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Abstract

We develop a preconditioned Bayesian regression method that enables sparse polynomial
chaos representations of noisy outputs for stochastic chemical systems with uncertain re-
action rates. The approach is based on the definition of an appropriate multiscale trans-
formation of the state variables coupled with a Bayesian regression formalism. This en-
ables efficient and robust recovery of both the transient dynamics and the corresponding
noise levels. Implementation of the present approach is illustrated through applications to
a stochastic Michaelis-Menten dynamics and a higher dimensional example involving a ge-
netic positive feedback loop. In all cases, a stochastic simulation algorithm (SSA) is used to
compute the system dynamics. Numerical experiments show that Bayesian preconditioning
algorithms can simultaneously accommodate large noise levels and large variability with un-
certain parameters, and that robust estimates can be obtained with a small number of SSA
realizations.
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1 Introduction

In this paper, we develop Bayesian preconditioning approaches for computing spectral repre-
sentations of the of the dependence of the mean and variance of the trajectory of a stochastic
chemical system on uncertain reaction rates. For a fixed set of reaction rates, simulation of
such systems is performed using Gillespie’s Stochastic Simulation Algorithm (SSA). Straight-
forward Monte Carlo approaches, which involve generating a sufficiently large sample of the
random reaction rates vector and then running a large number of SSA simulations to es-
timate the first moments for each sample vector are exceedingly demanding, especially for
high-dimensional stiff systems. Furthermore, assessment of the impact of individual uncer-
tain reaction rate on the solution variability (global sensitivity) is not trivial within such
simulation approaches. Such considerations motivate development of suitable and efficient
computational approaches.

An increasingly popular class of methods for quantifying uncertainty in dynamical sys-
tems utilizes Polynomial Chaos (PC) expansions of the model variables [2, 11, 17, 27–29, 31,
32,36,37,43,47,51]. These methods provide a representation of the model variables in terms
of a (truncated) spectral expansion in an appropriate orthogonal polynomial basis. Once
available, the spectral expansion can be readily used to efficiently compute the statistical
properties of the model variables, and to characterize the sensitivity of specific observables
with respect to specific components of the random reaction rate vector.

In general, there are two major approaches for computing the spectral coefficients in a
PC expansion, namely intrusive or Galerkin methods and non-intrusive or sampling based
techniques. The intrusive method involves reformulating the original set of dynamical system
equations through its Galerkin or pseudospectral projection onto the approximation space
spanned by the PC basis [17,27]. One then has to solve a large coupled systems of equations
for the time evolution of the PC coefficients. However, for the class of systems considered
in this work, which are intrinsically stochastic and can only be simulated when the reaction
rates are prescribed, we have no explicit governing equations available for the quantities of
interest (QoIs), namely the solution moments, to perform the Galerkin projection. On the
other hand, the non-intrusive methods share the common characteristic of not requiring the
reformulation of the original dynamical system, and thus enable the use of already existing
solvers or simulators. For example, in the so-called non-intrusive spectral projection (NISP)
method, the PC coefficients of the QoIs are computed via numerical integration, where only
computations of the QoIs are needed over the nodes of an appropriate quadrature formula
(cf. Section 2.2). PC methods in general, and NISP in particular, face the so-called curse
of dimensionality. In the context of NISP, the curse of dimensionality refers to the rapid
increase in the number of quadrature points needed for accurate computation of the PC
coefficients. In many cases, this can be mitigated through sparse tensorization and sparse
grid quadratures, combined with adaptive techniques [13,14,25,26,30].

Another well-known difficulty with time-dependent systems concerns the ubiquitous ob-
servation that the spectrum of a straightforward PC representation can be broad with sig-
nificant evolutions in time, which makes it difficult to approximate quantities of interest via
fixed (low) order PC expansions [28]. For example, in the context of a chemical system,
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some realizations of the system trajectory may reach equilibrium quickly, whereas others
may exhibit a transient behavior over much larger timescales. Such decorrelation of system
trajectories results leads to energetic higher order modes in a PC representation; see e.g. [36]
for specific illustrations. In [2], a preconditioning strategy for NISP was developed to ad-
dress the issue of broad spectra in the context of stiff chemical systems having no source of
stochasticity other than the reaction rates, that is, chemical systems described by their lim-
iting reaction rate equations (RREs). Preconditioning involves using appropriate multiscale
linear or affine transformation of the state variables, so as to control the variance (with re-
spect to the uncertain model parameters) of the scaled variable, and to maintain a tight PC
spectrum over time. It was shown in [2] that such an approach enables a low-order PC basis
that remains suitable over time. As stated previously, we focus in this work on the problem
of quantifying uncertainties in the reaction rates of stochastic chemical systems simulated
using SSAs, i.e. without passing to a continuous limit. Such models lead to several chal-
lenges, arising due to the compound impact of high fluctuation levels (intrinsic stochasticity
due to finite system size), and of the steep dependence of the system response on uncertain
rates. In particular, a straightforward NISP approach can be problematic especially when
sparse SSA sampling must be utilized to estimate the QoI at the quadrature nodes; in these
situations, accuracy may severely deteriorate due to large sampling errors [44].

We aim at addressing these hurdles through Bayesian preconditioning and regression
algorithms to simultaneously accommodate large fluctuations and steep dependence of QoIs
on uncertain inputs. Specifically, we seek to exploit the capability afforded by Bayesian
regression [38, 39, 41, 44, 45], to accommodate noisy signals, namely by defining a suitable
transform (depending on the uncertain inputs only) that is later applied to the original noisy
signals (SSA realizations). This defines a collection of noisy scaled variables that are also
captured using a Bayesian regression formalism. Questions that we seek to address concern
(1) whether this methodology is successful in leading to sparse low order representations of
the noisy signals, (2) whether one can thus represent the response of both the mean and
variances of noisy SSA realizations, and (3) whether reasonable estimates of the dependence
of mean signals and fluctuation levels on the random inputs can be obtained based on
moderate number (viz. tens as opposed to several thousands) of realizations of the stochastic
chemical system. These questions are motivated, in particular, by our desire to explore
the development of efficient surrogates that can be used to couple stochastic simulation
algorithms with fluctuating uncertain mesoscale models. In these situations, the stochastic
surrogates of microscale regions must not only provide a suitable representation of the mean
dynamics and their dependence on uncertain inputs, but also of the corresponding fluctuation
levels.

The structure of the paper is as follows. In Section 2, we fix the notation and briefly
discuss the background concepts used throughout the paper. In Section 3, we briefly describe
the idea of Bayesian regression for computing a spectral approximation of expected trajectory
of a chemical system. A simple example, involving a birth-death process is also provided for
further motivation. Section 4 contains the main contributions of this paper where we begin by
a brief outline of the preconditioning strategy of [2] in Section 4.1, and proceed by describing
the method of preconditioned Bayesian regression in Section 4.2. We present numerical
results for two model problems: a stochastic Michaelis-Menten system with three uncertain
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parameters (Section 5), and a stochastic genetic positive feedback loop system, having nine
uncertain reaction rates (Section 6). Concluding remarks are provided in Section 7.
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2 Background

2.1 Polynomial chaos

In this paper, we will encounter stochastic dynamical systems with finitely many random
inputs, parameterized by a finite collection of real-valued independent random variables
ϑ1, ϑ2, . . . , ϑN . Denoting the range of each ϑi by Θi, and letting Θ = Θ1×Θ2×· · ·×ΘN ⊆ RN ,
we will be working in the probability space (Θ,B(Θ), Fϑ), where B(Θ) denotes the Borel
σ-algebra on Θ and Fϑ is the joint distribution function of the random N -vector ϑ. We
denote the expectation of a random variable g : Θ → R by 〈g〉 =

∫
Θ
g(s) dFϑ(s). The

space L2(Θ, dFϑ) of square integrable random variables is endowed with the inner product
(·, ·) : L2(Θ, dFϑ) × L2(Θ, dFϑ) → R, given by (f, g) =

∫
Θ
f(s)g(s) dFϑ(s) = 〈fg〉. In what

follows, with a slight abuse of notation, we continue denoting points in Θ ⊆ RN by ϑ.

In this work, we will focus on the case ϑi
iid∼ U(−1, 1), where U(−1, 1) denotes the uniform

distribution on interval [−1, 1], and rely on representing observables g ∈ L2(Θ) ≡ L2(Θ, dFϑ),
dFϑ ≡ (1/2)N dϑ, in terms of expansions of the form:

g =
∞∑
k=0

gkΨk, (1)

where {Ψk}∞0 is a complete orthogonal set consisting of N -variate Legendre polynomials [1].
The expansion (1) is known as the Wiener-Legendre polynomial chaos expansion [7, 24, 27,
52, 54] of g. In practical computations, we will be approximating g(ϑ) with a truncated PC
expansion,

g(ϑ)
.
=

P∑
k=0

gkΨk(ϑ), (2)

where P is finite and depends on the truncation strategy adopted. We consider truncations
based on the total degree of the polynomials in the series; that is, if we let p to denote the
largest polynomial degree in the expansion, then P depends on the stochastic dimension N

and expansion order p according to 1 + P =
(N + p)!

