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Abstract

Steady and unsteady diffusion equations, with stochastic diffusivity coefficient and forcing term, are modeled in two

dimensions by means of stochastic spectral representations. Problem data and solution variables are expanded using the

Polynomial Chaos system. The approach leads to a set of coupled problems for the stochastic modes. Spatial finite-

difference discretization of these coupled problems results in a large system of equations, whose dimension necessitates

the use of iterative approaches in order to obtain the solution within a reasonable computational time. To accelerate the

convergence of the iterative technique, a multigrid method, based on spatial coarsening, is implemented. Numerical

experiments show good scaling properties of the method, both with respect to the number of spatial grid points and the

stochastic resolution level.
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1. Introduction

Developments in the field of computational mechanics and physics are enabling the solution of in-
creasingly more realistic engineering problems. These advances take advantage of (i) enhanced computa-

tional capabilities––including parallel platforms and parallel techniques; (ii) elaborate models to handle

more physical effects with less approximation of the system dynamics; and (iii) the development of nu-

merical methods to reduce computational time and/or improve accuracy. As with many other fields, the
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field of computational stochastic mechanics has benefited from such recent developments, and reached a
level of maturity that allows for simulations that provide meaningful predictions to problems involving

uncertain data [36]. Computational stochastic mechanics is particularly attractive in engineering sciences

and physics, where the system to be analyzed can rarely be characterized exactly, while numerical methods

usually require deterministic inputs. The present work takes place in this context.

Uncertainties in simulations of mechanical systems can be related to an inexact knowledge of the system

geometry (e.g. [4,32]), boundary and initial conditions (e.g. [23,24,43]), external forcing (e.g. [18]), physical

properties, or model parameters. Uncertainties can sometimes be due to measurement difficulties or to the

intrinsic randomness of the processes, as in the case of heterogeneous media [14,15,29]. In order to deal with
these uncertainties, distinct computational strategies have emerged, including Monte Carlo simulations

(MCS) [25] and the integration of stochastic differential equations (SDE) [17,20], or a blend of the two. In

MCS, the response surface of the random process is estimated by computing the deterministic responses of

the system for a (large) set of distinct conditions that appropriately sample the uncertainty domain. In

contrast, integration of the SDE governing the system is usually more difficult than the correspond-

ing deterministic problem. Usually, integration of the SDE is achieved approximately, through statistical

linearizations, asymptotic expansions, perturbation methods or truncated spectral representations. In the

present study, uncertainty is taken into account by means of spectral expansions along the stochastic di-
mensions using Polynomial Chaos (PC) representations [5,42]. This representation is used to obtain a full

statistical characterization of the response, in contrast with the other cited approaches which are usually

limited to the very first statistical moments. Moreover, the spectral representation is now well established.

Over the last few years, this technique has been successfully applied in various settings, including both solid

and fluid mechanics [14,18,19,21,23,24,26,28,29,33,36–38].

In this work, we focus on a ‘‘generic’’ diffusion problem for a quantity u, with a random, spatially vary-

ing isotropic diffusion coefficient k, inside a two-dimensional domain D. The general form of the govern-

ing equation for this problem can be expressed as:

a
ouðx; t; hÞ

ot
¼ $ � ½kðx; t; hÞ$uðx; t; hÞ� þ sðx; t; hÞ; ð1Þ

where a ¼ 0, 1 in the steady and unsteady cases, respectively, s is a given stochastic source term, and hðxÞ
denotes the stochastic character of the solution. The formulation is completed by specifying boundary

conditions for u (generally Neumann or Dirichlet conditions), as well as an initial condition in the unsteady

case. The elliptic form of Eq. (1) has been thoroughly analyzed from the mathematical point of view; see for
instance [3,7,20,40].

Our current interest in an efficient solution method for Eq. (1) comes from the simulation of reacting

electrochemical microchannel flow [9], where the steady form of the equation governs the electric field.

There, u is the electrostatic field potential, k is the electrical conductivity, and s is the charge accumulation

due to diffusion of dissociated species (ions). k and s are expressed as:

k ¼ F 2
X

z2i lici; s ¼ F
X

zi$ � ðDirciÞ; ð2Þ

where F is the Faraday constant, zi, li, Di and ci are the charge number, electrophoretic mobility, molar

diffusivity and molar concentration of the species i respectively [35]. Eq. (1) becomes stochastic whenever k,
s or the initial/boundary conditions on u are uncertain. In addition to this specific example, Eq. (1) appears,

by itself or as part of a larger system, in the formulation of many problems involving gradient diffusion
processes [9,19–21,23,26,33,37], as well as a variety of problems such as 1D-linear elasticity problems [10]

and electromagnetism [38]. Therefore, an abstract study in a broader context than electrochemical flow is

well justified.

A major difficulty in the solution of Eq. (1) concerns the representation of the stochastic diffusivity and

source fields, and of the solution itself. As stated before, we will make use of spectral representations [17]
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for this purpose. For brevity, but without loss of generality, the diffusivity field will be represented in terms
of the Karhunen–Lo�eeve (KL) expansion, which is assumed to be known. Following the discussion above,

this enables us to avoid describing the auxiliary problem of explicitly modeling the uncertainty in k, and
consequently focus our attention on the solution for u, which is sought in terms of its PC representation

[17,20,36]. While the source term s may also be given in terms of a KL representation or more generally by

a PC expansion, we will restrict our attention in the numerical tests to the case where s � 0, i.e. to the

homogeneous form of Eq. (1). For the purpose of the present construction, this enables us to avoid un-

necessary details associated with setting up a stochastic source field. Both of these restrictions, however,

can be easily relaxed within the framework of the construction.
One potential drawback of the spectral approach is that the size of the system of equations that needs to

be solved grows rapidly as the number of stochastic dimensions increases. Specifically, the size of the

stochastic system scales with the number of spectral-expansion modes retained in the computation, which

increases rapidly with the number of dimensions and with the order of the expansion. Furthermore, since

the equations governing the uncertainty modes are generally coupled, the CPU time needed to solve the

stochastic system can increase rapidly with system size. This poses a serious computational challenge, which

requires the development of efficient solvers [30,31,34]. The present study specifically aims at this objective,

in the context of the generic formulation given in Eq. (1). Specifically, we describe the adaptation of a
(deterministic) multigrid (MG) technique [41] for the solution of the system of equations arising from the

finite-difference discretization of the spectral representation of the stochastic diffusion equation.

This paper is organized as follows. In Section 2, we recall the basic concepts and properties of the PC

expansion of a stochastic process. Using these concepts, the stochastic spectral formulation of Eq. (1) is

derived in Section 3 and the difficulties inherent to the solution of the spectral equations are discussed.

