
SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

A Newton-Galerkin method for fluid flow exhibiting uncertain periodic dynamics

M. Schick‡ ∗, V. Heuveline§, and O. P. Le Mâıtre¶†

Abstract. The determination of stable limit-cycles plays an important role for quantifying the characteristics
of dynamical systems. In practice exact knowledge of model parameters is rarely available leading to
parameter uncertainties, which can be modeled as an input of random variables. This has the effect
that the limit-cycles become stochastic themselves resulting in almost surely time-periodic solutions
with a stochastic period. In this paper we introduce a novel numerical method for the computa-
tion of stable stochastic limit-cycles based on the Spectral-Stochastic-Finite-Element-Method using
Polynomial Chaos (PC). We are able to overcome the difficulties of Polynomial Chaos regarding its
well known convergence breakdown for long term integration. To this end, we introduce a stochas-
tic time scaling which treats the stochastic period as an additional random variable and controls
the phase-drift of the stochastic trajectories, keeping the necessary PC order low. Based on the
re-scaled governing equations, we aim at determining an initial condition and a period such that
the trajectories close after completion of one stochastic cycle. Furthermore, we verify the numerical
method by computation of a vortex shedding of a flow around a circular domain with stochastic
inflow boundary conditions as a benchmark problem. The results are verified by comparison to
purely deterministic reference problems and demonstrate high accuracy up to machine precision in
capturing the stochastic variations of the limit-cycle.

Key words. uncertainty quantification, stochastic limit-cycle, stochastic Navier-Stokes equations, stochastic
period, polynomial chaos, long term integration
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1. Introduction. Many fluid flows can be modeled by the unsteady incompressible Navier-
Stokes equations, solutions of which can exhibit different dynamics. Among these dynamics
stable limit-cycles play an important role, for example in the study of flow transition from
laminar to turbulent regimes or limit-cycle-oscillations in flow-induced vibration analysis. In
the deterministic context, there exist various numerical methods to determine limit-cycles, see
for example [3, 4]. However, in practice, flow parameters like the kinematic viscosity, external
forcing or boundary conditions are subjected to uncertainties, either arising from a lack of
knowledge (epistemic type) or intrinsic variability (aleatoric type). For sensitivity analysis,
the uncertainties can be modeled by vectors of independent random variables and propagated
within the solution. This, however, leads to a significant increase in computational complexity
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compared to purely deterministic models and requires efficient algorithms.

In presence of random inputs, the limit-cycles generally become random quantities, and
if the solution is almost surely time-periodic the stochastic limit-cycle can be characterized
by a (non-unique) stochastic initial condition and a stochastic period. Assuming a second
order solution, spectral methods provide a powerful tool to represent smooth dependencies of
the limit-cycle on the random input. For instance, the Karhunen-Loève expansion is optimal
in mean-square sense with a truncation error governed by the decay rate of the covariance
operator’s eigenvalues. Polynomial Chaos (PC) expansions, based on the seminal works of
Wiener [29] and Ghanem and Spanos [8], aim at expressing the solution as a series of predefined
random functionals without prior information on the structure of the solution. The PC basis
functionals are orthogonal multivariate polynomials in the random input variables whose
probability law is defined a priori. Therefore, the coefficients within the expansion need
to be determined. One popular approach is given by non-intrusive methods, such as Monte
Carlo or sparse-grid methods, which have the benefit to allow for embarrassingly parallel
computational strategies. An alternative approach, which is used within this work, is given
by stochastic Galerkin projections, where the governing equations are projected on the space
spanned by the Polynomial Chaos basis. Thereby, one fully coupled system has to be solved
allowing to compute the PC coefficients at once at the price of a significantly increased system
size.

However, it is known that PC expansions can exhibit a convergence breakdown in cases
of strong non-linear dynamics and for long term integration [18]. This is related to the
fact that trajectories corresponding to random input realizations exhibit a phase-drift, which
requires a growing polynomial degree of the PC expansion to accurately capture the non-
linear dependencies in time. In [28] a multi-element approach was introduced, which is able
to postpone the point of convergence breakdown to later simulation times based on a domain
decomposition of the probability space. In [2] a similar idea was developed employing a
wavelet multi-resolution analysis [15, 19], which, however, also suffers from the same drawback
regarding the long term integration convergence breakdown. Recently, a time-dependent basis
for capturing the time evolution of the probability distribution of the solution was introduced
in [7, 24]. In [10] an extension to [7] was proposed, which combines time-dependent basis
functionals with the domain decomposition introduced in [28] to improve numerical stability.

All these methods allow to compute stable limit-cycles by means of classical time-integration,
owing to an enrichment of the stochastic basis or a costly time-adaption of the basis func-
tionals. In fact, none of these approaches addresses the central difficulty which is related
to phase-drift between realizations. Our claim is that, in many situations, random phase
information has no relevance and can be set arbitrarily, while only the dependencies of the
limit-cycle is of interest. In such cases, the random limit-cycle can be simply defined using
an arbitrary random initial condition belonging to the limit-cycle and the random period.
The potential advantage for this description of the dynamics lies in the fact that the ran-
dom solution at any phase can be subsequently recovered by time-integration from the initial
condition over at most one period, so avoiding the need of particular treatment required for
long term integration. The principal focus of the present work is to demonstrate the validity
of this description and to verify that it allows for low degree PC expansions. To the present
knowledge of the authors, there do not exist numerical algorithms to compute stochastic limit-
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cycles with uncertain period using Polynomial Chaos expansions. Overcoming the drawback
of the convergence breakdown of PC, we introduce a new numerical algorithm, which is able
to determine stochastic limit-cycles subject to a stochastic period, based on a stochastic time
rescaling of the unsteady incompressible Navier-Stokes equations, Newton’s method and an
optimality constraint. In addition, inspired by the ideas proposed in [18] we introduce a
secondary stochastic time scaling to control the phase-drift in an L2-sense with respect to
some deterministic reference trajectory. The numerical solution of the stochastic systems is
obtained using the Spectral-Stochastic-Finite-Element-Method (SSFEM), which is based on a
Galerkin projection of the governing equations on the probability space spanned by the Chaos
Polynomials combined with a Finite-Element discretization at the deterministic level. We
finally verify the convergence properties of the algorithm for two-dimensional flows around a
circular domain with stochastic inflow boundary conditions. The problem configuration yields
a time-periodic vortex shedding, known as Kàrmàn vortex street, which depends on the inflow
conditions.