N !p!
.

2.2 Non Intrusive Spectral Projection (NISP)

The truncated PC expansion in (2) can be defined as the L2(Θ)-projection of g onto the span
of the PC basis {Ψ0,Ψ1, . . . ,ΨP}. Exploiting the orthogonality of the basis, the coefficients
gk are therefore given by:

gk =
〈gΨk〉
〈Ψ2

k〉
, k = 0, . . . , P. (3)

Since the moments 〈Ψ2
k〉 can be computed analytically, the determination of coefficients gk

amounts to the evaluation of the moments 〈gΨk〉. The NISP method involves computation
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of these moments through quadrature,

〈gΨk〉 ≡
∫

Θ

g(s)Ψk(s) dFϑ(s)
.
=

Nq∑
j=1

wjg(ϑj)Ψk(ϑj), (4)

where ϑj ∈ Θ and wj are the nodes and weights of an appropriate quadrature formula. Note
that the same set of nodes is used to compute all the coefficients gk, so the complexity of
NISP scales with Nq, the number of nodes where one has to compute g. To reduce the cost
of NISP, we shall rely on sparse quadrature rules [16,33,34] based on Smolyak’s formula [48].

Given a quadrature formula, to evaluate (4) we need to compute g(ϑq) for all ϑq ∈ S,
where

S = {ϑj}Nq

j=1 ⊂ Θ,

is the corresponding set of quadrature nodes. Let K ∈ R(P+1)×Nq be the NISP matrix defined
by,

Kij =
wjΨi(ϑj)

〈Ψ2
i 〉

, i = 0, . . . , P, j = 1, . . . , Nq,

and denote by d the vector with coordinates dj = g(ϑj). Then the vector g = (g0, . . . , gP )T

of the spectral coefficients is given by

g = Kd.

2.3 Stochastic simulation algorithm

In this section, we provide a brief outline of SSA [10,18–22,35]. Consider a chemical system
with n species S1, . . . , Sn, and let Xi(t) be the number of molecules of Si at time t. The
vector X(t) = (X1(t), . . . , Xn(t))T is the state vector of the system. Assuming M reactions,
we denote by ak and νk the propensity function and the stoichiometric vector corresponding
to kth reaction respectively. Recall that the stoichiometric vector (or state-change vector),

νk ∈ Rn determines the change in state vector if kth reaction takes place; that is, the kth

reaction has the effect of changing the state vector X(t) to X(t) + νk. The propensity
function ak = ak

(
X(t)

)
on the other hand has the interpretation that the probability of

reaction k taking place in the infinitesimal time interval [t, t+ dt) is ak
(
X(t)

)
dt.

The exact simulation of the stochastic chemical system is done using SSA outlined in
Algorithm 1. Note that the system trajectory is a piecewise constant function (over time)
and therefore, can be interpolated exactly on any given time mesh. This will later prove
convenient for the purpose of estimating the state vector at a fixed time mesh.
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Algorithm 1 Gillespie SSA

Specify initial state X(0)
Specify final time Tf
Specify stoichiometric vectors νk, k = 1, . . . ,M
Define propensity functions ak, k = 1, . . . ,M
Let t = 0
while t < Tf do

Evaluate ak
(
X(t)

)
, k = 1, . . . ,M

Set a0(t) =
M∑
k=1

ak
(
X(t)

)
Draw iid U(0, 1) random variables r1 and r2

Set j to be the smallest integer such that r1 <
1

a0(t)

j∑
k=1

ak
(
X(t)

)
{pick the reaction to

fire}

Set τ =
1

a0(t)
ln

(
1

r2

)
{the reaction time}

Set X(t+ τ) = X(t) + νj {update the state vector}
Set t = t+ τ {update the time step}

end while
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3 Bayesian regression for chemical kinetics

In this section we provide a brief overview of Bayesian regression and its application to
spectral representation for trajectory of a stochastic chemical system. We begin by setting
up the basic formulation of a Bayesian regression problem in Section 3.1. Then we illustrate
the application of Bayesian regression for inferring a PC model for the expected trajectory
of a stochastic chemical system in Section 3.2. Finally, in Section 3.3, we discuss a more
detailed formulation of the problem for chemical system, which will be used later for Bayesian
regression of the preconditioned variables of a stochastic chemical system.

3.1 Bayesian regression

Consider a function g ∈ L2(Θ) as in Section 2.2. In the context of stochastic chemical
systems, for a given ϑ, g(ϑ) will be a quantity of interest that can only be estimated with
limited accuracy, through finite SSA sampling of the model. In this context, a more robust
way of estimating the PC expansion for g is through Bayesian regression [6, 8, 15]. The
Bayesian approach [38,39,41,44] views the coefficients gk as random variables, which provides
a natural framework for accommodating intrinsic fluctuations or noise in the estimates of
g(ϑ). Assuming some prior knowledge on the set of PC coefficients g = (g0, g1, . . . , gP )T

in (3), collecting a set of model observations, d ∈ Rm, with di = g(ϑi) for ϑi ∈ Θ, i =
1, . . . ,m, and adopting an appropriate noise model (and thus an appropriate likelihood)
allows for invoking Bayes’ theorem,

Π(g|d) ∝ L(d|g)π(g)

where Π(g|d) is the posterior distribution, L(d|g) is the likelihood and π(g) is the prior.
Bayes’ theorem thus represents a process of refining the prior knowledge, π(g), on the coef-
ficients based on (new simulation) data, d.

The likelihood Let d = (d1, . . . , dm)T be the vector of observed data, i.e. noisy estimates
of g, at sampling points ϑ1, . . . , ϑm ∈ S ⊂ Θ. The likelihood L(d|g) represents the proba-
bility of observing the data d, given the parameter values (coefficients) g. We assume an
additive error model of the form

di = g(ϑi) + εi, i = 1, . . . ,m,

where εi are independent Gaussian random variablesN
(
0, σ2(ϑi)

)
, accounting for the “noise”

in the estimate of g, and σ2 is a hyper-parameter. In the present case, since g denotes the
mean of a stochastic signal, and ε is the sampling error, the choice of a Gaussian model
is well justified based on the central limit theorem. The independence assumption on εi is
justified as we will rely on independent model realizations when estimating g(ϑi). While
in general σ2 depends on ϑ ∈ S, in cases where the noise amplitude is small and does not
change significantly throughout the parameter space, one may use a simplified model where
εi are iid N (0, σ2) with a single hyper-parameter σ2. To keep the presentation simple, we
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consider the case where εi are iid N (0, σ2) in this section. The more general case, where the
dependence of σ2 on ϑ is accounted for will be addressed later in Section 4.

With the present assumptions, we have that di ∼ N (g(ϑi), σ
2), i = 1, . . . ,m, and thus,

the likelihood is given by:

L(d|g) =
m∏
i=1

1√
2πσ2

exp
{
−
(
di − g(ϑi)

)2

2σ2

}
. (5)

The choice of prior and the application of Bayes theorem Let πk denote the prior
on gk, k = 0, . . . , P . In what follows, we assume a non-informative uniform prior on the
coefficients gk. Specifically, we assume gk ∼ U(−I, I) with a sufficiently large I,

πk(x) =


1

2I
, x ∈ [−I, I]

0, otherwise.

As for the hyper-parameter σ2, we assume a Jeffreys prior in the form [15]

πJeff(x) ∝

{
1/x, if x > 0,

0, otherwise.

Using the above assumptions, Bayes’ theorem gives

Π(g, σ2|d) ∝ L(d|g)×
P∏
k=0

πk(gk)× πJeff(σ2),

where Π(g, σ2|d) is the joint posterior and L(d|g) is specified in (5). The problem then
reduces to sampling the target posterior above. To this end, we use a Markov Chain Monte
Carlo (MCMC) method based on adaptive Metropolis [3, 4, 23,40].

Remark 3.1 In the present application, the prior on the spectral coefficients is a non-
informative uniform distribution. However, there are situations where one may want to use
a different prior on the coefficients. We will revisit this issue later when discussing inference
of degenerate spectra.

