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This paper presents a model for two-dimensional electrochemical microchannel flow including the
propagation of uncertainty from model parameters to the simulation results. For a detailed
representation of electroosmotic and pressure-driven microchannel flow, the model considers the
coupled momentum, species transport, and electrostatic field equations, including variable zeta
potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as
detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the
model parameters and boundary conditions is propagated to the model predictions using a
pseudo-spectral stochastic formulation with polynomial ch@®® representations for parameters

and field quantities. Using a Galerkin approach, the governing equations are reformulated into
equations for the coefficients in the PC expansion. The implementation of the physical model with
the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as
well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional
channel show strong distortion of sample profiles due to ion movement and consequent buffer
disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage
across the channel. @003 American Institute of Physic§DOI: 10.1063/1.1582857

I. INTRODUCTION environmental parameters. These parameters are typically
not known exactly due to experimental measurement uncer-
Microchannel flows, involving electroosmotic flow of tainties and/or inherent variability. Consequently, computa-
charged components in an electrolyte buffer, are generalljional predictions will have some uncertainty, associated with
characterized by strong coupling between multiple physicathe uncertainties in the input parameters. In order to make
and chemical processé&lumerical simulations for detailed valid comparisons between experimental and computational
studies of phenomena such as analyte dispersion therefoggita, or to assess the reliability of computational predictions,
require accurate models for the fluid flow, species transporta careful analysis of the uncertainty in the simulation results
chemical reactions, buffer equilibrium, protein ampholyticis required.
behavior, electrostatic field strength, wall layer, and many |n the current work, a detailed model is developed of
other processesMost of these processes are well under-poth electroosmotic and pressure-driven flow in a micro-
stood and adequate models are generally available. Marshannel filled with an electrolyte buffer and model protein
simulations of microchannel flow can be found in the litera-analyte samples. The construction considers the fully
ture, with varying detail in the resolution of the ongoing coupled momentum, species transport, and electrostatic field
physical processes!® However, simulations that take into equations, including a model for the dependence of the zeta
account the full range of coupled processes in microchanngjotential on pH and buffer molarity. A mixed finite-rate,
flows are hard to find. partial-equilibrium formulation is applied for the chemical
Further, the mathematical models for these physical proreactions. In particular, “fast” electrolyte reactions are de-
cesses generally require knowledge of several parametessribed by associated equilibrium constraints, while the re-
such as species mobilities, viscosity, electrolyte dissociatiomaining “slow” protein labeling reactions are modeled with
constants, reaction rate parameters, and other physical afidite-rate kinetics.
To quantify the uncertainty in the model predictions, due

aElectronic mail: bjdebus@ca.sandia.gov to uncertainty in the input parameters, a stochastic uncer-
b))Electronic mail: hnnajm@ca.sandia.gov tainty propagation methdlis applied. This method intro-
grectronic mail: alan@mars.ce jhu.edu duces a new stochastic dimension for each uncertain param-
Electronic mail: knio@jhu.edu . ion®
®Electronic mail: ghanem@ijhu.edu eter, 'and uses polynomial chag®C) expansions’ to
DElectronic mail: olm@iup.univ-evry.fr describe the dependence of model parameters and flow quan-
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tities on these dimensions. After introducing these PC repre-
sentations into the governing equations, a Galerkin approach
is used to determine evolution equations for the spectral
mode strengths in the expansion. The resulting system is
more complex than the corresponding deterministic model,
requiring more computational effort. However, it is poten-
tially more efficient than Monte Carl6MC) simulations:®
Moreover, the pseudo-spectral PC approach readily provides
sensitivity information and the contribution to the total un-
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certainty by each of the model parameters.

First we outline the formulation of the governing equa-
tions that constitute the deterministic system model. Next, -150 ' : :
we implement the stochastic uncertainty quantification 2 4 6 8 10 12
method to reformulate these equations into evolution equa- pH
tions for the spectral mode strengths. We then proceed to thac. 1. Empirical data and curve fit for thg potential of a fused silica
description of the numerical construction used to integrateapillary vs pH in an aqueous solution of KCI at various molarities. Adapted
the resulting set of equations, highlighting particular devel_with permission from Ref. 19, Copyright 1992 American Chemical Society.
opments necessary for handling the coupled evolution of mo-
mentum, species, and the electrostatic field. The methodol-
ogy is then applied to model protein labeling reactions inThese data were curve-fitted into the following relationship:
homogeneous systems as well as two-dimensional micro:
channel flows. The results illustrate the convergence of thé(pH’M)

M = 0.0001

construction as well as the propagation/growth of uncertainty —{—(pH—2)+ (5 + % tanh(5(pH—7.5)))(pH—7.6)}
in the simulations. The detailed physical model gives insight 202
into important microfluidic sample dispersion mechanisms. X (=2.7I(M+2.3x10%)), (4)

where M is the molarity of the KCI solution. The quantita-
tive accuracy of this curve-fit is obviously limited to systems
similar to the one considered in Ref. 19. However, Ej.

o _ qualitatively gives the correct behavior &fpH, M) for vari-
The continuity and momentum equations for a two-gys other system&s!®

dimensional flow field in thex,y) plane, with uniform den-
sity and viscosity are given by

Il. PHYSICAL MODEL FORMULATION

A. Momentum

B. Species concentrations

V-u=0, ) A variety of species are considered in this work, ranging
Ju from model proteins and dyes in samples, to the ions of
E.|_U.Vu: —Vp+vVau, 2 aqueous buffer solutions. The transport of these species is

governed by’
whereu is the velocity,p is the pressure normalized by den- .
sity, andv is the kinematic viscosity. (7—,['+V~[ci(u+ u®)]=V-(D;Vey) +w;, (5)

