. Finally, with zero initial
uncertainty, the initial condition requires only one block, i.e. M=1.

We integrate the reformulated PC equations using DVODE [60] employing implicit time inte-
gration with adaptive time stepping and error control. An external time-stepping loop advances
the solution in time at a coarse time step �tc, and DVODE is employed to advance the solution
internally within each �tc. The time evolution of the mean temperature value is used to further
adapt the choice of �tc to maintain sufficient time resolution in the reported solution and to ensure
a given upper limit of internal DVODE time steps. As the time integration proceeds, the block
refinement check is done at the end of each �tc. Following the block refinement algorithm in [32],
if a given block is found to require refinement per the criterion (36), it is split into two blocks and
the coarse time step is repeated for each of the daughter blocks, while other blocks are unaffected.
However, this check is not done at every internal DVODE time step. As a result, and because of
the fast time scales involved in the present system, the DVODE internal time integration of the
MW PC system within a given block can lead to values that result in failure of the pseudo-spectral
PC algebra [59] for the chemical source term. When this occurs, it is easily remedied, by again
flagging block refinement and repeating the coarse time step for the two daughter blocks. Thus,
with this overall block-refinement strategy, starting at tn , the integrator proceeds looping over
available blocks until all blocks, including old and new ones, reach tn+1= tn+�tc.

4.1. Moments

Using the mean and standard deviations of ln A and ln E identified from the Bayesian parameter
estimation, we integrate the above system of equations over a 1 s time span. The time evolution of
the mean values of the species mass fractions and temperature is shown in Figure 5, whereas the
corresponding time evolution of the standard deviations is shown in Figure 6. The means illustrate
the fast ignition transient in all elements of the state vector. The standard deviations exhibit initial
growth from zero, given the deterministic initial condition. A long initial slow uncertainty growth
phase corresponds to the induction time prior to ignition, where the means exhibit similar slow
rates of change. A rapid growth of the standard deviations is observed as the ignition process enters
the fast transient mode at around 0.465 s. The standard deviation in the temperature reaches a peak
of 400K before exhibiting fast decay back to zero. Similar behavior is evident in the species mass
fractions. All standard deviation values decay to zero as the system approaches its equilibrium
state. Since uncertainty was included only in the kinetic rate constants, and the thermodynamic
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Figure 5. Time evolution of mean values of the species mass fractions and temperature.
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Figure 6. Time evolution of the standard deviation values of the species mass fractions and temperature.

quantities had no inherent uncertainty, it follows that there is no uncertainty in the equilibrium
state, only in the path toward equilibrium. The results are consistent with this expectation.

4.2. Probability density functions

In order to better understand the structure of the uncertain solution, we examine the time evolution
of the PDFs of the species mass fractions and temperature. PDFs are computed by random sampling
of the MW PCE of each component of the state vector, at any given time instant, and binning the
resulting samples. The PDFs of temperature are shown for a subset of the initial time period in
Figure 7. We illustrate the PDFs evaluated from the PC solution as well as those available from
MC sampling of the deterministic ignition problem, with the prescribed uncertain parameters and
given initial values. The results in the figure illustrate agreement between the two solutions in the
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Figure 7. Time evolution of the temperature PDF during the pre-ignition phase. Results are shown
from multiwavelet (MW) and Monte Carlo (MC) computations, for �ln A =34.10316, �ln E =10.817866,

�ln A =2.28×10−3, and �ln E =6.86×10−5.

structure and time evolution of the temperature PDFs over this time period immediately preceding
the fast ignition transient. The temperature PDF is observed to both shift toward higher temperature
values and exhibit larger uncertainty as time progresses, reflecting the above illustrated growth in
the mean and standard deviation of temperature during this time period. At the same time, the
figure illustrates the tendency of the PDF to become more skewed, exhibiting a longer tail toward
high temperature, as time advances. Examination of the PDFs of other components of the state
vector reveals similar findings.

