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Abstract

We present a Newton method to compute the stochastic solution of the steady incompressible Navier-Stokes
equations with random data (boundary conditions, forcing term, fluid properties). The method assumes a
spectral discretization at the stochastic level involving a orthogonal basis of random functionals (such as
Polynomial Chaos or stochastic multiwavelets bases). The Newton method uses the unsteady equations to
derive a linear equation for the stochastic Newton increments. This linear equation is subsequently solved
following a matrix-free strategy, where the iterations consist in performing integrations of the linearized
unsteady Navier-Stokes equations, with an appropriate time scheme to allow for a decoupled integration
of the stochastic modes. Various examples are provided to demonstrate the efficiency of the method in
determining stochastic steady solution, even for regimes where it is likely unstable.
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1. Introduction

Many fluid flow simulations involve incomplete knowledge of model input, such as physical constants
and fluid properties, boundary and initial conditions, external forcing,. . . Quantifying the impact of these
uncertainties on the model output is crucial to assess confidence level, to estimate variability and limits of
predictability, and to support any model-based decision analysis.

Among the various techniques that have been designed for the purpose of uncertainty propagation and
quantification in numerical models, the so-called stochastic spectral methods have received considerable and
growing attention over the last ten years. These probabilistic methods were originally developed for engi-
neering problems in solid mechanics [10] and subsequently applied to a large variety of problems, including
elliptic models and flow/transport in porous media (e.g. [8, 9, 2, 15, 25]), thermal problems (e.g. [11, 12, 24])
and reacting systems (e.g [6, 28, 21]). The core idea of these techniques is the representation of the uncertain
model data as functionals of a finite set of random variables with known densities, the uncertainty germ, and
to expand the dependence of the model solution, with regard to the same random variables, on a suitable
basis of uncorrelated functionals of the germs. By essence, these methods are parametric and so are limited
to uncertainties that one can reasonably parameterize (this exclude model uncertainty which requires a non
parametric framework [32, 33]).

A classical and historical choice for the expansion basis is the Polynomial Chaos system [39, 3], consisting
of orthogonal Hermite polynomials in normalized centered Gaussian random variables [10]. Other density
types for the germ components result in various families of orthogonal polynomials or mixtures of orthogonal
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polynomials [40]. First applications of PC methods to Eulerian formulations of the incompressible Navier-
Stokes equations appeared in [18, 22, 41], to Low-Mach approximation in [16], while Lagrangian formulations
were recently considered in [17]. Note that use of non-Gaussian germs in fluid flow models was first considered
in [41]. A review of recent works using PC expansions in Navier-Stokes computations can be found in [14].
Piecewise polynomials [38] and multi-wavelets [19, 20] were also recently proposed as elements of the basis,
as these representations are better suited to account for complex or discontinuous dependencies of the model
with regard to the uncertain data, as often encountered in fluid flow.

The present paper is in the continuity of these past efforts toward the application of stochastic spectral
methods to fluid flow models. It describes a Newton method to efficiently solve the spectral problems arising
from the Galerkin projection of the steady stochastic Navier-Stokes equations. It is a direct extension of the
techniques originally designed for deterministic problems [35, 7, 36]. The method is particularly appealing
in the stochastic spectral context as it requires little modifications of the unsteady stochastic solver, while
preserving it essential characteristic: the decoupled resolution of the stochastic modes.

The paper is organized as follow. In Section 2 we recall the incompressible Navier-Stokes equations and
introduce some notations and the class of time discretization schemes to be used in the Newton method.
In Section 3, the stochastic framework in progressively introduced, leading to the numerical method for
the integration of the unsteady stochastic Navier-Stokes equations. Special emphasize is on the time-
discretizations that decouple the integration of the spectral modes. Section 4 concerns the Newton method
for the resolution of the stochastic steady Navier-Stokes equations. The Newton iterations, together with
the equations satisfied by the Newton increments, are detailed before discussing the matrix-free technique
for their computation. The Newton method is then tested in Sections 5 and 6 where we provide examples
of increasing stochastic dimension and complexity. These examples are used to assess the efficiency and
robustness of the Newton iterations with regard to numerical and discretization parameters, flow variability
and stability of the stochastic steady solution. Finally, major conclusions of this work and recommendations
are drawn in Section 7.

2. Navier-Stokes equations

We consider the flow of an incompressible Newtonian fluid, with uniform density and kinematic viscosity
ν, in a d-dimensional bounded domain Ωx of Rd. The flow is governed by the dimensionless unsteady
Navier-Stokes equations {

∂u

∂t
+ u · (∇u) = −∇p+

1
Re
∇2u + f ,

∇ · u = 0,
(1)

where u and p are the dimensionless velocity and pressure, f is a normalized force field and Re = UcLc/ν
is the Reynolds number based on the characteristic velocity and length scales Uc and Lc. These equations
have to be complemented with initial conditions, say at t = 0, and boundary conditions on Γ, the boundary
of Ωx. Without loss of generality, we shall consider Dirichlet boundary conditions so boundary and initial
conditions are {

u(x ∈ Γ, t) = uΓ(x),
u(x, t = 0) = u0(x). (2)

Note that we restrict ourself to time independent boundary conditions, as we are interested in steady
solutions in the following. For the resolution of Eqs. (1), we focus on time discretizations involving an
explicit treatment of the non-linear terms and an implicit (or semi-implicit) treatment of the linear ones.
For simplicity, we consider a simple first order Euler scheme:





(
I − ∆t

Re
∇2

)
un+1 + ∆t∇pn+1 = un −∆tun ·∇un + ∆tfn+1,

∇ · un+1 = 0,
(3)

where the superscripts refer to the time-iteration index and ∆t is the time-step size. It is seen that this
time-discretization, as any other where the non-linear terms are treated explicitly, results in a linear problem
(namely the Stokes problem) for the unknown solution at time level n+ 1.
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The main difficulty faced when solving the semi-discrete Navier-Stokes system (3) is due to the divergence
free constraint. For formulations using primitive variables (velocity and pressure), several strategies have
been proposed to enforce the divergence-free constraint on the solution, e.g. the projection methods [4,
13], Uzawa techniques and influence matrix methods [5, 37]. It is known that some strategies provide
discrete solutions that satisfy exactly the boundary conditions (e.g the influence matrix), while others only
approximatively satisfy the boundary conditions (e.g. the projection methods). Alternative formulations,
e.g. stream-function vorticity formulations, overcome the difficulty inherent to the enforcement of the
divergence-free constraint, but face the difficulty of the absence of natural boundary conditions. Again, one
can rely on approximate or exact techniques to determine the unknown boundary conditions.