Next, the finite-difference discretization of the stochastic system is introduced (Section 4), and an iterative

technique is proposed to solve the resulting set of equations. In Section 5, a multigrid technique, based on

spatial coarsening, is developed to improve the convergence rate of the previous iterative method. The
multigrid algorithm is applied to selected test problems in Section 6, and the tests are used to examine its

efficiency and scalability properties. Major findings are summarized in Section 7.
2. Polynomial Chaos representation

2.1. Spectral representation

In this section, the spectral representation of the stochastic process uðx; t; hÞ by means of the PC system is

introduced. We consider the case where the uncertainty is due to a set of N independent (uncorrelated)

stochastic parameters. The problem is then said to possess N stochastic dimensions, denoted by n1; . . . ; nN ,
which are considered as generators of new dimensions (in addition to the space and time dimensions) in the

solution process. Thus we have h � fn1; . . . nNg. Noting that u is a non-linear functional of its stochastic

argument h, it is natural to look for an orthogonal expansion of u in terms of the random variables ni,
i ¼ 1; . . . ;N . This idea has lead to the concepts of homogeneous chaos and of PC expansions [5,17,42], in

the case of Gaussian variables. The case of non-Gaussian measures is discussed in [12,13], but will not be
considered here.

The dependence of uðx; t; hÞ on its stochastic arguments is approximated with the following truncated

expansion:

uðx; t; hÞ ¼
XP
k¼0

ukðx; tÞWkðhÞ; ð3Þ
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where uk are deterministic coefficients and fW0; . . . ;WPg is a (truncated) orthogonal basis consisting of

multidimensional Hermite polynomials in ni. The truncation is such that the degree of the polynomials is at

most equal to N0, the order of the expansion. The total number of modes, P þ 1, depends on N and N0,

according to [8]:

P þ 1 ¼ ðN þ N0Þ!
N !N0!

: ð4Þ

The orthogonality of the spectral basis fWk; k ¼ 0; . . . ; Pg on which u is expanded is defined with respect to

the inner product:

WiWj

� �
�
Z

� � �
Z

WiðhÞWjðhÞgðn1Þ � � � gðnnÞdn1 � � � dnn; ð5Þ

where

gðnÞ ¼ e�n2=2ffiffiffiffiffiffi
2p

p ð6Þ

is the Gaussian measure. Since h is a Gaussian vector, inner products (Eq. (5)) and higher moments can be
efficiently computed using moment formulas [22], based on a straightforward generalization of Gauss

quadrature in one spatial dimension [1].

2.2. PC expansions of field variables

In general, all field variables may exhibit a stochastic character and should therefore be represented with

PC expansions. In particular, the diffusivity and source fields can be expressed as:

kðx; t; hÞ ¼
XP
k¼0

kkðx; tÞWkðhÞ; sðx; t; hÞ ¼
XP
k¼0

skðx; tÞWkðhÞ; ð7Þ

respectively. Clearly, if k and s are deterministic, then all modes with index k > 0 vanish identically. When

this is not the case, the solution process u immediately admits a stochastic character, even when the

boundary and, if relevant, initial conditions are deterministic.

The formulation above is quite general, and enables us to accommodate situations where the initial and

boundary conditions on u, the diffusivity field, k, and source field, s, are all uncertain. While the general case

may be of interest, its treatment would require a detailed analysis of the source of uncertainty, which would
distract from the present objective. Thus, in order to limit the scope of the simulations, while at the same

time provide a meaningful test to the solver below, we restrict our attention to the case of a random dif-

fusivity, deterministic boundary conditions, and vanishing source field. The diffusivity k is assumed to be

given by a Gaussian process with an exponentially decaying covariance function:

Cðx; x0Þ ¼ r2
k exp�

kx� x0k
Lc

; ð8Þ

where Lc is the correlation length and rk is the standard deviation. We then use KL expansion [16,27] to

express kðxÞ as:

kðxÞ ¼ �kkþ
X1
k¼1

ffiffiffiffiffi
bk

p
kkðxÞnk; ð9Þ

where �kk is the mean value, nk are uncorrelated Gaussian variables with zero mean and unit variance, while

bk and kk are, respectively, the eigenvalues and eigenfunctions appearing in the spectral representation of C:
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Cðx; x0Þ ¼
X1
k¼1

bkkkðxÞkkðx0Þ: ð10Þ

Note that, in general, �kk may vary in space, but we shall restrict our attention in the computations below to

the case of a uniform mean value.

In the computations below, the eigenvalues and eigenfunctions are obtained with the Galerkin procedure

described in [14–16]. The eigenvalues, all positive, are arranged in decreasing magnitude, and the KL ex-

pansion is truncated after the first N terms. Also note that the first N Polynomial Chaoses coincide with the
normalized Gaussian variables nk, i.e. WkðhÞ ¼ nk for k ¼ 1; . . . ;N . Thus, the KL representation of k can be

formally viewed as a special case of a PC representation (Eq. (7)) in which polynomials of degree larger

than one have vanishing coefficient. Different cases are considered by varying rk and Lc, and analyzing their

effect on the performance of the solver.
3. Continuous formulation and time discretization

3.1. Stochastic spectral diffusion equation

Introducing the PC expansions of the diffusivity, source and solution fields into the diffusion equation

(1), one gets:

a
XP
k¼0

ouk
ot

Wk ¼
XP
l¼0

XP
m¼0

WlWm$ � ½klðx; tÞ$umðx; tÞ� þ
XP
k¼0

skðx; tÞWk: ð11Þ

Then, multiplying this equation by Wi, evaluating its expectation and taking into account the orthogonality

of the PC basis, we obtain:

a
ouiðx; tÞ

ot
¼
XP
l¼0

XP
m¼0

Milm$ � ½klðx; tÞ$umðx; tÞ� þ siðx; tÞ for i ¼ 0; . . . ; P : ð12Þ

The multiplication tensor

Milm � hWiWlWmi
hWiWii

ð13Þ

is independent of the solution, and is therefore computed and stored during a pre-processing stage. A multi-

dimensional Gauss-quadrature approach [22] is used for this purpose. The tensor M is sparse with a

structure that depends on the order of the PC expansion and on the number of stochastic dimensions. The

sparse nature of M comes from the fact that many of the triple products WiWjWk, have vanishing expec-

tation. For instance, due to orthogonality hW0WiWji ¼ di;jhW2
i i. Also note that the triple product WiWjWk

can be written as the product of 1D polynomials, according to:

WiWjWkðn1; . . . ; nNÞ ¼
YN
q¼1

pqijkðnqÞ; ð14Þ

where pqijkðnqÞ is a triple product of 1D Hermite polynomials. Thus, in order for hWiWjWki to vanish, it is

sufficient that only one pqijk has vanishing expectation. On the other hand, M is generally not diagonal

(except for N0 ¼ 0), which leads to coupling between the ui modes. An immediate consequence of this
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coupling is an increase in the size of the resulting system of equations to be solved, compared to the de-

terministic case.