The microchannel flows in this study are electroosmoti-
cally driven with an applied electrostatic field in tkelirec-  where ¢; is the concentration of speciés and D; is the
tion. Assuming a double layer that is thin with respect to thecorresponding diffusivity. The electromigration velocity
channel size, the effect of wall electrostatic forces can baccounts for the electrophoretic movement of electrically
represented in terms of a wall slip velocity,, using the charged species relative to the bulk flow. This velocity is
Helmholtz—Smoluchowski relationsHip given by’

e__
v=Lva - uf=—BiZFV, (®)
M whereg; is the electrophoretic mobility for specigg; is the

wheree is the permittivity of the fluid{ is the zeta potential, charge numberF is the Faraday constant (9.6480°
¢, is the electrostatic field potential at the wall, gnds the  C/mol), and¢ is the electrostatic field potential. The teﬁm
dynamic viscosity. Since both the electrostatic field andithe is a source term from the chemical and electrochemical re-
potential depend on the fluid composition, E8). represents actions in which species is involved. Note that for each
a major coupling between the flow velocity and the speciespecies, the diffusivityd; and the mobility3; are coupled
transport. through the Nernst—Einstein equattén

The ¢ potential is a function of the wall material and
fluid characteristic&*® In this work, a relationship fot as a Di=RT5:, @)
function of the local pH and buffer molarity was obtained whereR is the universal gas constant aidhe temperature.
from empirical data for the zeta potential of a fused silica  The integration of Eq(5) is performed differently de-
capillary in an aqueous solution of KCI, as shown in Fig?1. pending on the chemical time scales involved. In general,
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electrolyte association and dissociation reaction rates arate finite-rate chemical source term. However, a complete
several orders of magnitude faster than electrophoretiampholyte description for proteins can readily be formulated
phenomeniaand typical sample-processing reactions. Thuswith a similar framework as is used for the weak acids and
direct integration of fast reactions would impose severe timéases:?°~??In the simulations in this work, proteins are as-
step restrictions. In order to avoid these difficulties, an equisumed to take part in a finite rate, irreversible labeling reac-
librium approach for the electrolyte reactions is imple-tion of the form

mented. For example, consider a weak acid HA, which dis- k.
sociates according to U+D—L (13)
HAKAH+ A- 8 with a pH-dependent reaction rate=k, (pH). In Eq.(13),
cHT A (8) U is the unlabeled protein, D the fluorescent dye, and L the
where labeled protein.
P Since a thin double layer is assumed, the system is also
K= (H[A] (9) assumed to satisfy the electroneutrality condition
A [HA]
is the corresponding dissociation constant. Instead of inte- 2. zici=0 (14)

grating Eq.(5) for the concentrations of species HA and A _ . .

individually, consider the combined concentration of both oféverywhere in the domain. The concentrations of &hd
these quantitiesd,=[HA]+[A~]. The source terms for OH™ are obtained from this electroneutrality condition and
[HA] and[A~] from the electrolyte reactiot8) cancel out the water dissociation constant

in the 6, transport equation, which is the sum of the transport [H"[OH ]=K,,. (15)

equations for the two individual quantities, N
Note that the composition, and therefore also the total

charge, of weak acids and bases in the system depends on the
H* concentratior{see Eqs(11) and(12) abovd. The sub-
stitution of Egs.(12) and(15) into the electroneutrality con-

= V-[DuaVeua+Da-Vea-]. (10 dition (14), in order to account for the dependenced Af ]
Therefore, barring any other chemical reactions involvingand [OH™] on [H*], introduces nonlinear terms in this
these speciesf, is a conserved quantity and can be inte-equation. For buffers with multiple dissociation states, even
grated with Eq.(10) without a chemical source terfr1®  more nonlinear terms are introduced. Therefore, an iterative
Note that if the chemical source terms for HA of An Eq.  solution of the electroneutrality condition o™ ] is usually
(5) do include participation by reactions other than the HArequired.
buffer chemistry, e.g., bytypically slow) sample chemistry,
then the utilization o®, is still advantageous in that it elimi- C. Electrostatic field strength

nates the fast electrolyte reactions, but in this o@sé no Allowing for concentration field gradients, the electro-

longer a conserved scalar. In either case, one arrives at @aic field potentialg, is obtained from the current conti-
governing equation fop,, which does not include the fast ity constraint”

reaction terms. Oncé, is known, the concentrations of the

a
=t T VLChalut uin) +ca-(utuy )]

individual components of the weak acid are obtained from V-(oVd)=—F3 zV-(D,Vc) (16)
[H+] | (| 1 1/
[HA]= [HT1HK, o= anax O, (1) This equation is coupled to the species concentrations

through the right-hand sidédiffusion of charge and the
Ka electrical conductivityo of the solution

[Ai]zmﬁafa/_\—x 0,. (12

o= FZZ Z2Bic; . (17)

Note that this construction is equally useful for buffers with
multiple dissociation states, whe#g is the sum of concen- L . .
trations of the weak acid and all of its dissociated statesIhe electrostatic field strength is then obtained s
Since the mobilities and diffusivities are generally different _Vd." o
for the species that make ¥l , the convection and diffusion Th|§ gompletes the descrlptlon of the key elgments of the
terms in the transport equation foy are calculated as the determlnlstlc moc_JeI formulatlon._We next F’.““'.”e the stp-
sum of the convection and diffusion for each specieg,jn phastu: cons_trugtmn_for uncertainty quantification, and its
A similar approach holds for weak bases. implementation in this model.