To remain as general as possible, we recast the semi-discrete Navier-Stokes equations (3) in the following
formal expression:

I (Un+1
)

= L(Un,Un−1, . . .) +N (Un,Un−1, . . .
)

+ S(fn+1), (4)

where Un+1 is the sought solution at time t = (n + 1)∆t. Eq. (4) has to be solved for Un+1 ∈ VuΓ , where
VuΓ is a suitable functional space for U satisfying the boundary conditions. In fact, Eq. (4) relates the
solution at time level n + 1 (appearing on the left-hand-side) to the (known) solutions at previous time
levels (n, n − 1, . . . ). Moreover, I and L are linear operators, while N is a non-linear operator. The last
term S accounts for the force field. We assume the availability of a deterministic solver for the resolution
of Eq. (4). In addition, we shall consider in the following Eq. (4) as a generic form of the semi-discrete
incompressible Navier-Stokes equations, where the formal notation U of the solution stands for the relevant
set of variables involved in the actual formulation, so that U = (u, p) in primitive variables formulations,
U = (ω) in vorticity formulations, U = (ω, T ) when the Navier-Stokes equations are complemented with an
energy equation (see Boussinesq example below).

3. Stochastic spectral expansions

3.1. Probabilistic framework
We now consider the stochastic problem. For the sake of simplicity, we restrict ourselves temporarily

to situations where the uncertainty arises from random boundary conditions and source term. To solve the
uncertain flow, we rely on a probabilistic framework and introduce an abstract probability space (Θ,B, dP ),
where Θ is the set of random events, B is the σ-algebra of events and dP the probability measure. Let h(θ)
be a real-valued random variable defined on the abstract probability space: h : θ ∈ Θ 7→ f(θ) ∈ R. We
denote E(·) the mathematical expectation,

E(h) ≡
∫

Θ

h(θ)dP (θ), (5)

and L2(Θ, dP ) the space of second order random variables:

L2(Θ, dP ) ≡ {
h(θ);E(h2) < +∞}

. (6)

We shall assume in the following that all random quantities (scalars and vectors) are second order ones. We
further assume a parameterization of the random boundary conditions and source term using a finite set
ξ ≡ {ξ1, . . . , ξN} of N independent continuous real-valued random variables defined on (Θ,B, dP ) (for non
independent random variables see [34]). We denote Ωξ the range of ξ. For convenience, the random variables
ξi will be identically distributed and we denote Pξ the probability law of ξ. In the image probability space
(Ωξ,Bξ, dPξ) the expectation operator becomes

E(h) =
∫

Θ

h(θ)dP (θ) =
∫

Ωξ

h(η)dPξ(η)dη ≡ 〈h〉 . (7)

The parameterization of the boundary condition and source term are

uΓ(θ) = uΓ(ξ(θ)), f(θ) = f(ξ(θ)), (8)

and the solution U is sought in the image probability space, i.e. we compute U(ξ).
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3.2. Stochastic discretization
Let {Ψi(ξ)}i=∞

i=0 be an orthogonal basis of L2(Ωξ, dPξ), the space of second order random variables
spanned by ξ. The orthogonality of the basis functions reads:

〈ΨiΨj〉 =
∫

Ωξ

Ψi(y)Ψj(y)dPξ(y)dy =
〈
Ψ2

i

〉
δij . (9)

On this basis, the stochastic expansion of the velocity boundary condition is

uΓ(ξ) =
∞∑

i=0

(uΓ)i Ψi(ξ), (uΓ)i =
〈uΓ(ξ)Ψi(ξ)〉
〈ΨiΨi〉 . (10)

The expansion of the force field is similar. A classical choice for the stochastic expansion basis is the set
of orthogonal polynomials in ξ. When the ξi are normalized Gaussian random variables the Ψi are in
fact Hermite polynomials, while uniform distributions correspond to Legendre polynomials [1]. Families
of orthogonal polynomials for classical probability distributions can be found in [40]. The construction of
an orthogonal basis for independent non-identically distributed random variables is immediate, by forming
multi-dimensional polynomials as product (mixture) of different families of one-dimensional polynomials.
The case of non independent random variables was considered in [34] and leads to non-polynomial orthogonal
bases. Alternatives for the construction of the stochastic basis are multi-wavelets [19, 20] or piecewise
continuous polynomials [38]. The developments hereafter extend without conceptual difficulty to any type
of orthogonal basis.

3.3. Stochastic spectral problem
The Navier-Stokes equations now involving random quantities they have a random solution with formal

expansion

U(θ) = U(ξ(θ)) =
∞∑

i=0

(U)i Ψi(ξ(θ)) ∈ VuΓ ⊗ L2(Ωξ, dPξ). (11)

Introducing the solution expansion in Eq. (4), it comes

I
(∑

i

(Un+1
)
i
Ψi

)
= L

(∑

i

(Un)i Ψi,
∑

i

(Un−1
)
i
Ψi, . . .

)

+ N
(∑

i

(Un)i Ψi,
∑

i

(Un−1
)
i
Ψi, . . .

)

+ S
(∑

i

(
fn+1

)
i
Ψi

)
. (12)

To solve Eq. (12), the stochastic expansion has to be truncated. To remain general with regard to the
stochastic discretization used, we denote

S P ≡ span{Ψ0, . . . ,ΨP} ⊂ L2(Ωξ, dPξ) (13)

the finite dimensional stochastic approximation space with dim(S P) = P + 1. For continuous polynomial
bases, the truncature is usually made by fixing a maximal (total) degree No for the polynomials spanning
S P so in this case [10]:

P + 1 = (No + N)!/(No!N!). (14)

Substituting U with its truncated expansion, Eq. (12) is not satisfied in general, but yields a stochastic
residual. A weak solution of the problem is then sought by requiring the residual to be orthogonal to S P.
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With this constraint, it comes for i = 0, . . . ,P

〈
ΨiI




P∑

j=0

(U)n+1
j Ψj




〉
=

〈
ΨiL




P∑

j=0

(U)n
j Ψj




〉
+

〈
ΨiN




P∑

j=0

(U)n
j Ψj




〉

+

〈
ΨiS




P∑

j=0

(
fn+1

)
j
Ψj ,




〉
, (15)

to be solve for Un+1 ∈ VuΓ ⊗ S P. For the sake of simplicity we have considered a single time level
discretization.

Since we are considering situations where the coefficients (i.e. the fluid properties as density, viscosity)
of the Navier-Stokes equations are certain, the operator I is deterministic and we have immediately

〈
ΨiI




P∑

j=0

(U)n+1
j Ψj




〉
= 〈ΨiΨi〉 I (U)n+1

i . (16)

In more general situations, the linear operator I depends on the random event, as for instance when the
Reynolds number of the flow is random. In this case, one can formally expand the random operator I(ξ)
on the stochastic basis:

I(ξ) =
P∑

i=0

IiΨi(ξ). (17)

As a result, application of I to U couples all the stochastic modes and Eq. (16) does not hold anymore.
Instead, we have 〈

ΨiI



P∑

j=0

(U)n+1
j Ψj




〉
=

P∑

j=0

P∑

l=0

〈ΨiΨjΨl〉 Il (U)n+1
j . (18)

This coupling of the stochastic modes is not desirable as it significantly makes more difficult the inversion
of I. This difficulty can be easily overcome by using a semi implicit treatment of the linear terms, leading
to a deterministic operator I ≡ I0 and a modified operator L accounting for modes Ii>0. An example of
such a procedure to enforce a decoupled stochastic modes integration is provided in Section 6.