For unsteady problems, the use of an explicit time integration scheme for Eq. (12), as proposed in [23] in

the context of the Navier–Stokes equations, leads to a simple algorithm that requires direct evaluation of

the coupling terms. The use of explicit time-schemes has shown its efficiency for transient computations, but

explicit stability restrictions on the time step can prove prohibitive on fine grids. For steady-state problems,

a pseudo-transient approach may also be conceived, but in this case as well stability restrictions may lead to

poor computational efficiency. Consequently, the development of an efficient numerical solver for the
coupled system of equations is needed. This approach is adopted in the development below.
3.2. Boundary and initial conditions

Boundary conditions, and, when relevant, initial conditions, are needed to solve Eq. (12). These are also

implemented in a ‘‘weak sense’’, i.e. the boundary conditions are also projected onto the PC basis, leading

to explicit conditions for each of the ui�s. As noted in the introduction, the boundary conditions in the

present study can be either of the Neumann or Dirichlet type. For brevity, we assume here that the
boundary conditions are deterministic; an example of the use of uncertain boundary conditions is given in

[24]. Denoting by oDD and oDN the part of the boundaries of D where Dirichlet and Neumann conditions

apply, respectively, the boundary conditions for all modes are given by:

u0ðx; tÞ ¼ uDðx; tÞ; ui2½1;P �ðx; tÞ ¼ 0 8x 2 oDD; ð15Þ

ou0
on

ðx; tÞ ¼ gN0 ðx; tÞ;
ouk
on

ðx; tÞ ¼ 0; k ¼ 1; . . . ; P 8x 2 oDN ; ð16Þ

where n denotes the direction normal to the boundary.
Note that for steady problems involving only Neumann conditions, the modes of the source field must

satisfy the integral constraintsZ
D
skðxÞdx ¼

Z
oD

XP
l¼0

Mkl0klgN0 ds for k ¼ 1; . . . ; P : ð17Þ

Here, ds is the surface element along oD. For unsteady problems, an initial condition for u is required. This

initial condition may be deterministic or uncertain. In the former case, we have

u0ðx; t ¼ 0Þ ¼ u00ðxÞ; ukðx; t ¼ 0Þ ¼ 0; for k ¼ 1; . . . ; P : ð18Þ

On the other hand, when the initial condition is uncertain, initial conditions for all the modes uk need to be

specified.
3.3. Implicit time discretization

A simple, generic, example of an implicit time integration method is the Euler backward scheme, whose

application to Eq. (12) results in the following semi-discrete form:

a
Dt

unþ1
i �

XP
l¼0

XP
m¼0

Milm$ � ½knþ1
l ðxÞ$unþ1

m � ¼ snþ1
i ðxÞ þ a

Dt
uni ; ð19Þ

where Dt is the time step and the superscripts refer to the time level. In the following, the dependence of k
and s on time is dropped, since these fields are assumed to be given.
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4. Finite-difference discretization

4.1. Spatial discretization

Let D � ½0; L� � ½0;H � be a rectangular domain discretized in a set of Nx� Ny non-overlapping cells with

uniform size Dx ¼ L=Nx and Dy ¼ H=Ny in the x- and y-directions. We denote by ðUÞi;j, for i ¼ 1; . . . ;Nx
and j ¼ 1; . . . ;Ny the cell-averaged value of U, so that

ðUÞi;j �
1

DxDy

Z iDx

ði�1ÞDx

Z jDy

ðj�1ÞDy
UðxÞdxdy; ð20Þ

where U stands for any of the field variables uk, kk and sk. Using this convention, we rely on the following

centered, second-order spatial discretization of Eq. (19):

a
Dt

ðunþ1
k Þi;j �

XP
l¼0

XP
m¼0

Mklm

ðklÞiþ1;j þ ðklÞi;j
2

ðunþ1
m Þiþ1;j � ðunþ1

m Þi;j
Dx2

"

�
ðklÞi;j þ ðklÞi�1;j

2

ðunþ1
m Þi;j � ðunþ1

m Þi�1;j

Dx2
þ
ðklÞi;jþ1 þ ðklÞi;j

2

ðunþ1
m Þi;jþ1 � ðunþ1

m Þi;j
Dy2

�
ðklÞi;j þ ðklÞi;j�1

2

ðunþ1
m Þi;j � ðunþ1

m Þi;j�1

Dy2

#
¼ ðsnþ1

k Þi;j þ
a
Dt

ðunkÞi;j; k ¼ 0; . . . ; P : ð21Þ

The above equation can be re-cast in the following generic form:XP
l¼0

XP
m¼0

Mklm

�
ðWlÞi;jðunþ1

m Þiþ1;j þ ðElÞi;jðunþ1
m Þi�1;j þ ðNlÞi;jðunþ1

m Þi;jþ1

þ ðSlÞi;jðunþ1
m Þi;j�1 þ ðCk

l Þi;jðunþ1
m Þi;j

�
¼ ðf nþ1

k Þi;j; k ¼ 0; . . . ; P ; ð22Þ

which shows that a linear system of Nx � Ny � ðP þ 1Þ equations must be solved in order to advance the
solution by one time step. Of course, in the steady case this system is solved only once, and the superscripts

indicating the time level are no longer needed.

4.1.1. Treatment of boundary conditions

Both Dirichlet and Neumann conditions are implemented using ghost cell techniques. For the case of

Dirichlet condition, a ghost cell is introduced at the mirror image with respect to the boundary point of the

neighboring interior cell. The value of the solution at the ghost cell is then determined by linearly ex-

trapolating the solution from the interior, leading to a linear combination of the known value at the

boundary and the neighboring interior node. Using this relationship, the ghost variables are then eliminated

from the equation system. A similar approach is used in the case of a Neumann condition, based on ex-

pressing the known value of the normal derivative in terms of a second-order centered difference formula

involving the solution at the neighboring internal node and the corresponding ghost node. The resulting
relationship is then substituted into the equation system in order to eliminate the ghost variable. This

approach results in a modified system of the formXP
l¼0

XP
m¼0

Mklm

�
ð eWWlÞi;jðunþ1

m Þiþ1;j þ ðeEElÞi;jðunþ1
m Þi�1;j þ ðeNNlÞi;jðunþ1

m Þi;jþ1

þ ðeSSlÞi;jðunþ1
m Þi;j�1 þ ðeCCk

l Þi;jðunþ1
m Þi;j

�
¼ ð ~ff nþ1

k Þi;j; ð23Þ

where the tildes are used to indicate the modified values after implementation of the boundary conditions.