Remark 3.2 The choice of the sample set (or the design set) S ⊂ Θ is important. If
the process of collecting observations is cheap, one can choose a sufficiently large Monte
Carlo sample. However, in applications we consider, we generally let S be a set of sparse
quadrature nodes one would use in a standard NISP procedure. The exact choice of the
sparse quadrature nodes depends on the choice of the basic one-dimensional quadrature
used to build the multi-dimensional sparse quadrature formula. In the present work, we use
a one-dimensional Gauss-Kronrod-Patterson quadrature to build multi-dimensional sparse
grids. Table 1 lists the number of sampling points needed as the dimension and level of
quadrature increases.

Other types of sampling such as Latin Hypercube sampling, Quasi Monte Carlo sequences,
or Sobol sequences are also possible.
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l = 1 l = 2 l = 3 l = 4 l = 5
d = 2 5 9 17 33 65
d = 3 7 19 39 87 135
d = 4 9 33 81 193 385
d = 5 11 51 151 391 903
d = 6 13 73 257 737 1889
d = 7 15 99 407 1303 3655
d = 8 17 129 609 2177 6657
d = 9 19 163 871 3463 11527

Table 1: The number of sampling points needed for a Smolyak sparse grid based on the
Gauss-Kronrod-Patterson rule.

3.2 Application to chemical kinetics

In this section, we illustrate the application of Bayesian regression in obtaining a PC repre-
sentation of the mean trajectory of a chemical system simulated via SSA. Here we specifically
want to find the expected number of a specific molecule, S, in the system at a given time.

Let X(t) be the number of S molecules at a time t, and note that X = X(t, ω) is a random
variable, where ω ∈ Ω represents the intrinsic randomness in the system. Additionally if the
reaction rates are uncertain, we would have, X = X(t, ω, ϑ), where ϑ ∈ Θ parameterizes
the reaction rates. To be more precise, X(t) is defined on a product probability space,
(Ω,F , ν) ⊗ (Θ,B(Θ), Fϑ), where (Ω,F , ν) is the probability space on which an individual
stochastic system trajectory is defined. Let us consider the expected number of S molecules
at time t, given ϑ ∈ Θ:

µ(t, ϑ) = Eω (X(t, ·, ϑ)) ≡
∫

Ω

X(t, ω, ϑ) dν(ω). (6)

We seek to approximate µ(t, ϑ) with a truncated PC expansion:

µ(t, ϑ)
.
=

P∑
k=0

µk(t)Ψk(ϑ), ϑ ∈ Θ. (7)

Of course, the average in (6) cannot be computed analytically in general; thus, we estimate
µ(t, ϑ) using Monte Carlo sampling:

µ(t, ϑ) ≈ µ̂(t, ϑ) =
1

Ng

Ng∑
`=1

X (`)(t, ϑ) (8)

where
{
X (`)(t, ϑ)

}Ng

1
denote SSA realizations of X(t, ·, ϑ), and Ng is the sample size (i.e. the

number of SSA replicas). If a sufficiently large Ng is used, the estimator µ̂(t, ϑ) for µ(t, ϑ)
given above can be used to compute its PC representation using NISP. In particular, we can
choose an appropriate sample S = {ϑ1, . . . , ϑNq} ⊆ Θ, and use Algorithm 2 below to get the
spectral representation in (7).
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Algorithm 2 NISP algorithm to compute the spectral representation µ(t, ϑ)
.
=∑P

k=0 µ
k(t)Ψk(ϑ)

for j = 1, 2, . . . , Nq do
for ` = 1, 2, . . . , Ng do
X (`)(t, ϑj) = SSA(t, ϑj)

end for
µ̂(t, ϑj) = 1

Ng

∑Ng

`=1 X
(`)(t, ϑj)

end for
Form an appropriate NISP matrix K

Define data vector d(t) =
(
µ̂(t, ϑ1), . . . , µ̂(t, ϑNq)

)T
Compute (µ0(t), . . . , µP (t))T = Kd(t)

One of the main challenges with Algorithm 2 is the need for a high Ng to get a sufficiently
accurate estimate of the SSA sample averages. Compounding the difficulty is the increase
in complexity of NISP as the number, N , of random parameters and also the order of the
expansion are increased. As previously mentioned, one way to mitigate the complexity of
NISP is to use a sparse quadrature. We would also like to compute a reasonably accurate
spectral representation, with a low number of SSA runs per each ϑj ∈ S. This, however,
leads to “noisy” sample averages µ̂(t, ϑj), which are known to cause numerical instabilities
with sparse quadrature methods [44]. Therefore, we see that the NISP approach outlined in
Algorithm 2 is limited to systems with a few random parameters and low intrinsic noise.

Alternatively, we wish to explore whether the Bayesian regression strategy outlined in the
previous section can be employed to reduce the computational cost, by allowing a low number
of SSA realizations (viz. Ng ∼ 30 instead of Ng ∼ 10, 000 in (8)). In particular, we can
compute the spectral coefficients {µk(t)}Pk=0 in (7) as follows: First, we collect observations,

dj(t) = µ̂(t, ϑj), ϑj ∈ S.

Next, as described in Section 3.1, we assume an additive error model of the form,

µ̂(t, ϑj) = µ(t, ϑj) + εj(t),

and exploit the Bayesian formalism to infer the distribution of the spectral coefficients of
µ(t, ·). We start by assuming a (generally non-informative uniform) prior on the coefficients
µk(t), and use the likelihood,

L
(
{µ̂(t, ϑj)}Nq

j=1

∣∣∣ {µk(t)}Pk=0

)
=

Nq∏
j=1

1√
2πσ2(t)

exp

−
(
µ̂(t, ϑj)−

∑
k µk(t)Ψk(ϑj)

)2

2σ2(t)

 (9)

This leads to the following Bayesian update of the coefficients {µ0(t), . . . , µP (t)},

Π
(
{µk(t)}Pk=0, σ

2
∣∣∣{µ̂(t, ϑj)}Nq

j=1

)
∝ L

(
{µ̂(t, ϑj)}Nq

j=1

∣∣∣{µk(t)}Pk=0

)
× π

(
{µk(t)}Pk=0, σ

2(t)
)
.

(10)
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Here π({µk(t)}Pk=0, σ
2(t)) is the presumed prior on the spectral coefficients and the hyper-

parameter σ2, modeled as

π
(
{µk(t)}Pk=0, σ

2(t)
)

=
( P∏
k=0

πk(µk(t))
)
× πJeff

(
σ2(t)

)
,

where πk(µk(t)) is the prior on the kth spectral coefficient, and πJeff(σ2) is Jeffreys prior on
the noise variance σ2(t) in the estimate of the mean.

In our calculations, we rely on an adaptive MCMC sampler to sample the posterior
distribution, and use either the maximum a posteriori probability (MAP) estimate or the
mean posterior as the point estimate for the spectral coefficients. We close this section by
providing a simple example to illustrate the idea of Bayesian regression for chemical kinetics.

An illustrative example Here we consider following birth-death system:

∅ c1−→ S

S
c2−→ ∅

We denote by X(t) the number of S molecules at time t. Figure 1 shows a number of
realizations of the system trajectory with fixed reaction rates (c1, c2) = (10, 0.5).

0 2 4 6 8 10
0

5

10

15

20

25

30

35

time

X

Figure 1: Realizations of the system trajectory for the birth-death system.

As mentioned before, our goal is to incorporate parametric uncertainty in the system,
and we are interested in approximating

µ(t, ϑ) =

∫
Ω

X(t, ω, ϑ) dν(ω).

For this simple example, an analytical solution is available for µ(t, ϑ) and is given by

µ(t, ϑ) = X0 exp
{
− c2(ϑ)t

}
+
c1(ϑ)

c2(ϑ)

(
1− exp

{
− c2(ϑ)t

})
.
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In the computations, we used X0 = 0, and let

c1 ∼ U(8, 12), c2 ∼ U(0.2, 0.8).

These ranges were chosen so that a sufficiently wide variation in the system is observed.

Having the analytical expression for µ(t, ϑ) allows for a basic test of the proposed Bayesian
regression approach. To illustrate this, we fix our attention on the solution at t = 10, and
use a cubic PC expansion of the analytical solution for purposes of comparison (note that
the same analysis can be readily applied to explore the system at different times). We then
collect observations by selecting a sampling of the parameter space, and computing µ̂(t, ϑ)
with a small Ng, specifically Ng = 20, for each ϑ ∈ S. The sampling points correspond to the
quadrature nodes of a fully tensorized 2D Gauss quadrature with five nodes in each direction.
Table 2 shows the true coefficients (computed by expanding the analytical solution in a PC
basis at t = 10) and the inferred coefficients.