Assuming that Eq. (16) holds, and by making use of the orthogonality of the stochastic basis functions,
Eq. (15) becomes

(U)n+1
i = I−1

{Li (Un) +Ni (Un) + Sn+1
i

}
, i = 0, 1, . . . ,P. (19)

This equation highlights the decoupling since the determination of (U)n+1
i is independent of (U)n+1

j 6=i : the
spectral problem has been factored in a series of (P + 1) problems of smaller size. Comparison of Eq. (19)
with Eq. (4) also reveals that the overall computational cost of the solution procedure will be (P + 1) times
greater than for the deterministic problem, with some additional overheads arising from the projection of
the explicit terms Li(·), Si(·) and Ni(·).

4. Resolution of steady stochastic equations

The decoupled resolution of the stochastic modes is an attractive feature of the solution method described
above. However, one is often interested in finding solutions of the steady Navier-Stokes equation. Although
the time integration of the unsteady equation may provide the steady solution as t → ∞, they are many
situations where computation of steady solution via unsteady integration is not desirable or practical:
because of the slow decay of the unsteady solution toward a steady state (requiring integration over long
periods of time) or because the sought steady solution is unstable to perturbations. In these cases the
resolution of the steady equations has to be considered.
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Direct determination of the solution to the steady equations is a difficult task, because of the size of the
non-linear problem and of the non-trivial coupling between the stochastic modes. The question is therefore:
how to take advantage of the decoupled time-marching schemes to compute stochastic solutions of the steady
equations, even unstable ones ? This question has long been addressed in the deterministic context [35, 7],
and we propose in the following an extension of these techniques to stochastic flows.

4.1. Newton iterations
It is clear that the determination of a (weak) solution of the steady stochastic Navier-Stokes equations

consists in finding stationary points of Eq. (19) or, more specifically, to the determination of U ∈ VuΓ ⊗S P

such that
∂U
∂t

≈ F(U) ≡ I−1 {L (U) + S (f) +N (U)} − U
∆tn

= 0. (20)

It is remarked that the ”time-step” size is here denoted ∆tn, because it is a numerical parameter of the
steady solver and not an actual time-step used to advance the solution in time. To solve Eq. (20), we rely
on Newton iterations. Let Uk ∈ VuΓ ⊗S P be the approximated solution of equation (20) after the k-the
Newton iteration. The next Newton iterate, Uk+1 ∈ VuΓ ⊗S P, is

Uk+1(ξ) = Uk(ξ) + δUk(ξ), (21)

where the stochastic Newton increment δUk satisfies

J (Uk)δUk = −F(Uk). (22)

Here, J (U) is the Jacobian of F at U . Clearly, as Uk satisfies the boundary conditions, the Newton increment
thus satisfies homogeneous Dirichlet velocity boundary conditions:

δUk ∈ V0 ⊗S P. (23)

The computation of J (U) is not an option because of its size, which is (P + 1) times larger than its
deterministic counterpart. However, it appears that J (U)δU can be computed without making the Jacobian
explicit as soon as one recognizes that

J (U)δU =
I−1

{L(δU) +N (U) δU}− δU
∆tn

, (24)

where N (U)δU are the non-linear terms linearized at U . For the Navier-Stokes equations, the non-linearity
comes from the convective terms. Although the actual forms of the convective terms depend on the selected
formulation (e.g. on the variables in U), we shall use the abusive notation U∇U for the convective terms.
However, consistently with this notation, the linearized non-linear terms write as:

N (U) δU = −U∇δU − δU∇U . (25)

In other words, I−1
{L (δU) +N (U)δU}

is the result of the time-integration (over a unique time-step) of
the linearized stochastic Navier-Stokes equations, for the initial condition δU ∈ V0 ⊗S P and homogeneous
source term and velocity boundary conditions.

4.2. Stochastic increment problem
At this stage, we have derived an equation,

I−1
{L(δUk) +N (Uk

)
δUk

}− δUk

∆tn
+ F(Uk) = 0, (26)
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for the stochastic Newton increment δUk. It remains to solve efficiently Eq. (26). To this end, consider the
truncated expansions of the Newton iterates and increments:

Uk(ξ) =
P∑

i=0

(Uk
)
i
Ψi(ξ), δUk(ξ) =

P∑

i=0

(
δUk

)
i
Ψi(ξ). (27)

The projection of Eq. (20) on the stochastic basis gives for i = 0, . . . ,P:

∆tnFi(Uk) = I−1
{Li

(Uk
)

+ (S)i +Ni

(Uk
)}− (Uk

)
i
. (28)

The Galerkin projection of Eq. (24) gives in turn for i = 0, . . . ,P :

∆tn
(J (Uk)δUk

)
i
= I−1

{Li

(
δUk

)
+

(N (Uk
)
δUk

)
i

}− (
δUk

)
i
, (29)

Finally, equations to be solved for the Newton increment modes (δU)l is for i = 0, . . . ,P:

I−1
{Li

(
δUk

)
+

(N (Uk
)
δUk

)
i

}− (
δUk

)
i
= −∆tnFi(Uk). (30)

It is seen that, although this equation is linear in the Newton increment, the determination of it stochastic
modes (δU)i is coupled through the linearized non-linear term (except if Uk is actually deterministic). To
gain further insight about this coupling, we make explicit the i-th mode of the linearized non-linear term.
From Eq. (25), we have

(N (U)δU)
i
= −〈(U∇δU + δU∇U) Ψi〉

〈Ψ2
i 〉

, (31)

and introducing the stochastic expansions of U and δU , it comes

(N (U)δU)
i

= −
P∑

j=0

P∑

l=0

Cijl ((U)j∇(δU)l + (δU)j∇(U)l)

=
P∑

j=0

P∑

l=0

CijlC [(U)j , (δU)l] , (32)

where the bilinear convection operator C [., .] and multiplication tensor Cijl are defined by

C [(U)j , (δU)l] ≡ (U)j∇(δU)l + (δU)l∇(U)j , Cijl ≡ 〈ΨiΨjΨl〉
〈Ψ2

i 〉
. (33)

With these notations, Eq. (30) can be rearranged to: for i = 0, . . . ,P

I−1



Li

(
δUk

)
+

P∑

j,l=0

CijlC
[(Uk

)
j
,
(
δUk

)
l

]


− (

δUk
)
i
= −∆tnFi(Uk).

(34)

It shows that it is not possible to decouple the problem for each mode (δU)i.