For sf[rong acids and bases,_whlch are fully d|ssouated.|||ﬁ”. STOCHASTIC FORMULATION
the solution, or for other species that do not take part in
electrolyte dissociation and association reactions,(Bgcan To propagate uncertainty from the input parameters of
be integrated directly. The model proteins and fluorescenthe physical model, to the results of model simulations, we
dyes in this work are assumed to have a fixed charge, so thaiise a spectral stochastic formulation based on polynomial
concentrations are integrated using E5), with an appropri- chaos(PC) expansions*® For each uncertain parameter,
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this technique introduces a new stochastic dimensjon Note that the expectationdl,)=0 for k>0. Therefore the
where¢ is a random variable with a standard normal Gausszeroth-order spectral mode for each field quantity represents
ian probability density functiofPDF). The parameter is then the mean field, whereas the higher order modes represent the
modeled as a random variable whose dependencé mn variation, or uncertainty, around this mean. This is reflected
described using a spectral PC expansion. For example, the the calculation of the standard deviatierof a quantity, as
species diffusivityD is written as shown below for the concentratian

P 2 2
os=((c—(c))?)
D(&)= 2, Dy¥y(é), (18) ¢
k=0 P P
where the¥, are the PC basis functions and the determinis- - < (;1 CJ\PJ') ( gl Ckwk) >

tic coefficientsD, are the spectral mode strengths. If the

P P
model has only one uncertain parameter, then the basis func- Y "
tions are the one-dimensional Hermite polynomials: == cioi{ WiV
\I}O:la ’\Ijlzfa ’\P2:§2_l= ’\P3:§3_3§! v (19) P ) )
In this caseP corresponds to the highest order polynomial :kgl G Wi (26)

used in the expansion. For a model wittuncertain param-

eters, anN-dimensional stochastic space is considered, and® further interpret this, consider the example of a second-
the W, are N-dimensional Hermite polynomials up to a °rder PC expansion for the concentrattim the case of two

specified order p in the Gaussian variablesg  Uncertain parameters:

&g, 41 such that C=CotCré1+CoéatCa(£1— 1) +Calrbnt 05(55_1()-7)
P 2

D“”:go Dic¥(0). (20 In Eq. (27), the ¢, dimension corresponds to the first uncer-
o _ _ tain parameter in the system, aggl corresponds to the sec-
Note that in this case, the Gaussian varialdlgs. . . .éy are ond uncertain parameter. Substituting this expression into
assumed to be uncorrelated. The number of terfms 1) in Eqg. (26) and evaluating th(é\lfﬁ), we obtain the following

the expansion corresponds to the number of polynomialgquation for the variance afin this example:
with order less or equal tp. Higher order polynomial chaos

basis functions increase the accuracy of the spectral repre- o2=c3+c5+2c5+c5+2c2. (28)

sentation, but add a lot more terms for problems with manyG ing the t that d to th tochasti
stochastic dimensions. rouping the terms that correspond to the same stochastic

The solution field variables, such as velocities, Conceng?mensions, itis possible_ to identify the contribu_tio_ns of in-
trations, and the electrostatic field potential are expandeg'vIdual parameters to this overall standard deviation:

similarly: U§=a§+oiz+ Ug, (29)
P

u(x,t; G)ZKE U(X, W (6), (21 o= \c5+2c5, (30
=0

P 1=/, (32)

c(x,t0)= 2 e} )Wi(0), (22) oy EF 2L, 32

P In these expressions;; ando-, represent the individual con-

d(x,t;0)= E D (X, DT (). (23 tributions of the first and second uncertain parameters, re-
k=0 spectively, to the overall uncertainty @ The termo, rep-

Using the orthogonality of the basis functions, the coeffi.resents a coupled tgrm involving the combined effectlof the

cients Dy, U (x1), C(x,t), and ¢y (x,t) can be calculated two parameters. This feature of the PC methodology is very

by a projection operation onto the PC basis. Thus g powerful, as it allows identification of the major contribu-
' tions to the uncertainty in the simulation output and model

(VD) results.
<\I,z> After representing all model parameters and solution
K fields with PC expansions, those expansions are substituted
where the expectation is defined as into the transport equations for the deterministic quantities.
Evolution equations for the unknown coefficients in the PC
(f)= f f(&,.& £\) expansions are then obtained by a Galerkin approach. For
(2m)N2Jgn 151752 e example, consider the momentum equation. Substituting the
appropriate PC expansions for velocities, pressure, and vis-
cosity in Eq.(2), multiplying by ¥, and taking the expec-
tation give$>%

k

S
xexp — — —|d&dé, - -déy. (25)
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5Uk

_+2 2 Cljk(ul V)UJ

ot i=0j=0
P P

= _Vpk+_20 20 CijkViVZUj (33)

1=0 |=

with CI]kE<\I,IlI,j\I}k>/<\Pk\Pk> S|m||a.r|y, the equations for
the modes,,  of the species concentratigwith m the spe-
cies index become

JdCm k
ot

P P
+2> 2 CipVe(Cmi(uj+Us, )

=0 {=o

2 & CijkV*(Dim,i Vem ) + W, (34)
where
<\Ifjue) P P
mj = CyiiBkzFV ¢, 35
m,j <‘I’12 kzo iZO li,Bk ¢| ( )
~ (W)
= (36)
(v

Equationg35) and(36) represent the pseudo-spectral projec-

Debusschere et al.

To make the treatment of weak acids or bases as general
as possible, separate objects are used in the current code to
represent these components. Each object contains all the spe-
cies properties for the weak acid or base it represents, as well
as the dissociation constants for the electrolyte reactions be-
tween its species. Specific functions are also associated with
each object to return the total charge or other information
about the weak acid or base, given its total concentration and
[H"]. This way, different buffers can be included in the
simulations by simply including different objects, without
the need for specific code modifications.

B. Spatial discretization

The computational domain is discretized using a Carte-
sian mesh with uniform cell sizAx andAy in thex andy
direction, respectively. Vector fields, such as the velocity and
the electrostatic field strength, are defined on the cell faces.
Scalar fields, such as pressure and species concentrations, are
defined at the cell centers. Spatial derivatives are discretized
with second-order central differences.