The paper is structured as follows. Section 2 introduces the unsteady stochastic incom-
pressible Navier-Stokes equations along with the problem definition of finding almost surely
time-periodic solutions. Section 3 describes the numerical method to compute an initial con-
dition and the period of the random flow, together with the control of the phase-drift. The
convergence properties of the algorithm are verified using adequate benchmark problems in
Section 4. Finally, Section 5 provides a short summary and conclusions of this work.

2. Model equations and problem definition.

2.1. Unsteady stochastic incompressible Navier-Stokes equations. It is assumed that
there exists a stochastic model, which appropriately describes the underlying uncertainties
within the considered system. Furthermore, it is assumed that the uncertainties can be
parametrized via some random vector ξ = (ξ1, . . . , ξL) ∈ RL of dimension L ∈ N, where
ξi, i = 1, . . . , L, are independent real-valued random variables and ξ belongs to some underly-
ing probability space (Ω,F ,P). The uncertainties shall be introduced via boundary or initial
conditions. The parametrized unsteady stochastic incompressible Navier-Stokes equations
(SNSE) read:

∂tu(x, t, ξ) + (u(x, t, ξ) · ∇)u(x, t, ξ)− ν∆u(x, t, ξ) +∇p(x, t, ξ) = 0, in D, (2.1)

∇ · u(x, t, ξ) = 0, in D, (2.2)

u(x, t, ξ) = g(x, t, ξ), on Γ, (2.3)

u(x, t = 0; ξ) = uI(x, ξ), in D, (2.4)

for t > 0 almost surely in Ω. Here, D ⊂ Rd, d = 2, 3 denotes the spatial domain with Dirichlet
boundary Γ ⊂ ∂D.

Note that u = u(x, t; ξ) is a random field due to the explicit dependency on the ran-
dom vector ξ through the partial differential equation. The SNSE can be solved relying on
Polynomial Chaos (PC) expansions of the velocity and pressure fields and using the stochastic
Galerkin projection method (see e.g. [13, 14, 16] and references in [17]). However, if the SNSE
possess no stable steady solution a high order PC expansion is expected to be necessary for
long term integration, even if the individual realizations exhibit almost surely asymptotically
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periodic dynamics. This fact motivates the direct determination of the stochastic periodic
solutions instead of proceeding from straightforward time-integration of the PC system.

2.2. Periodic orbits. We introduce a new numerical method for determining solutions of
the SNSE, which are almost surely periodic subject to a stochastic period, by extending a
deterministic approach introduced by Duguet et al. [4] using the Spectral-Stochastic-Finite-
Element-Method [8]. This makes it possible to characterize all trajectories of the random
events by a functional representation of the stochastic period and an initial condition with
respect to the random input by using a Polynomial Chaos expansion.

For the remainder of this work we provide abbreviated definitions of repeatedly occurring
vector spaces for notational convenience:

S := L2(Ω), V := H1(D), V0 := H1
0 (D), W := L2(D).

A fundamental assumption about existence of a time-periodic solution needs to hold:

Assumption 1. There exists a solution u to (2.1)–(2.4), u(·, t, ·) ∈ V ⊗S, t ≥ 0, and a bounded
period T ∈ S with α ≤ T <∞ a.s. for some α > 0, such that for t ≥ 0:

u(x, t+ T (ξ); ξ) = u(x, t; ξ), ∀x ∈ D, a.s.

The main problem in computing stochastic periodic orbits arises from the stochastic nature
of the period T . A discretization based on a deterministic time stepping method will have
difficulties in capturing the stochastic variations of the period, since the trajectories of a
solution to the SNSE depend on a random event ω ∈ Ω. The approach outlined in the
following aims at representing the stochastic period as some additional random input within
the SNSE, introducing a new random variable, whose computation introduces an additional
condition. This allows the use of a deterministic simulation time interval to compute an initial
condition and a period, since the uncertainty within the time interval is transferred towards
the system equations.

We introduce a new scaled time variable λ which is defined for t ≥ 0 by:

λ(t, ξ) :=
t

T (ξ)
, pointwise in Ω. (2.5)

Note that λ is a random process and λ(t, ·) ∈ S for t ≥ 0 provided that the period T satisfies
Assumption 1. Introducing the scaled time λ into (2.1)–(2.3) results in a scaled version of the
unsteady stochastic incompressible Navier-Stokes equations (S-SNSE) for λ > 0:

∂λũ(x, λ, ξ) + T (ξ)(ũ(x, λ, ξ) · ∇)ũ(x, λ, ξ)

−νT (ξ)∆ũ(x, λ, ξ) +∇p̃(x, λ, ξ) = 0, in D, (2.6)

∇ · ũ(x, λ, ξ) = 0, in D, (2.7)

ũ(x, λ, ξ) = g(x, λ, ξ), on Γ, (2.8)

ũ(x, λ = 0, ξ) = uI(x, ξ), in D, (2.9)

almost surely in Ω. Note that the velocity and pressure variables have been redefined by:

ũ(x, t/T (ξ), ξ) := u(x, t, ξ), p̃(x, t/T (ξ), ξ) := T (ξ)p(x, t, ξ). (2.10)
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In the following the tilde notation will be dropped for notational convenience.

2.3. Discretization and variational formulation. The discretization of the probability
space is carried out by a Galerkin projection employing Polynomial Chaos.

First, velocity and pressure fields u, p are approximated by their corresponding Polynomial
Chaos expansion employing a finite truncation parameter P :

[u(x, λ; ξ), p(x, λ; ξ)] =
P∑
i=0

[ui(x, λ), pi(x, λ)]ψi(ξ).