4.3. Matrix free solver
We denote the linear operator G : (V,U) ∈ (V0 ⊗S P)× (VuΓ ⊗S P) 7→ G(V,U) ∈ V0 ⊗S P defined as

G(V,U) ≡ I−1
{L (V) +N (U)V}− V, (35)

so one has to solve G(V,U) = −∆tnF(U) for V, given U . As discussed previously, the first term in the expres-
sion of G in equation (35) is the result of a time integration of the linearized Navier-Stokes equations from
the initial condition V: a decouple time integration can be employed for its evaluation. This observation
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suggests to use a matrix free method to solve Eq. (34) at the discrete level, i.e. after spatial discretization.
Here, by matrix free method, we mean that the large system of algebraic equations corresponding to the
discrete version of Eq. (34) is not constructed and inverted; this is essential due to the size of the discrete
system, which we recall is (P + 1) times larger than in the deterministic context. Instead iterative tech-
niques are considered for the determination of stochastic increment δU , where for a given discrete iterate
V the effect of the linear operator G(.,U) on V is obtained by means of a time-integration of the linearized
Navier-Stokes equations. As a result, the computational cost to perform the pseudo matrix-vector product
amounts to the resolution of one time step of the discrete unsteady linearized Navier-Stokes equation which,
we emphasize, can be performed in a decoupled fashion. When selecting such matrix free iterative solver, it
is important to recognize that the operator G is not self-adjoint. Two subspace methods for non-symmetric
linear systems have been tested in this work for the resolution of the discrete version of Eq. (34): BiCGStab
algorithm [31] and GMRES algorithm [29].

The efficiency of these algorithms is strongly related to the spectrum of G, and the computational cost
of the resolution mainly scales with the number of pseudo matrix-vector products (i.e integrations of the
linearized discrete Navier-Stokes equations) needed to obtain the discrete increment within a given error
tolerance. In fact, the overall computational cost to obtain the steady stochastic solution will depends on
a) the convergence rate of the Newton iterations (which is independent of the iterative algorithm) and b)
the number of integrations of the linearized Navier-Stokes equations to estimate the Newton increments
(which depends on the iterative algorithm). It is expected that the convergence of the Newton iterations
improves when ∆tn increases. In fact, ∆tn can be selected arbitrarily large, since no stability constraint
holds. However, the choice of the time-step ∆tn also affects the spectrum of G: using larger ∆tn will usually
requires more integrations of the linearized Navier-Stokes equations to obtain the increment. Thus, we
expect a trade-off on ∆tn, to balance the convergence of the Newton iterations with the numerical cost of
computing the increments. This point is essential for the efficiency of the stochastic Newton solver and will
be numerically illustrated in the next section.

Also related to the iterative algorithm used to compute the increments are memory requirements. The
memory requirements are here a key aspect, as the size of the discrete solutions are (P + 1) times larger
than for the deterministic problem. GMRES algorithm requires the storage of successive solution vectors to
span the Krylov subspace. In contrast, BiCGStab algorithm needs to store of a fixed number (4) of solution
vectors. Krylov subspaces of significant dimension are expected in order to approach the solution of Eq. (34)
using GMRES. This makes the BiCGStab algorithm a priori more suited from memory requirements point
of view. However, a comparison of the computational cost and memory requirements of the two methods
is needed to decide which of the two algorithms should be preferred. This aspect is also investigated in the
next section.

5. Test problem

5.1. Problem definition
The Newton method is tested on the normalized Boussinesq equations describing the natural convection

flow inside a 2-dimensional square cavity: (x, y) ∈ Ωx = [0, 1]d=2. The unsteady flow is governed by the the
Boussinesq equations (Beqs), consisting in the momentum, energy and mass equations,





∂u

∂t
+ u ·∇u = −∇p+

Pr√
Ra
∇2u + PrTy,

∂T

∂t
+ u ·∇T =

1√
Ra
∇2T

∇ · u = 0,

(36)

where T is the normalized temperature, Ra is the Rayleigh number, Pr = 0.71 is the Prandtl number of
the fluid (air) and y the gravity direction. Boundary conditions for the velocity are u = 0 on Γ. For the
temperature boundary conditions we assume adiabatic walls at y = 0 and 1 (top and bottom boundaries of
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the cavity) and stochastic temperatures at x = 0 and 1 (vertical walls):
{ ∇T · y = 0, y = 0 and 1,
T = TΓ(ξ), x = 0 and 1. (37)

The linearized Boussinesq equations (LBeqs), around (u, T ) satisfying the boundary conditions are




∂ (δu)
∂t

+ (δu) ·∇u + u ·∇ (δu) = −∇ (δp) +
Pr√
Ra
∇2 (δu) + Pr (δT )y,

∂ (δT )
∂t

+ (δu) ·∇T + u ·∇ (δT ) =
1√
Ra
∇2 (δT ) ,

∇ · (δu) = 0,

(38)

with the homogeneous boundary conditions:




δu = 0, x ∈ Γ,
∇ (δT ) · y = 0, y = 0 and 1,
δT = 0, x = 0 and 1.

(39)

These equations are solved in vorticity stream-function formulation (see [27]), on a uniform, staggered grid,
using second order centered finite-differences schemes for the convective and viscous terms. Fast FFT-based
solvers are used for the inversion of the heat and Poisson operators. Boundary conditions on the vorticity
ω = (∇ ∧ u) · z are determined through an influence matrix technique [5]. Using the formal notations, the
solution of the Boussinesq equations is U = (ω, T ). For the purpose of the analysis, we define the stochastic
norms ‖ · ‖S P

Ωx
by:

(
‖f‖S P

Ωx

)2

≡
∫

Ωx

〈
f2(x)

〉
dx =

P∑

i=0

〈
Ψ2

i

〉 ∫

Ωx

(f(x))2i dx. (40)

To monitor the convergence of the steady solution with the iterations, we use the norms of the steady
vorticity and temperature equation residuals, denoted respectively ‖Rω‖S P

Ωx
and ‖RT ‖S P

Ωx
, where using formal

notations Rω = Fω(U) and RT = FT (U).

5.2. Unsteady simulations
In a preliminary test, the uncertain temperature boundary conditions is parameterized as follow:

{
TΓ(ξ) = 1/2 + 1/20ξ1, x = 0,
TΓ(ξ) = −1/2 + 1/20ξ2, x = 1, (41)

with ξ1 and ξ2 uniformly distributed on [−1, 1]2. For these settings, the vertical walls support uniform
independent random temperatures, with respective expectations equal to ±1/2, uncertainty levels ±10% and
uniform probability densities. The stochastic dimension of the problem is then N = 2, and the orthogonal
basis of S P is the set of 2-dimensional Legendre polynomials with degree less or equal to a prescribed
expansion order No. The spectral problem is time-integrated from the initial conditions u = 0, T = 0, using
the decoupled strategy described in Section 3, with a first order backward Euler scheme with ∆t = 0.02 on
a 128× 128 spatial grid.