The time evolution of the temperature PDFs during the fast transient phase is shown in Figure 8.
The results illustrate a bimodality in the solution PDFs involving large probability mass centered
around the pre- and post-ignition states of the system. The slightly skewed PDF from the earlier
phase of slow growth shown in Figure 7, corresponding to the unburnt state of the system, develops
significantly more skewness and a long tail toward the burnt state. The PDF ‘leaks’ probability
mass to the burnt state, where a new PDF peak is observed to grow in time, while the initial unburnt
PDF peak diminishes in concert. This transfer leads eventually to a single peak centered on the
burnt state. This bimodal behavior is also observed in the MC results, also included in the figure.
It is primarily a consequence of the fast, highly activated, kinetics, where extreme sensitivity to
temperature, strong non-linearity, and fast ignition, lead to near-zero probability of being anywhere
in the intermediate region between the unburnt and burnt states.

4.3. Dependence

Note that capturing the true dependence relationship among the parameters can be crucially impor-
tant to the accurate computation of the uncertainty in model predictions. Having assumed, based
on the Bayesian analysis of the data, a perfect correlation, and an associated linear dependence
relationship, between the two parameters ln A and ln E , and fixing the mean parameter estimates
(�ln A,�ln E ) at those found from the Bayesian analysis, this linear dependence is completely
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Figure 8. Time evolution of the temperature PDF during the ignition transient. Results are shown
from multiwavelet (MW) and Monte Carlo (MC) computations, for �ln A =34.10316, �ln E =10.817866,

�ln A =2.28×10−3, and �ln E =6.86×10−5.

prescribed by the ratio of the standard deviations of the two parameters. Specifically, consider the
ratio defined as

�≡ �ln E

�ln A
(52)

Given the imposed parametric uncertainty

ln A = �ln A+�ln A� (53)

ln E = �ln E +�ln E� (54)

we have the following relationship between A and E :

ln E−�ln E

ln A−�ln A
=� (55)

Given the structure of the Arrhenius rate model, the value of � has a significant effect on the
sensitivity of the time trajectory of the system on �. In particular, using the (�ln A,�ln E ,�ln A)
identified from the Bayesian parameter estimation, consider varying �ln E employing

�ln E =��ln A (56)

over a range of �. This will retain a specific marginal PDF for ln A, while varying the marginal
PDF of ln E , and the slope of the linear relationship between ln A and ln E , always retaining a
perfect correlation between them. One can alternatively fix �ln E and let �ln A vary with �. However,
a single parametric study, with fixed �ln A, suffices to highlight the role of �.
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Figure 9. Dependence of �T,max on �=�ln E/�ln A, with �ln A =34.10316, �ln E =10.817866,
�ln A=2.28×10−3, and T0=1050K.

For every choice of �, we solve the forward UQ ignition problem as done above, and examine the
evolution of the uncertain solution in time. Consider specifically the maximum standard deviation of
temperature, �T ,max, during the ignition process, which is plotted versus � in Figure 9. Remarkably,
starting at around �=0.02, where �T ,max≈500K, increasing �, and therefore increasing �ln E
leads to a reduced �T ,max. Moreover, this reduction is maintained up till �≈0.044, for which
�T ,max≈0. Evidently, for this particular � value there is no discernible uncertainty in the resulting
temperature field over time. Increasing � beyond this value leads to an increasing �T ,max in a
roughly symmetric fashion around �=0.044.