4730 O.P. Le Mâııtre et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4723–4744
4.2. Iterative method

Since the size of system (23) is large for most applications, iterative solution methods are preferred over

direct schemes. In this work, Gauss–Seidel iterations are used [39].

4.2.1. Outer iterations

Let us denote by ð~uumÞoui;j the estimate of ðunþ1
m Þi;j after the ou-th Gauss–Seidel iteration. This estimate can

be computed by applying the following algorithm, called outer iterations, in contrast with the inner iter-

ations described later:

• Loop on ou (Gauss–Seidel index)

� For i ¼ 1 to Nx, do

For j ¼ 1 to Ny , do

Find ð~uukÞouþ1

i;j such that:
XP
l¼0

XP
m¼0

MklmðeCCk
l Þi;jð~uumÞ

ouþ1

i;j ¼ ð ~ff n
k Þi;j �

XP
l¼0

XP
m¼0

Mklm

�
ð eWWlÞi;jð~uumÞ

ou
iþ1;j þ ðeEElÞi;jð~uumÞ

ouþ1

i�1;j

þ ðeNNlÞi;jð~uumÞ
ou
i;jþ1 þ ðeSSlÞi;jð~uumÞ

ouþ1

i;j�1

�
� ðQkÞoui;j ; k ¼ 0; . . . ; P ð24Þ
End of loop on j
� End of loop on i

• End of loop on ou

Thus,

ðRkÞoui;j ¼ ðQkÞoui;j �
XP
l¼0

XP
m¼0

MklmðeCClÞi;jð~uumÞ
ou
i;j

is the local residual of Eq. (24), for the kth mode, at the ou-th Gauss–Seidel iteration.

4.2.2. Inner iterations

For each point in space, Eq. (24) can be rewritten in vector form as:PP
l¼0 M00lðeCClÞ . . .

PP
l¼0 M0PlðeCClÞ

..

. . .
. ..

.PP
l¼0 MP0lðeCClÞ . . .

PP
l¼0 MPPlðeCClÞ

264
375 �

ð~uu0Þouþ1

..

.

ð~uuP Þouþ1

0B@
1CA ¼

ðQ0Þou

..

.

ðQP Þou

0B@
1CA; ð25Þ

where the grid-point indices have been dropped for clarity. Thus, at this stage, one has to solve a system of

P þ 1 equations to compute ð~uuk¼0;...;P Þouþ1

i;j from Eq. (24). A standard relaxation method (SOR) [39] is em-

ployed for this purpose. Denoting by x the over-relaxation parameter, and by ½Akm� the system matrix

corresponding to (25), the iterations are performed according to:

• Loop over in (SOR index)
� Do k ¼ 0; . . . ; P
Compute a new estimate of ð~uukÞ solution of Eq. (25) using

ð~uukÞinþ1 ¼ ð1� xÞð~uukÞin þ
x
Akk

ðQkÞin

 
�
Xk�1

m¼0

Akmð~uumÞinþ1 �
XP

m¼kþ1

Akmð~uumÞin

!
ð26Þ
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� End of loop over k.
• End of loop over in.

Note that for convenience, the Gauss–Seidel index ou has been dropped in Eq. (26).

Remark. The above decomposition of the iterative scheme into outer and inner loops may appear artificial,

since a global iteration on the three-dimensional system for ðunþ1
k Þi;j could be constructed. However, in view

of the implementation of the multigrid scheme, which is based on spatial coarsening, it is found more
convenient to clearly distinguish the inner iterations––which locally update the spectral coefficients of the

solution, from the outer iterations––which account for the spatial coupling. In addition, computational

tests (not shown) indicate that the convergence of the outer GS iteration is greatly improved when a more

accurate estimate of the exact solution of Eq. (25) is used.

4.3. Convergence of the iterative scheme

The efficiency of the overall iterative method proposed above is estimated through the convergence rate
of ð~uuÞou towards ðuÞnþ1

, as the number of iterations ou increases. This convergence rate depends on the

spectral radius of the system (23). Since Mklm does not depend on the solution variables or parameters, the

spectral radius is only a function of the stochastic diffusivity field kðx; hÞ, of the time-step Dt (if relevant),
and of Dx and Dy. For the deterministic problem (P ¼ 0), it is known that ðkÞi;j P 0 for all i; j is necessary to
ensure convergence, and that the convergence rate deteriorates when a=Dt decreases. In the stochastic case,

the positivity of ki;j is not ensured for all possible realizations. On the other hand, the numerical experiences

in Section 6 indicate that the iterations converge when the coefficient of variation (COV), rk=�kk, is sufficient

small. As COV increases, the convergence rate of the present iterative scheme deteriorates; convergence
fails above a critical value. These experiences appear to be consistent with the theoretical results in [2],

where uniformly distributed random variables were used to ensure positivity. In the latter case, it is shown

[2] that when COV is small, the solution exists and may be obtained by successive approximation.

The measure of convergence is obtained through the L2-norm of the residual for a given mode l which is

expressed as:

Nl �
XNx
i¼1

XNy
j¼1

½ðRlÞi;j�
2DxDy

( )1=2

: ð27Þ

The convergence of the iterative method will be further analyzed in Section 6 by monitoring the evolution

of the maximum (over all modes) normalized residual:

Rp �
maxl ½NlðpÞ�

maxl ½Nlðp ¼ 0Þ� ð28Þ

where the index p refers to the number of MG cycles.
5. Multigrid acceleration

It is known from the analysis of deterministic diffusion equations that the convergence rate is a function

of spatial frequencies. Specifically, the longest wavelengths exhibit the lowest convergence rate, while short
scales converge faster. To improve convergence, acceleration techniques based on spatial coarsening have

been proposed in the literature [6,11,41]. In the present work, we develop a multigrid technique for the

stochastic case.
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The basic idea of the multigrid technique is to treat the modes with low spatial frequencies on coarser
grids, since fine spatial resolution is not required for these modes. The gain of the method is due to the

faster convergence of the long-wave modes on the coarser grids, as well as the lower CPU cost of the

corresponding iterations. Since multigrid methods are widely used, we will just recall the main ingredients

of the approach, namely (i) the definition of the grid levels, (ii) the projection step and (iii) the prolongation

procedure.
5.1. Definition of grid levels

Thanks to the regular structure of the computational grid, the coarsening is made by merging a set of

neighboring grid cells to give a single cell on the next (coarser) grid level. This leads to a hierarchical set of

grids. In the current implementation, a coarsening step consists of merging four cells (two in each direction)

with surface areas Dxk � Dyk each, to obtain a child cell with surface area Dxkþ1 � Dykþ1 ¼ 4Dxk � Dyk, the
superscripts denoting the respective grid levels. Thus, starting from a grid level k, made of Nxk � Nyk cells,
the next grid level contains Nxkþ1 � Nykþ1 ¼ ðNxk � NykÞ=4 cells. Clearly, this process can be repeated as

long as Nxk and Nyk are even numbers. Whenever one of the number of cells in a direction is odd, the

coarsening automatically switches to a one-dimensional coarsening procedure in which only two cells are
merged to make a child cell. This procedure is illustrated in Fig. 1, where the successive grid levels are

plotted. Clearly the procedure is optimal when Nx and Ny are powers of 2.
5.2. Projection and prolongation procedures