Mode # True Model Mean posterior
0 22.2905 22.1427
1 4.4581 4.6335
2 -13.7026 -13.6830
3 0 -0.2902
4 -2.7405 -2.8497
5 5.1459 5.1576
6 0 0.1714
7 0 0.7118
8 1.0292 0.7867
9 -1.5698 -1.6620

Table 2: Comparison of the spectral coefficients of the true model at t = 10 with
(µ0(t = 10), . . . , µ9(t = 10)), estimated using (10).

Figures 2(a) and 2(b) respectively show the inferred response surface (blue) and the
analytic one (red), the relative error between the surfaces. Also, using the MCMC sample
of the posterior, we computed the correlations between the inferred spectral coefficients
(not shown) and observed little correlations between them. The results indicate that in the
present case, Bayesian regression leads to accurate estimates, even though a small sample
size Ng is used. In Section 4, we investigate the extension of the present Bayesian approach
to the preconditioning methods originally proposed in [2], to accommodate more complex
and stiff stochastic chemical systems.

3.3 Toward a more detailed formulation

In this section, we consider a more detailed formulation for the Bayesian regression for
stochastic chemical systems. Recall that in the previous section, we form a data vector d
whose entries are the observed sample averages µ̂(t, ϑ) computed with a coarse SSA sampling
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Figure 2: Bayesian regression for Birth-Death process: (a) true (red) and inferred (blue)
surfaces of µ(t, ·) at t = 10, where the mean is plotted for (c1, c2) ∈ [8, 12] × [0.2, 0.8] (the
space of random parameters), and the blue circles indicate the observed data; (b) relative
difference between true and inferred surface for (c1, c2) ∈ [8, 12]× [0.2, 0.8].

of the system for each ϑ ∈ S. While this approach is straightforward, by averaging over
the SSA samples, it discards valuable data that reflects the fluctuation levels. (The latter
can be essential, for instance, if one seeks to couple SSAs with mesoscale models, such as
fluctuating hydrodynamics.) One may therefore be motivated to retain all the raw data
from the SSA sampling of the system in the inference problem. In the context of a stochastic
chemical system, for a fixed time t, we have the raw observed data X (`)(t, ϑj), j = 1, . . . , Nq,
` = 1, . . . , Ng. Hence, one use a data matrix, D = D(t) defined by:

D`
j = X (`)(t, ϑj), j = 1, . . . , Nq, ` = 1, . . . , Ng.

Then, instead of the approach in the previous section, we may assume,

D`
j = µ(t, ϑj) + ε`j, (11)

where the discrepancies ε`j are independentN
(

0,Σ2(t, ϑj)
)

; that is, D`
j ∼ N

(
µ(t, ϑj),Σ

2(t, ϑj)
)
.

This setup has the advantage of retaining all the SSA replicas of the system in the inference
process; moreover, this formulation allows for estimation of the noise amplitude in X, as the
Σ2(t, ϑj) in this case approximates the variance of X(t, ·, ϑj).

The noise model used in the formulation in the previous section is motivated by the
Central Limit Theorem. On the other hand, the Gaussian noise model in (11) is mainly
motivated by the central limit results for Markov processes, as made rigorous in [12]. (See
in particular, Theorems 2.1 and 2.3 in Chapter 11 of [12].) While the central limit results
in [12] apply asymptotically as the system size become very large, in many chemical systems,
even with a moderate number of molecules present (in order of say 10 molecules), a Gaussian
noise model is observed to be a reasonable approximation. As an example, we consider the
distribution of X in the birth-death system at t = 10 in Figure 3.
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Figure 3: Distribution of X at t = 10 (the histogram) and a normal fit (the solid line)
computed using sample mean and standard deviation based on 10, 000 SSA samples.

We observed similar results for the other model problems discussed in the present work,
and shall show some sample results when reporting numerical results. However, we would like
to point out that such approximations do not hold in general when the system size is small;
notable exceptions include systems that show bistability such as the Schlögl system [46].
The methods discussed in this paper are thus not directly applicable to such systems. In the
present work, we do not use the noise model (11) for the state variable X directly. Instead,
we utilize this approach to infer the mean and variance of a corresponding preconditioned
variable (cf. Section 4.2), where a noise model of form (11) was found to be appropriate.
In Section 5, we illustrate the validity of a Gaussian noise model used by showing the
distribution of both the state variable at a given time, and its preconditioned counterpart.

Remark 3.3 An alternative (not explored in the present work) to the simultaneous inference
of the mean and variance through the noise model in (11) is is to consider the variance of
X as a second inference variable. The SSA realizations of X can be used to obtain observed
values for the variance of X. Then using an appropriate noise model, one can infer a
response surface for the variance using the Bayesian regression framework formulated in
Section 3.1. A potential problem concerning the implementation of this alternative concerns
the anticipated need of a large number of SSA samples, required to sufficiently reduce the
noise in observed values of variance, so that the inference would be successful in computing
a reasonably accurate response surface. Note that in the preconditioned Bayesian regression
method developed in the present work, instead of working with state variable X we perform
a Bayesian regression for a transformed version of X. Thus, treating the variance as an
additional observable may require computation of a separate preconditioner to alleviate the
corresponding parametric stiffness. This points out another advantage of our formulation in
Section 3.3, which requires computing a single preconditioner.

Remark 3.4 For the cases where a Gaussian noise model is not applicable, an immediate
remedy is to replace the noise model with a more appropriate distribution, leading to a
different likelihood. While such extensions are not pursued in the present work, we mention
a useful special case. Specifically, when a log-normal distribution is an appropriate model for
X, we may consider the variable Z(t, ϑ) = logX(t, ϑ) and assume a Gaussian noise model
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for Z. More precisely, we define the data matrix D through,

D`
j = Z(`)(t, ϑj), j = 1, . . . , Nq, ` = 1, . . . , Ng,

and use the model:
D`
j ∼ N

(
µZ(t, ϑj), σ

2
Z(t, ϑj)

)
.

After inferring response surfaces for mean and variance of Z through µZ(t, ϑj) and σ2
Z(t, ϑj),

we may then obtain response surfaces for mean and variance of X by using the well known
formulas,

µX(t, ϑ) = exp
{
µZ(t, ϑ) +

1

2
σ2
Z(t, ϑ)

}
,

and
σ2
X(t, ϑ) =

(
exp

{
σ2
Z(t, ϑ)

}
− 1
)

exp
{

2µZ(t, ϑ) + σ2
Z(t, ϑ)

}
.

Note that the idea of inferring a transformed quantity, in place of the original X, is precisely
the idea underlying the preconditioned approach discussed in the next section, and the
examples shown later indeed exhibit near Gaussian distributions compared to the distribution
of the original (un-preconditioned) X.
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4 Stochastic preconditioning

In this section, we extend the preconditioning method developed in [2] to stochastic chemical
systems with uncertain reaction rates. As mentioned earlier, the method in [2] addresses the
issue of widening of spectra of the state variables over time in the context of stiff chemi-
cal systems having no source of stochasticity other than the reaction rates. As such, the
method could be applied to the reaction rate equations (RREs) of a stochastic chemical
system. Here we consider the problem of quantifying uncertainties in the reaction rates for
stochastic chemical systems without passing to the corresponding RREs. To this end, we
combine the preconditioning approach from [2] with Bayesian regression to accommodate
large fluctuations and steep dependence of state variables on uncertain inputs. Our method
results in response surfaces for the mean µ(t, ϑ) and variance Σ2(t, ϑ) of the state variable,
involving low order representations of the moments of the preconditioned variables and the
preconditioner. We begin by recalling in Section 4.1 the basic idea of the method developed
in [2] . Then, we develop the method of preconditioned Bayesian regression in Section 4.2,
where all the steps are discussed in detail.

4.1 The case of no intrinsic noise

Let us consider the dynamical system,

Ẋ = F (X; q), X(0) = X0.

The state variable X(t) is in Rn and q ∈ RN denotes a vector of model parameters. Here we
consider the case of uncertain parameters, with q = q(ϑ), ϑ ∈ Θ ⊆ RN . Then, assuming no
further source of uncertainty, a generic component of the state vector X, denoted by x, is
defined on [0, Tfin]×Θ, and x = x(t, ϑ), can be approximated via a truncated PC expansion,

x(t, ϑ)
.
=

P∑
k=0

xk(t)Ψk(ϑ).