In Figure 1, the convergence of the flow toward the steady state is monitored by plotting the steady
residual norms ‖RT ‖S P

Ωx
and ‖Rω‖S P

Ωx
as functions of the time-iteration index. Different Rayleigh numbers

are tested: Ra = 104, 105 and 106. The expansion order is set to No = 3 in all the simulations, so
dim(S P) = 10. The curves for the different Ra show a decay of the unsteady flow to their respective
asymptotic stable steady states. However, the decay rate becomes slower as Ra increases, due to a weaker
viscous damping of inertial waves. This behavior illustrates how the determination of a steady solution via
time-integration, although possible in the range of Ra and temperature differences considered, becomes very
inefficient when Ra increases.
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Figure 1: Decay with time-iterations of the steady residual norms ‖RT ‖SP

Ωx
(left) and ‖Rω‖SP

Ωx
(right) in unsteady simulations

of the Boussinesq equations for Ra = 104, 105 and 106 as indicated. The time-step is ∆t = 0.02.

5.3. Newton iterations
The Newton iterations are now applied on the problem defined previously. The deterministic and stochas-

tic discretizations are kept the same, except that ∆tn = 5 is now used. Newton iterations at a given Ra are
initialized with the stochastic steady solution at Ra/2.

5.3.1. Convergence of Newton iterations
Figure 2 depicts the convergence with the Newton iterations of the steady residual norms ‖RT ‖S P

Ωx
and

‖Rω‖S P

Ωx
. The computation of the Newton increments uses BiCGStab with a stopping criterion ε = 10−3

(see definition below). In these plots, the symbols correspond to the Newton iterates. For the three Ra
tested, it is seen that 5 to 6 Newton iterations are needed to achieve a reduction of the residuals below 10−12.
The asymptotic convergence rate with the Newton iterations is found weakly dependent on Ra. However,
the CPU costs dependent on Ra, as seen from the curves where the steady residual norms are reported as
functions of the total number of LBeqs integrations performed. This trend denotes the degradation of the
conditioning of the problem for the Newton increments when Ra increases. Specifically, it is seen that for
Ra = 104 about 10 iterations on the LBeqs are needed by BiCGStab to solve Eq. (22) within the requested
tolerance, while ≈ 70 iterations are needed for the same tolerance criterion when Ra = 106. However, keeping
in mind that one iteration on the linearized equations (LBeqs) amounts essentially to the computational
cost of one iteration of the unsteady equations (Beqs), the efficiency of the Newton method can be directly
appreciated from a comparison of the decay rates of the residuals in Figures 2 and 1. For instance, when
Ra = 106 about 5000 unsteady iterations yield a reduction of the residual by a factor of roughly 103, to
be compared with the reduction by a factor of roughly 1010 obtained in only 400 LBeqs iterations for the
Newton method.

5.3.2. Stopping criterion
The Newton method being iterative, the increments δUk(ξ) need not be exactly computed and approxi-

mated increments can be used instead, with the objective of reducing the CPU cost of their determination.
In fact, iterations on the BiCGStab algorithm are performed as long as the probabilistic norms of the discrete
equations J (Uk)δU = −F(Uk) (on T and ω), normalized by the norms of the respective right-hand sides,
are such that

‖J (Uk)δU + F(Uk)‖S P

Ωx

‖F(Uk)‖S P

Ωx

> ε, (42)

for some small positive ε. In Figure 3, we compare the convergence of the steady residual norms at Ra = 106

obtained using different ε in BiCGStab. It is seen that the residual reduction between two successive Newton
iterates (symbols) improves when ε is lowered. However, this improvement becomes negligible when ε goes
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Figure 2: Convergence of the steady residual norms with the number of LBeqs iterations and for Ra = 104, 105 and 106 as
indicated. Newton increments are computed using BiCGStab with ∆tn = 5 and stopping criterion ε = 10−3.

to zero and comes with a significant increase in the number of BiCGStab iterations. Therefore, there is a
trade-off between the accuracy in the computed increment and the numerical cost of it resolution. For the
present problem, the optimal trade-off in terms of number of LBeqs integrations is for ε ∼ 10−1, 10−2: for
a similar reduction of the residuals, twice as many Newton iterations are needed than for ε = 10−4, but
increments are obtained within 3 to 4 times less iterations.
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Figure 3: Convergence of the steady residual norms with the number of LBeqs iterations, for different stopping criteria ε as
indicated and BiCGStab. Ra = 106, ∆tN = 5.

5.3.3. Newton time-step ∆tn
We recall that the selection of ∆tn is not subjected to stability restrictions and that the convergence of

the Newton iterations is expected to improves when ∆tn increases. However, the conditioning of the problem
on the increments is expected to degrade for increasing ∆tn, with a larger number of time integrations of
the linearized problem as a result. These expectations are verified in the following tests for the solution at
Ra = 106 using different time-steps and BiCGStab with ε = 10−3. The convergence of the steady residual
norms is reported is Figure 4 and clearly evidences the expected trends: there is a optimal ∆tn balancing
the steady residuals reduction, from a Newton iterate to the following, with the number of iterations needed
to compute the increments. For the present test, ∆tn ∼ 5 seems optimal in terms of number of iterations
on the LBeqs. It has to be noticed that the a priori determination of the optimal Newton time-step, as
well as the optimal stopping criterion, remains an open question. Furthermore, the respective CPU costs
for the different values of ∆tn are here proportional to the number to LBeqs iterations, thanks to the use
of FFT-based direct solvers for the diffusion and Poisson equations. In general, when using iterative solvers

11



for the integrations of the linearized equations such equivalence will not be true, and the comparison will
have to be based on the actual CPU-times.
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Figure 4: Convergence of steady residual norms with the number of LBeqs iterations using different Newton time-steps ∆tn as
indicated. Ra = 106, BiCGStab algorithm with ε = 10−3.

5.3.4. GMRES vs BiCGStab
To complete this first series of tests, we provide a comparison of the respective efficiencies of BiCGStab

and GMRES for the problem at Ra = 106. It is recalled that in addition to the CPU times, memory
requirement is an important concern when designing solvers for stochastic spectral problems. Here, we take
advantage of the relatively low dimensionality of the stochastic approximation space, dim(S P) = 10, to
compare the respective efficiencies of the GMRES and BiCGStab algorithms. Indeed, for this problem we
were able to construct Krylov subspaces sufficiently large to avoid the need of relying on restart procedures
in GMRES.

