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Abstract

The simulation of dynamical systems involving random coefficients by means of stochastic spectral meth-
ods (Polynomial Chaos or other types of orthogonal stochastic expansions) is faced with well known compu-
tational difficulties, arising in particular due to the broadening of the solution spectrum as time evolves. The
simulation of such systems thus requires increasing the basis dimension and computational resources for long
time integration. This paper deals with systems having almost surely a stable limit cycles. It is proposed
to reformulate the problem at hand in a rescaled time framework such that the spectrum of the rescaled
solution remains narrow-banded. Two variants of this approach are considered and evaluated. The first
relies on an explicit expression of a time-dependent, uncertain, time scale related to some distance between
the corresponding solution and a reference deterministic system. The time scale is adjusted at each time
step so that the distance from the reference system solution remains small, mimicking “in phase” behavior.
The second variant achieves the same objective by borrowing concepts from optimal control theory, and
yields more precise time-scale estimates at the price of a higher CPU cost. It is thus more appropriate for
uncertain systems exhibiting a stiff behavior and complex limit cycles. The method is applied to the case
of a linear oscillator with uncertain properties, and to a stiff nonlinear chemical system involving uncertain
reaction constants. The tests demonstrate the effectiveness of the proposed approaches, at least in situations
where the topology of the limit cycle does not change when the uncertain system parameters vary.
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1. Introduction

Deterministic physical systems can be studied by means of mathematical models designed to mimic their
actual dynamics. These mathematical models can be constructed from physical considerations (for instance
expressing elementary conservation principles) or from more heuristic considerations based on expertise. In
both cases, the modeling process results in a fixed-form mathematical model involving parameters (or coeffi-
cients) that define the actual system of interest among the class of dynamics that the model can reproduce.
Often, the parameter values are not explicitly known a priori and one relies on calibration or identification
procedures to prescribe appropriate values to match, in some sense, a set of experimental observations for
the actual system. Because such calibration procedures are usually inexact (due to measurement and model
errors), the model parameters are generally subject to uncertainty, and assessing the impact on the model
dynamics of the uncertainty on the parameters is crucial to gain confidence in the model predictions. This
is classically achieved by means of (local) deterministic sensitivity analysis, such as adjoint techniques, or
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perturbation methods. In this paper, we follow an alternative, probabilistic approach where the uncertain
model parameters are considered as random quantities with known probability laws.

One can basically distinguish between two main classes of methods for quantifying the impact of random
parameters in a numerical model. The first includes simulation methods (such as Monte Carlo), which
consist in evaluating the model solution point-wise in the parameter domain. These collocation approaches
require only deterministic analysis tools and the dynamics of the random model is finally characterized
from the collection (sample set) of model outputs corresponding to different parameter values. This makes
the simulation methods both simple to implement using legacy codes, and numerically robust. However,
solving the dynamics for a large collection of parameter values may represent a formidable task, requiring
an overwhelming CPU effort. For instance, in the context of aeroelasticity, one has to solve a coupled fluid-
structure problem and the large number of required simulations to achieve sufficiently converged statistics
can make the use of this approach impractical.

An interesting alternative approach was initiated by the seminal works of Wiener [15] and Ghanem
and Spanos [8] and relies on a spectral representation of the model solution dependence with regard to
the uncertain parameters. The solution is now typically described in the random parameter space using
stochastic polynomial series at the expense of solving a series of problems for the expansion coefficients of the
solution. The expansion, or spectral, coefficients can be determined through collocative approaches, with the
inherent advantages and limitations of such methods, or by means of a reformulation of the model equations,
through the so-called stochastic Galerkin projection procedure, necessitating an additional development to
adapt the deterministic codes. In the following we focus on the latter type of techniques, i.e., the stochastic
Galerkin methods for time-dependent problems.

Despite a rapidly developing literature on the subject, some issues concerning stochastic Galerkin meth-
ods for uncertainty quantification remain essentially unresolved. A well-known difficulty is the simulation of
uncertain time-dependent problems over long times. Indeed, the uncertainty of model parameters usually
affects the system phase velocity (assuming of course that such a phase may be unambiguously defined),
and the complexity of the solution continuously increases with time as the system phase becomes more
and more uncertain. This increasing complexity immediately translates in a broadening spectral content,
precluding accurate approximations using usual discretization techniques based on fixed-order stochastic
polynomial bases. This effect has been extensively studied by [11] and [13], who showed that a stochastic,
polynomial-based representation, such as Polynomial Chaos, fails to represent the solution after a certain
time.

In an effort to address this problem, [14] considered a multi-element generalized Polynomial Chaos
approach. It essentially consists in approximating the random parameter dependence of the solution by
piece-wise polynomials. However, this only postpones the time at which the approximation breaks down,
namely by increasing the approximation accuracy using hp-refinement of the stochastic discretization. The
refinement also implies an increasing number of terms in the expansion of the solution, and consequently leads
to a high solution cost. A similar idea was pursued by [13] who employed a wavelet-based Multi-Resolution
Analysis in the context of time-dependent problems with uncertain parameters. They studied a nonlinear
aeroelastic computational model involving uncertain parameters and found that stochastic representations
using Wiener-Haar wavelets [9] lead to a good representation of the solution until large times. However,
this approach still suffers from the same drawback facing the multi-element approach, in the sense that the
breakdown of the approximation is delayed but not remedied.

An interesting class of problems where the aforementioned difficulties above also arise corresponds to
situations where the dynamics of the system possess almost surely an asymptotic, stable, limit cycle (LC)
which may depend on the uncertain parameters. In this context, several specific techniques have been
proposed to access a probabilistic description of the uncertain limit cycle. [18] makes use of an equation-free
technique to study the limit-cycle of a random chemical system, whereas [2] investigates the limit-cycle
oscillations for an airfoil under uncertainty using Polynomial Chaos. However, the above methods are either
limited in scope, namely being applicable to the limit cycle only, or limited to small times, specifically time
intervals that are not large enough that a low or moderate order approximation ceases to be adequate due
to the broadening spectrum of the stochastic solution. A somewhat more general approach was followed in
[16] and [17], where different, well chosen, realizations of the uncertain system were approximated in the

2



stochastic space at constant phase. This approach relies on the expression of the time-dependent random
quantity of interest as a time-independent random variable function of some phase. The solution dependence
on the stochastic parameters is approximated using stochastic polynomials and the solution may be expressed
in time using an inverse transformation relating phase and time. The methodology has been applied to the
Duffing oscillator, and to an elastically mounted airfoil with uncertain natural frequencies.

The present work was developed independently from that of [16] and [17], but relies on some conceptually
similar grounds. The core idea is to reformulate the problem so that the dynamics depend on a rescaled
time. To this end, an uncertain time scale is introduced which acts as a “local” clock in the stochastic
parameter domain. This time scale is adjusted so as to maintain the uncertain dynamics “in phase” as much
as possible. This is achieved by introducing additional equations for the dynamics of the uncertain time
scale.