A major difficulty in computing such a spectral approximation concerns the widening of
spectra over time, which makes approximation of x with low order PC expansions difficult
(see e.g. [36]). In [28] a time transformation approach was proposed to allow long time in-
tegration of the system resulting from a Galerkin (intrusive) reformulation of the problem.
In [2], a preconditioning strategy for NISP was formulated, where instead of a direct pro-
jection of each state variable component x into a PC basis, one works with a transformed
variable y in a scaled time τ ,

y
(
τ(t, ϑ), ϑ

)
= Φ

[
x(t, ϑ)

]
,

where τ(t, ϑ) =
t

t̂(ϑ)
. The choice of transformation Φ and the time scaling factor t̂ depends

on the behavior of the realizations of x; see [2] for specific examples. In this paper, we
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consider linear scalings of the form:

y
( t

t̂(ϑ)
, ϑ
)

=
1

ĉ(ϑ)
x(t, ϑ), (12)

where the choice of the time and amplitude scaling factors t̂ and ĉ will be discussed in the
context of the applications presented. The basic idea behind such a transformation is to
exploit the fact that in many chemical systems, the family of curves, {x(·, ϑ)}ϑ∈Θ are in a
sense similar, and thus one can define an appropriate transformation that maps {x(·, ϑ)}ϑ∈Θ

to a family of curves {y(τ, ϑ)}ϑ∈Θ that cluster together. For example, x(t, ϑ) may exhibit a
a fast initial increase in building up to a distinct maximum followed by a slow monotonic
decay; the time at which the maximum concentration is reached as well as the magnitude
of the maximum concentration could vary drastically as ϑ ranges over Θ, which is the main
source of parametric stiffness in such problems. In the context of the example just described,
one can define the time scaling factor t̂(ϑ) as the time taken for x(t, ϑ) to return to half of
the maximum concentration, and define the amplitude scaling factor as ĉ(ϑ) = maxt x(t, ϑ).
Then, one can synchronize {x(·, ϑ)}ϑ∈Θ, by defining a transformed variable through (12).
For further examples and detailed discussions, see [2].

It is helpful to keep in mind that preconditioning is done in the random parameter space
Θ, and its purpose is to enable a low order PC representation of QoIs over time. However, as
further discussed below, another beneficial feature is that in presence of intrinsic stochasticity
the preconditioned variables have reduced noise amplitudes. In the next section, we extend
the preconditioning formulation from [2] to the systems with intrinsic noise, with particular
attention to stochastic chemical kinetics. In particular, the preconditioning is applied to
stochastic system realizations (i.e. the observed data) and then Bayesian regression is used
to infer the spectral coefficients of the scaled variable from the preconditioned data. We will
also infer the noise amplitude of the scaled variable and use it to recover the variance of the
state variable.

Remark 4.1 We would like to point out that the preconditioning strategy described here is
not directly applicable to the cases where x does not depend continuously on the parameter
ϑ. In such cases, a possible extension of the present preconditioning strategy could follow a
domain decomposition approach, where the sample space Θ is decomposed into sub-domains
where x depends continuously on ϑ; then, a preconditioner can be computed for each sub-
domain of Θ.

4.2 Preconditioned Bayesian regression for stochastic systems

As mentioned before, for stochastic chemical systems with parametric uncertainty, a straight-
forward NISP can lead to poor approximations. Implementation of stochastic precondition-
ing would also be problematic, due to the stochastic nature of the signals, which makes it
difficult to define suitable transforms. To address these challenges, we develop a Bayesian
preconditioning approach, and highlight its application to compute suitable response sur-
faces for the mean, µ(t, ϑ), and variance, Σ2(t, ϑ), of the state variables of the stochastic
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chemical system. In what follows, we will be working with state variables and their cor-
responding scaled (preconditioned) counterparts. For convenience, we will denote by X a
generic state variable (the number of molecules of a certain system species) and by Y its
preconditioned counterpart, and note that X = X(t, ω, ϑ) and Y = Y (τ, ω, ϑ) for ω ∈ Ω and
ϑ ∈ Θ. The major steps of the presently developed Bayesian preconditioning approach are
as follows: (1) Computation of the preconditioner; (2) discretization of the preconditioned
variable; (3) Bayesian regression of the preconditioned variable; (4) recovery of the moments
of the state variable. A flowchart depicting the process is given in Figure 4.

Computation
of the

preconditioner

Discretization
of precondi-

tioned variable

Bayesian
regression for
preconditioned

variable

Recovery of
moments of
state variable

Figure 4: The major steps of preconditioned Bayesian regression.

4.2.1 Computing the preconditioner

The first step is to compute the preconditioner. In particular, let us focus on the case of
linear scaling,

Y (
t

t̂(ϑ)
, ω, ϑ) =

1

ĉ(ϑ)
X (t, ω, ϑ) , ω ∈ Ω, ϑ ∈ Θ. (13)

The scaling factors (i.e. the preconditioner) will be computed to address the ill conditioning
(large variance) associated with parametric uncertainty. Specifically, we seek a transforma-
tion that is independent of ω, specified in terms of truncated PC expansions of the scaling
factors,

ĉ(ϑ)
.
=

P∑
k=0

ĉkΨk(ϑ), t̂(ϑ)
.
=

P∑
k=0

t̂kΨk(ϑ). (14)

We explore the following two strategies to compute the PC representations for ĉ and t̂:

Option 1: Use a Bayesian regression approach to infer the distribution of the spectral co-
efficients, and use the MAP estimate (or mean posterior) of the spectral coefficients in
(14).

Option 2: Compute the PC representation of the scaling factors ĉ and t̂, based on the
trajectory of the corresponding RREs for the chemical system.

We illustrate both the above strategies in the examples that follow. The second option
may be particularly attractive because it is simpler computationally and also provides re-
sponse surfaces for the scaling factors that are not affected by the intrinsic fluctuations of
the SSA.
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4.2.2 Discretization of the scaled variable

Let Y (`)(τ, ϑ) denote a realization of the scaled variable corresponding to parameter vector
ϑ; the superscript ` enumerates the SSA replicas of the scaled variable for a given ϑ. The
Bayesian regression of the scaled variable is done by first generating a collection of observed
scaled variables on a uniform τ (scaled time) mesh. In particular, we let τi, i = 0, . . . , Nτ be
a deterministic mesh of a suitable interval of the scaled time domain, and use Algorithm 3
to compute

Y (`)(τi, ϑj), i = 0, . . . , Nτ , j = 1, . . . , Nq, ` = 1, . . . , Ng.

Here, Ng is the number of SSA replicas, taken to be the same for each ϑj, and {ϑj}Nq

1 is a
suitable sample in Θ.
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Algorithm 3 Algorithm for discretization of Y (τ, ϑ)

Select a sample set S ⊆ Θ
Let Nq = |S|
Set scaled time mesh τi, i = 0, . . . , Nτ

for j = 1 to Nq do
[c̄, t̄] = GetScalings(ϑj) {compute scaling factors}
for ` = 1 to Ng do

Compute X (`)

i,j = X (`)(t̄ · τi, ϑj), i = 0, . . . , Nτ

Y (`)(τi, ϑj) = (1/c̄)X (`)

i,j , i = 0, . . . , Nτ

end for
end for

Remark 4.2 The procedure GetScalings(ϑj) computes the scaling factors ĉ and t̂ at ϑj.
In the present work, this amounts to evaluating the PC expansions for ĉ and t̂ which are
computed using one of the options listed in Section 4.2.1 and are available prior to running
Algorithm 3.

Remark 4.3 To compute X (`)

i,j = X (`)(t̄ ·τi, ϑj), i = 0, . . . , Nτ , we rely on the ability afforded
by SSA to interpolate (exactly) in time the SSA realizations of the system trajectory.

4.2.3 Bayesian regression for the mean and variance of the scaled variable

Consider a fixed τ , let µY and Σ2
Y denote the mean and variance of the scaled variable Y ,

and let D = D(τ) denote the data matrix defined by:

D`
j = Y (`)(τ, ϑj), j = 1, . . . , Nq, ` = 1, . . . , Ng,

We assume,
D`
j = µY (τ, ϑj) + ε`j,

where the discrepancies ε`j are independent N
(

0,Σ2
Y (τ, ϑj)

)
; thus,

D`
j ∼ N

(
µY (τ, ϑj),Σ

2
Y (τ, ϑj)

)
.

Working in a Bayesian regression framework, we seek to infer the PC coefficients for µY ,

µY (τ, ϑ)
.
=

P∑
k=0

µkY (τ)Ψk(ϑ),

as well as a PC model for the hyper-parameter Σ2
Y as follows. We will restrict our attention

to a first-order expansion of the standard deviation ΣY , namely

ΣY (τ, ϑ)
.
= Σ0

Y (τ) + Σ1
Y (τ)ϑ1 + Σ2

Y (τ)ϑ2 + . . .+ ΣN
Y (τ)ϑN .
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The likelihood is given by,

L
(
D|
{
µkY (τ)

}P
0
,
{

Σk
Y (τ)

}N
0

)
=

Nq∏
j=1

Ng∏
`=1

1√
2πΣ2

Y (τ, ϑj)
exp

{
−
(
D`
j − µY (τ, ϑj)

)2

2Σ2
Y (τ, ϑj)

}
.