On the finest grid level, a small number Nou of outer iterations is first performed. This provides ap-

proximate solutions ð~uumÞNou
i;j with residuals ðRmÞNou

i;j . These residuals are then projected onto the next coarser

grid, where problem (23) is considered, with ðRmÞNou
i;j as the right-hand side (in lieu of ðfkÞi;j), and with the

same but homogeneous boundary conditions. (In other words, on the coarser grids, the residual equation is

solved.) To do so, one has to provide an estimate of (k) and (Rm) on consecutive grid levels. This is achieved

by averaging their respective values over the parent cells as illustrated in the left scheme of Fig. 2a.

On the new grid level, a few outer iterations are performed, following the same methodology, to obtain

an approximate solution and a residual. The projection process is repeated until the last grid level is

reached. Then, from the coarser grid level, where an estimate solution for the residual equation has been

obtained, it is first transferred to the previous grid level through a prolongation procedure and then used to

correct the solution on that finer grid level. In the current implementation, this is achieved by summing the
cell averaged solution at level k with the solution of its parent cell, as shown in Fig. 2b. When the solution

has been prolongated onto level k � 1, a few outer iterations are performed (smoothing step) the process is

repeated until the initial, fine, grid is reached.
5.3. Multigrid cycles

Starting from the original grid, the application of successive projections up to the coarsest grid level,

followed by successive prolongations up to the starting grid, is referred to as a cycle. Different kinds of
cycles may be used [41], according to the excursion path along the grid levels. For instance, the so-called W-

cycles have been designed to improve the convergence rate of the multigrid method, and many other ex-

amples can be found in the literature. Since our objective here is simply to develop a multigrid methodology

for stochastic diffusion equations, we have limited ourselves to the simplest case of the V -cycle as described
above. Moreover, we use a constant number of Gauss–Seidel iterations, denoted Nou, on every grid-level,

after every projection or prolongation step.



Fig. 1. Example of grid coarsening used for the multigrid method. The base grid consists of 32� 256 cells (top left). The mesh is first

coarsened by merging four (two in each direction) cells to form a coarser child cell. When the number of cells in one direction is odd,

the coarsening process switches to 1D merging as in the last three grid levels.
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Fig. 2. Illustration of the (a) projection and (b) prolongation procedures to transfer data between two successive grid levels. In the

projection step, the residual on a given grid is transferred to the next (coarser) grid level by spatial averaging. The same methodology is

used to transfer the diffusivity data. For the prolongation of the solution from one grid level to the next (finer) one, simple addition is

used.
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5.4. Implementation of the multigrid scheme

Implementation of the MG scheme is now summarized as follows:

(1) Initialization:

• Determine spectral basis, compute and store the multiplication tensor M.

• Compute the KL decomposition of the k. (Alternatively the PC expansion of k is imported (e.g. [8]) or
set by the user.)

• Determine the system coefficients for all grid levels:

For ig ¼ 1; . . . ;Ng

� Determine the grid properties: Dxig ¼ 2ig�1Dx, Dyig ¼ 2ig�1Dy, Nxig ¼ Nx=2ig�1, Ny ¼ Ny=2ig�1.

� Compute the cell averaged diffusion field ðklÞigi;j, for i ¼ 1; . . . ;Nxig, j ¼ 1; . . . ;Nyig
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� Using Eqs. (21) and (22), determine the system coefficients ðCk
l Þ

ig
i;j, ðElÞigi;j, ðWlÞigi;j, ðNlÞigi;j, and ðSlÞigi;j.

� Compute and store the modified system coefficients accounting for the boundary conditions:

ðeCCk
l Þ

ig
i;j, ðeEElÞigi;j, ð eWWlÞigi;j, ðeNNlÞigi;j, ðeSSlÞigi;j.
End of loop over ig

• Initialize solution.
(2) Loop over time index n:

(a) Compute the right-hand side of system (23) on the first grid level: ð ~ff n

k Þ
ig¼1

i;j .

(b) Initialize solution on the first grid level: ð~uukÞig¼1

i;j ¼ ð~uunkÞi;j.
(c) Beginning of V-cycle
For ig ¼ 1; . . . ;Ng (coarsening)
• If ig > 1 then initialize the solution ð~uuÞig to zero.

• Outer loop:

For ou ¼ 1; . . . ;Nou

� Loop over spatial indices

For i ¼ 1; . . . ;Nig
x

For j ¼ 1; . . . ;Nig
y

Using Eq. (24), compute the right-hand side of Eq. (25).

Inner loop

For in ¼ 1; . . . ;Nin
Loop over mode index

For k ¼ 0; . . . ;P
Apply Eq. (26) to ð~uukÞigi;j
End of loop over k

End of loop over in
End of loop over i, j
End of loop over ou

• If ig < Ng, then

� Compute the local residual ðRkÞigi;j of Eq. (23) on the current grid level.

� Project the local residuals to compute the right-hand side of Eq. (23) at the next grid level

ig þ 1, i.e. determine ð ~ffkÞ
igþ1

i;j .
End of loop over ig

For ig ¼ Ng� 1; . . . ;1 (refinement)

• Update solution ð~uukÞig through the prolongation of ð~uukÞigþ1

.

• Outer loop:

For ou ¼ 1; . . . ;Nou

� Loop over spatial indices

For i ¼ 1; . . . ;Nig
x

For j ¼ 1; . . . ;Nig
y

Using Eq. (24), compute the right-hand side of Eq. (25).

Inner loop
For in ¼ 1; . . . ;Nin

Loop over mode index

For k ¼ 0; . . . ;P
Apply Eq. (26) to ð~uukÞigi;j
End of loop over k

End of loop over in
End of loop over i, j
End of loop over ou
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End of loop over ig

Compute local residual ðRkÞi;j of Eq. (23) on the first grid level. If one of the norms Nl from Eq.

(27) is greater than the prescribed threshold, then a new V-cycle is performed starting from (c).
(d) Determine the solution: ð~uunþ1
k Þi;j ¼ ð~uukÞig¼1

i;j , for i ¼ 1; . . . ;Nx, j ¼ 1; . . . ;Ny and k ¼ 1; . . . ; P .