To describe the present approach, we first discuss in section 2 some preliminary tools that are useful in
the uncertainty quantification context. In section 3, we discuss in detail a first implementation based on a
linear adjustment of the local “clock.” The effectiveness of this implementation is demonstrated in section 4
for the case of a simple linear oscillator with uncertain frequency. A second, more general, implementation
of the present approach is then developed in section 5, where an adjoint-based control problem is used to
determine the uncertain time scale minimizing optimally the increase in phase uncertainty as time elapses.
This strategy is successfully applied in section 6 for the time integration of a non linear chemical system
having uncertain rate parameters. Major conclusions are drawn in section 7.

2. Dynamical systems with uncertain coefficients

2.1. Uncertain system
Let us consider a dynamical system described by its state vector x ∈ Rn. We assume that the system is

autonomous, and that it is governed by a set of n ODEs of the form:

dx

dt
= f(x; q), (1)

with initial conditions at time t = 0 given by:

x(t = 0) = x0. (2)

For simplicity, we shall assume that the initial conditions are certain. In the expression of f in (1), q is a vector
of coefficients specifying the dynamics. The coefficients (or a subset of) q are assumed uncertain and are
considered as random, with known probability law defined on an abstract probability space P = (Ω,Σ,dP ),
where Ω denotes the set of random events, Σ is the σ-algebra of the events, and P is the probability measure.
By q(ω ∈ Ω) we shall denote a realization of the system coefficients. Since the dynamics of the system depend
on the coefficients q, the solution x(t > 0) is random, defined on P, and x(t, ω) is the realization of the
system corresponding to q(ω). We further denote by L2(Ω,Σ,dP ), or simply L2(Ω), the space of second
order random variables defined on P. The space L2(Ω) is equipped with the inner product 〈, 〉,

〈u, v〉 = E [uv] , ∀u, v ∈ L2 (3)

and associated norm ‖u‖Ω ≡ 〈u, u〉1/2. Here, E[.] is the expectation operator defined according to:

E[f ] ≡
∫

Ω

f(ω)dP (ω). (4)

We thus have:
u ∈ L2(Ω) ⇐⇒ E

[
u2
]

=
∫

Ω

u2(ω)dP (ω) < ∞. (5)
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2.2. Parametric uncertainty
For the solution of (1), we need to perform a stochastic discretization. To this end, we introduce a set

of N random variables ξ ≡ {ξ1, . . . , ξN}, defined on P, with known density pξ. For simplicity, we restrict
ourselves here to the case of independent identically distributed random variables, so pξ admits the factorized
form:

pξ(ξ) =
N∏

i=1

p(ξi). (6)

In addition, let Ξ ∈ RN be the range of ξ and define PΞ = (Ξ,BΞ, pξ) the so-called image probability space,
where BΞ is the Borel set of Ξ. By L2(Ξ) we will denote the space of random variables u(ξ) with finite
second moment, i.e.

u(ξ) ∈ L2(Ξ) ⇐⇒ E[u2(ξ)] =
∫

Ω

u2(ξ(ω))dP (ω) =
∫

Ξ

u2(ξ)pξ(ξ)dξ ≡
〈
u2
〉

< ∞. (7)

In the following, we will use the bracket 〈·〉 to indicate the expectation evaluated in the image space.
The random variables ξ1, . . . , ξN are used to parameterize the uncertain parameters in (1), such that

q(ω) ≡ q(ξ(ω)), (8)

and the solution can be simply expressed as x(t; ξ). In the following, we shall restrict ourselves to systems
having stable limit cycles (LC) in the state space, i.e., x(t; ξ) almost surely converges to a periodic solution
as t → ∞. The objective is then to compute the stochastic LC of the dynamics, and to compute statis-
tical quantities of interest, such as the distributions of the system frequency and of the amplitudes of the
trajectory.

2.3. Stochastic spectral expansion
Introducing a complete orthonormal set (CONS) {Ψ0,Ψ1, · · · } of functionals in ξ spanning L2(Ξ), and

assuming that x(t; ξ) ∈ L2(Ξ) for all t ≥ 0 (i.e., that each of the components of x are in L2(Ξ)), the state
of the system can be expanded in a Fourier-like series of the form:

x(t; ξ) =
∞∑

k=0

xk(t)Ψk(ξ), (9)

where xk ∈ Rn are (deterministic) expansion coefficients. Using the orthonormality property of the CONS,

〈Ψk(ξ)Ψl(ξ)〉 = δkl ∀k, l ≥ 0, (10)

the expansions coefficients can be expressed as

xk(t) = 〈x(t; ξ)Ψ(ξ)〉 . (11)

A classical choice for the Ψk are polynomials, in which case (9) corresponds to the Polynomial Chaos (PC)
expansion. For random variables having reduced centered normal distributions, ξi=1,...,N ∼ N (0, 1), the
Ψk are generalized Hermite polynomials; see Wiener [15] and Cameron and Martin [3]. PC expansions
with other types of distributions for the ξi were proposed in [19], while expansions in terms of piecewise
polynomial functionals or multiwavelets were considered in [4, 9, 10, 14]. The results below immediately
extend to any type of orthonormal expansions, although we shall only consider polynomial bases.
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3. Asynchronous time integration

3.1. Time scaling
We introduce a transformed time variable, τ , which we allow to depend on the random variables ξ

parameterizing the dynamics. We shall refer to τ(t; ξ) as the locally rescaled time, and specify in terms of
the mapping:

τ : [0,∞)× Ξ 7→ τ(t; ξ) ∈ R+ × L2(Ξ). (12)

We further constrain τ such that

dτ

dt
≡ τ̇(t; ξ) > 0 ∀t > 0,∀ξ ∈ Ξ. (13)

Consequently, τ is an almost surely increasing function of t and, given ξ(ω), there is an univocal relation
between t and τ(·; ξ(ω)). This property allows us to define unambiguously a new (transformed) stochastic
process y such that

y(t; ξ) = x(τ(t; ξ); ξ) a.s. (14)

In the following, τ̇ will be referred to as the clock speed. The governing equations for y are easily derived
using chain-rule differentiation; we obtain:

dy

dt
=

dx

dτ

dτ

dt
= τ̇(t; ξ)f(y(t; ξ); q(ξ)). (15)

3.2. Reference dynamics
The main idea underlying the proposed method is to construct the time scaling, τ(t; ξ), such that the

uncertain trajectories of the system governed by (15) remain essentially “in phase” as t increases, i.e.,
realizations y(t; ξ(ω)) are clustered in a finite neighborhood of the state space. To this end, we introduce a
reference trajectory xr(t) of the system, governed by the deterministic system of ODEs:

ẋr ≡ dxr

dt
= fr(xr) = f(xr; q). (16)

In (16), q is a prescribed realization of the parameters, selected such that xr exhibits dynamics that are
characteristic of the uncertain system. A convenient choice is to take q as the expectation of q(ξ), i.e.

q = 〈q(ξ)〉 =
∫

Ξ

q(ξ)pξ(ξ)dξ. (17)

For xr to be characteristic of the uncertain dynamics, it is necessary that the variability of the random
coefficients does not induce qualitatively significant changes in the resulting limit cycle. In particular, it is
assumed that there is no parametric bifurcation of the system dynamics in the uncertainty range. In other
words, a smooth dependence of the system’s LC with regards to the random parameters is assumed.