C. Electroneutrality

As explained in Sec. Il B, the individual concentrations

. i .
tion of the electrophoretic velocities and the stochasticf the buffer ions andH" ] are obtained from the electro-

chemical source terms onto thig basis functiongsee also
Sec. IV B. Finally, the electrostatic field equatidi6) be-
comes

PP
E E CijV-(oiVg;)
i=0 j=0

(37

P P

—_FZ ZmE E CijV-(Dm,iVem)-
m 1=0 =0

The modeso; of the electrical conductivity are obtained

from

P P
oi=F2> 2%2 > CikiBm,jCrmk -
m J=0 k=0

Equations(33), (34), and(37) each represent a set Bf+ 1
coupled equations to be solved for the mode strengghs
Cmk, and ¢y, k=0, ... P. With M species, the total num-
ber of equations to be solved iMH2)(P+1).

(38)

IV. IMPLEMENTATION

A. Data structure

neutrality condition(14). This results in a set of nonlinear
algebraic relations betweeR+1 stochastic modes. This
coupled nonlinear system of equations is iteratively solved at
each point in the domain, using a Newton solver from the
NITSOL packageé® The solver uses an inexact Newton
method with backtracking. Using the solution from the pre-
vious time step as initial guess, the convergence is generally
very fast.

D. Electrostatic field strength

To obtain the electrostatic field potential, the set of
P+1 equations(37) needs to be solved over the domain.
Since these equations are coupled, an iterative solution
method was developed, consisting of Gauss—Seidel iterations
over the spatial dimensions in combination with SOR itera-
tions over the stochastic dimensions. To accelerate the con-
vergence speed, spatial coarsening with a multigrid approach
is applied. The electrostatic field strength is computed in turn
as the gradient of the electrostatic potential.

E. Time integration

The time integration algorithm in this work is based on a
previously developed stochastic projection method for the

As described in Sec. Il B, species concentrations are inmomentum equations in low-Mach-number fI&WThis mo-

tegrated differently, based on whether or not they take part imentum solver uses a time splitting approach in which the
equilibrium reactions. For instance, for components of wealconvection and diffusion terms are integrated in a first frac-
acids or bases, which typically serve as buffers, only thdional step, and the continuity constraints are then enforced
combined concentration of all components is integrated diin a pressure projection stép. Since the continuity
rectly. The total charge associated with the buffer compo<constraint§ Eq. (1)] are decoupled in the stochastic dimen-
nents is required for the enforcement of the electroneutralityion, this leads to a set &+ 1 decoupled Poisson problems.
equation(14). For a given buffer, this total charge can be In the current work, this method is expanded to the in-

obtained from the total buffer concentratigh and [H*]
through buffer-specific equations such as E3$) and(12).

tegration of the coupled momentum and species transport
equations, in combination with the electrostatic field solu-
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tion. For brevity, the equations for the stochastic made#  Stages=1; t=t".
the species concentrations and the velocity can be written as Calculate the right hand sides in E¢41) and(42) using
the species concentrations, velocities and electrostatic field
Jc ; _sn.
Ok _ —CSpt DSP,+ S, (39) strength at timg=t":
« FspM=Fsp(c(t™),u(t"),E(t"),

at
o FmM= Fm(u(t"),u,(t")) whereu,, is the electroosmotic

Ju
k- cmy+Dmy—Vpy (40 wall velocity.

ot
Stages=2,3,4;t=t"+At(®.

whereCspy, Dspy, andSspy represent the convection, dif- Update species concentrations to the current time level:

fusion, and chemical source terms in the species equation
(34). Similarly, Cm, and Dm, represent the convection and « c¢(®=c(t")+ At® Fsps~1) for all directly integrated spe-
diffusion terms in the momentum equati¢83). Using the cies.

projection scheme for momentum, in combination with ae Solve electroneutrality constraint to obtdiH™]().

Runge—Kutta(RK) time integration scheme, Eq&9) and  « Update concentrations of weak acids and/or bases.
(40) are discretized betwedfl and the RK stage time level

tO=t"+AtO as Update electrostatic field strength and velocity boundary
conditions using the updated concentrations:

0-¢p
— _Cspﬁsfl)_'_psp(ksfl)_i_ss p(ksfl) o« E®=E(c).
At® e ud=u,(c,EO).
— (s—1) . .
=rFspc (41 Update velocities to the current time level:

(s),% _,mn « Update the velocities to their intermediate) (values at the
Uy Uy 1 1 _1 . (s),* n (s) (s—1)
——5 =~ Cm& P+ DmE V=rmlE Y, (42) current time levelu®* =u(t") + At Fm(~1),

At « Apply the boundary conditiona{s) to the u®* velocity

o o field.

Uk~ Uk _vp® (43 * Solve for pressure at this time level using Eat5):
IXE P P =p(u®*).

_ ~ « Apply the pressure correction ta®* to obtain u®®:
where Fsp, and F7m, represent the full right-hand sides in ,(s) = () .* — AtOVpO.

the corresponding time integration steps. Equat#8) is the
pressure correction step, which requires the pressure to be Calculate the new right hand sides in E¢&l) and (42)

solved for first. The equation for pressure is obtained byysing the updated species concentrations, velocities, and
substituting Eq(43) into the stochastic form of the continu- g|ectrostatic field strength:

ity equation foru(®,
o TS5 p(s) =Fs p(C(S) , U(S) , E(S)) ,

V-u®=0 @4+ FmS=Fmu®,uf).
resulting in the following set of Poisson equations: Final update to time"**=t"+At.
Update species concentrationstd *:
1
V2pid=— WV'U(kS)’* k=0,...P. (45 o c(t"hy=c(t") +At(sFsp )+ 2Fsp@+ 2Fsp®)

+ tFsp™) for all directly integrated species.