(3) End of time loop
6. Results

We now present test results that show the behavior and convergence properties of the multigrid method.

For the test cases below, we set a ¼ 0 and study the stochastic diffusion in a square domain, with unit edge-

length and with no source term (s � 0). Deterministic boundary conditions are used with Dirichlet con-

ditions on x ¼ 0 (where u ¼ 1) and x ¼ 1 (where u ¼ 0), and homogeneous Neumann boundary conditions

for the y ¼ 0 and y ¼ 1 edges. As stated previously, the spatially dependent diffusivity field is modeled using

a truncated KL expansion involving N modes. It is characterized by its variance, coefficient of variation,

and correlation length. To analyze the performance of the scheme, we monitor the evolution of the
maximum (over all the modes) of the L2-norms of the normalized residuals, more specifically the decay of

the peak residual as the number of multigrid cycles increases.

6.1. Multigrid acceleration

6.1.1. Dependence on grid size

We start by examining the dependence of the convergence rate on the number of points involved in the

spatial discretization. To this end, the COV of the diffusivity field is set to 0.1, with a normalized correlation
length Lc ¼ 5. A KL expansion with 5 modes is used (i.e. N ¼ 5), together with a second-order PC ex-

pansion (N0 ¼ 2). With these parameters, P ¼ 20 and so the total number of modes equals 21. The mul-

tigrid parameters are selected as follows: Nou ¼ Nin ¼ 3 and x ¼ 1:5. The computations are performed for

the spatial discretizations of Nx ¼ Ny ¼ 16, 32, 64 and 128; the corresponding number of grid levels are

Ng ¼ 4, 5, 6 and 7. For each, the maximum normalized residual is plotted against cycle number in Fig. 3.

These results clearly show the quasi-independence of the convergence rate with respect to the spatial

discretization. There is a very weak improvement in the convergence rate at the lower values of Nx and Ny,
which may be attributed to the lack of resolution in the representation of the KL modes on the coarser
meshes. This claim is supported by the observation that the convergence rate tends to be grid-size inde-

pendent when Nx and Ny increase. The weak dependence of the convergence rate on the grid size also

highlights the excellent scalability of the method concerning the spatial discretization, as the CPU time

scales roughly as Nx� Ny. Note that the relaxation parameter, x, and number of inner and outer iterations,

Nou and Nin, have been selected based on systematic tests (not shown) to determine their optimal value.

While further refinement of these parameters may be possible, these values will be kept the same for the

remaining cases below, unless explicitly stated.

6.1.2. Effect of grid levels on MG acceleration

Fig. 4 shows the evolution of the peak normalized residual with the number of cycles for a fixed grid with

Nx ¼ Ny ¼ 32. Results obtained for different numbers of grid levels in the V-cycles are shown, namely

Ng ¼ 1, 2, 3, 4 and 5.

The results clearly show the effect of MG acceleration with increasing number of grid levels. The setting

Ng ¼ 1 corresponds to the Gauss–Seidel iteration, applied to the initial system of equations with no

coarsening. Thus, after the first V-cycle (that is 2Nou ¼ 6 GS iterations) the short-scales in the residual

(mostly related to the Dirichlet boundary conditions) have been reduced and the convergence rate falls



Fig. 3. Convergence of the iterative scheme for different spatial discretizations: Nx ¼ Ny ¼ 16, 32, 64 and 128. The corresponding

number of grid levels are Ng ¼ 4, 5, 6 and 7. COV ¼ 0:1, Lc ¼ 5, N ¼ 5, N0 ¼ 2 (P ¼ 20), x ¼ 1:5, Nou ¼ Nin ¼ 3.

Fig. 4. Convergence of the iterative scheme for Nx ¼ Ny ¼ 32 and Ng ¼ 1, 2, 3, 4 and 5. COV ¼ 0:1, Lc ¼ 1, N ¼ 10, N0 ¼ 2 (P ¼ 65),

x ¼ 1:5, Nou ¼ Nin ¼ 3.
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dramatically. This clearly illustrates the lower convergence rate of the larger length scales. When the
number of grid levels is increased to Ng ¼ 2 the convergence rate is slightly improved, but the iterative

method is still inefficient. In fact, the first significant improvement is reported for Ng ¼ 3, where one ob-

serves a residual reduction factor per V-cycle of approximately 0.78. With Ng ¼ 4, the convergence rate is

much larger, as the residual reduction factor per V-cycle is approximately 0.2. As expected, the largest

convergence rate is observed for Ng ¼ 5, with a residual reduction factor close to 0.1. These tests show that

the discretization parameters Nx and Ny should be selected, to the extent possible, so that the coarsest grid

level has a minimum number of cells in each direction. Note, in particular, that the large improvement in

convergence rate between Ng ¼ 3 and Ng ¼ 5 is achieved at a very low additional CPU cost, since the fourth
and last grid levels only involve 16 and 4 cells respectively.



Fig. 5. Peak normalized residual versus cycle number: (a) first-order PC expansion with N ¼ 10, 20, 30, 50 and 80; (b) second-order PC

expansion with N ¼ 10 (P ¼ 65), 15 (P ¼ 135) and 20 (P ¼ 230). In both cases, Nx ¼ Ny ¼ 32, Lc ¼ 1, Nin ¼ Nou ¼ 3, and x ¼ 1:5.
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6.2. Influence of stochastic representation parameters

The behavior of the MG scheme is now investigated in terms of the stochastic representation parameters,
namely the number, N , of KL modes used in the representation of the stochastic diffusivity field, and the

order, N0, of the PC expansion. In the tests below, the spatial discretization parameters are held fixed, as are

the over-relaxation parameter, x ¼ 1:5, the number of grid levels, Ng ¼ 5, and the number of iterations

performed on each grid level, Nin ¼ Nou ¼ 3. The coefficient of variation and correlation length are also held

fixed, COV ¼ 0:1 and Lc ¼ 1, respectively.

6.2.1. Number of KL modes

In these tests, the impact of the number of modes retained in the KL expansion of the diffusivity field is
investigated by varying N . Results are reported in Fig. 5, where the peak normalized residual is plotted

against cycle number for (a) first-order PC expansion with N ranging from 10 to 80, and (b) second-order

PC expansion with N ¼ 10, 15 and 20 (P ¼ 65, 135 and 230, respectively). For both first- and second-order

expansions, the evolution of the residual is independent of N , again showing the efficiency of the MG

scheme. Note that in the present case one cannot infer from this behavior a linear relationship between N
and the CPU time. The latter is in fact a strong function of the number of non-zero terms in M, which

depends on both N and N0. This contrasts with previous observation regarding scalability of the scheme

with respect to the number of grid points.