Remark 1. Note that whenever the assumption on the smooth dependence of the LC on the random coef-
ficients does not hold, one can generally seek a partition of the random parameter space so as to construct
decoupled problems for which the assumption is independently (or locally) satisfied.

3.3. Definition of the time transformation
We wish to construct the time rescaling τ(t; ξ) so that all realizations of the dynamics remain in a small

neighborhood of reference trajectory xr(t). Thus, we want to minimize in some sense the distance between
y(t; ξ) and xr(t). For a (small) time increment δt, the Taylor expansion of y about t is

y(t + δt; ξ) = y(t; ξ) + δt τ̇(t; ξ)f(y(t; ξ); q(ξ))

+
δt2

2
[ f(y(t; ξ); q(ξ)) τ̈(t; ξ)
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+ τ̇2(t; ξ) ∇f(y(t; ξ); q(ξ)) f(y(t; ξ); q(ξ))
]
+O(δt3), (18)

where ∇f is the Jacobian matrix of f . Similarly, the Taylor expansion of xr is

xr(t + δt) = xr(t) + δtfr(xr(t)) +
δt2

2
[∇fr(xr(t))fr(xr(t))] +O(δt3). (19)

Then, dropping the dependence on ξ to simplify the notation, we have

(y − xr)(t + δt) ≈ (y − xr)(t) + δt [τf(y; q)− fr(xr)]

+
δt2

2
[
τ̇2∇f(y; q)f(y; q)−∇fr(xr)fr(xr) + τ̈f(y; q)

]
. (20)

Setting d2(t; ξ) = ‖y(t; ξ) − xr(t)‖2, where ‖ · ‖ is the usual Euclidean norm, we now want to minimize
d2(t + δt; ξ) with regards to τ̈ . Using the approximates of y and xr at time t + δt, the minimization of d2

leads to:

τ̈ =
1

‖f(y)‖2

[
−2

y − xr

δt2
− 2

τ̇f(y)− fr(xr)
δt

− τ̇2∇f(y)f(y) + ∇fr(xr)fr(xr)
]
· f(y). (21)

Remark 2. The equation above provides us with an expression for the time derivative of the clock speed
τ̇(t, ξ). However this expression is difficult to exploit in its current form, mainly because of the non-linearities
involved that prevent immediate implementation. Instead, letting δt → 0, we observe that the leading term
gives us

τ̈(t, ξ) ∼ f(y(t; ξ); q(ξ)) · (y(t; ξ)− xr(t)) . (22)

This leads us to a consider a much simpler construction for the time transformation, directly amenable to
numerical implementation. This first method is now introduced, on the basis of more heuristic considerations.

3.4. First method
In the state space, the shift between the reference and stochastic states is defined as

d(t; ξ) ≡ y(t; ξ)− xr(t). (23)

From the assumption that the uncertainty qualitatively preserves the structure of the dynamics, i.e., it
yields smooth dependence of the state on ξ, one can assume that trajectories for different realizations ξ(ω)
remain essentially parallel. At time t, an indicator of the direction tangent to the trajectories is fr(xr(t)).
Consequently, two trajectories will be said to be “in-phase” if the shift d is perpendicular to the direction
tangent to the reference trajectory. Accordingly, we want to re-scale time, for each realization of the system,
such that trajectories are in-phase as much as possible, or in other words are contained in the plane normal
to fr at xr. Defining

∆(t; ξ) ≡ d(t; ξ) · fr(xr(t)), (24)

the “in-phase” constraint reads ∆(t, ξ) = 0. In attempting to satisfy this constraint, we are lead to the
following simple rules: if ∆(t; ξ(ω)) < 0 the local clock speed τ̇(t; ξ(ω)) has to be increased for the corre-
sponding realization to catch up with the reference, whereas conversely if ∆(t; ξ(ω)) > 0 the clock speed
τ̇(t; ξ(ω)) has to be slowed down. We also observe that in fact ∆(t; ξ) corresponds to the right-hand side of
(22), where f has been substituted with the reference fr.

There are many different ways to implement the previous rules; a convenient way is to simply adjust the
clock speed according to:

dτ̇

dt
= −α0τ̇(t; ξ)∆(t; ξ) + α1 [1− τ̇(t; ξ)] . (25)

On the right-hand side of (25), the first terms updates the local clock according to the previous rules,
whereas the second terms is introduced to ensure that the clock speed remains (on average) close to 1 and
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the dynamics follows the reference. The constants α0 and α1 are both positive and need be properly selected
to control the strength of the in-phase constraint enforcement and the stability of the local clock speed. We
are thus left with the resolution of the following set of ODEs:

dxr

dt
(t) = fr(xr(t)), (26)

dy

dt
(t; ξ) = τ̇(t; ξ)f(y(t; ξ); q(ξ)), (27)

dτ̇

dt
(t; ξ) = −α0τ̇(t; ξ)∆(t; ξ) + α1 [1− τ̇(t; ξ)] , (28)

dτ

dt
(t; ξ) = τ̇(t; ξ), (29)

with initial conditions:

xr(t = 0) = x0, (30)
y(t = 0; ξ) = x0, (31)
τ̇(t = 0; ξ) = 1, (32)

τ(0; ξ) = 0. (33)

Remark 3. The updating of the local clock speed through (25) is primarily conceived for the purpose of
illustrating the essential concepts behind controlling the rescaled time. In section 5 we shall derive more
elaborate and robust strategies to achieve this goal. In particular, we emphasize that the stochastic differential
approach proposed here does not necessarily guarantee that τ time is almost surely an increasing function of
t.

3.5. Stochastic Galerkin Projection
The governing system outlined above involves a deterministic evolution equation for the reference dy-

namics that is decoupled from a sub-system of coupled stochastic ODEs for y, τ̇ and τ . Only the stochastic
sub-system involves solutions dependent on ξ and so requires an appropriate treatment, whereas the reference
dynamics can be integrated using standard techniques for ODEs.