Figure 5 compares the convergence of the steady residual norms using GMRES and BiCGStab, for
two stopping criteria ε = 10−2 and ε = 10−4 and using ∆tn = 5. It is seen that for the two stopping
criteria, GMRES requires less iterations than BiCGStab to approximate the Newton increments. Although
significantly more efficient when ε = 10−4, one can observe that GMRES constructs Krylov subspaces
with dimension up to 80, such that 80 solution vectors have to be stored, to be compared with only 4
in BiCGStab. Furthermore, the increments needing not to be accurately computed, as shown previously,
BiCGStab is preferred and will be used systematically in the following.
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Figure 5: Comparison of convergences of the vorticity steady residual norm with the number of LBeqs iterations for BiCGStab
(open symbols) and GMRES (filled symbols) algorithms and using different stopping criteria ε = 10−2 (left) and ε = 10−4

(right). Parameters are Ra = 106, ∆tn = 5.
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5.4. Influence of the stochastic discretization
So far, we have verified that the behavior of the Newton method is consistent with our expectations

based on theoretical analysis and our experience with deterministic problems. This was investigated by
varying the parameters of the Newton method. This section aims at assessing the efficiency and robustness
of the Newton method with regard to the stochastic discretization, i.e. when the stochastic approximation
space S P changes.

To this end, we consider a more complex parameterization of the temperature boundary conditions. The
temperature on the cold wall is now certain and equal to T (x = 1) = −1/2, while the hot wall temperature
is modeled as a stationary Gaussian stochastic process. This uncertainty setting corresponds to the problem
treated in [22] which is now briefly summarized. The mean of the Gaussian stochastic process is 1/2 with
a standard deviation σT = 0.1: T (x = 0, y, θ) ∼ N(1/2, σ2

T ). The two points correlation function of the
random temperature along the wall is assumed to decay exponentially with a characteristic length-scale
L = 1. The Karhunen-Loève (KL) expansion of the process is

T (x = 0, y, θ) = 1/2 +
∞∑

k=1

√
λkTk(x = 0, y)ξk(θ), (43)

where the normalized functions Tk(x = 0, y) are the deterministic KL modes and the ξk are uncorrelated
(so independent) normalized centered Gaussian random variables:

ξk(θ) ∼ N(0, 1), 〈ξkξl〉 = δkl. (44)

Expressions for the deterministic KL modes can be found in [10, 22]. Ordering the KL modes of the
temperature boundary conditions such that λ1 ≥ λ2 ≥ . . . , the KL expansion is truncated after the N-th
first terms. It comes

T (x = 0, y, θ) ≈ T (x = 0, y, ξ(θ)) = 1/2 +
N∑

k=1

√
λkTk(x = 0, y)ξk(θ) (45)

where ξ = {ξ1, . . . , ξN}. For the stochastic discretization, we rely on a Wiener-Hermite basis of L2(Ωξ, dPξ).
Truncating the basis to order No yields the stochastic approximation space S P, where P is given by Eq. (14).
The expansions of the temperature and vorticity fields on the Wiener-Hermite basis are

T (x, y, θ) =
P∑

k=0

Tk(x, y)Ψk(ξ), ω(x, y, θ) =
P∑

k=0

ωk(x, y)Ψk(ξ). (46)

The stochastic approximation space S P can be refined by increasing N and / or No. Our objective when
selecting this problem was not to determine the minimal stochastic discretization to achieve given accuracy
(this aspect was investigated in [22] where an unsteady integration was used), but rather to analyze the
impact of the stochastic discretization on the efficiency of the Newton method.

5.4.1. Influence of the stochastic order No
In a series of simulations, we set N = 4, σT = 0.1 and we compute the steady solution for Ra = 106

and different stochastic orders No = 1, . . . , 5. Each computation uses the corresponding steady solution for
Ra = 5.105 to initialize the Newton iterations. The increments are computed using BiCGStab with ε = 10−2

and ∆tn = 5. Figure 6 shows the convergence of the steady residuals for the different stochastic orders. It
shows that the convergence rate of the Newton iterations is essentially independent of the expansion order
No, as well as the the number of BiCGStab iterations needed to compute the increments.
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Figure 6: Convergence of the steady residual norms with the number of LBeqs iterations for different stochastic orders No =
1, . . . , 5. Computations use N = 4, BiCGStab with ε = 0.01 and ∆tn = 5.

5.4.2. Influence of the stochastic dimension N
In a second series of tests, we fix the stochastic order to No = 3 and we increase the number of stochastic

dimensions, i.e. the number of KL modes used to model the stochastic boundary conditions, from N = 3
to 8. Again, the Newton iterations are initialized with the respective steady solutions for Ra = 5.105, while
BiCGStab is used with ε = 10−2 and ∆tn = 5. Inspection of the results reported in Figure 7 shows that
the convergence of the Newton iterations, as well as the number of BiCGStab iterations for the increments
computation, is essentially insensitive to the number N of stochastic dimensions.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  100  200  300  400

||R
T
||

# of LBeqs iterations

N=3
N=4
N=5
N=6
N=7
N=8

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  100  200  300  400

||R
ω
||

# of LBeqs iterations

N=3
N=4
N=5
N=6
N=7
N=8

Figure 7: Convergence of the steady residual norms with the number of LBeqs iterations for different KL expansions of the
temperature BCs with N = 3, . . . , 8. Computations use No = 3, BiCGStab with ε = 0.01 and ∆tn = 5.

5.4.3. Comments
The two previous numerical experiments have shown a convergence of the Newton iterations essentially

independent of the stochastic discretization. This is an interesting finding that was not necessarily expected.
In fact, in view of Eq. (30) which exhibits the coupling between the spectral modes of the Newton increments,
one may have anticipated an impact of the stochastic discretization on the number of BiCGStab iterations
needed for the resolution of Eq. (22) as N and No increase. Such a trend is not reported in our simulations,
denoting the robustness with regard to the stochastic discretization of the proposed method. In fact, the
coupling between the stochastic modes in Eq. (22) is more related to the uncertainty level (or variability
of the stochastic flow) than to the stochastic discretization. To support this claim, we consider the same
problem and numerical parameters, but the standard deviation of the temperature boundary condition is
double: σT = 0.2. Doubling the variability of the boundary condition increases the variability of the solution
and so the magnitude of the stochastic modes and their non-linear interaction. In Figure 8, we compare
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the convergence of the steady residuals in the simulations for σT = 0.1 and σT = 0.2 using No = 3 and
N = 6. It is seen that the decay with the Newton iterations of the steady residuals is roughly unaffected
when doubling σT , but that more BiCGStab iterations are needed to compute the increments.
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Figure 8: Convergence of the steady residual norms with the number of LBeqs iterations, for temperature BCs with standard
deviation σT = 0.1 and 0.2. The stochastic discretization uses No = 3 and N = 6. Other parameters are given in the text.

5.5. Computational time
The independence with regard to the stochastic discretization of the residuals convergence, should not

hide the fact that the computational cost significantly increases when the stochastic discretization is refined.
We report in Table 1 the measured CPU-times of the simulations for σT = 0.1. All simulations were
sequentially performed on a 64-bits bi-processor workstation (AMD Opteron 250, 2.4 GHz with 4Go of
RAM). The variability in reported CPU-times is estimated to be ±10% (due to other running processes and
time measurement errors). In addition to the CPU time, Table 1 also provides the corresponding dimensions
of the stochastic approximation spaces, i.e the number of the stochastic modes in the solution. It is first
remarked that for the largest stochastic space there are 165 stochastic modes, so the steady solution involves
roughly 2.7 millions degrees of freedom and the steady solution is computed in slightly more than 2 hours
of CPU.