6.2.2. Effect of PC expansion order on rate of convergence

The results of the previous section show a dependence of the convergence rate of the multigrid method

on the order of the PC expansion. This dependence is further investigated by setting N ¼ 10 and varying

N0 from 1 to 3; with P ¼ 10, 65 and 285, respectively. The convergence of the iterations for these cases is

illustrated in Fig. 6, which depicts the behavior of the peak residual as the number of cycles increases.

The results indicate that the convergence rate decreases slightly as the order of the PC expansion in-

creases. The residual reduction factor per cycle is about 0.09 for N0 ¼ 1 and approximately 0.2 for N0 ¼ 3.
In light of the experiences above, it is evident that the present reduction in convergence rate is not due to the

increase in number of modes P , but rather to the need for additional cycles in order to propagate the



Fig. 6. Peak normalized residual versus cycle number for N0 ¼ 1 (P ¼ 10), N0 ¼ 2 (P ¼ 65), and N0 ¼ 3 (P ¼ 285). In all cases, N ¼ 10,

Nx ¼ Ny ¼ 32, Lc ¼ 1, Nin ¼ Nou ¼ 3, and x ¼ 1:5.
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residual for coupled terms of different order. For the present examples, the convergence rate is still satis-

factory for N0 ¼ 3. In situations requiring higher order expansions, however, further improvement may be

required. This could be achieved for instance by blending the (spatial) MG concepts with a spectral (mode)

coarsening procedure.

6.3. Effects of diffusivity field statistics

We now analyze the effects of the diffusivity field characteristics on the convergence rate, by varying its

statistical parameters. We recall that the diffusivity is parametrized through its COV, which represents the

normalized local statistical spread of the realizations about the expected value, and the correlation length,

which accounts for the spatial variability of the process. The effects of these two parameters are analyzed

separately below.

6.3.1. Effect of diffusivity variance

Tests on the effect of the variance of the diffusivity field are performed using Lc ¼ 1, a KL expansion with

N ¼ 25, and PC expansion of first and second order (P ¼ 25 and 350, respectively). A 32� 32 computa-

tional grid is used and the MG parameters are as follows: x ¼ 1:5, Nou ¼ Nin ¼ 3 and Ng ¼ 5. Results with

different values of rk are reported in Fig. 7.

The results show that, as expected, the convergence rate is strongly dependent on the variance of the

diffusivity field. Actually, the highest convergence rate is achieved for the lowest values of COV (rk ¼ 0:025)
where the residual is reduced with each MG cycle, by a factor of about 0.05 for N0 ¼ 1 (Fig. 7a) and
approximately 0.06 for N0 ¼ 2 (Fig. 7b). Consistent with previous findings, for the same values of rk (and

COV) the second-order PC expansion exhibits slower convergence rate than the first-order scheme.

Moreover, when COV increases, the convergence rate decreases for both the first- and second-order ex-

pansions, but the reduction is more substantial in the latter case. As noted previously, the diffusivity field

should be positive at any point inside the domain. However, the KL expansion does not guarantee this

constraint, and the probability that this constraint is violated increases as COV increases. In fact, for

COVP 0:4 and N0 ¼ 2, the solver did not converge. In contrast, with a first-order expansion the MG

iterations did converge for COV ¼ 0:4, but with a very low convergence rate (not shown). It should be



Fig. 7. Peak residual versus number of cycles for different values of rk: (a) first-order PC expansion and (b) second-order PC

expansion. In all cases, Lc ¼ 1, N ¼ 25, x ¼ 1:5, Nou ¼ Nin ¼ 3, Ng ¼ 5 and Nx ¼ Ny ¼ 32.
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emphasized, however, that the deterioration of convergence rate with increasing COV is due to the extreme

behavior of the corresponding problem, and therefore is not inherent to the present multigrid scheme.

6.3.2. Influence of the correlation length

The effect of the correlation length is analyzed in this section by performing computations with a fixed

variance (COV ¼ 0:1) but varying Lc. As illustrated in Fig. 8, as Lc decreases, the spectrum of k broadens

with higher amplitudes in the small scales. Since the variance is fixed, however, the ‘‘energy’’ content of the

spectrum remains constant.
Fig. 9 shows the convergence rate of the MG iterations for different correlation lengths, Lc ¼ 0:25, 0.5, 1,

2 and 5. Plotted are results obtained using both first- and second-order PC expansions. The results show a

weak dependence of the convergence rate on Lc, indicating that the MG method effectively maintains its

good convergence properties even as small-scale fluctuations in k increase. The weak dependence of the

convergence rate on spatial lengthscales of k has also been observed in deterministic simulations (not
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Fig. 8. Spectra of the eigenvalues, bk , of the KL expansion for different correlation lengths Lc ¼ 0:25, 0.5, 1 and 5.



Fig. 9. Peak residual versus number of cycles for N ¼ 20 KL modes and different values of Lc: (a) first-order PC expansion (P ¼ 20);

(b) second-order PC expansion (P ¼ 350). In all cases, COV ¼ 0:1, Nin ¼ Nout ¼ 3, x ¼ 1:5 and Nx ¼ Ny ¼ 32.
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shown). This shows that the extension of the MG scheme to stochastic problems does not adversely affect

its effectiveness in dealing with spatially varying diffusivity. Closer analysis of the results in Fig. 9 also

supports our previous observation that the convergence rate for first-order PC expansions is larger than for

the second-order case, but differences are once again small.

As shown in Fig. 8, decreasing Lc results in a broader eigenvalue spectrum, which raises the question
whether N ¼ 20 KL modes is sufficient to capture all the relevant scales of k. This question arises because

truncation of the KL expansion removes the highest spatial frequencies, and leads to under-estimation of the

variance. To verify that the near collapse of the curves in Fig. 9 with decreasing Lc is not due to such

truncation, simulations were repeated using a first-order PC expansion and a higher number of KL modes,

N ¼ 105. The results (not shown) exhibit essentially the same convergence rate as with N ¼ 20. This indicates

that the the truncation of the KL expansion does not affect the convergence rate of the multigrid solver.
6.4. Selection of multigrid parameters

The computational tests above were performed with fixed MG parameters, which enabled direct com-

parison between various cases and thus simplified the analysis. It is evident, however, that tuning these

parameters can improve the efficiency of the method. For the test cases in the previous sections, selecting

x 2 ½1:2; 1:7� results in convergent iterations, but varying x within this range affected the convergence rate.