To solve the stochastic ODEs for the uncertain quantities we rely on a classical stochastic Galerkin
projection method, using PC expansions of the unknown quantities. The dependence of y, τ̇ and τ on ξ is
expressed in terms of truncated spectral expansions:

[y, τ̇ , τ ] (t; ξ) =
P∑

k=0

[y, τ̇ , τ ]k (t)Ψk(ξ), (34)

where, as discussed above, the Ψk are orthonormal polynomials in ξ. The number of terms P in the expansion
depends on the polynomial truncation order No, and is given by P + 1 = (NNo)!/(N!No!). The Galerkin
projection of the stochastic ODEs onto the polynomial basis results in:

dyk

dt
=

〈
f

(∑
l

ylΨl; q(ξ)

)
,Ψk

〉
,

dτ̇k

dt
= −α0

〈(∑
l

τ̇lΨl

)
∆(t; ξ),Ψk

〉
+ α1

〈(
1−

∑
l

τ̇lΨl

)
Ψk

〉
,

dτk

dt
= τ̇k,

(35)

for k = 0, . . . ,P. A Galerkin projection of the initial conditions is also used to determine the initial condition
for each PC modes. The initial conditions being deterministic, and using the convention Ψ0 = 1 i.e., mode
0 is the mean mode, we have:

y0(t = 0) = x0, τ̇0(t = 0) = 1, τ0(t = 0) = 0, (36)
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and
yk(t = 0) = 0, τ̇k(t = 0) = 0, τk(t = 0) = 0, k ≥ 1. (37)

In the computations below, the reference system and equations for the PC modes of y, τ̇ and τ are
time-integrated using a 4-th order Runge-Kutta scheme with a constant time step, ∆t. The selection of
an explicit time integration scheme avoids the need to solve non-linear equations, which would be the
case with an implicit integrator. Nonetheless, we are still required to estimate the Galerkin projection of
nonlinear terms, as for instance f(y; q(ξ)), τ̇∆. These projections are performed by means of pseudo-spectral
techniques (see [5]).

Remark 4. It is seen that the overall computational load consists in the integration of one deterministic
system, and a coupled set of (n + 2)(P + 1) equations. Compared to the usual Galerkin projection, which
amounts to the integration of a set of n(P + 1) equations only, the proposed method may appear to require
larger overhead arising from the time integration of the stochastic clock, τ , and clock speed, τ̇ . However,
this is not necessarily the case, because the proposed method actually allows the use of significantly lower
expansion orders No. Consequently, the resulting CPU cost is effectively much lower for the asynchronous
integration, because the classical Galerkin projection would require a much larger (and increasing) expansion
order No to obtain the solution over long time intervals.

4. Application to the linear oscillator

As an example of the procedure outlined in the previous section, we consider the simplest case of an
undamped linear oscillator with random frequency. Specifically, we focus on the following equation of motion:

dx

dt
= [A]x, (38)

where x = (x ẋ)T ∈ R2 is the state vector, with components corresponding to the position (x) and impulse
(ẋ). The system matrix [A] ∈ R2×2 is of the form

[A] =
(

0 1
−q 0

)
, (39)

where q > 0 is uncertain. The frequency of the system is
√

q/2π. The uncertain coefficient q is modeled as
a random variable with uniform distribution over the interval q0 ± q1, with 0 ≤ q1 < q0. The coefficient q
can be immediately parameterized using a single random variable ξ uniformly distributed on [−1, 1], namely
according to:

q(ξ) = q0 + q1ξ, ξ ∼ U [−1, 1]. (40)

Finally, we set the initial condition to x(t = 0) = (1 0)T , so the exact solution is

x(t; ξ) = cos
(√

q(ξ)t
)

, ẋ(t; ξ) = −
√

q(ξ) sin
(√

q(ξ)t
)

. (41)

The stochastic expansion basis therefore consists of the one-dimensional (normalized) Legendre polynomi-
als [1].

4.1. Classical Galerkin Projection
Truncating the polynomial chaos expansion to order No > 0, the approximate solution can be expressed

as:

x(t; ξ) =
P=No∑
k=0

xk(t)Ψk(ξ). (42)
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Applying the classical stochastic Galerkin procedure to (38), and using the orthonormality of the basis
functions Ψk, one obtains the following set of coupled ODEs for the stochastic modes xk(t):

dxk

dt
= [A]0xk +

P∑
l=0

〈ξΨlΨk〉 [A]1xl, for k = 0, 1, . . . ,P, (43)

where the two matrices [A]0 and [A]1 are respectively given by

[A]0 =
(

0 1
−q0 0

)
, [A]1 =

(
0 0
−q1 0

)
. (44)

The initial conditions for this set of ODEs are

x0(t = 0) =
(

1
0

)
,xk>0(t = 0) =

(
0
0

)
. (45)

We set q0 = (2π)2 and q1 = 0.2q0. The time integration uses a 4th order RK scheme with small time step
∆t = 0.001, such that the integration is essentially error-free.

Figure 1 shows solutions obtained for the classical Galerkin projection with No = 5 and No = 15. Plotted
are the trajectories of the truncated solution in the state space, and the time evolution of the impulse ẋ(t; ξ)
with time, for different realizations of the coefficient q(ξ) corresponding to ξ(ω) = ±1, ±1/2 and 0, and
for t ∈ [0, 50]. For both orders, we observe that the trajectories of the truncated solutions do not remain
on exact limit cycles (also shown), but experience large deviations and complex a periodic dynamics. The
evolutions of the realizations ẋ(t; ξ(ω)) further inform us that by increasing the expansion order from No = 5
to No = 15 one obtains an accurate approximation of the dynamics over a longer time span: for No = 5
the trajectories significantly depart from the exact solution after t ≈ 5 while for No = 15 the solution
is correctly captured up to t ≈ 20. However, the results illustrate that even for this simple system, an
overly large expansion order is needed to obtain the correct dynamics over arbitrarily large time periods,
and that the classical Galerkin approach is not feasible for long time integration. Evidently, for the present
example this is not a real limitation since the system lies on its limit cycle at the initial time, such that it
can be entirely characterized in just one period. However, for other systems exhibiting a slow convergence
toward their asymptotic stable limit cycle, the issue of truncation error over long integration times makes
the straightforward Galerkin projection essentially impractical.

4.2. Asynchronous time integration
We now consider simulating the stochastic system using the rescaled time approach, i.e., we solve (35)

for y(t; ξ), xr(t), τ(t; ξ), and τ̇(t; ξ), with initial condition xr(t = 0) = y(t = 0; ξ) = x(t = 0; ξ) = (1 0)T ,
τ(t = 0; ξ) = 0 and τ(t; ξ) = 1. For the reference dynamics, we choose the coefficient value q = q0. The set
of ODEs is integrated using RK4 time with ∆t = 0.001 for t ∈ [0, 75].

We set α0 = .01 and α1 = 0.2, and use the same values previously selected for q0 and q1. Figure 2
shows trajectories of the solution y(t; ξ) in the state space for t ∈ [0, 75], for the same realizations of ξ(ω) as
previously selected, i.e., ξ(ω) = 0, ±0.5 and ±1. Plotted are results obtained with No = 5, which should be
contrasted with the trajectories depicted in the first column of Figure 1. It is seen that unlike the Galerkin
approximation of x, the dynamics of y remain on the exact limit cycle and do not exhibit any spurious
oscillation.