As for the prior, we will use a non-informative uniform prior on the mean mode. Since we
expect a degenerate spectrum for Y [2], we will rely on a Gaussian prior for the higher order
modes, with a mean around zero and a small standard deviation.

4.2.4 Recovery of the state variables

As done in [2], we can recover the state variable from the preconditioned variable Y at a
given time t∗ via an inverse transform. In the present application, we seek to recover the
mean and variance of the state variable X. The recovery of the first moment is given by,

Eω
(
X(t∗, ϑ)

)
= Φ−1

(
µY
(
τ ∗(ϑ), ϑ

))
= ĉ(ϑ)µY

(
τ ∗(ϑ), ϑ

)
≈
(∑

k

ĉk(ϑ)Ψk(ϑ)
)(∑

k

µkY
(
τ ∗(ϑ)

)
Ψk(ϑ)

)
=: µ̃(t∗, ϑ),

where

τ ∗(ϑ) =
t∗

t̂(ϑ)
≈ t∗∑

k

t̂kΨk(ϑ)
.

Note that since the PC coefficients of µY are computed on a fixed τ grid, this process requires
an interpolation of the coefficients in the scaled time domain. The process of computing
µ̃X(t∗, ϑ∗) for a t∗ ∈ [0, Tfin] and a ϑ∗ ∈ Θ is outlined in Algorithm 4.

Algorithm 4 Procedure for computing µ̃X(t∗, ϑ∗) at t∗ ∈ [0, Tfin] and ϑ∗ ∈ Θ

[c̄, t̄] = GetScalings(ϑ∗) {compute scaling factors from PC expansions}
τ ∗ = t∗/t̄ {scaled time}
Find τl such that τ ∗ ∈ [τl, τl+1]
for k = 0 to P do

µkY (τ ∗) = µkY (τl) +

[
µkY (τl+1)− µkY (τl)

∆τ

]
(τ ∗ − τl) {Interpolate µkY (τ ∗)}

end for {loop on PC modes}
Compute µ̃X(t∗, ϑ∗) = c̄ ·

∑
k

µkY (τ ∗(ϑ∗))Ψk(ϑ
∗)

The recovery of the variance is also possible through a similar process. To compute an
approximate response surface for Σ2

X we proceed as follows. For (t∗, ϑ) ∈ [0, Tfin] × Θ, we
have τ ∗(ϑ) = t/t̂(ϑ) and note that

Varω
(
X(t∗, ϑ)

)
= Varω

(
ĉ(ϑ)Y (τ ∗, ϑ)

)
= ĉ(ϑ)2Varω

(
Y (τ ∗, ϑ)

)
.
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Now, using the approximation,

Varω
(
Y (τ ∗, ϑ)

)
≈ Σ2

Y (τ ∗, ϑ),

obtained from the Bayesian regression approach described above and utilizing the spectral
representation of Σ2

Y and ĉ we obtain

Varω
(
X(t∗, ϑ)

)
≈
(∑

k

ĉk(ϑ)Ψk(ϑ)
)2(∑

k

Σk
Y (τ ∗)Ψk(ϑ)

)2

=: Σ̃2(t∗, ϑ).

As before, interpolation procedure can be used to get the coefficients Σk
Y (τ) for a given τ in

the scaled time mesh.
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5 Michaelis-Menten system

In this section, we consider a well known problem from bio-chemistry, the Michaelis-Menten
system:

S1 + S2
c1−→ S3

S3
c2−→ S1 + S2

S3
c3−→ S4 + S2

The system describes the creation of the product S4 through binding of the enzyme S2 with
substrate S1. The complex, S3, is an intermediate species that can either dissociate back into
the enzyme and substrate (the second reaction) or it can decompose to the product S4 and
enzyme S2. There is a great amount of literature discussing the Michaelis-Menten dynamics.
For example, see [53] where a brief discussion and a set of illustrative numerical experiments
are provided. As before, we let Xi(t) denote the number of molecules of species Si in the
system for i = 1, 2, 3, 4. A typical behavior of the system, initialized with fixed values for X1

and X2 and vanishing X3 and X4 is shown in Figure 5. Plotted are selected SSA realizations
corresponding to fixed values of the rate parameters, (c1, c2, c3) = (0.0017, 10−3, 0.125).
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Figure 5: SSA realizations of the Michaelis-Menten system.

In the computations below, we consider independent uncertain rate constants that are
distributed as:

c1 ∼ U(0.0015, 0.003), c2 ∼ U(10−4, 10−2), c3 ∼ U(0.1, 0.15),

and parametrized using canonical random variables ϑi
iid∼ U(−1, 1), i = 1, . . . , 3. The sample

set S consists of Nq = 87 realizations, corresponding to the nodes of a level 4 Smolyak
cubature based on the Gauss-Patterson rule. This choice followed a refinement study (not
shown) that considered different cubature levels and showed that the selected resolution
leads to reasonable estimates of both the mean signals and of the corresponding variability.
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Figure 6: Left: Unscaled variable realizations; Right: scaled variable realizations.

In addition, we shall focus for brevity on the evolution of X3, and consequently drop the
species subscript in the remainder of this section.

5.1 Parametric stiffness and preconditioning

In this section, we illustrate the phenomenon of parametric stiffness, which entails increase in
the number of PC terms needed to represent time-dependent trajectories accurately as time
progresses. We illustrate this for the Michaelis-Menten system with the ranges of uncertainty
specified above. To focus on parametric uncertainty alone, we consider the corresponding
system of RREs, describing the system in thermodynamic limit:

ẋ1 = −k1x1x2 + k2x3

ẋ2 = −k1x1x2 + (k2 + k3)x3

ẋ3 = k1x1x2 − (k2 + k3)x3,

ẋ4 = k3x3,

Focusing on the third species of the system, x(t, ϑ) = X3(t, ϑ), we use the following definition

of the preconditioned variable, y
( t

t̂(ϑ)
, ϑ
)

=
1

ĉ(ϑ)
x(t, ϑ),

ĉ(ϑi) = max
t
x(t, ϑi), t̂(ϑi) = time taken to return to

1

2
ĉ(ϑi).

The plots in Figure 6 show realizations of the unscaled variable x (left) and the scaled
variable (right). In Figure 7, we plot the PC coefficients of x at selected points in time
(top row) and the PC coefficients of the preconditioned variable y at selected (scaled) times
(bottom row). Note that in this case, which exhibits moderate parametric stiffness, we see
the excitation of the higher modes of the PCE for the unscaled variable. In contrast, the
scaled variable maintains a tight spectrum. More severe cases of such a phenomenon are
observed for example in [2] in context of a hydrogen oxidation chemical system.
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Figure 7: Absolute value of the PC coefficients for the unscaled state variable (top), and for
the scaled variable (bottom). A third order expansion is used in the computations.
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5.2 Stochastic scaling factors

Figure 8 shows the time evolution of the sample averages,

µ̂(t, ϑi) =
1

Ng

Ng∑
`=1

X (`)(t, ϑi), ϑi ∈ S.

For each ϑi ∈ S, we define

Ĉ(ϑi) = max
t
µ̂(t, ϑi), T̂ (ϑi) = time to return to

1

2
Ĉ(ϑi),

and note that Ĉ and T̂ are also affected by sampling noise, since a finite, and relatively small
value of Ng = 30 is used.
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Figure 8: Evolution of the sample averages µ̂, estimated using Ng = 30 SSA realizations.
Curves are generated for individual values of ϑ.

To infer the PC expansion of ĉ(ϑ), we first define the data vector

d =
(
Ĉ(ϑ1), Ĉ(ϑ2), . . . , Ĉ(ϑNq)

)T
,

and use the model,
dj = ĉ(ϑj) + εj

=
[ P∑
k=0

ĉkΨk(ϑj)
]

+ εj, j = 1, . . . , Nq,

where in our computations using εj as iid N (0, σ2
ĉ ) was found to be adequate. The Bayesian

regression scheme outlined earlier is then applied to infer the PC coefficients. The compu-
tation of spectral representation of t̂ is performed in a similar fashion. Figure 9 depicts the
resulting distributions and spectra (PC coefficients) of ĉ(ϑ) and t̂(ϑ) based on their MAP
estimates. We see here a rather moderate stretching of time and amplitude scales. We shall
see a more severe case in Section 6. Also, note that these scaling factors admit sparse low
order PC representations.
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Figure 9: Distribution and spectra for the MAP estimates of the scaling factors. In top row,
we show the PDF and the spectral coefficients for ĉ(ϑ), and in the bottom row we provide
the corresponding plots for t̂(ϑ).
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5.3 Preconditioned variable

Figure 10 shows the system realizations and their preconditioned counterparts. The latter
are obtained using (13), based on the MAP estimate of the spectral coefficients of ĉ and
t̂, and are discretized on a uniform τ grid using Algorithm 3. Shown are the raw Ng SSA
replicas for every ϑi ∈ S on the top row, whereas the bottom row depicts the corresponding
sample averages µ̂ and scaled version µ̂Y . The figure clearly illustrates the impact of the
transformation, namely in reducing noise levels as well as absorbing the variation induced
by the parametric uncertainty.
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Figure 10: Preconditioning of stochastic dynamics. Top row: SSA replicas of the state
variable X(t, ω, ϑi) and the scaled variable Y (τ, ω, ϑi) for each ϑi ∈ S. Bottom row: mean
trajectories, µ̂(t, ϑi) of the state variable and scaled version µ̂Y (τ, ϑi) for the ϑi ∈ S.