As discussed in Ref. 24, thege+ 1 Poisson equations are * Solve electroneutrality constraint to obtdiH™ ] att"*1,
decoupled; therefore, each can be solved individually using Update concentrations of weak acids and/or bases.
existing Poisson solvers for deterministic flow problems. In o )
the current work, the same fast Fourier transform based flow ~UPdate electrostatic field strength and velocity boundary
solver is used as in Ref. 24. conditions using the updated concentrations:

The time integration of Eqg41) and(42) is performed E(t" ) =E(c(t"*Y)),
using the four-stage, fourth order Runge-Kutta scheme , (in+1)—y (c(t"*1) E(t"*1)).
(RK4),2” which was selected because of its good stability for
convection dominated problems. Keeping in mind the cou-  Update velocities ta"**:
pling between the equations, the computations during the . . ,
subsequent stages of the RK4 integration over a timesstep * Update the velocities to the intermediat&) (values at
from time t" to t"*1=t"+ At can be represented with the t""%  u* (1" =u(t") + At(zFm® + ZFm2)+ ZFm®
following pseudo-code. The superscripts) denote the — +3Fm®).
Runge—Kutta stage number. For clarity, the subscripts for the Apply the boundary conditiong,,(t"*?) to the u* (t"*1)
mode strengttk have been dropped. velocity field.
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 Solve for pressure at"*! using Eq. (45): p(t"*?1) putations. The implementation of E@9) also takes advan-

=p(u*(t"*1)). tage of the fact that this tensor is sparse, reducing the amount
 Apply the pressure correction to*(t"*!) to obtain of storage and CPU time needed.
u(t™ ) ut"t Yy =ur (1"t — AtVp(th Y. A similar procedure could also be used to determine the

_ . . ~ PC expansion for the product of three stochastic variables
In the above integration scheme, the respective timgy=uyw. This would give the spectral coefficiergs as
stepsAt® of the Runge—Kutta stages=2, 3, and 4 are -
given by 3At, 3At, andAt.
’ 9=2, 2 > Dijuuv;w, 1=0,...P, (51

1=0 j=0 k=0
F. Tools for stochastic operations: Uncertainty Y
quantification toolkit where
As explained in Sec. Ill, the governing equations for the (U, W)
spectral mode strengths of the field variables are obtained by Dy = ’—2 (52
substituting the PC expansions for those field variables in (¥P)

their_ (_)rigina_l,_ deterministic gover_ning equations. Instead ofj\ciaad of this pure spectral approach, however, a pseudo-
explicitly writing out these equations for the spectral mOdespectraI approach is used in this work to calculate products

strengths, it is also possible to retain the governing equation§uch agy=uvw by repeated use of the regular product func-

in their.original form,_but take into account during the imple- +ion First the productiv is calculated with Eq(49), and the
mentation that all arithmetic needs to be performed on storoq i1t of this multiplication is multiplied in the same way

chastic instead of deterministic variables. _ with w to give the PC expansion fgr The advantage of this

To facilitate this approach, we developed an uncertainty,qe ,4o_spectral approach is that it does not require the evalu-
quantification (UQ) toolkit which contalns subroutlngs to ation and storage of the fourth-rank tensdy, , is more
perform most of the common operations on stochastic Variagficient, and is easy to generalize to products of any number
ables that are represented by PC expansions. Using this t0Qlt \ ariaples. Some aliasing errors are introduced though in
kit, many algorithms that were originally designed for deter-yhis annroach, but they were found to be negligible as long as
ministic F’mb'ems can easily b_e converted for stochastiGne order of the PC expansions is chosen sufficiently high.
cqmputat|ons by merely replac!ng mathematlcgl Operators  Apother frequent operation is the calculation of the in-
with calls to their stochastic equivalent. The details of SOM&,erse of 4 stochastic quantity. To explain how this operation
of these operations are explained in the following. is implemented, consider again three stochastic variables,

Aside from additions, one of the most common opera-; anqy, with their respective PC expansions given by Egs.

tions is the multiplication of two stochastic variables. Con—(46)_(48)' If we wish to calculatei=w/v, then this implies
sider two stoch_astic variables,and v, with the following w=up, which is given by Eq(49). This equation, assuming
PC representations: the modesw, andv; are known, represents a systemPof
P +1 linear equations in the unknown modes Since it is a
u=>, u¥v,, (46)  sparse system of equations, it is solved efficiently in this
=0 work with a GMRES iterative solver, taken from the
b SLATEC library?®
v=2 vV, (47) More challenging is the evaluation of nonpolynomial
j=0 functions of stochastic variables such as the exponential,
which will show up in the calculation of the protein labeling
reaction rate with Eq(56), or the logarithm in the calcula-
tion of pH. Currently, these operations are performed by ex-
P panding them in Taylor series around the mean of the argu-
w= 2 w, Wy . (49 ment. For example, the exponential of a stochastic quantity
k=0 u, with a PC expansion given by E¢6), is computed as

As mentioned before, these coefficients are obtained by us-

We need to find the modes, in the PC representation of
w=uv:

ing the orthogonality property of the PC basis functions: gl=glo| 1+ % d_n> , (53
P P A=’
wk=i220 P CijUjv;, k=0,...P (49 where
P
with d=u—ug=>, uy¥, (54)
RAAD, -
ijk= (W) (50 s the stochastic part af. The powerdl" are again calculated

in a pseudo-spectral way with the product form(#8®), as
Since the tensoC;j is a function of the PC basis functions d"=d d""1, with d"~* known from the previous term in the
only, it only needs to be calculated once during a preprocessraylor series. The number of termsin this truncated series
ing step and can then be stored for use throughout the conis chosen adaptively to satisfy a given tolerance level.
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The Taylor series approach works reasonably well as Ly
long as the uncertainties in the field variables are moderate
and the probability density function®DF9 of those vari-
ables are not too skewed. For highly skewed PDFs, however,
high order PC expansions are required to capture this sto-
chastic information, and the evaluation of high power terms
d" in the Taylor series can become inaccurate. A new ap- r-

proach, based on integrations, is currently under develop- S
ment to alleviate this problem. -