The impact of the dependence relationship between the parameters can be further understood by
examining the temporal evolution of the PDFs of the temperature field for different � values. This
information is presented in Figure 10. Each frame in the figure corresponds to a given � over the
range of values in Figure 9, as indicated. Starting with low �, in the vicinity of 0.02, we find the same
bimodal behavior observed above. Starting at early time with a unimodal temperature PDF centered
at low temperature, the solution progresses through a bimodal phase with probability density
accumulating at high temperature, and diminishing at low temperature, with little probability of
being at intermediate temperature values. As � is increased, the relative amplitude of probability
density at intermediate values is found to increase. By �≈0.042, the bimodal phase is absent
entirely, with the temperature PDF going through a low temperature phase skewed toward high
temperature, to a symmetric broad shape in the intermediate temperature region (∼2300K), to a
high temperature phase skewed toward low temperature at late time. Increasing � further toward
0.044 leads to a reduction in skewness and width of the evolving temperature PDF, with much
reduced �T throughout the time evolution. The former phases of behavior are observed, in reverse
order, as � is increased further beyond 0.044, retrieving the bimodal time evolution observed at low
� values. Thus, the uncertain solution structure is strongly dependent on the specific dependence
between A and E .

Further inquiry into the dependence of the ignition solution on (A, E) clarifies the reasons
behind the above observed behavior. Consider the deterministic ignition process for a given pair
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Figure 10. Time evolution of the temperature PDFs at different ratios of �=�ln E/�ln A. The �-values
are indicated above each frame.
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(dashed line) and maximum variation in tig for �∈[−3,3] (solid line), versus �=�ln E/�ln A.

(A, E), and let us define the ignition time, tig, as the time at which the temperature reaches a
set value, say 1500K. Further, consider parametric variation of (A, E) with �∈[−3,3] employing
Equations (53), (54). In fact, in the vicinity of the given (�ln A,�ln E ), and for this ±3� variation
in �, numerical computations of deterministic ignition in this system show that tig varies inversely
with A, but directly with E , such that its net dependence on � is non-trivial. Depending on the value
of �, one or the other trend may win in the dependence of tig on �. In fact, for �ln A =2.28×10−3,
and varying � over the range [0.02,0.07] explored above, we find that tig exhibits linear dependence
on � with a slope dtig/d� which varies linearly with �, being negative/positive at low/high �,
and zero for �=�∗ ≈0.044, as shown in Figure 11. Thus, given �ln A, for low �<�∗, dtig/d�<0
such that increasing � leads to decreased tig. In this case, given the low �ln E values, the overall
dependence of tig on � is dominated by the inverse dependence on A. On the other hand, the
opposite is observed at high �, and therefore high �ln E values, where dtig/d� is dominated by the
direct dependence of tig on E . The two trends cancel at �=�∗ for the chosen mean conditions,
with dtig/d�=0. The figure also shows the dependence of the observed change in tig over the
range of �, namely ��tig= tig,max− tig,min, on �. We see that, at �∗ ≈0.044, ��tig=0, such that
there is no effect of � on the ignition time. On the other hand, for �∼0.02 or 0.07, tig varies by
about 3ms over the range of �.

Note that the variation in the ignition time with � is clearly determined by the dependence of
the Arrhenius rate expression on A(�) and E(�). With zero temperature exponent, k f = Ae−E/R0T ,
such that requiring �k/��|T =0, along with the above dependence of ln A and ln E on �, leads
to �=�0= R0T/E . While T varies throughout the ignition process, this linear dependence of �0
on T , and the inverse dependence on E , is consistent with the observed variation of �∗ with the
initial temperature, and e�ln E (not shown). Furthermore, no empirical dependence of �∗ on A is
observed, again consistent with this analytical expression for �0.

4.4. Non-linearity and block refinement

It is instructive to examine the behavior of the solution for a case with a higher pre-exponential
Arrhenius rate constant, leading to faster time scales in the ignition process. Specifically, consider
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the ignition of the same above stoichiometric methane–air mixture, but with an initial temperature
of 800K, employing y=2 in Equation 3 and with �ln A = ln(9×1023), while �ln A and �ln E are held
at the above values, and �ln E =��ln A for any chosen �. While this high rate constant is artificial,
it is instructive to examine faster reaction rates, as elementary reaction rates in detailed chemical
mechanisms are typically much faster than the time scale of the present global mechanism. With
these changes, the time scale of the ignition process at the nominal conditions is accelerated from
an original time scale of [T/(dT/dt)]max∼2.4ms, to ∼0.14ms.