On the Gaussian approximation of the scaled variables As described in the previous
section, we perform a Bayesian regression of the scaled variable where a Gaussian noise model
is employed. To further motivate this choice, we illustrate the distribution of both the state
variable and the corresponding scaled variable for a fixed ϑ and a fixed time. In particular,
in Figure 11, we show the distribution of both the state variable X(t0, ·, ϑ) at t0 = 10 and the
corresponding preconditioned variable, Y (τ , ·, ϑ), at nominal parameter values ϑ = (0, 0, 0)
(note also that τ = t0/t̂(ϑ)). We note from the Figure that both the unscaled and scaled
variable are well approximated by a Gaussian. Such observations further motivate the use
of Gaussian noise model in the Bayesian regression as described in the previous section.
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Figure 11: Top row compares the distribution of the state variable to that of Gaussian,
whereas the bottom row depicts the same analysis for the scaled variable. In each case we
show both a qq-plot, and also the comparison of the distribution of the variable in question
with the corresponding normal fit. Here the normal fit is a Gaussian with mean and variance
given by the sample mean and variance.

Bayesian regression of the scaled variable We then use Bayesian regression (as de-
scribed in Section 4.2.3) to infer a second order PC expansion for µY (τ, ϑ). In Figures 12(a)
and 12(b), we show the mean posterior of PC coefficients for µY (τ, ·), and the corresponding
PDF for the PC approximation of µY (τ, ϑ) at τ = 0.45 respectively. These plots illustrate
the goals of preconditioning which aims for a sparse low order PC representation for the pre-
conditioned variable. The estimation of Σ2

Y (τ, ϑ) was also done as described in Section 4.2.3,
that is, a linear expansion was inferred for Σ2

Y (τ, ϑ).

5.4 Recovery of the mean and variance for the state variable

Here we illustrate recovery of the first moments of the state variable by computing µ̃(t, ϑ)
and Σ̃2(t, ϑ) at t∗ = 10, using the procedure described in Section 4.2.4. Also, to verify the
predictions we consider a Monte Carlo sample Smc ⊂ Θ, and compute MC estimates for
µ(t, ϑ) and Σ2(t, ϑ) for all ϑ ∈ Smc, using a fine ω-sampling, based on 104 SSA replicas.
This allows for measuring the accuracy of the response surfaces µ̃(t, ϑ) and Σ̃2(t, ϑ). In the
computations that follows, we let Smc be a set of 1000 points (distributed uniformly) in Θ.

In Figure 13, we show the distributions of µ̃(t∗, ϑ) and Σ̃2(t∗, ϑ) as compared to the
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Figure 12: (a) Inferred (mean posterior) spectral coefficients of µY (τ, ·), (b) the PDF for
µY (τ, ϑ). The results are generated for τ = 0.45.

distributions of the Monte Carlo estimates. Note that the label “inferred” refers to the PDF
constructed by sampling the response surfaces for the mean and variance, whereas the label
“observed” refers to the corresponding Monte Carlo estimates (computed for all ϑ ∈ Smc).

To get a sense of the mean square error, we computed an estimate of the relative L2(Θ)
error, at t∗ = 10, as follows:

‖µ(t∗, ·)− µ̃(t∗, ·)‖
L2(Θ)

‖µ(t∗, ·)‖
L2(Θ)

≈

( 1

N

∑
ϑ∈Smc

(
µ(t∗, ϑ)− µ̃(t∗, ϑ)

)2
)1/2

( 1

N

∑
ϑ∈Smc

µ(t∗, ϑ)2
)1/2

≈ 9.4× 10−3,

and ∥∥∥Σ2(t∗, ·)− Σ̃2(t∗, ·)
∥∥∥

L2(Θ)

‖Σ2(t∗, ·)‖
L2(Θ)

≈

( 1

N

∑
ϑ∈Smc

(
Σ2(t∗, ϑ)− Σ̃2(t∗, ϑ)

)2
)1/2

( 1

N

∑
ϑ∈Smc

Σ2(t∗, ϑ)2
)1/2

≈ 6.8× 10−2.

The low error levels in the recovered first moments (less than 1% for the mean and around
6.8% for variance), as well as the close comparison of the distributions of µ̃ and Σ̃2 with
that of their pure Monte Carlo estimates shows the utility of the preconditioned Bayesian
regression framework; we note that the present method allows for recovery the moments of
the state variable, with only 30 SSA replicas, in agreement with MC estimates based on
10, 000 SSA replicas for each point ϑ ∈ Θ.
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Figure 13: Recovery of mean and variance of the state variable at t = 10: (a) Comparing
the PDF for µ̃(t, ϑ) (computing via inference) versus the PDF of the observed model mean
at the sampling points, (b) qq-plot comparing the distribution of the inferred and observed
mean. (c) and (d) compare the recovered Σ̃2(t, ϑ) versus the observed model variance at
sampling points.
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6 Genetic loop

Here we consider a more complex bio-chemical system modeling a genetic positive feedback
loop [5]:

x+ x
c1−⇀↽−
c2

y

y + d0

c3−⇀↽−
c4

dr

d0
c5−→ d0 +m

dr
c6−→ dr +m

m
c7−→ m+ x

x
c8−→ ∅

m
c9−→ ∅

(15)

where x is a protein monomer and y is a protein dimer. The quantity d0 denotes the promoter
sites that are free of the dimer, dr denotes the promoter sites that are bound to the protein,
and m is the mRNA.

The first two reactions are reversible, and respectively describe the dimerization of the
protein monomer, and the binding and unbinding processes of the protein dimer to the
promoter site. The remaining reactions are irreversible, and describe the processes of tran-
scription, translation, and degradation. Note that as mentioned in [5], the first two reactions
have much faster time scales than the remaining ones. In what follows, the initial conditions
are fixed:

x(0) = 10, y(0) = 0, d0(0) = 20, dr(0) = 0, m(0) = 0.

As for parametric uncertainty, all nine reaction rate parameters are assumed uncertain,
and uniformly distributed around the “nominal” (mean) rate vector:

c = (50, 1000, 50, 1000, 1, 10, 3, 1, 6)T ,

with the width of each interval equal to 20% of the corresponding nominal value. In choosing
the nominal reaction rates above, we followed [5]. Also, for the computations in this section,
we let the sample set S ⊆ R9 to consists of Nq = 163 realizations, corresponding to the nodes
of a level 2 Smolyak quadrature based on the Gauss-Patterson rule (in nine dimensions). For
brevity, we focus on a single quantity of interest, namely the state variable y(t).

6.1 RRE-based scaling parameters

As mentioned before, one possible way of choosing the scaling factors used to precondition
the stochastic dynamics is to compute them based on the corresponding RREs. The moti-
vation behind this strategy is two-fold. In the first place, simulation of the RREs is cheaper
than that of the stochastic system. Secondly, since the preconditioner is designed to scale
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and approximately collapse the large variation caused by the parametric uncertainty, the
RREs provide a robust means to estimate the scaling factors that is not affected by sta-
tistical convergence of the SSA. Note that results obtained using Bayesian regression (not
shown) were found to be consistent with the results presented below. Thus, though it is
not essential, the RRE approach provides a convenient and effective means to estimate the
scaling parameters of the preconditioner.

For the present genetic loop mechanism, the reaction rates equations describing the lim-
iting behavior of the system are given by:

ẋ = 2k2y − 2k1x
2 + k7m− k8x,

ẏ = k1x
2 − k2y + k4dr − k3yd0,

ḋ0 = k4dr − k3yd0,

ḋr = k3yd0 − k4dr,

ṁ = k5d0 + k6dr − k9m,

where we have denoted the species concentrations in the RREs using same symbols as in the
SSA, but have used k1, . . . , k9 to denote the reaction rates in the ODE system. Assuming a
unit volume, we have k1 = c1/2, and ki = ci, i = 2, . . . , 9.