All the operations described above, among many others, ) _
have been implemented in the UQ toolkit Iibrary. The UQ FIG. 2. (Colon Gepmetry for.the numerical test'problems: a plug of protein

. - . U and dye D are introduced in a rectangular microchannel and react to form

toolkit greatly facilitates the development of stochastic Solv-; |apeled protein L.
ers from scratch, as well as the conversion of existing deter-
ministic routines into stochastic ones. A more general and
effective approach would be to develop the capability to au-
tomatically convert existing deterministic programs to sto-chosen in this work ask8=0.25>< 10° mol ™t Is™?t d.
chastic arithmetic. As an extension of the UQ toolkit meth-=2.15x10° mol * | s™*, pHy=7.40, and&,,=0.85. The
odology, this could conceptually be achieved by creating ahemical source terms used in E§) are correspondingly
new data type for variables represented with PC expansions, . .
and then overloading operators to perform the proper sto- Wu=Wp=—w ==k [U][D]. (57)
chastic operations on these variables where needed. Such PAe concentration of the Kion, which is fully dissociated

approach is outside the scope of this paper but will be €X3nd is a conserved quantity can also be integrated by5q.
plored elsewhere. directly (without a source terin Phospharic acid, however,
is a weak acid and will dissociate according to the following

V. NUMERICAL RESULTS electrolyte reactions:
A. Test system Ky
This section presents some results of test problems illus- HsPOy~H" +H,PO; (58)
trating the spatial and temporal convergence properties of the K,
developed code. Figure 2_sh_0ws the geometry cor_13|dered for H,PO; < H" + HPQZf ' (59)
these test problems, consisting of a rectangular microchannel
in which a protein U and dye D react to form a labeled _Ks -
protein L. An external electrostatic potential is applied across HPQ; <H"+PQ; ™, (60)

the system to generate an electroosmotic flow inxtllégec-

tion. The unlabeled protein U has a charge-ef versus a where theK; are the corresponding dissociation constants.

As discussed in Sec. Il B, an equilibrium formulation is used

charge of—1 for the dye D, so electrophoresis will move U . :
) for these fast electrolyte reactions. Therefore, we consider
forward and D backward, relative to the bulk flow. For all . . :
the total concentration of this weak acid

cases simulated in this work, an aqueous potassium phos-

phatg (K_HZPO4) buff_er solution is congidered. Therefore, the 0a:[H3PO4]+[H2PO;]+[HPO§[]+[P034’] (61)

species in the solution are the proteins U and L, the dye D, o ) o

the electrolytes I, OH™, K* as well as the components of Whose transport equation is obtained similarly to 8@ by

phosphoric acid kPO, H,PO; , HPG.~, and P . adding up the transport equations for all the components in
As mentioned in Sec. Il B, the proteins in this solution #a SO the dissociation reaction source terms disappear. The

are assumed to have a fixed charge and can therefore §@ncentrations of the individual components &yf are then

integrated with Eq(5) with a chemical reaction source term calculated as;= a;6,, where thex; are calculated from the

w; according to a model irreversible labeling reaction equilibrium expressions for the dl_ssoma+t|on reactl(ifs@—
(60) and can be written as a function [dfi™ | and the disso-

kL g .
ciation constants only:
U+D—L. (55)
+13
The rate constark, in this reaction is pH dependent, given ay.po = o3 — 2[H ] — ,
by the following: 3 [HT PP+ Ky [HT 7+ K Ko[HT [+ K KoK ©
k= kO+d e (PH-PHo) /o5, 56
e S ] S
The Gaussian dependence of this relationship on pH is based = *H,PO; = [T 13 K [HT 2+ K K[ H T ]+ KKKz’
on the shape of the measured pH-dependence of the rate of (63)
production of the high-fluorescence-efficiency species from
the reaction of naphthalene-2,3-dicarboxaldehy®A) o KiKo[H"]
with amino acids in the presence of CN® Unless stated CHPOL T THT TP+ K [H 12+ K K [ H ]+ K KoKy’
otherwise, the values for the reaction rate parameters are (64)
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FIG. 3. L2 norm of the difference between solutions on successive grids a§IG. 4. L? norm of the difference between solutions at successive time steps
a function of the fine grid spacindx; . The slope of the lines shows a as a function of the shorter time stefp. The slope of the lines shows a
second-order spatial convergence rate for various species concentrations fasirth-order temporal convergence rate for various species concentrations as
well as the streamwise velocity. well as the streamwise velocity.

32X 8 cells inxXy). Each run used the same time step of

K1K2K3 10" “ s for a total of 200 time steps. Figure 3 shows e
@po;” = [H ]2+ Kl[H+]2+ K Ko[HT ]+ K KoKy norm of the difference between the solutions for the stream-
(65  wise velocityu as well as several species concentrations at

As discussed in Sec. Il A, Eq4) is used to model the de- successive grid spacings. To monitor the spatial convergence

. - 2
pendence of the zeta potential on pH and buffer moIarity.Of the full stochastic solution, the< norm was calculated

The concentration of the fully dissociated potassium ionOVer all points in space and aF-P+1. stochastic modes.
Clearly, the slope of the curves in Fig. 3 shows an overall

[K*], is used for the local buffer molarityt along the . . . .
walls. The temperature is assumed constant in this Worﬁgcond-order_ convergence rate with grid spacing, consistent
with all species properties and reaction rate constants evaIL\f‘f'th the spatial differencing scheme used.

ated at 298 K.