Here, the truncation parameter P satisfies (P + 1) = (p+ L)!/p!L!, where p ∈ N is the
maximum total polynomial degree of the normalized Chaos Polynomials ψi, i = 0, 1, 2, . . ..
For notational convenience, we shall denote SP the subspace of S spanned by the PC basis.

Next, the PC discretizations are inserted into the scaled Navier-Stokes equations (2.6)–
(2.9) which are then projected onto SP , resulting in:

∂λuk(x, λ) +

P∑
j=0

P∑
l=0

(uj(x, λ) · ∇)ul(x, λ)c(T )jlk

−
P∑
j=0

∆uj(x, λ)ν(T )jk +∇pk(x, λ) = 0, in D, (2.11)

∇ · uk(x, λ) = 0, in D, (2.12)

uk(x, λ) = 〈g, ψk〉, on Γ, (2.13)

uk(x, λ = 0) = 〈uI , ψk〉, in D, (2.14)

for λ > 0 and k = 0, . . . , P . The angle brackets 〈·, ·〉 denote the inner-product on S and the
3rd and 2nd order tensors are defined by:

c(T )jlk :=

Q∑
i=0

Ti〈ψiψjψl, ψk〉, ν(T )jk := ν

Q∑
i=0

Ti〈ψiψj , ψk〉.

for j, l, k = 0, . . . , P . For the period T , we again rely on a PC expansion, truncated to a
maximum total polynomial degree q, so that

T (ξ) =

Q∑
i=0

Tiψi(ξ), Q+ 1 =
(q + L)!

q!L!
.

We denote consistently SQ the corresponding subspace of S.
Note that both tensors have many zero valued entries, especially when eventually a low

order expansion for T will be employed. This significantly reduces the number of coupling
terms in (2.11). Furthermore, the redefinition of the pressure variable in (2.10) plays an
important role, since the pressure term appears completely decoupled in (2.11), which would
not be the case if the pressure term would still involve a product with the stochastic period
T (ξ), as being the case for the viscosity term. However, the number of coupling terms within
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(2.11) is significantly increased in comparison to a Galerkin projection of the standard unscaled
formulation (2.1) due to the non-linear convective term.

A variational formulation (at the deterministic level) of the stochastic Galerkin system
(2.11)–(2.14) is:

For k = 0, . . . , P , λ > 0 and given period modes Tk, find uk(·, λ) ∈ V and pk(·, λ) ∈ W
such that ∀v ∈ V0, ∀q ∈W :

(∂λuk, v) +

P∑
j,l=0

((uj · ∇)ul, v)c(T )jlk +

P∑
j=0

(∇uj ,∇v)ν(T )jk − (pk,∇ · v) = 0, (2.15)

(∇ · uk, q) = 0, (2.16)

uk(x, λ) = 〈g, ψk〉, on Γ, (2.17)

uk(x, λ = 0) = 〈uI , ψk〉, in D. (2.18)

Here, (·, ·) denotes the inner-product on W . We solve the coupled system (2.15)–(2.18) by
means of a classical Finite-Element Method with finite dimensional spaces V h ⊂ V and
W h ⊂ W . For an overview on existing Finite-Element solvers for the deterministic Navier-
Stokes equations see e.g. [6, 9, 27]. For solving and preconditioning (2.15)–(2.18) see e.g.
[13, 14, 16, 20, 21].

2.4. Determining the period and initial condition. We define the following operator to
track the velocity as a function of the scaled time variable λ ≥ 0 subject to some period T
and initial condition uI :

U(uI , T, λ) := uI +

∫ λ

0
∂λu(λ = σ) dσ, (2.19)

where u satisfies (2.15)–(2.18). Note, that U represents the velocity at time λ starting from
the initial condition uI , whose PC expansion will be denoted by

U(uI , T, λ) =
P∑
i=0

Ui(uI , T, λ)ψi, (2.20)

where Ui ∈ V for i = 0, . . . , P , such that Ui = Ui(uI , T, λ)(x) = ui(x, λ) with ui denoting the
ith mode of the PC expansion of the velocity u satisfying (2.15)–(2.18) at time λ.

The problem definition of finding almost surely time-periodic solutions to the S-SNSE can
be formulated in the following way:

Find some uI , whose PC coefficients satisfy (2.16)–(2.17), and a corresponding T as in
Assumption 1, such that

‖U(uI , T, 1)− uI‖2 = 0, (2.21)

where here and for the rest of this work ‖ · ‖ := ‖ · ‖S⊗W . Because of the truncation error,
eq. (2.21) can only be formally satisfied if uI ∈ SP ⊗ V ; otherwise a weak interpretation can
be invoked. Note that the determination of the period T imposes an additional constraint on
the S-SNSE. Therefore, we suggest an iterative approach, which will be explained in detail
within the following section.
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Figure 3.1: Schematic view of a trajectory starting at some initial condition uI with distance
vector D and time derivative ∂U

∂λ for some realization of ξ.

3. Solution procedure. In the following an iterative method, inspired by an approach for
deterministic problems introduced by Duguet et al. [4], will be described to compute an initial
condition uI and a period T satisfying (2.21), employing Newton’s method, the solution of
an optimization problem and an optimality based phase-controlling. The initial condition is
sought in SP ⊗ V , while a stochastic discretization of the period is needed.

For λ ≥ 0 and some initial condition uI we define a distance vector D by:

D(uI , T, λ) := uI − U(uI , T, λ),

Therefore, ‖D‖ measures the distance between an initial condition uI and its state U(uI , T, λ)
at time λ. The goal of the iteration procedure is to obtain convergence such that:

‖D(ukI , T
k, λ)‖ → 0 as k →∞.

We start by choosing some appropriate initial guesses u0
I =

∑P
i=0 u

0
I,iψi and T 0 =

∑Q
i=0 T

0
i ψi

for the initial condition and period, respectively. As an initial guess for u0
I and corresponding

T 0 we suggest to use a fully developed deterministic flow, i.e. u0
I,i = 0 and T 0

i = 0 for i > 0,
which has been computed a priori by integration of the deterministic Navier-Stokes equations
parametrized by the mean of the random input.