N = 4
No = 1 No = 2 No = 3 No = 4 No = 5

dim(S P) 5 15 35 70 126
CPU times (s) 42 190 901 3,482 12,891
No = 3

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8
dim(S P) 20 35 56 84 120 165
CPU times (s) 373 901 1740 2,832 4,861 7,394

Table 1: CPU-times for the computation of the steady solutions at Ra = 106 using different expansion orders (No) and
truncation (N) of the KL expansion for the temperature boundary condition.

To gain a better appreciation of the evolution of the CPU-time with the stochastic discretization, we
have plotted in the left part of Figure 9 the measured CPU-times as a function of the dimensions (P + 1)
of the stochastic approximation spaces. It is seen that for No = 3, the CPU-times scale asymptotically as
dim(S P) when N increases. On the contrary, when N = 4 and No increases, a polynomial scaling of the
CPU-time with dim(S P) is reported. These different scalings call for an explanation. It is first remarked
that the total CPU-time is mostly spent in two distinct tasks. First, a large fraction of the CPU-time is
spent solving the decoupled Poisson and diffusion operators for the stochastic solution modes: a scaling
in O dim(S P) for this contribution to the CPU-time is expected. The second time-consuming part of the
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computation comes with the projection of the explicit terms. For the LBeqs, the cost for the projection of
the explicit terms is dominated by the stochastic products, which scale with the complexity C of the Galerkin
product. This complexity can be measured [20] as the number of non zero entries in the multiplication tensor
Cklm = 〈ΨkΨlΨm〉 /

〈
Ψ2

k

〉
. The complexity C is a function of both No and N. With these notations, the

total CPU-time scales as O dim(S P) +O(C(N,No)). The right plot in Figure 9 shows C for the stochastic
discretizations tested. It is seen that for fixed expansion order (No = 3) the scaling of C with dim(S P) is
asymptotically linear, while for a fixed number of stochastic dimensions (N = 4) the scaling is polynomial in
dim(S P ) as No increases. These two trends explain the reported evolutions of the total CPU-time with the
stochastic discretization: for fixed expansion order the CPU-time is essentially proportional to the stochastic
basis dimension, while for fixed N the contribution of the explicit terms projection to the CPU-time becomes
more and more important as No increases.
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Figure 9: CPU-times for the resolution of the steady problem (left) and complexity C of the Galerkin product (right) for
different stochastic discretizations.

6. Unstable steady flow

In this section, we provide a last example for the application of the Newton method. The objective of this
example is two folds. First, it aims at demonstrating the effectiveness of the proposed method when dealing
with steady flows likely unstable to perturbations. Second, the example is used illustrate the decoupling
strategy mentioned in Section 3.3.

6.1. Uncertainty settings
We consider the normalized two-dimensional flow around a circular cylinder. The flow is characterized

by the Reynolds number Re = U∞D/ν, where U∞ is the free-stream velocity, D the cylinder diameter and
ν the fluid viscosity. It is well known that this flow is unstable for Re > 48. We assume deterministic
free-stream velocity and cylinder diameter, and consider a uncertainty in the fluid viscosity ν, modeled as
a Log-Normal random variable with median value ν and coefficient of variation a > 1; i.e. ν is expected to
be in the range [ν/a, νa] with 99% probability. The random viscosity can be parameterized using a unique
random variable ξ as follow:

ν(ξ) = exp(−µ+ σξ), µ = log ν, σ = log(a)/2.95. (47)

The stochastic basis consists in one-dimensional Hermite polynomials. On this basis, ν has for stochastic
expansion:

ν(ξ) =
∑

i

νiΨi(ξ) = exp(µ+ σ2/2)
∑

i

σi

〈Ψ2
i 〉

Ψi(ξ), (48)

where Ψi is the Hermite polynomial with degree i. The median value of the viscosity is set such that the
median Reynolds number Re = U∞D/ν = 60 and the coefficient of variation is fixed to a = 3/2. Therefore,
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most realizations of the stochastic flow are above the critical Reynolds number as one can appreciate from
Figure 10 which depicts the probability density function of Re.
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Figure 10: Probability density function of the stochastic Reynolds number of the flow.

6.2. Flow equations and stochastic decoupling
The vorticity stream-function formulation of the flow is considered in an annular domain extending from

the cylinder boundary Γc to an external circular boundary Γ∞ located at 25D from the cylinder center. The
governing equations of the flow are





∂ω

∂t
= −u ·∇ω +

1
Re
∇2ω,

∇2ψ = −ω,

u = ∇ ∧ (ψk),

(49)

where ω is the vorticity and ψ the stream-function. Natural boundary conditions are u = 0 on Γc and
u = U∞i on Γ∞. The flow variables are expanded on the Hermite basis and introduced in the Eq. (49)
which are in turn projected on the spectral basis. For a truncation of the stochastic basis to stochastic order
No, it led for i = 0, . . . ,P = No,





∂(ω)i

∂t
= −

∑

j

∑

l

Cijl

[
(u)j∇(ω)l +

(
1

Re

)

j

∇2(ω)l

]
,

∇2(ψ)i = −(ω)i,
(u)i = ∇ ∧ ((ψ)ik).

(50)

The next step is to select a time-discretization that decouples the integration of the stochastic modes. This
is achieved by splitting the stochastic diffusion term as follow:

∑

j

∑

l

Cijl

(
1

Re

)

j

∇2(ω)l =
∑

l

Ci0l

(
1

Re

)

0

∇2(ω)l

+
∑

j>0

∑

l

Cijl

(
1

Re

)

j

∇2(ω)l,

=
(

1
Re

)

0

∇2(ω)i +
∑

j>0

∑

l

Cijl

(
1

Re

)

j

∇2(ω)l. (51)

In the previous equation, we have assumed an indexation of the polynomials Ψi in the stochastic basis
with increasing degree, such that Ψ0 is the zero degree (constant) polynomial; we set Ψ0 = 1. With this
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classical indexation Ci0l = δil. Introducing a first order time discretization, the semi-discrete equation for
the vorticity mode (ω)i is

(
1

∆t
−

(
1

Re

)

0

∇2

) (
ωn+1

)
i

=
(ωn)i

∆t
+

∑

j>0

∑

l

Cijl

(
1

Re

)

j

∇2(ωn)l

−
∑

j

∑

l

Cijl (un)j ∇ (ωn)l , (52)

or using the formal notations
I (ω)n+1

i = Li (ωn) +Ni(ωn). (53)

The annular domain is conformally mapped to a rectangular mathematical domain where the equations
are solved. On the opposite sides of the mathematical domain corresponding to Γc and Γ∞, boundary
conditions for the vorticity modes (ω)i are determined by means of an influence matrix technique [5, 30, 37,
23]. The spatial discretization uses second order centered finite-differences schemes on a uniform grid with
256×512 points, allowing for fast FFT-based solvers for the inversion of the Poisson and diffusion operators.
The Hermite expansion is truncated at No = 4 so they are P + 1 = 5 modes in the solution.