Figure 12 shows the dependence of the maximum standard deviation of temperature on �. This
system has a �∗ ≈0.0331, which can be seen both in this figure and in the analysis of tig dependence
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Figure 12. Variation of �T,max with � for the case with stronger source term and increased non-linearity.
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Figure 13. Time evolution of the temperature PDF over the short ignition
transient, for �=0.04 in Figure 12.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme



UNCERTAINTY QUANTIFICATION IN CHEMICAL SYSTEMS

0 0.02 0.04 0.06 0.08 0.1
time (sec)

0

50

100

150

N
um

be
r 

of
 b

lo
ck

s

Figure 14. Time evolution of the number of blocks during the full ignition
process, for �=0.04 in Figure 12.

on A(�) and E(�) as done above. This change in �∗ reflects the change in initial temperature
and the linear analytical dependence of �0 on T . The figure also highlights a generally higher
maximum standard deviation of temperature and a steeper valley around �∗, as compared with the
above case.

Consider next specifically the case with �=0.04. The time evolution of the PDFs of the temper-
ature field is shown in Figure 13. While this plot is qualitatively similar to that in Figure 7,
quantitative differences are evident in the larger separation between the two PDF peaks, with fast
ignition leading to the appearance of the high temperature peak, while the low peak is still peaked
at low temperature. By contrast, the results in Figure 7, with slower ignition time scales, exhibit
a much smoother transition between the two peaks, where the low temperature peak is largely
broadened and shifted to higher temperatures before the high temperature peak begins to become
significant. The consequence of increased non-linearity, and faster time scales, in the uncertain
ignition process is to lead to lower probability of being anywhere between the low temperature
and high temperature peaks.

Another benefit of this case is that it illustrates succinctly the performance of the MW PC
block-refinement strategy. Figure 14 shows the time evolution of the number of blocks during
the ignition process. After an initial refinement phase, ending with 14 blocks after t=0.01s, no
additional blocks are introduced during the long induction time prior to ignition. This is followed
by a short period where many more blocks are introduced. This is precisely during the ignition
process outlined in Figure 13 at the end of which the solution employs 128 blocks. The following
phase, with reduced uncertainty as the solution tends to equilibrium has no added blocks. Clearly,
the block refinement is proceeding in order to capture the changes in the uncertain state of the
system during the ignition phase. In fact, the locations of the blocks successively refined during
the fast uncertain ignition transient, illustrated in Figure 15, are quite instructive. The figure shows
the time evolution of the block subdivision of the [0,1] space of the CDF of �, p(�), during the
ignition transient, with individual frames at the same instances as those in Figure 13. Clearly, block
refinement proceeds from low � values at early time toward higher � values at later times during
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Figure 15. Time evolution of the block decomposition of the [0,1] space, for �=0.04 in Figure 12.

the fast transient. This is quite consistent with the observation that, given the present specified
linear dependence between the parameters, and with �=0.04, we find dtig/d�>0. Thus, the block
refinement proceeds initially at low � values because these reflect realizations of (A, E) which
ignite early. Refinement progresses forward in �-space, reflecting the forward time-progress of
tig, corresponding to the associated (A(�), E(�)) realizations. By the end of the ignition transient,
refinement reaches large � values, by which time the [0,1] space is roughly uniformly refined, as
seen in Figure 15.

Note that the results in Figure 15 outline a clear need for block coarsening, which is not included
in the present algorithm, as there is no need to retain high block resolution in regions where the
solution is already ignited. A block coarsening algorithm would improve the overall efficiency
of the construction, with the corresponding refinement pattern in Figure 15 resembling more a
translating narrow region of high refinement rather than the presently observed advancing front of
a broad highly refined region. The computational performance of the algorithm depends directly
on the number of blocks, such that a more parsimonious refinement/coarsening strategy would
improve computational efficiency.