3.1. An optimality constraint for determining the period. To arrive at an update for-
mula for the period, we first define an optimization problem, which ensures that the distance
between the initial condition and its terminal state remains minimal in a L2 sense. Therefore,
given the kth iterates ukI and T k, we aim at correcting the period T k through

T k+1 = (1 + dλ)T k ≈
Q∑

m=0

T k+1
m ψm, (3.1)

T k+1
m = T km +

Q∑
i=0

Q∑
j=0

dλiT
k
j 〈ψiψj , ψm〉, m = 0, . . . , Q, (3.2)

where we employed a Galerkin projection using the PC expansion of dλ ∈ SQ, which is a
solution of the minimization problem:

min
dλ∈SQ

‖ukI − U(ukI , T
k, 1 + dλ)‖2. (3.3)
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To simplify problem (3.3), we approximate U(ukI , T
k, 1+dλ) by its first order Taylor series

representation around λ = 1, i.e.

U(ukI , T
k, 1 + dλ) ≈ U(ukI , T

k, 1) + ∂λU(ukI , T
k, 1)dλ. (3.4)

Inserting (3.4) in (3.3) results in a linearized stochastic optimization problem for the
correction term dλ:

min
dλ∈S

‖D(ukI , T
k, 1)− ∂λU(ukI , T

k, 1)dλ‖2. (3.5)

The corresponding optimality condition reads:

2
〈(
D(ukI , T

k, 1)− ∂λU(ukI , T
k, 1)dλ, ∂λU(ukI , T

k, 1)
)〉

= 0. (3.6)

Introducing the PC expansions of the various stochastic quantities into (3.6) we arrive at
the discrete optimality condition for the PC modes ~dλ = [dλ0, . . . , dλQ]t ∈ RQ+1:

A ~dλ = b, (3.7)

where A ∈ RQ+1,Q+1 and b ∈ RQ+1 are defined by:

Aml :=
P∑

i,j=0

〈ψiψjψl, ψm〉(∂λUki , ∂λUkj ), bm :=
P∑

i,j=0

〈ψiψj , ψm〉(Dk
i , ∂λUkj ),

for m, l = 0, . . . , Q. The corresponding Polynomial Chaos coefficients of ∂λU and D are given
by:

∂λUki = 〈∂λU(ukI , T
k, 1), ψi〉, Dk

i = 〈D(ukI , T
k, 1), ψi〉,

for i = 0, . . . , P .
Lemma 3.1. The optimization problem (3.5) for dλ =

∑Q
i=0 dλiψi is convex.

Proof. We show that the Hessian of the optimization problem is positive semi-definite.
For notational convenience, U̇k and Dk are defined by U̇k := ∂λU(ukI , T

k, 1) and Dk :=
D(ukI , T

k, 1). We determine the second partial derivatives of (3.5) with respect to dλm and
dλn, n,m = 0, . . . , Q:

hmn :=
∂2

∂dλn∂dλm
‖Dk − U̇k

P∑
l=0

dλlψl‖2 = 2〈(U̇kψn, U̇kψm)〉,

which defines the Hessian H := (hmn)Qm,n=0. Let y = [y0, . . . , yQ]t ∈ RQ+1, y 6= 0 be arbitrary,
then the following relations hold:

ytHy = 2

Q∑
m,n=0

ym〈(U̇kψn, U̇kψm)〉yn = 2‖
Q∑

m=0

ymψmU̇k‖2 ≥ 0.

Therefore, H is positive semi-definite, which completes the proof.
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Summing up, the determination of the new period update T k+1 via (3.1) requires the
solution of one or several linear systems of equations, as stated in (3.7), which can be carried
out by employing standard direct numerical solvers.

Remark 1.Note that, because of the linearization error in (3.4), iterations on the period
correction can reduce the overall error in (2.21) significantly. For these iterations, after the
period has been updated through (3.1), to say T ∗, the corresponding terminal state U(uI , T

∗, 1)
is recomputed for the same initial condition ukI and used to determine the subsequent correction
dλ. The iterations are stopped whenever dλ becomes small enough and finally T k+1 = T ∗.

3.2. Newton’s method for updating the initial condition. Updating the period iterate
ensures that the terminal state has a minimal distance with respect to the current initial
condition iterate ukI . In general the minimum is greater than zero, which necessitates a
correction of ukI such that the distance can be decreased further.

This is achieved by applying Newton’s method to D(ukI , T
k+1, 1) = 0. The corresponding

Newton step reads:

uk+1
I = ukI + dukI , −Jk[dukI ] = D(ukI , T

k+1, 1), (3.8)

where Jk[du
k
I ] denotes the Jacobian of D(uI , T

k+1, 1) with respect to uI in direction dukI at
uI = ukI . Due to the large system size, solving the linear system in (3.8) should be carried
out by using iterative solvers, e.g. by the ”Generalized Minimal Residual Method” (GMRES
method, [23]) suitable for non-symmetric systems. Note that to reduce the computational cost
an inexact Newton approach should be used, such that a low accuracy for solving the linear
system in (3.8) is sufficient enough to achieve overall convergence, see e.g. [5]. The following
section provides a detailed analysis on solving (3.8).

3.3. Solving the Newton step. For each iteration during the solution of (3.8), represented
by some iterate w, the ”effect” of the Jacobian Jk[w] has to be evaluated. This can be carried
out by solving the linearized Navier-Stokes equations, which will be elaborated on in the
following.