Figure 14(a) depicts the evolution of y(t) for realizations of the random parameters.
Based on these realizations, the scaling factors are defined by:

ĉ(ϑ) = lim
t→∞

y(t, ϑ), t̂(ϑ) = time taken y(t, ϑ) to reach
1

2
ĉ(ϑ),

and the scaled variable is obtained according to:

Y (t/t̂(ϑ), ϑ) =
1

ĉ(ϑ)
y(t, ϑ).

As shown in Figure 14(b), the preconditioner is quite effective at collapsing the large variation
in the response of y with ϑ.

The result of projection of ĉ and t̂ in a PC basis (third order expansion) is depicted in
Figure 15. We observe a severe stretching of amplitude scaling factors ĉ, whereas the time
scaling factors t̂ seem to be moderately stretched. These results should also be compared
with the behavior of the system realizations in Figure 14(a). However, as seen in Figure 15,
a sparse low order representation can be used to accurately estimate both ĉ and t̂. In fact,
noting the shape of the distributions for both ĉ and t̂ suggests that expanding the logarithm of
these quantities in a PC basis (as done in [2]) would allow even a linear expansion, attainable
at fairly small computation effort; that is, one may compute the expansion coefficients for
log ĉ

.
= α0 + α1ϑ

1 + · · ·+ α9ϑ
9 and then use ĉ(ϑ)

.
= exp

(
α0 + α1ϑ

1 + · · ·+ α9ϑ
9
)
.

For the RRES, the discretization of the scaled variable and the recovery of the state
variables can be done as described in detail in [2]. In addition to efficient estimates of the
statistical properties of the state variable, the availability of suitable PC representations also
affords a global sensitivity analysis, namely by computing Sobol indices through sampling of
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Figure 14: (a) The time evolution of realizations of y(t, ·); here the red marker shows the
position of t̂(ϑ) for each realization. (b) The scale variable Y versus the stretched time scale
τ for the same realizations.

the recovered response surfaces. We illustrate this by estimating the total sensitivity indices
Stoti (for the variable y of the RREs), for i = 1, . . . , 9. Recall that Stoti quantifies the total
contribution of ϑi to the variance in y. For further details on Sobol sensitivity indices see
for example [9, 42, 49, 50]. We report in Figure 16, the time evolution of Stoti , i = 1, . . . , 9,
for the variable y over time. Note that the reaction rates c1, . . . c4 corresponding to the
forward and reverse rates of the dimerization and binding/unbinding reactions in (15), are
the major contributors to the variance in the initial stages of the reactions; however, as time
evolves, these “fast” reactions cease to play such a dominant role, and the other reaction
rates become more influential to the solution variability. This is consistent with the analysis
of the time-scales of the deterministic RREs [5].
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Figure 15: Distribution (left) and spectra (right) for the scaling factors. In top row, we
show the PDF and the spectral coefficients for ĉ, and in the bottom row we provide the
corresponding plots for t̂.
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axis to show the evolution of the indices more clearly.
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6.2 Recovery of the mean and variance for the state variable

With the RRE based scaling factors, we use Algorithm 3 to discretize the SSA replicas of the
scaled variable on a uniform scaled time mesh, and perform a Bayesian regression to infer
the PC coefficients of the scaled variable. In Figure 17, we show the state variable, X, and
its preconditioned counterpart, Y , in the top row, and show the averaging of X and Y over
the SSA samples in the bottom row.

We then recover the mean and variance of the state variable as described in Section 4.2.4.
As in the case of Michaelis-Menten system, owing to preconditioning the scaled variables
admit sparse low order PC representation. In this present example, we used a linear PC
expansion for the mean and variance of the preconditioned variable.

Figure 17: Preconditioning of stochastic dynamics: In top row, we plot the evolution indi-
vidual SSA replicas for state variable X and the scaled variable Y . In the bottom row we
consider (observed) mean trajectories, µ̂, for state variable and µ̂Y for the scaled variable (in
scaled time).

The genetic loop system is a stiff system with very small timescales, resulting in very
small τ steps in the SSA algorithm. This in turn makes the simulation of the system
computationally expensive. We applied our algorithm with only 50 SSA replicas per each
ϑ ∈ S. To illustrate the application of our algorithm, we provide results of recovering mean
and variance at t = 30 for the genetic loop example. We also adopt a similar strategy used
for the Michaelis-Menten example to validate the results. In particular, we chose a Monte
Carlo sample Smc ⊂ Θ consisting of 500 points and computed a Monte Carlo estimate for
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the mean, µ(t, ϑ) and variance Σ2(t, ϑ), by computing 1000 SSA replicas of the system for
each ϑ ∈ Smc.

Figure 18 shows results of recovering the mean, at t = 30. To further appreciate the
wide range of values taken by µ(t, ϑ) as ϑ varies over Θ we also show scatter plots which
plot the recovered mean against the corresponding Monte Carlo estimates. We also com-
pute estimates of relative L2(Θ) errors as before. For the approximation to the mean, the
estimated error was around 2%, indicating an accurate recovery. As for the approximation
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Figure 18: Recovery of mean at t = 30: We compare the recovered mean response surface
µ̃(t, ϑ) and the observed mean (computed with 1000 SSA realizations per ϑ ∈ Smc).

to the variance, we first point out that the present system exhibits considerably larger noise
levels as compared to the example considered in the previous section; this is depicted in
Figure 19 where we plot Monte Carlo estimates of the variance Σ2(t, ϑ) over time, for each
ϑ ∈ Smc.
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Figure 19: Observed variance over time. Each curve corresponds to a point ϑ ∈ Smc and
shows the time evolution of the Monte Carlo estimate to Σ2(t, ϑ).

The results of noise recovery (at t = 30) are given in Figure 20. The estimated relative
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root-mean-square error is around 10%, and the corresponding estimate for the standard
deviation (in physical units) is around 5%. These are reasonable estimates, given that for
the present sample size the MC estimates exhibit comparable fluctuations. From the plots
comparing the distribution of the recovered response surface against the observed variance,
we note that the approximations seem to remain accurate except at the extreme tails of the
distribution.
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Figure 20: Recovery of variance at t = 30: We compare the recovered variance response
surface Σ̃2(t, ϑ) and the observed variance, computed with 1000 SSA realizations per ϑ ∈ Smc.
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7 Conclusions

A preconditioned Bayesian regression method was developed for computing the mean and
variance of the state variables of stochastic chemical systems with uncertain reaction rates.
The method extends the stochastic preconditioning approach introduced in [2] for determin-
istic systems. It utilizes appropriate transformations (preconditioning) of the state variables
and infers a PC model for the transformed (preconditioned) variables via Bayesian regression.
Two possibilities were considered for computing the preconditioner, which is characterized
by time and amplitude scaling factors. The first approach uses Bayesian regression, whereas
PC expansions of the scaling factors are determined in the second using deterministic real-
izations of the RREs for the chemical system. One then proceeds to discretize the resulting
preconditioned variables on a scaled time mesh, and Bayesian regression is used to infer a
PC response surface for them. The process results in response surfaces for the expected
trajectory and variance of the stochastic system, involving combinations of deterministic PC
models for the preconditioners and stochastic PC models of the preconditioned variables.

The approach is illustrated for the case of a Michaelis-Menten dynamics and a genetic
positive feedback loop. Both of the examples show large noise amplitudes, the latter also
exhibiting steep response to uncertainty in the reaction rates. Computational experiments
show that Bayesian preconditioning algorithms can simultaneously accommodate large vari-
ation with uncertain inputs and high fluctuation levels, and that robust estimates can be
obtained with a moderate number of SSA samples. This includes the dependence of both
the mean and variance of the state variables on the uncertain inputs. This constitutes a
significant advantage, since performing a large number of SSA replicas in high dimensions
can be prohibitively expensive.

Finally, we briefly outline potential extensions that are motivated by the present expe-
riences. We first note that in the implementations outlined in this paper, we have relied on
sparse grids for sampling the random parameter space. One immediate avenue of exploration
is to employ adaptive sparse grids and adaptive PC models. Such strategies, which can sig-
nificantly reduce the computational cost of a straightforward NISP approach, and appear
to be promising in the present context also. Another interesting possibility arises from the
fact that, owing to preconditioning, one expects the preconditioned variables to admit sparse
low order expansions. Thus, the use of sparsity priors to guide the construction of a sparse
PC basis may provide an attractive approach especially in high dimensional settings. An
additional avenue concerns the representation of the model noise. The linear model used for
the model noise, though adequate in the examples considered in this paper can be replaced
with more general models. Such constructions are the subject of ongoing research.
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