Another key aspect affecting performance is the time integration strategy. While the present
construction can demonstrably provide accurate time integration of the MW PC system, compu-
tational cost increases, due to the need for smaller time steps, as one moves away from �∗ and
the maximum standard deviation increases. This is true for both �ln A cases studied above, but is
more severe in this last case with higher �ln A and faster time scales. Moreover, at sufficiently high
|�−�∗|, e.g. beyond �≈0.07 in Figure 9, or for sufficiently high standard deviation in the solution,
the time integration strategy can fail, with the implicit time integrator failing to satisfy requisite
accuracy thresholds at any internal time step within machine precision (i.e. where t+�t �= t). These
issues, of computational efficiency and robustness of the time integrator, require focused further
study, and are outside the scope of the present work.
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5. CONCLUSIONS

We have presented a detailed study of probabilistic uncertainty quantification (UQ) in a model
methane–air chemical system using a multiwavelet polynomial chaos (PC) construction. We
employed a Bayesian methodology, using an adaptive MCMC procedure, to infer the joint PDF of
model parameters of interest, starting from simulated noisy data. This PDF was used to construct
a probabilistic representation of the uncertain parameters. We used a MW PC UQ methodology on
a block-decomposed stochastic space to propagate this uncertainty through the chemical system
model. The governing species and energy equations were reformulated using Galerkin projection
into requisite equations for the MW PC mode strengths employing pseudo-spectral operations.
We used an implicit time integration strategy to compute the evolution of the MW PC modes in
time during an ignition event, and studied the evolution of the solution PDFs under a range of
conditions.

Bayesian inference results provided marginal joint and individual PDFs of the parameters,
thereby providing the requisite probabilistic characterization of parametric uncertainty. The
marginal joint posterior PDF illustrated strong correlation between the two parameters. This
posterior shape was found to present significant challenges for the conventional MCMC proce-
dure, necessitating the use of adaptive MCMC. The two-dimensional marginal joint parametric
PDF structure informed the formulation of a probabilistic model of the uncertainty in the two
parameters, employing perfect correlation, with an explicit linear dependence relationship.

Forward UQ results provided the first demonstration of ‘intrusive’ PC UQ computations of non-
isothermal ignition in a chemical system. Computed statistics were found to be in good agreement
with MC sampling of the deterministic system with the given parametric uncertainties. Results
highlight the fast growth of the means and standard deviations of the solution components during
the fast ignition phase. The PDFs of the uncertain solution were found to evolve through a bimodal
phase during the ignition event, with high probability of being at either low or high temperature
but much less probability of being anywhere in between.

This bimodal character, and the extent of growth of uncertainty during the ignition event, were
found to depend on the prescribed dependence relationship between the uncertain parameters. We
outlined how the ignition time dependence on the two parameters leads to this observation. These
results clearly indicate the importance of capturing the correct dependence among uncertain param-
eters, i.e. that dependence dictated by the model structure and available experimental/observational
data, for accurate prediction of uncertainty in model outputs. We submit that these findings, while
employing an idealized perfect correlation between the parameters, are generally relevant as regards
the role of dependence relationships among parameters in UQ. While computations with an imper-
fect correlation would likely not exhibit a reduction of maximum uncertainty down to zero, as seen
above for �=�∗, we expect that they would exhibit variation of �max with � with some similarity
to the above observations, depending on the degree of correlation.

Results have also illustrated the performance of the construction in the context of increased
non-linearity and faster time scales in the chemical system. These computations generally exhibited
higher �max and more distinct solution PDF bimodality during the ignition process. They also
illustrated the performance of the block refinement strategy, capturing regions of high activity in
probabilistic space at different time instances.

This study motivates further work in this area, toward more efficient and robust constructions
enabling effective PC-based UQ in more detailed chemical and reacting flow systems of practical
relevance, with higher dimensionality and increased model complexity.
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