For the computations in this paper, all parameters an
field variables, were represented with third-order polynomial ~ The temporal convergence behavior of the code was
chaos expansions. The highest order stochastic modes in tBeudied with a similar test case as in the previous section.
expansions of the predicted field variables were significanthReferring to Fig. 2, the domain sizes were choseh gs?2
lower than the lower order modes, indicating that the thirdcm andL,=0.25 cm. The buffer initialization was the same

é:. Convergence with time step

order expansions were sufficiently accurate. as in the previous case. For the unlabeled protein U and the
dye D, however, the peak concentrations were raised 6 10
B. Convergence with grid spacing mol/l, located atx=4 mm andx=6 mm, respectively. The

To test the spatial convergence rate of the code simulzglectrostatic potential differenckV across the domain was

tions of the test case described above were run on a domaﬁ?t to 2090 V. giving a_n average field strength qf 1 kV/cm.__A
with L,=1 cm andL,=0.25 cm. The potassium phosphate slightly higher uncertainty of 2% was assumed in the mobili-
X y=0. .

buffer solution was initialized with a uniform concentration ties of bOth. U anq D, -the parametersdo_tti 1dAV, as vyell gs
of 103 mol/l and a pH of 7.25. The unlabeled protein U andthe buIls klm_emauc viscosity. These five stoch:_;tstlc dimen-
the dye D were initialized with a profile, Gaussianirand sions with third-order polynomial chaos expansions led to a

uniform in'y, both with a maximum concentration of 19 total OT P+1=56 stochastic modes. . N

mol/l atx=4 mm and a width of 1. mm. The labeled protein . This tE’TSt case was run _for a_ total time of 0.5 s, with five
concentration was initialized to zero. The electrostatic poteng'ﬁer_ezlnt time steps, rfi1r219|ng in factors of 2 from 6.25
tial differenceAV between the inlet and exit of the domain X107 s up t0 1.010° s. In each case, the number of

was set to 10 V, creating an average field strength of 0.0 ellsdyf\;as 12% :;6 n x><yh F|gu|re_4 sh]?wshthe norm .Of
kV/cm. An uncertainty of 1% was assumed in the mobilities"® difference between the solutions for the streamwise ve-

of both U and D, in the labeling rate parameterypbf Eq. locity u as well as several species concentrations at succes-

(56), and in the potential differencAV. Using third order sive time steps. The fourth-order temporal convergence rate

polynomial chaos expansions, these four uncertain paran?—bserved in Fig. 4 is consistent with the Runge-Kutta

eters led to four stochastic dimensions with a totaPaf 1 scheme used in the time integration.
=35 stochastic modes.

Four runs were performed, with uniform grid spacings in
x andy doubling between each run, from 3910 ° m in
the finest grid to 3.1810 4 m in the coarsest gridcorre- To illustrate the stochastic uncertainty quantification
sponding, respectively, to 25664, 128<32, 64x16, and methodology, this section describes protein labeling in a

VI. PROTEIN LABELING IN A HOMOGENEOUS
BUFFER
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FIG. 5. Time evolution of U and L concentrations in a homogeneous proteirf-!G- 8. PDF of the unlabeled protein concentration at different mean values.
labeling reaction. The uncertainty in these concentrations, due to a 1% urf*S the unlabeled protein reacts away, its PDF becomes narrower and more

certainty in the labeling reaction rate parameters, is indicatet By “er- skewed.
ror bars.”

simple homogeneous system. Figure 5 shows the time ev%lllézggLEAlmNL?LBEUNG IN'A TWO-DIMENSIONAL

lution of the concentrations of the unlabeled and labeled pro-
tein in a homogeneous potassium phosphate buffer at a pH of In this section, the simulation and uncertainty quantifi-
8.25. In this problem, the dye D was assumed to be preseshtion code is used to tackle a more physically challenging
in abundance so that the source term for the labeled proteiproblem of protein labeling in a two-dimensional microchan-
in Eq. (5) can be written as nel. The problem setup is similar to the numerical test prob-

W=k [U] 66) lems descrﬁbed in Sec. V The labeling reaction is the same as

L R Eqg. (55 with the reaction ratek; and the corresponding

The same expression as before, Esf), was used for the source terms as in Eq&6) and(57). Again, a charge off-1
reaction rate, but with the following parametek§'=0.25 is assumed for the unlabeled protein U and a charge bf
x103s ! d =2.15s*, pHy=9.25, ands,;=0.85. Both  for the dye D, resulting in a neutral labeled protein L.
proteins U and L, as well as the dye D were assumed to have Referring to Fig. 2, a microchannel was considered with
no charge, and therefore the buffer equilibrium and pH dida lengthL,=1 c¢m and a height,=1 mm. The potassium
not change with time. For this simulation, a standard deviaphosphate buffer solution was initialized with a uniform con-
tion of 1% was assumed for all parameters in the rate expresentration of 102 mol/l and a pH of 7.25. The Gaussian
sion(56), as well as for the electrolyte dissociation constantsprofiles for the initial U and D concentrations had peak con-
Third order PC expansions were used. centrations of 10* mol/l, located atx=2.5 mm andx=4

The resulting uncertainty in the protein concentrations isnm, respectively, and a width xof 0.75 mm. The electro-
indicated in Fig. 5 with “error bars” that span th&30  static potential differencAV across the domain was set to
range, wherer indicates the standard deviation. Clearly, un-1000 V, giving an average field strength of 1 kV/cm. An
certainty in the input parameters causes large uncertainties imcertainty of 1% was assumed in the mobility of U, in the
the simulated concentrations. At the point whgg=0.5, a  labeling rate parameter gH the dissociation constaii,,
standard deviation of 1% in the parametergasimagnified and the potential differenc&V. Third-order polynomial
about 16 times in the standard deviation[ bf]. chaos expansions were used in the computations with a total