First we note that the application of the Jacobian Jk to some w can further be simplified
by:

Jk[w] = w − JNSk [w],

by definition of D, where JNSk denotes the Jacobian of the terminal state U(ukI , T
k+1, 1) in

direction w. Therefore, the focus is shifted towards the computation of JNSk [w], which for the
following analysis will be denoted by J [w] for notational convenience. Furthermore, to simplify
the derivation of the linear model, divergence free vector spaces for the velocity u arising from
the S-SNSE are assumed, such that the pressure variable can be neglected. Also, the strong
formulation of the S-SNSE is being considered, provided that the velocity variable fulfils the
regularity requirements of a classical solution to the stochastic Navier-Stokes equations. In an
analogous yet more technical way, the results of this section can be transferred to the mixed-
type variational formulation involving the pressure variable with less regularity requirements
on the velocity u.
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We define the Navier-Stokes operator F by:

F (uI , u) :=

∂λu+ T (u · ∇)u− νT∆u
u|Γ − g

u(λ = 0)− uI

 ,
such that F (uI , u) = 0 represents the S-SNSE in their strong formulation subject to a
Dirichlet-condition g. Furthermore, let u∗I := ukI , then there exists a solution u∗ such that
F (u∗I , u

∗) = 0 [22, 26]. It can be shown that F is C∞-differentiable [12] in a neighborhood
of (u∗I , u

∗). The directional Gâteaux derivative of F with respect to u in direction ū can be
easily calculated and reads:

Fu(uI , u)[ū] =

∂λū+ T (ū · ∇)u+ T (u · ∇)ū− νT∆ū
ū|Γ

ū(λ = 0)

 .
Assuming that the partial Fréchet derivative Fu is bijective in a neighbourhood of (u∗I , u

∗)
allows the use of the implicit function theorem [30] from which it follows:

−Fu(uI , u)u′(uI) = FuI (uI , u), (3.9)

for all (uI , u) in a neighbourhood of (u∗I , u
∗). Note, that u′(uI)[w] = J [w] for a direction w.

Therefore inserting this relation into equation (3.9) at (uI , u) = (u∗I , u
∗) with respect to the

direction w yields:

−

∂λv + T (v · ∇)u∗ + T (u∗ · ∇)v − νT∆v
v|Γ

v(λ = 0)

 =

 0
0
−w

 , (3.10)

for v := J [w].
Summing up, the computation of the directional derivative J [w] of the terminal state

U(ukI , T
k+1, 1) with respect to uI in direction w does not require a solution of the non-

linear form of the S-SNSE. Instead, given an iterate ukI and its corresponding terminal state
U(ukI , T

k+1, 1), it suffices to solve a linearized version of the S-SNSE subject to homogeneous
Dirichlet boundary conditions on the boundary Γ ⊂ ∂D and initial condition w, with lineariza-
tion around the trajectory of the velocity between the initial condition ukI and its terminal
state U(ukI , T

k+1, 1) as stated in equation (3.10). The weak mixed-type formulation, i.e. with
consideration of the pressure variable, results in a non-symmetric system, solution of which
can be computed, for example, by applying GMRES as an iterative inner-loop solver again.

Remark 2.Note, that instead of solving the linearized equations, it is also possible to ap-
proximate the Jacobian by a Finite-Difference scheme [4], which, however, would require to
solve the non-linear version of the S-SNSE in each iteration.

3.4. Phase–drift control. Having computed some initial condition iterate ukI , it is possible
that the trajectories corresponding to different realizations of the random input ξ deviate
too much, such that an increasing polynomial degree needs to be employed to capture the
stochastic variations. This is due to the arbitrariness of the stochastic phase on the initial
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condition definition. Indeed, if uI(ξ) is a valid initial condition, in the sense that it belongs
(a.s.) to the stochastic limit-cycle having a period T (ξ), then U(uI , T (ξ), β(ξ)) is another
valid initial condition, ∀β(ξ) > 0. This can cause numerical instabilities of the algorithm and
iterations need to be controlled in an appropriate way. Therefore, we define a control step
which ensures that the trajectories remain essentially in-phase. This control is based on the
ideas initially proposed in [18].

The phase–drift can be measured with respect to a deterministic reference trajectory. To
this end, we define a reference û as the velocity evaluated at the mean ξ̄ of the random input,
i.e.,

û(λ, x) := u(λ, x, ξ)|ξ=ξ̄.

The distance between the stochastic velocity field and the reference is defined by

δu(λ, x, ξ) := u(λ, x, ξ)− û(λ, x),

such that the phase-drift can be measured by the weighted inner product Σ(λ, ξ) of the distance
and the time tangential of the stochastic velocity field:

Σ(λ, ξ) :=
(δu, ∂λû)

(∂λû, ∂λû)1/2
.

Note that (∂λû, ∂λû) > 0 in an almost surely unsteady flow. An in–phase condition is equiva-
lent to minimize Σ(λ, ξ) in some sense, which will be elaborated on in the following. Therefore,
in addition to the time scaling by the period T , we introduce a further stochastic time scaling
τ , modifying the time scale λ by

τ(t, ξ) :=
λ(t, ξ)

σ(t, ξ)
,

where σ is defined to be an almost surely positive random process, which is piecewise constant
in the physical time scale t with respect to some finite number of time intervals. Suppose we
employ some time discretization scheme of λ, denoted by some function h such that

un+1 = un + h(∆λ, un, un+1, ξ),

where un := u(λn) and ∆λ > 0 denotes a (deterministic) time step size, which can be defined
for example by

∆λ :=
∆t

T (ξ)
> 0,

for ∆t > 0. Introducing the new stochastic time scaling σ, we get

un+1 = un + σ(ξ)h(∆λ, un, un+1, ξ),

due to σ being piecewise constant in t. Therefore, we obtain the possibility of modifying each
time stepping for every trajectory resulting from a realization of ξ. The remaining question is
how to define the time scaling σ. Note that σ := 1 corresponds to no additional time scaling
but λ.
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In this work we employ a simple heuristic to control the behaviour of σ within each time
interval. For this purpose we monitor the quantity Σ(λ, ξ) and define the ”rule”:

σ(ξ) < 1, if Σ > 0, (slow down),

σ(ξ) > 1, if Σ < 0, (speed up).