The results of Figure 2 demonstrate that the asynchronous time integration enables the simulation of
the uncertain system over a long time period, whereas direct Galerkin projection of the governing equations
would either fail or require a prohibitively large expansion order. In fact, the method is able to properly
capture the trajectory of the system and its dependence with regard to some uncertain system parameter.
However, this is achieved by expanding on the PC basis the system state at different physical times, such
that the uncertain state x is not known at time t, but instead at random times τ(t; ξ). This raises the
question of the type of statistical information on the dynamics that can be extracted from the asynchronous
integration, or in other words from the computed y(t; ξ).
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First, we verify that in addition to correctly capturing the trajectories in state space, the asynchronous
integration also yields correct phase information. To this end, we plot in Figure 3 the solution component
ẏ(t; ξ) as a function of the rescaled time τ(t; ξ) ∈ [55, 60], and compare the resulting signal with the exact
solution ẋ(τ ; ξ) for the different realizations of ξ(ω). Figure 3 shows that, when it is properly expressed as a
function of the uncertain clock, the numerical solution y indeed accurately approximates the exact solution.
Specifically, for the present simple problem, the method allows us to track the system dynamics (uncertain
phase and frequency) over arbitrary large integration times. It is also emphasized that repeating the same
numerical experiment using a lower expansion order, No = 3, gives nearly identical results (not shown), and
that predictions are weakly sensitive to the selected reference provided that q ∈ q0 ± q1.

To gain further insight in the effect of the time transformation, we plot in Figure 4 the evolution of the
rescaled time for different realizations, as well as the evolution of the mean value 〈τ(y; ·)〉 with 3 standard
deviation bounds. Also plotted are curves of normalized values τ/t for different realizations ξ(ω). We
observe that, as expected, τ is monotically increasing with t, and that the clock speed is larger for lower
values of ξ(ω). Indeed, the system frequency decreases with decreasing ξ(ω), so the corresponding clock
speed needs to be increased to catch up with the reference when ξ(ω) < 1/2; conversely, the clock must be
slowed down for ξ(ω) > 1/2. It is also remarked that for ξ(ω) = 0, we have τ(t; ξ(ω)) ≈ t, since the reference
is here defined by q = q(ξ(ω) = 0). This can be better appreciated from the right plot in Figure 4. The
curves of τ/t are limited to early times t < 15 since a constant asymptotic value is reached for longer times.
Therefore, focusing on the initial stage of the dynamics, the normalized rescaled time τ/t first experiences
fast adjustments over 2-3 periods of the system, before exhibiting damped oscillations toward its steady
state. The characteristics of the early transient stage and damping rate depend on the parameters α0 and
α1 of the asynchronous integration.

In fact, the asynchronous integration parameters have to be properly selected. The first parameter, α0,
has to be large enough to ensure a fast enough adjustment of the clock speed so as to prevent the emergence
of the truncation errors that pollute the classical Galerkin solution (which corresponds to the case α0 = 0).
However, if a very large α0 is selected, the integration becomes unstable due to over adjustment. Similarly,
the selection of α1 is critical to control the asymptotic behavior of τ̇ . The impact of the integration
parameters on the resulting τ is illustrated in Figure 5, which depicts curves of τ(t) for different realizations
of ξ(ω). Shown are results obtained for two different (α0, α1) pairs. Although varying (α0, α1) yields different
rescaled times τ , it is emphasized that this does not significantly affect the results of the analysis of the
uncertain system dynamics.

4.3. Uncertain period.
The first characteristic we wish to determine is the dependence of the period of limit cycle, T (ξ), on the

uncertain parameter q(ξ). The period T r of the reference system can be estimated from:

T r = lim
t→∞

t

Nc(t)
, (46)

where Nc(t) is the integer number of cycles completed by the reference system at time t. This quantity can
be computed by counting the number of times the reference system crosses a prescribed plane intersecting
the trajectory of xr. Since by virtue of the time rescaling, all realizations of the uncertain system remain
essentially in phase with xr, Nc(t) for large enough t is a correct indicator of the number of cycles completed
for all values of the random coefficients q. Therefore, we can define the uncertain period as

T (ξ) = lim
t→∞

τ(t; ξ)
Nc(t)

. (47)

This estimate of T (ξ) at t = 50 is plotted in Figure 6 for a linear oscillator with q0 = (2π)2 and q1 = 0.3q0.
The number of cycles Nc was incremented each time ẋr changes of sign conditioned by xr(t) > 0. Also
indicated in Figure 6 is the exact period:

T (ξ) =
2π√
q(ξ)

.

Excellent agreement between the estimated and exact periods is observed.
10



4.4. Time-dependent statistics
Although we are primarily interested in the characterization of the limit cycle, we show in this subsection

how time-dependent statistics can be retrieved from the asynchronous time integration. Let us assume that
we want to compute the expectation of a functional g : Rn 7→ R of the state of the system x(t; ξ). Examples
of such functionals are moments of x(t; ·).

The main difficulty here is that the uncertain state is not known at a specific time t, but at the rescaled
time, i.e., we have immediate access to x(τ(t; ξ); ξ) = y(t; ξ) only. Nevertheless, we still have all the
information needed to reconstruct the expectation of g(x(ta; ξ)), at some selected time ta. To this end, let
us denote S a sample set of realizations ξ(ω) drawn at random from p(ξ). Let m be the sample set size,
and let ξ(i) be the i-th element of S. For given time ta > 0, and for each element of S we be denote t(i) the
time such that

τ(t(i); ξ(i)) = ta, i = 1, . . . ,m. (48)

We recall that t(i) is unique by virtue of the assumed properties of the rescaling. Then, the sample estimate
of the expectation of g(x(ta; ξ) can be expressed as:

〈g(x(ta; ξ))〉 ≈ 1
m

m∑
i=1

g(y(t(i); ξ(i))). (49)

In practice, y(t; ·) is known at discrete times so we rely on linear interpolations to approximate y(t(i); ·).
To illustrate this approach, we evaluate the expectation 〈x〉 (ta) of x(ta; ξ) and the standard deviation

σ(ẋ)(ta) of ẋ(ta; ξ), for the oscillator defined by q(ξ) = (2π)2(1 + 0.2ξ). For a fair comparison, we also
compute reference values for σ(x)(ta) and 〈x〉 (ta) through classical Monte Carlo sampling of the exact
solution using a sample set with dimension m = 50, 000.

Results are reported in Figure 7. The two plots of the top row compare the asynchronous time integration
and Monte Carlo estimates of 〈x〉 (ta) for ta in the range [0, 15] and [30, 40] respectively. The asynchronous
estimate uses the same sample set with dimension m = 50, 000 as for the corresponding MC estimate. We
observe that the two estimates are in excellent agreement for all the time intervals inspected. The plots
of the second row of Figure 7 depict the same results but for the standard deviation of ẋ. Again excellent
agreement is observed.

To better appreciate the accuracy of the computed moments, we present in the bottom of Figure 7
the error, defined as the absolute value of the difference between the instantaneous MC and asynchronous
estimates, for different values of the sample set dimension, m. The results show that the error converges
when the sample set dimension used to construct the asynchronous estimate increases. They also indicate
that the error is essentially a function of m, and does not increase with ta, as would be the case for a classical
Galerkin projection, whose predictions at fixed expansion order deteriorate as time evolves.