Specifically, for fixed tolerance on the peak residual (10�10), the number of cycles needed to achieve this

level varied between 3 and 5 cycles. Consequently, tests should generally be conducted in order to select the

optimal x value for the problem at hand. A similar optimization process should also be conducted for
proper selection of the number of inner and outer iterations. Clearly, using a large number of outer iter-

ations results in an inefficient method, since one does not want to perform a large number of outer iter-

ations on the initial grid level. At the same time, a minimal number of outer iterations is required during

prolongation in order to smooth the solution sufficiently before switching to the next grid level. Thus, Nou

should be carefully optimized. Meanwhile, Nin should be set to the minimum value above which the con-

vergence rate starts to decrease.

Lastly, the efficiency of the multigrid procedure can also be drastically improved by designing cycles with

a more complex structure than the simple V-cycle used in the present work. To illustrate the improvement
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Fig. 11. Convergence rate of MG iterations: V-cycle approach (top) and line coarsening strategy (bottom). Curves are generated for

solutions obtained in domains with different aspect ratio, L=H . In both sets of simulations, Nx ¼ 128, Ny ¼ 32, Nou ¼ 3, Nin ¼ 2,

x ¼ 1:5, N0 ¼ 2 and N ¼ 3. The stochastic diffusivity field has Lc ¼ L and COV ¼ 0:1.
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that can be achieved by adaptation of cycle structure, a line-coarsening strategy, designed for highly

stretched grids and/or domains with high aspect ratios, is briefly outlined below. Assuming that Dx � Dy,
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the strategy consists of (i) performing a 1D-coarsening along the y-direction only, which eventually leads to
a quasi-1D problem in x; (ii) applying a 1D MG approach in the x-direction, which is iterated until the

overall tolerance level is reached; and (iii) performing a prolongation in the y-direction only. This cycle,

whose structure is schematically illustrated in Fig. 10, is repeated until the residual on the original fine grid

drops below the desired tolerance level.

In Fig. 11 we contrast the convergence rates of the MG scheme using the V-cycles and of the adapted

MG scheme outlined above. In both cases, the number of grid cells is fixed, Nx ¼ 128 and Ny ¼ 32, but the

aspect ratio, L=H , of the domain is varied. Note that the case L=H ¼ 4 corresponds to a grid with square

cells, i.e. Dx ¼ Dy. For the V-cycle iterations, the results indicate that the convergence rate deteriorates as
the cell aspect ratio increases. Meanwhile, with the line-coarsening strategy, the convergence rate improves

as L=H is increased from 8 to 40; for higher aspect ratios, up to L=H ¼ 400, the convergence rate decreases

slightly, but remains at a satisfactory level. In contrast, for such high aspect ratios, the regular V-cycle

iterations are quite inefficient.
7. Conclusions

A multigrid scheme for the simulation of steady and unsteady stochastic diffusion equations was de-

veloped, and computational tests were conducted to analyze its behavior. In particular, these tests show

that:

• The MG scheme exhibits a fast rate of convergence and good scalability with respect to spatial resolution

in a fixed domain.

• The convergence rate is independent of the number of stochastic dimensions as long as the variance of

the diffusivity field is held fixed.
• The convergence rate drops slowly as the order of the PC expansion increases.

• The convergence rate deteriorates substantially as the variance of the stochastic diffusivity field becomes

large, but satisfactory convergence rates are still observed for COV up to 0.2. On the other hand, the

convergence rate decreases slightly as the correlation length of the stochastic diffusivity field is decreased.

• Selection of MG parameters and cycle structure can drastically affect the efficiency of the iterations.

These parameters should therefore be carefully optimized.

Future work will aim at enhancing the present MG approach, particularly for situations involving large
variance and high order PC expansions. An attractive approach that is currently being explored is based on

exploiting the structure and sparsity of the stochastic system. This structure suggests a hierarchical iterative

strategy [34], which has been successfully exploited in the context of stochastic finite elements. In particular,

it appears that incorporation of such an approach into the present MG framework could lead to a sub-

stantial performance enhancement.
Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air

Force Research Laboratory, Air Force Material Command, USAF, under agreement number F30602-00-2-

0612. The US government is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon. Computations were performed at the National Center

for Supercomputing Applications.
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4744 O.P. Le Mâııtre et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4723–4744
[32] J. N�aaprstek, Strongly non-linear stochastic response of a system with random initial imperfections, Probabilist. Engrg. Mech.

14 (1999) 141–148.

[33] B.M. Nicola, B. Verlinden, A. Beuselinck, P. Jancsok, V. Quenon, N. Scheerlinck, P. Verbosen, J. de Baerdemaeker, Propagation

of stochastic temperature fluctuations in refrigerated fruits, Int. J. Refrig. 222 (1999) 81–90.

[34] M.F. Pellissetti, R.G. Ghanem, Iterative solution of systems of linear equations arising in the context of stochastic finite elements,

Adv. Engrg. Software 31 (2000) 607–616.

[35] R.F. Probstein, Physicochemical Hydrodynamics, Wiley, 1995.

[36] G.I. Schu€eeller, Computational stochastic mechanics––recent advances, Comput. Struct. 79 (2001) 2225–2234.

[37] A. Sluzalec, Random heat flow with phase change, Int. J. Heat Mass Transfer 43 (2000) 2303–2312.

[38] A. Sluzalec, Stochastic finite element analysis of two-dimensional eddy current problems, Appl. Math. Model. 24 (2000) 401–406.

[39] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, 1991.

[40] T.G. Theting, Solving Wick-stochastic boundary value problems using a finite element method, Stoch. Stoch. Rep. 70 (2000)

241–270.

[41] U. Trottenberg, C. Oosterlee, A. Sch€uuller, Multigrid, Academic Press, 2001.

[42] S. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938) 897–936.

[43] D. Xiu, D. Lucor, G.E. Karniadakis, Modeling uncertainty in flow-structure interactions, in: First MIT conference on

Computational Fluid and Solid Mechanics, Elsevier, 2001, pp. 1420–1423.


	A multigrid solver for two-dimensional stochastic diffusion equations
	Introduction
	Polynomial Chaos representation
	Spectral representation
	PC expansions of field variables

	Continuous formulation and time discretization
	Stochastic spectral diffusion equation
	Boundary and initial conditions
	Implicit time discretization

	Finite-difference discretization
	Spatial discretization
	Treatment of boundary conditions

	Iterative method
	Outer iterations
	Inner iterations

	Convergence of the iterative scheme

	Multigrid acceleration
	Definition of grid levels
	Projection and prolongation procedures
	Multigrid cycles
	Implementation of the multigrid scheme

	Results
	Multigrid acceleration
	Dependence on grid size
	Effect of grid levels on MG acceleration

	Influence of stochastic representation parameters
	Number of KL modes
	Effect of PC expansion order on rate of convergence

	Effects of diffusivity field statistics
	Effect of diffusivity variance
	Influence of the correlation length

	Selection of multigrid parameters

	Conclusions
	Acknowledgements
	References