Therefore, a trajectory is speeded up, if the angle between the reference and the trajectory is
greater than π/2 and it is slowed down in the other case. As a simple heuristic we define

σ(ξ) := (1 + θ
1

∆λ
(∂λu, ∂λu)Σ(λ, ξ)),

where θ > 0 is some prescribed control parameter. Note that this heuristic does not necessary
guarantee an almost surely positive σ. However, for a sufficiently small θ it can be assumed
that σ remains close to 1, which however reduces the control influence of σ. Furthermore, if
the trajectories are in–phase σ returns to 1 by definition.

The application of the control step is carried out with respect to one cycle subject to
the current period iterate T k. This requires the solution of the time scaled Navier-Stokes
equations, where after completion of one cycle, we choose the velocity with a minimal Σ along
the computed trajectory as a new initial condition ukI . In our numerical applications, we
chose θ to be the current norm of the distance between the initial condition iterate and its
corresponding terminal condition (cf. (2.21)). A small distance suggests that the trajectories
should be at least close to in–phase, such that no additional phase correction should be
necessary.

Remark 3.Note that if θ is chosen too large, then the control becomes numerically unstable,
since the positivity constraint could be violated.

3.5. The algorithm. This section shortly recapitulates the algorithm introduced in the
previous sections. As can be seen from Algorithm 1, the computation of a periodic orbit
requires the solution of various Navier-Stokes problems in each iteration, which is certainly the
bulk of the numerical cost. One iteration requires the solution of multiple non-linear stochastic
Navier-Stokes problems and multiple linearized stochastic Navier-Stokes problems. Therefore,
the numerical efficiency of this algorithm strongly depends on the numerical efficiency on the
available numerical solvers for the stochastic Navier-Stokes equations. Especially, in context
of high Reynolds number flows, a numerically stable Finite-Element discretization along with
the stochastic Galerkin projection requires a large number of degrees of freedom to capture
all dynamics of the flow.

Note the the parameter γ > 0 allows a user control on the accuracy of the computed
period iterate, which effects the convergence speed of the algorithm. In our computations
shown in section 4 it was sufficient to choose γ = 1.0.

4. Numerical results. The algorithm described in the previous section shall be verified
employing a slightly modified benchmark problem originally introduced in [25]. It is a two-
dimensional problem in the spatial variable, which describes a flow of an incompressible fluid
around a circular domain within a channel of length L and height H. Its exact geometrical
data as well as the employed Finite-Element mesh consisting of triangles is depicted in Fig. 4.1
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Algorithm 1 Computation of stochastic periodic orbits

1: Choose initial guesses u0
I and T 0

2: Choose tolerances ε > 0, γ > 0 and kmax ∈ N
3: k ← 0
4: Compute terminal condition u0

T ← U(u0
I , T

0, 1) (non-linear stochastic NS)
5: r0 ← ‖u0

I − u0
T ‖/‖u0

I‖
6: while k < kmax and rk > ε do
7: k ← k + 1
8: Correct initial condition uk−1

I by phase control (non-linear stochastic NS)
9: while ‖dλ‖ > γ‖rk−1‖ do

10: Compute dλ =
∑M

i=0 dλiψi (non-linear stochastic NS)

11: Update period modes T km ← T k−1
m +

∑M
i=0

∑Q
j=0 dλiT

k−1
j 〈ψiψj , ψm〉, m = 0, . . . , Q

12: end while
13: Compute terminal condition ukT ← U(uk−1

I , T k, 1) (non-linear stochastic NS)

14: Solve inexact Newton step −Jk[dukI ] = uk−1
I − ukT (linear stoch. NS, multiple times)

15: Update initial condition ukI ← uk−1
I + dukI

16: Compute terminal condition ukT ← U(ukI , T
k, 1) (non-linear stochastic NS)

17: rk ← ‖ukI − ukT ‖/‖ukI‖
18: end while
19: Postprocessing

Figure 4.1: Employed geometry and triangulation of a 2d-channel with a circular domain.

with L = 2.2, H = 0.4. The circular domain has a diameter of Dc = 0.1 and its center-point
has the coordinates (cx, cy) = (0.2, 0.2).

No-slip boundary conditions are considered for Γw ⊂ ∂D = (0, L) × (0, H). The inflow
boundary condition at Γi ⊂ ∂D is set to be a stochastic parabolic profile, i.e.,

ux(0, y, t; ξ) = 4v(1)(ξ)y(H − y)/H2

+ v(2)(ξ) sin(2πy/H), y ∈ [0, H], t ≥ 0, (4.1)

uy(0, y, t; ξ) = 0, t ≥ 0, (4.2)

with u = [ux, uy] denoting the components in x- and y-directions of the velocity u, respectively.
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In the following sections, a one-dimensional and a two-dimensional uniformly distributed
random input ξ will be considered, where v(1)(ξ) and v(2)(ξ) will be defined later according
to the numerical examples. For the outflow boundary condition at Γo ⊂ ∂D so-called ”do-
nothing” boundary conditions are applied [11]. These represent natural boundary conditions
arising from the weak formulation of the SNSE by requiring all boundary integrals at Γo to
vanish in their sum, i.e., ∫

Γo

∇ui · ~n− pi~n dx = 0, i = 0, . . . , P,

where ui and pi, i = 0, . . . , P denote the PC modes of the velocity and pressure variable,
respectively and ~n denotes the outward unit normal vector on the boundary Γo. Since this
boundary condition results in a unique pressure variable, no additional requirements, such as∫
D p dx = 0, are necessary.

For time integration a Crank-Nicolson scheme with a homogeneous time step size ∆t =
0.01 for the unscaled time variable t is employed. The corresponding time step length ∆λ > 0
for the scaled time variable λ is defined by:

∆λ :=
∆t

T k(ξ = ξ)
,

Therefore, the time step size can vary for each iteration k of the algorithm, depending on the
value T k(ξ) of the period iterate. The spatial variable is discretized employing the Finite-
Element mesh depicted in Fig. 4.1 and stable Taylor-Hood elements of order 2 for each
stochastic mode of the velocity variable and order 1 for each pressure mode. The computations
are carried out using the Finite-Element software HiFlow3 [1].