Remark 5. Some attention should naturally be given concerning the computational overheads involved in
determining statistical moments of the solution, particularly contrasting levels corresponding to the clas-
sical Galerkin and asynchronous integration approaches. First, it is observed that for classical Galerkin
integration, all realizations are computed at the same time t, which facilitates the computation of the de-
sired moments. For instance, the variance of ẋ(ta; ξ) is immediately obtained from the PC expansion of the
solution through:

σ2
ẋ(ta) =

P∑
k=1

ẋ2
k(ta). (50)

However, if accurate moments are needed for large ta, the required expansion order can be prohibitively large,
as discussed previously. In contrast, the asynchronous time integration is much less demanding in terms of
expansion order, and is not limited in terms of ta. However, the determination of solution moments (or
generally functionals) requires sampling, and the solution of (48) for each sample element. This amounts
to the determination of the time t at which τ(t; ξ(i)) becomes greater than ta; this is in turn achieved by
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monitoring τ for each sample set element, through an efficient implementation where the functionals Ψk are
computed once, and stored for each value ξ(i) ∈ S. As a result, the computational time simply scales with
the sample set dimension m.

Remark 6. The CPU cost of asynchronous integration should also be compared with the cost required by a
classical Monte Carlo (MC) approach. Note that a MC simulation would achieve a similar level of accuracy,
which is essentially governed by the sample set size m. Therefore, although the CPU load of MC also scales
with m (for the time integration of m deterministic systems up to t = ta), this ends up being much larger
than that of the asynchronous time integration approach. This is the case because in the latter case, the
problem reduces to integration of a single ODE system, whose size scales with P.

5. Control formulation for asynchronous time integration

5.1. General framework
The general concept of the present methodology consists in designing a time transformation which acts

so that the solution of the stochastic problem can be approximated using a low order expansion at all times.
This amounts to determining the clock speed τ̇ so that the spreading of different realizations with respect to
a reference remains small, and consequently that different realizations remain “in phase” with the reference
realization. The time rescaling may then be assumed to be directly related to some quantity associated
with the solution. In the previous section, a differential equation for τ̇ was suggested, and implemented as
a hand-crafted 1st order ODE. As seen in the examples above, this approach is both intuitive, efficient and
does not significantly increase the computational burden. However, in the case of a more complex system
involving stiff dynamics, and possibly complex trajectories in the state space, such an approach may not be
sufficiently efficient, and may even be ineffective due to the localized (in time) definition of the evolution of
τ̇ . One has then to resort to more robust strategies.

In this section, the time scaling τ̇ is determined using an optimization procedure. However, since it derives
from the solution of an optimality equation based on a stochastic ODE, the approach may also suffer from
the very same phenomenon it is supposed to cure. To avoid the need for an unacceptably large stochastic
basis, τ̇ is determined over a prescribed, finite horizon, chosen so that a limited expansion is sufficient to
derive an accurate solution. The minimization criterion may be imposed repeatedly over successive horizons
and the derivation of the clock speed law τ̇(t; ξ) then takes the form of a receding horizon optimization
problem.

5.2. Control equations
The cost function associated with the optimization problem is described by a functional J , which in its

simplest form may be expressed as:

J ≡ 1
2

∫
Tc

(
l1 d2n1 + l2 e2n2

)
‖fr‖ dt, (51)

where {l1, l2, n1, n2} ∈ (R+)4, the gap, ∆, is once again defined as:

∆(t; ξ) ≡ (y − xr) · fr, (52)

and the time drift rate, e, is defined according to:

e(t; ξ) ≡ τ̇(t; ξ)− 1. (53)

The horizon, Tc, defines the time span over which the control is determined. Selection of the constants
{l1, l2} dictates how one wants to weight the different terms in the objective function. For instance, setting
l1 → +∞ will solely penalize the spreading of the realizations over the horizon Tc, whereas a large l2 will
prevent the clock speed from deviating too much from 1, and consequently act as a regularization term
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aiming at ensuring τ̇ ≥ 0. The different terms of the cost are integrated along ‖fr‖ dt, i.e., times where the
reference has faster evolution are given larger weight. As seen above, the solution y of the rescaled dynamics
obeys the governing equation:

d

dt
y(t; ξ) = τ̇(t; ξ) f(y; ξ), (54)

and so the problem can be formulated as: minimize the objective function J under the constraint that the
governing equation is satisfied. This constrained optimization problem may be expressed using a Lagrangian,
L , defined as:

L ≡ 1
2

∫
Tc

(
l1 ∆2n1 + l2 e2n2

)
‖fr‖ dt

−
∫

Tc

(
dy

dt
− τ̇ f

)
· λ ‖fr‖ dt, (55)

where λ(t; ξ) ∈ Rn is the adjoint variable.
One can show that minimizing L is equivalent to minimizing J , and that the solution of the optimization

problem satisfies the Lagrangian stationarity criteria:

∂L

∂λ
=

∂L

∂y
=

∂L

∂τ̇
= 0. (56)

These conditions respectively yield:

dy

dt
− τ̇ f = 0, State equation, (57)

dλ

dt
+

λ

‖fr‖
d‖fr‖

dt
+ τ̇ ∇f λ + l1 n1 ∆2n1−1 fr = 0, Adjoint equation, (58)

l2 n2 e2n2−1 + f · λ = 0. Optimality equation. (59)

The “initial” condition for the adjoint variable is λ(t; ξ) = 0 at the time, t, corresponding to the end of the
current horizon.

5.3. Solution method
A solution procedure to determine the optimal time rate may thus be described as follows: for a given

guess initial τ̇(·; ξ) (for instance τ̇(·; ξ) of the previous horizon, or computed by means of the first-order
method described in the previous sections):

1. solve the state equation (57) for y(t; ξ),

2. solve the adjoint problem (58) for λ(t; ξ),

3. solve (59) for τ̇(t; ξ) using steepest descent / quasi-Newton algorithm,

4. go back to step 1 until convergence. In practice, the convergence is monitored by computing the
residual of (59) at the end of step 2.