6.3. Results
We apply the Newton method to solve the steady stochastic flow, with ∆tn = 10 and ε = 0.01 in

BiCGStab algorithm. Newton iterations are initialized with ω0(ξ) = 0. For this initialization a limiter on
the Newton increments is needed. This limiter rescales the increment by a small positive constant when the
norm ‖δU‖S P

Ωx
is deemed too large. In the computation presented, the limiter acts only during the first three

Newton iterations. Figure 11 presents the convergence of the steady residual with the Newton iterations.
It is interesting to note that the number of BiCGStab iterations needed to satisfy the stopping criterion
increases with the Newton index (not shown). This can be explained by the degradation of the conditioning
of the increment problem, as the stochastic modes develop. A total of 1,175 linearized time-integrations was
necessary to obtain a residual below 10−14.
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Figure 11: Convergence of the steady equation residual as a function of the Newton iteration index k.

Figure 12 presents the evolution during the first five Newton iterations of the averaged flow, i.e. the mode
i = 0 of the solution. Plotted are the streamlines (top part of the plots) and vorticity contours (bottom
part of the plots) for the flow going from left to right. It shows the development of the two symmetric
recirculation zones and the convection in the downstream direction of the vorticity.

Figure 13 presents the stochastic modes of the stream-function (ψ)i (top part of the plots) and vorticity
field (ω)i (bottom part of the plots) of the steady solution, for modes i = 0, . . . , 3. The contours level have
been adapted in each plot to highlight the flow structure, but it is underlined that the magnitude of the fields
decays by a factor of 50 to 100 between two successive modes (denoting the convergence of the stochastic
expansion). The plots show that the uncertainty in the fluid viscosity essentially affects the vorticity field
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in the boundary layers and in the cylinder wake. On the contrary, the stream-function modes denote an
impact of the uncertainty which extends far from the cylinder, even-though it primary affects the magnitude
and spatial extension of the recirculation zones behind the cylinder.

To gain a better appreciation of the steady flow variability with regard to the uncertain viscosity, we
present in Figure 14 the standard deviation fields of the stochastic vorticity, stream-function and velocity
components. The standard deviation of the vorticity field confirms that the uncertainty essentially affects
the vorticity in the boundary layers and cylinder wake. The standard deviation of the stream-function
highlights the variability in the intensity and spatial extension of the symmetric recirculation downstream of
the cylinder. The standard deviation of the velocity component u, parallel to the inflow velocity, shows that
it is mostly affected by the uncertainty along the flow symmetry axis and in the recirculation zones. On the
contrary of u, the transverse fluid velocity v exhibits a maximum variability in the immediate neighborhood
of the up-stream boundary layers, and is null on the axis of symmetry, since all realizations of the flow are
symmetric.

Finally, Figure 15 shows in the top plot the resulting viscous stress distribution over the cylinder bound-
ary, using the classical representation with mean value and uncertainty bounds extending to ±3 standard
deviations. The bottom plot of Figure 15 provides an analysis of the flow recirculation statistics. Specifically,
it shows as a function of the downstream distance x/D from the cylinder center, the longitudinal velocity u
(mean value and ±3 standard deviations bounds), the probability of u to be negative (i.e. the probability of
point x/D to be in the recirculation zone) and the probability density (rescaled by its maximum) of having
u(x/D) = 0 (i.e. the probability density that the recirculation extends up to x/D).

7. Conclusion and summary

A Newton method has been proposed for the resolution of the stochastic incompressible steady Navier-
Stokes equations. The method is an extension of the technique developed in the deterministic context. It
relies on an appropriate time discretization of the unsteady equations to derive a convenient stochastic spec-
tral problem for the Newton increments of the steady solution. The method leads to matrix-free strategies,
where the Newton increments are iteratively computed by solving a series of spectral problems consisting in
the time integration (over one pseudo time-step) of the linearized unsteady stochastic flow equations. The
procedure offers several advantages:

1. it avoids the explicit construction of the large equations Jacobian,
2. the adaptation of an unsteady stochastic flow solver to the resolution of the linearized problem is

generally straightforward,
3. the time integration of the spectral modes is decoupled.

Numerical experiments and examples provided in the result sections have demonstrated the efficiency of
the method. Major findings are summarized as follow:

• A fast converge of the Newton iterations is reported in all the simulations, even for flows unstable to
perturbations.

• The convergence rate of the Newton iterations is essentially independent of the stochastic discretization.

• The number of iterations on the linearized unsteady problem is also essentially independent of the
stochastic discretization, although it increases with the flow variability.

• Newton increments can be roughly computed, thus reducing the number of integrations of the unsteady
linearized problem to be performed.

• The efficiency of the method depends on the selected pseudo time-step. There is an optimal time-step,
but we are not able to determine it value a priori.

• For the computation of the Newton-increments, we recommend to use BiCGStab: although slightly
less efficient than GMRES on the tested problems, it has much lower memory requirements.
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• The analysis of the CPU-times have shown that for large stochastic approximation spaces, the compu-
tational times tend to scale with the complexity (number of operations) in the spectral product. This
scaling denotes the increasing proportion of the time spent for the projection of the explicit terms to
the overall CPU-times when the order of the stochastic discretization is refined.

Following these findings, future improvement(s) should focus on the optimization of the Newton in-
crements computation. Specifically, these increments being the solution of a linear problem, the so-called
Generalized Spectral Decomposition recently proposed in [26] is an attractive strategy that is expected to
drastically reduce both CPU-times and memory requirements for their approximation. This is the focus of
an on-going work.
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Figure 12: Evolution with the first Newton iterates (k = 1, . . . , 5 from top to bottom) of the averaged flow streamlines (top
part of the plots) and vorticity contours (bottom part of the plots). The flow is from left to right.
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Figure 13: Stochastic modes i = 0, . . . , 3 of the steady stream-function (ψ)i (top part of the plots) and vorticity field (ω)i

(bottom part of the plots). The flow goes from left to right.
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Figure 14: Standard deviation of the vorticity, stream-function and velocity components u (parallel to the inflow) and v (in
the transverse direction).
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Figure 15: Top plot: representation of the viscous stress distribution along the cylinder boundary using mean value ±3 standard
deviations bounds representation. Bottom plot: mean and ±3 standard deviations bounds of the longitudinal velocity u,
probability of u < 0 and probability density of u = 0 as a function of the downstream distance x/D from the cylinder center.
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