Furthermore, the kinematic viscosity ν is deterministic and set to ν = 0.001 for all bench-
mark computations. The Reynolds number is calculated by:

Re(ξ) =
2

3

v(1)(ξ)Dc

ν
.

In the following numerical examples, we choose v(1) and v(2) such that a laminar time-
periodic solution exists, which does not require any additional stabilization of the convective
term. The flow is characterized by a periodic vortex shedding scheme behind the circular
domain (the flow is considered from left to right, cf. Fig. 4.1).

4.1. One-dimensional random input. In this section a one-dimensional random input
ξ ∼ U(−1, 1), uniformly distributed in the interval (−1, 1), is being considered. The random
quantities v(1)(ξ) and v(2)(ξ) for the inflow boundary conditions (4.1) are set to:

v(1)(ξ) := 1.5 + 0.15ξ, v(2)(ξ) := 0,

representing a stochastic parabolic inflow condition, which results in a uniformly distributed
Reynolds number Re ∼ U(90, 110). Note that the uncertainty in the Reynolds number is
introduced by the stochastic inflow condition only, since a deterministic viscosity ν = 0.001 is
used throughout the numerical computations.
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(a) Total rel. error. (b) Mode-wise rel. error.

Figure 4.2: Total and mode-wise relative error developments with respect to the number of
iterations for a third order PC expansion.

(a) Period values over input realiza-
tions.

(b) Relative error of period approxi-
mation.

(c) Estimation of period probability
density function.

Figure 4.3: Period approximation and pdf estimation with absolute values and relative errors
compared to deterministic simulations. A deterministic sample value corresponds to the period
value computed by applying the algorithm on a deterministic system obtained by specific
realizations of the random input ξ at the plotted nodes. The ”Third order PC” labelled
period corresponds to the point evaluation of the PC expansion of the stochastic period.

We use a fully developed deterministic flow with corresponding deterministic period as an
initial guess for the iteration procedure. For verification of the convergence properties of the
algorithm we consider the relative errors based on the difference of the initial condition and
its terminal state with respect to each iteration. Thereby, the total as well as the mode-wise
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(a) Phase control during one limit-cycle. (b) Convergence breakdown of standard Legendre
Chaos. Time evolution up to two period lengths for
different realizations of ξ.

Figure 4.4: Phase control and convergence breakdown of standard third order Legendre Chaos.

(a) Non-linear S-SNSE. (b) Linearized S-SNSE.

Figure 4.5: Required number of solves of the linearized and non-linear S-SNSE with respect
to desired accuracy and control parameter γ.

relative errors are computed by the following relations:

ε :=
‖u(λ = 1)− u(λ = 0)‖W⊗SP
‖ufinal iteration‖L2((0,T )×D×Ω)

, εi :=
‖ui(λ = 1)− ui(λ = 0)‖W
‖ufinal iteration‖L2((0,T )×D×Ω)

,

The computations are carried out employing a 3rd order Legendre PC expansion resulting in
P + 1 = 4 modes. As can be observed in Fig. 4.2 the total as well as mode-wise relative



A Newton-Galerkin method for fluid flow exhibiting uncertain periodic dynamics 17

(a) Trajectories of PC samples. (b) Trajectories for ξ = −1. (c) Trajectories for ξ = −0.5.

(d) Trajectories for ξ = 0. (e) Trajectories for ξ = 0.5. (f) Trajectories for ξ = 1.

Figure 4.6: Limit-cycles for PC solution and corresponding sample computations based on
the solution of the deterministic reference systems obtained by a realization of the random
input ξ.

errors decrease exponentially with respect to the number of iterations starting at the initial
errors introduced by the initial guess up to machine precision. Furthermore, Fig. 4.3a and
4.3b depict the absolute values and corresponding relative errors associated with the point-
wise evaluation of the period computed by the PC expansion and corresponding deterministic
sample computations. It can observed that the period samples are approximated with a
accuracy up to the order O(10−3). We stress that the relation of the period T (ξ) and ξ is
nonlinear, which is verified by estimating the probability density function of T (ξ) (cf. Fig
4.3c). Fig. 4.4a depicts the evolution of the phase-drift, measured by ‖Σ(λ, ξ)‖S (cf. Section
3.4), during one cycle. It can be observed, that the phase control keeps the trajectories in
phase (in a L2 sense), which stabilizes the numerical computation and allows for lower order
PC expansions. Furthermore, we observe that the phase control exhibits a period with about
twice the length of the period of the flow, which is due to the symmetry of the trajectories.

Fig. 4.4b depicts a standard third order Legendre PC expansion computed by a straight
forward time integration without employing the introduced algorithm. The standard approach
leaves the limit cycle after a very short time and is not able to complete even one cycle. This
can be explained by an increasing phase-drift in the trajectories, which requires an increasing
polynomial degree in time. Note, that the introduced algorithm also employs a Legendre PC
expansion due to the Uniform distribution of the random input.



18 M. Schick, V. Heuveline, O. P. Le Mâıtre

Although the decrease of the relative errors in Fig. 4.2 suggest a high accuracy in comput-
ing the almost surely time-periodic limit-cycles of the trajectories, we verify the limit-cycles
by a comparison of the stochastic PC approach and a purely deterministic reference simu-
lation employing the same algorithm. The trajectories are depicted in Fig. 4.6. It can be
observed that the dependence on ξ has a significant impact on the shape and magnitude of the
limit-cycles. Furthermore, there is a good agreement between the deterministic computations
and the point evaluation of the PC solutions. In addition, the initial condition realizations at
time λ = 0 are marked in the plots. Since the computations are carried out using an implicit
time discretization scheme, the numerical stability allows for a large time step size resulting
in time steps varying between 30 and 38. Fig. 4.5 depicts the required number of solves of
the non-linear S-SNSE as well as its linearized counterpart to achieve a certain relative error,
where the value γ = 1.0 results in the least number of required solves. Achieving machine
precision requires about 230 non-linear and 75 linearized solves, in contrast, e.g. the solution
up to the relative error of 10−4 requires about 30 non-linear and 15 linearized solves. We stress
that the numerical cost of the algorithm is proportional to the number of required S-SNSE
solves. Overall, the numerical algorithm is capable of computing the stochastic limit-cycles
with a high accuracy and overcomes the convergence breakdown of a standard PC expansion.