As with the previous approach, the successive resolutions of problems (57-59) are achieved through Galerkin
projections of the corresponding ODEs and algebraic equation, relying on PC expansions of the stochastic
quantities involved. The convergence is usually reached in a few iterations, typically less than 5-10, provided
the objective function is indeed convex and the initial guess properly selected. As for all gradient-based
methods, the above derivation only gives a local minimum but, provided the realizations of the trajectories
are not too distorted compared to the reference one, the problem is likely to be convex, at least locally.
Since the methodology proposed in his work is anyhow limited to such systems, the optimization step does
not involve any pitfalls. Further, because the adjoint problem for λ is linear, it is inexpensive to solve, and
the overall CPU cost is expected to be in line with that of the approach in section 3, and consequently to
remain at a reasonable level.
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6. Application to a nonlinear system

6.1. Formulation
In this section, we demonstrate the methodology presented above for a chemical system of the Belousov-

Zhabotinsky (BZ) type. This kind of chemical system exhibits a sustained oscillation between two states
due to an activator/inhibitor underlying mechanism. One of the simplest BZ-type models is the so-called
Oregonator, [7, 6]. It basically describes the dynamics of a well-stirred, homogeneous system, governed by
a three-species, coupled mechanism. The governing equations are given by:

dX

dt
= k1 Y (t)− k2 X(t) Y (t) + k3 X(t)− k4 X(t)2,

dY

dt
= −k1 Y (t)− k2 X(t) Y (t) + k5 Z(t),

dZ

dt
= k3 X(t)− k5 Z(t),

(60)

where X, Y , and Z ∈ R+ denote the three species concentrations, and the coefficients q = (k1, . . . , k5) are
reaction parameters. The initial conditions correspond to a deterministic mixture:

X(t = 0) = Y (t = 0) = Z(t = 0) = 6000. (61)

We are presently interested in the time evolution of the system state, defined as x = (X Y Z)T , in the case
where the parameters are not accurately known. Specifically, some parameters are assumed uncertain and
are modeled using statistically independent random variables lying in a given domain (see [12] for a discussion
on the reaction rates modeling). To illustrate this scenario, k1, k2 and k3 are taken to be deterministic and
are given by:

k1 = 2, k2 = 0.1, k3 = 104, (62)

whereas k4 and k5 are considered to be uncertain, statistically independent, and respectively subjected to a
5% and 10% uncertainty levels, according to:

k4(ω) = 0.008 (1 + 0.05 ξ1(ω)), (63)
k5(ω) = 26 (1 + 0.1 ξ2(ω)), (64)

where ξ = (ξ1, ξ2) is uniformly distributed on [−1, 1]2.
The left plot in Figure 8 shows a set of m = 10 deterministic trajectories obtained from the integration

of (60) for randomly drawn realizations of the reaction constants q(ξ(ω)). The plot shows that for the range
of system coefficients considered, the system converges asymptotically to a stable limit cycle. However, we
observe that the asymptotic limit cycle depends on the reaction coefficients. The variability of the limit
cycle with q also highly depends on the “phase” along the cycle, in other words on specific region of the
state space. In particular, the trajectories are spread out at some locations, while they are clustered in the
neighborhood of the origin.

We now apply the control-based approach detailed in section 5. The stochastic expansion basis consists of
the two-dimensional (normalized) Legendre polynomials Ψk(ξ) = Ψk(ξ1, ξ2), which are truncated to second
order, No = 2. The dimension of the corresponding basis is P + 1 = 6. The control parameters involved in
the cost functional (51) are chosen as:

n1 = 1, n2 = 1, l1 = 5× 10−13, l2 = 5000, (65)

For the integration of the ODEs (primal and dual problems) we again rely on a 4th order RK scheme,
with fixed time step ∆t = 2 × 10−4. The optimal control is carried out over the time horizon Tc = 0.05,
corresponding to 250 time steps. For the reference dynamics, we select q = q(ξ(ω) = 0).
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Controlled trajectories y(t; ξ(ω)) are shown in the right plot of Figure 8. They correspond to the same
realizations ξ(ω) as used for the deterministic simulations shown in the left plot, thus allowing for a direct
comparison. Excellent agreement between the corresponding predictions is observed, demonstrating the
ability of the control strategy to provide a fine description of the limit cycle variability, even with a low
expansion order (No = 2). It is important to note that if a straightforward Galerkin projection of the
stochastic system is used, i.e., without any time rescaling, a solution with No = 2 quickly diverges from
the actual uncertain limit cycle, and exhibits non-physical features such as negative concentrations. For
higher orders, the Galerkin computations may even become unstable (not shown) within a few periods of
the system.

6.2. Time-dependent statistics
To assess quantitatively the efficiency of the asynchronous control scheme, we provide in Figure 9 a

comparison between the the mean and variance of the first species concentration, X(t; ξ), obtained using
the control-based and Monte Carlo approaches. The Monte Carlo estimates use a sample set with dimension
m = 105, whereas the control-based solution y is post-treated, as discussed in section 4.4, using a sample
set also having m = 105. Thus, the sampling errors are of the same order for both methods. The plots
show that the estimates for the two methods are in excellent agreement, as they are indistinguishable at
the plot scale. In addition, it is emphasized that the error of the control-based prediction is not dependent
on the observation time for the entire time span of the analysis; for the present example, this corresponds
to roughly 41 periods of the reference system. Thus, arbitrarily large integration times may be selected,
provided of course that time integration errors remain small.

We also observe that the signals depicted in Figure 9 involve two timescales. The fastest timescale
corresponds roughly to the average period of the system along the uncertain limit cycles. The slowest
timescale corresponds to the decay of the signal towards its asymptotic value: it is essentially governed by
the rate of spread for the realizations along the uncertain limit cycle, and reflects the uncertainty in the
period of the cycle induced by the uncertainty in the reaction parameters. Indeed, each realization completes
a cycle within its own period T (ω), such that initially in phase realizations get more and more out of phase
as time advances. Eventually, for large enough times, all realizations are totally out of phase and the two
first moments reach their asymptotic equilibrium values.

6.3. Control of the realizations
The control-based method is specifically designed to counteract the spread of the realizations along their

respective limit cycle, by determining an optimal time rescaling τ(t; ξ(ω)) that maintains all realizations in
a compact neighborhood. To illustrate this feature, we illustrate in Figure 10 the state of the system using
selected (deterministic) realizations, and contrast these with predictions obtained using the for the case
control-based approach at two different expansion orders No = 2 and 4. Results are generated at t = 3.25;
this value is selected because it corresponds roughly to the phase of the reference dynamics at which the
limit cycles experience their larger variability.

The left plot of Figure 10 shows that after only 4-5 periods of the dynamics, the uncontrolled realizations
have spread out over nearly all the uncertain limit cycle. Also plotted are the 10 (randomly-selected)
realizations of the limit cycle already shown in Figure 8. This is contrasted with the control-based approach
(center and right plots), where all realizations of y(t = 3.25; ·) remain essentially contained in a cross
section orthogonal to the reference trajectory, as expected from the optimization problem for τ̇ . For the
computations with No = 2, we remark that some realizations seem to fall far away from the the limit cycles.
This is not due to an insufficient expansion order, but instead to an insufficient sampling of the uncertain
limit cycle. To demonstrate this, we provide in the right plot results for No = 4 and 1,000 randomly-selected
realizations of the limit cycle. It is seen that, at the scale of the plot, the distribution of y(t; ξ) is unaffected
by increasing No; this is not surprising in light on the close agreement of the second-order and MC predictions
of the first and second moments (Figure 9). The larger sample set of random realizations evidence that the
uncertain limit cycle extends farther beyond the domain circumscribed by the 10 realizations shown in the
center plot of Figure 10. Observations made at larger time (not shown) indicate that x(t; ·) continuously
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spreads out, whereas y(t; ·) always remains on a compact region of the limit cycle. Another interesting
observation is that the “boundary” of the limit cycle does not correspond to extreme values of ξ, which
reflects the nonlinear character of the system.