4.2. Two-dimensional random input. In this section the algorithm shall be applied to
a more complex problem, characterized by a two-dimensional random input ξ = (ξ1, ξ2),
where ξ1, ξ2 ∼ U(−1, 1), i.e. we consider a two-dimensional independent uniformly distributed
random vector in the interval (−1, 1). The random quantities v(1)(ξ) and v(2)(ξ) for the inflow
boundary conditions (4.1) are set to:

v(1)(ξ) := 1.5 + 0.15ξ1, v(2)(ξ) := 0.15ξ2,

representing a stochastic parabolic inflow condition, with respect to ξ1 and a stochastic sinus
profile with respect to ξ2. It is ensured that the inflow boundary condition remains positive
almost surely.

The numerical computations are carried out up to a total relative error of order O(10−9).
We have observed that the period exhibits a dominant one-dimensional dependence on ξ1.
There is only a small dependence of the period on ξ2 (not pictured). Therefore, the proba-
bility density exhibits a similar behaviour as for the one-dimensional random input case (cf.
Fig. 4.3c). Although ξ2 has little effect on the period T (ξ1, ξ2), the corresponding limit-cycles
exhibit a significant dependence on both ξ1 and ξ2. This is verified by a comparison of de-
terministic reference scenarios and corresponding realizations of a third order Legendre PC
solution in Fig. 4.7. Furthermore, the results are compared to a first order Legendre PC
expansion to demonstrate the dependence of the limit-cycle approximation on the order of
the PC expansion. It can be observed, that the third order expansion is capable of approxi-
mating each deterministic reference solution with high accuracy. In contrast, the first order
expansion exhibits a significant deviation to the deterministic reference scenarios. However,
this demonstrates the convergence with respect to the order of the PC expansion and stresses
the importance of verifying the PC solutions according to their sample realizations. Fig. 4.8
provides a summary of the different third order PC realizations to give a compact view on the
dependence of the limit-cycles on the random input ξ1 and ξ2.
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(a) Trajectories for ξ1 = −1, ξ2 = −1. (b) Trajectories for ξ1 = −1, ξ2 = 0. (c) Trajectories for ξ1 = −1, ξ2 = 1.

(d) Trajectories for ξ1 = 0, ξ2 = −1. (e) Trajectories for ξ1 = 0, ξ2 = 0. (f) Trajectories for ξ1 = 0, ξ2 = 1.

(g) Trajectories for ξ1 = 1, ξ2 = −1. (h) Trajectories for ξ1 = 1, ξ2 = 0. (i) Trajectories for ξ1 = 1, ξ2 = 1.

Figure 4.7: Limit-cycles for PC solution and corresponding sample computations based on
the solution of the deterministic reference systems obtained by a realization of the random
input ξ = (ξ1, ξ2).

5. Conclusions. This paper is focused on the application of Polynomial Chaos (PC) to
fluid flow problems exhibiting stochastic limit-cycles, i.e., almost surely time-periodic solutions
with uncertain period. A standard PC expansion is known to break down in convergence for
this kind of problems because of strong non-linear dynamics. This necessitates the develop-
ment of appropriate numerical solvers overcoming the restrictions given by fixing a polynomial
degree of an PC expansion. In this work, we introduce a numerical algorithm based on a re-
formulation of the governing equations by introducing the period as an unknown stochastic
random variable to the unsteady incompressible Navier-Stokes equations subject to random
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(a) ξ1 dependency. (b) ξ2 dependency. (c) Mixed ξ1 and ξ2 dependency.

Figure 4.8: Point evaluation of limit-cycles of the 3rd order PC solution.

input. This additional random variable is computed by an optimality constraint, which cor-
rects the error associated with the stochastic realizations of the period. Since a time-periodic
solution can be characterized by a period and some corresponding initial condition of the flow
at time t = 0, a Newton-step is applied to provide an update formula for computing a new
iterate of the initial condition. However, this doesn’t ensure automatically that the trajecto-
ries corresponding to the realizations of the stochastic flow remain in-phase when integrating
the governing equations in time. This can result in an increasing demand on the PC order
to accurately approximate the initial condition. But since the initial condition is not unique,
there exists another representative which requires a much lower expansion order, characterized
by in-phase trajectories. Therefore, a stabilization step based on an heuristic optimization
technique is introduced, which ensures that the trajectories remain in-phase when integrating
in time.

The algorithm is applied to a benchmark problem representing a flow around a circular
domain subject to a one- and a two-dimensional random input at the inflow boundary condi-
tion. For both cases excellent convergence results are achieved by employing a third order PC
expansion. The algorithm itself exhibits an exponential convergence rate. Furthermore, the
limit-cycles and the period are in very good agreement to deterministic reference solutions.
However, one must pay attention to the employed order of the PC expansion. If a low PC
expansion order is used, the solutions also follow a stochastic limit-cycle, but the trajectories
are unable to capture the dynamics of the deterministic reference scenario, which requires an
increase in the PC expansion order.

The numerical cost of the algorithm strongly depends on the employed numerical solvers
for the solution of the stochastic Navier-Stokes equations, since these need to be solved multiple
times during one iteration. Machine precision for the first benchmark problem was obtained
by the solution of about 230 non-linear S-SNSE and 75 linearized S-SNSE solves. The growth
of the computational cost is exponential with respect to the achieved relative error. This
is due to the linearization error arising from computing the period update, whose reduction
results in a growing number of S-SNSE solves with respect to a prescribed relative error.

Statistical properties of the random parameters, such as for example their mean, their
variance or their probability distribution, could theoretically have an effect on the convergence
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rate of the algorithm. A large stochastic variation in the period, for example, could result in
more correction steps necessary for determining the period update. Future publications will
provide a detailed quantitative analysis on the dependence of the convergence and associated
numerical cost of the algorithm with respect to the statistical properties.
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