6.4. Rescaled time
To gain further insight on how the control maintains all realizations in a compact region of the state space,

we present in the top plot of Figure 11 the evolution of the clock speed. The plot depicts the expected value
〈τ̇(t; ξ)〉 with ± one standard deviation bounds σ(τ̇). The evolution is reported for t ∈ [33, 35], i.e., over
roughly 2.5 periods of the system; a non-periodic behavior is observed but with similar repeating patterns.
The plot shows that the averaged clock speed remains close to τ̇ = 1 at any time, with only small deviations
limited to a few percent. The stability of the expected clock speed has to be contrasted with the evolution
in time of its standard deviation. Over a period of the dynamics, the dynamics of the clock speed presents a
characteristic pattern of alternated high and low (nearly zero) variability. A particularly noticeable feature
is the presence of two successive peaks of high standard deviation, occurring over relative short time intervals
of about 0.1, followed by longer periods of significant but lower variability which subsequently slowly decays
to zero.

To understand this pattern, we plot in the bottom plot of Figure 11 the evolution of the species con-
centrations for the reference system. The figure shows that the clock speed experiences high variability
when the reference system concentrations have the largest rates of change. This is expected because the
clock speed is adjusted so as to maintain the realizations in some neighborhood, and because all realizations
have similar dynamics but with different time scales. Clock speed adjustments are consequently critical
when sharp evolutions occur, whereas in areas of the limit cycle where the state evolves slowly much weaker
adjustments are needed. It is interesting to note that with the present value Tc = 0.05, roughly 16 successive
horizons are needed to cover one period of the reference system. Thus, though it is computed independently
over different time horizons, the control is able to adjust itself to the local conditions of the dynamics along
the uncertain limit cycle. In particular, Figure 11 shows that the dynamics along the part of the cycle
corresponding to low values of X and Z (bottom left part of the cycles in Figure 10) not only has a low
variability in trajectory but also in phase velocity since virtually no control is needed along this segment of
the cycle.

6.5. Probability density functions
To complete the analysis, we provide in Figure 12 the probability density function of the system period,

and the asymptotic marginal distribution of the second species concentration Y (t; ξ).
The uncertain period T (ξ) is estimated from (46) after the reference system has completed Nc = 45

cycles. The density of T (ξ) is in turn estimated by a sampling of ξ to construct histograms. The density
has a trapezoidal structure, typical of the distribution of the sum of two independent random variables.
However, the non-constant central part of the density denotes the combined interaction of the uncertain
reaction coefficients k4 and k5 on the period.

For the marginal distribution of Y (t; ξ), we select a time ta = 35, large enough so the realizations are
well spread along the uncertain limit cycle. We then sample Y (ta; ξ) to construct histograms approaching
the density p(Y ), following the methodology used for the estimation of the statistical moments. We have
also ascertained that the analysis time ta = 35 was large enough to obtain the asymptotic distribution,
namely by verifying close agreement, up to sampling errors, between the distributions computed at ta = 35
and ta = 50. We observe that the marginal density p(Y ) has a sharp peak around Y ≈ 400, expressing
again that the system spends a significant amount of time in this region where the variability induced by
the uncertain inputs is the lowest.

7. Conclusions

This paper is concerned with quantifying the uncertainty associated with time-dependent physical sys-
tems involving random parameters. In case the system exhibits some level of periodicity, the straightforward
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application of Galerkin PC methods is difficult, since the polynomial order required for accurate approxi-
mation of the solution increases with time, thus precluding long-term simulations. In particular, uncertain
limit cycles and their associated statistics are generally difficult to determine using the classical approach. In
addition, Monte-Carlo approaches may not always be feasible, particularly when the associated deterministic
system is costly to simulate, leading to prohibitively large CPU times to obtain converged statistics.

To overcome the hurdles above, this paper explores the development of a computational approach based
on a reformulation of the problem. The core concept amounts to the determination of an uncertain, time-
dependent, time scale, selected so that the reformulated problem is essentially invariant in the “stochastically-
stretched” time variable. In turn, this allows us to implement moderate-order PC expansions, namely
without the need to continuously increase the truncation order.

Two strategies falling within the framework above have been developed. In both cases, we restrict our
attention to simple systems which do not exhibit topological changes for the entire range of the random
parameters. This restriction naturally excludes systems exhibiting chaotic dynamics or bifurcations, but on
the other hand simplifies the testing of the resulting schemes.

The first strategy investigated relies on a heuristic linear time scaling. It basically consists in linearly
adjusting the time scale of the uncertain system based on the phase difference measured with respect to a
reference deterministic system. The resulting scheme is applied to an undamped linear oscillator with an
uncertain frequency, and is shown to provide efficient and accurate predictions of the system uncertainty.

When the system limit-cycle involves more complicated dynamics, e.g., with regions of low radius of
curvature, a more sophisticated method for determining the stochastic time scale is necessary. To this end,
an adjoint-based technique is developed, and applied to the example of a stiff chemical system with uncertain
reaction rates. The adjoint-based approach is shown to provide accurate estimates with only a second-order
PC expansion. While this second approach is a bit more demanding than the first from a computational
standpoint, it is also more precise and, through the formulation of an associated cost functional, brings
additional flexibility in the way by which the stochastic time scale is defined.

Future extensions of this work involve focusing on systems exhibiting more complex dynamics and higher
dimensional limit-cycles. Potential avenues that we plan to explore include incorporation of the present
approach with representations that enable us to capture steep variations or bifurcations. Such constructions
are the subject of ongoing effort.
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of the United States Government or any agency thereof.
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Figure 1: Trajectories in the state space of the classical Galerkin solution x(t; ξ) for No = 5 (first column) and No = 15 (third
column), and predicted time evolutions of ẋ(t; ξ) for No = 5 and 15 (second and forth columns, respectively). Trajectories and
signals correspond to realizations ξ(ω) = −1, −1/2, 0, 1/2 and 1, respectively arranged from top to bottom.
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also shown for comparison. Plotted are curves corresponding to different realizations ξ(ω), as indicated. The computations are
performed with No = 5.
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Figure 10: State of the uncertain system at t = 3.25 (blue dots) and sample set of the uncertain limit cycles (green lines). Left:
realizations of the state x(t = 3.25; ξ) obtained by deterministic integration for 10 randomly-selected values q(ξ(ω)). Center:
realizations of y(t = 3.25; ξ(ω)) computed with the control-based strategy using No = 2 and m = 10 realizations of the limit
cycle. Right: realizations of the rescaled state y(t = 3.25; ξ(ω)) computed with the control-based strategy using No = 4 and
m = 1, 000 realizations of the limit cycle.
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