Note that after about 3 s, the range of th&o “error of 35 stochastic modes. The time step was setxd@ * s
bars” becomes so large that it seems to include concentraand the domain was discretized with 5432 cells inx and
tions for U that are negative, which is clearly not physicallyy.
possible. However, the interval 3o around the mean value Figure 7 shows a contour plot of the mean concentra-
properly represents the full range of possibilities for a certairtions of the proteins and dye &0.12 s. At this point in
variable only when its probability density function is Gauss-time, the plugs of U and D have just metyat4 mm, and
ian, and therefore symmetric. Figure 6 shows the probabilityabeled protein is generated at the interface. Note that the
density function ofU], generated from its PC expansion at labeling reaction is fast compared to the electroosmotic and
various points in time. When the mean valug/df| is suffi-  electrophoretic transport. Consequently, U and D react as
ciently far away from zero, this PDF has a Gaussian shapesoon as they meet, resulting in almost no overlap between
However, for mean values dtJ] closer to zero, the PDF the U and D profiles, and a sharp profile for L. Since L is
becomes narrower and more skewed. This predicted unceneutral, it travels with the bulk convective velocity, which is
tainty properly reflects the physical system behavior whereéhe average of the total convective velocities of U and D.
all unlabeled protein reacts away, but its concentration caifherefore the peak value of L is always located at the inter-
not be negative. face of U and D, and since L is generated in that same area,

Downloaded 26 Mar 2004 to 193.55.10.104. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2248 Phys. Fluids, Vol. 15, No. 8, August 2003 Debusschere et al.

its peak concentration will keep increasing.tAt0.12s, the As time goes on and the U and D plugs cross each other,
peak concentration for L is 1810”4 mol/l, which is al- nearly all U and D are consumed in the labeling reaction. At
ready higher than the peak concentrations o&al® °mol/l t=0.50 s, only labeled protein L remains, with its mean con-
for U and D. centration and standard deviation as shown in Fig. 10. The
The standard deviations in the concentrations of Fig. "maximum mean concentration of L at this point in time is
are given in Fig. 8. The highest uncertainties appear in th€.4x10 * mol/l in the center of the channel, and about 3.2
reaction zone at the interface between U and D, with a maxix 10~ mol/l near the walls. So the L concentration is up to
mum coefficient of variation of about 20% in the L concen-three times as large as the initial U and D concentrations.
tration. Even though Fig. 8 only shows the overall uncer-The standard deviation in L, as shown in the bottom plot of
tainty in the concentrations, a strong feature of the PQFig. 10, is very large near the wall, with maximum values up
formalism is that the contributions of the uncertainty in in-to 10°% mol/l and coefficients of variation up to 100%.
dividual parameters to this overall uncertainty can easily béAgain, the standard deviation ji ] exhibits the double peak
retrieved, as explained in Sec. Ill. Figure 9, for example,near the centerline, which is characteristic of uncertainty
shows the contributions from each of the four uncertain inputaused by the convection velocity.
parameters to the standard deviation of the L concentration, What is particularly significant though, is the major dis-
in the area around the reaction zoneyat0.5 mm. These tortion of the L plug, as opposed to the straight profile ob-
contributions were obtained with a similar analysis as in Egsserved at early times. This distortion is caused by the distur-
(27)—(32), but for the case of four stochastic dimensions andance of the buffer electrolyte, in response to the movement
third-order PC expansions. The total standard deviation o&nd annihilation of the charged protein U and the dye D. To
[L] is given by the curve labeled “all” in this figure. This explain why this is physically happening, consider Fig. 11,
overall standard deviation has a profile with a double peakwhich shows the mean and standard deviation of the electri-
which for a single peak mean species profile, is characteristical conductivityo of the electrolyte solution at=0.50 s.
of uncertainty caused by the convection velocity. When aBecause two charged molecules are used up for every new
single peak species profile is transported by an uncertaitabeled protein, the area around the L plug has a reduced
convection velocity, the uncertainty in the position of the concentration of ions, with a mean electrical conductivity of
peak at a given point in time will cause the most variability almost a third lower than in the undisturbed buffer. Upstream
at the sides of the peak, where the profile has a steep slope @f the L plug, the electrical conductivity shows some smaller
the x direction. At the top of the profile, there is no concen- fluctuations, which stem from shifts in the buffer equilib-
tration gradient and uncertainties in peak position cause littleium. Since the buffer ions are primarily negatively charged,
uncertainty in the observed concentrations at that location. those disturbances travel slower than the labeled protein
As indicated by the curve labeled\'V,” the uncertainty  plug. The bottom plot of Fig. 11 shows that the highest un-
in the applied electrostatic field potential has the most domieertainties in the electrical conductivity are found around the
nant contribution to the overall standard deviation. Sincel plug, near the center and especially at the walls.
both the electroosmotic and electrophoretic velocities are di- The large spatial variations in the electrical conductivity
rectly proportional toAV, the uncertainty caused by this in turn cause nonuniformities in the electrical field strength,
parameter naturally shows a double peak, characteristic @s shown in Figs. 12 and 13. Near the L plug, the mean
convection velocity uncertainty. Similarly, the paramesgy  electrostatic field strength in thedirection reaches a value
affects the electrophoretic transport of the reactant U and itap to 40% higher than in the undisturbed flow. This increase
resulting contribution to the standard deviation[bff also  strongly affects the local electroosmotic and electrophoretic
has a double peak, albeit smaller than #é contribution.  velocities, causing an increased wall velocity, leading to the
The contribution of parameter pHalso shows a double observed distortion of the L plug. The largest uncertainties
peak, but with its center located on the left side of fh¢ are again found near the L plug, with maxima up to 10%.
profile, where the gradient diL] in x is very steep. The Even though the initial field strength in thedirection was
steepness of thid_] profile in that area is largely determined zero, Fig. 13 shows that thiscomponent is quite significant
by the speed of the labeling reaction compared to the conat t=0.50 s. The magnitude of this field strength is up to
vection speed, with a faster reaction rate leading to a sharpd5% of the initial, streamwise electrostatic field strength for
increase irfL]. With the pH in this area between 7.0 and 7.1the mean value. Even though thisomponent does not af-
(not shown, Eqg.(56) predicts significant variability ik, for ~ fect the electroosmotic flow velocity directly, it does provide
changes in phl. So the uncertainty in pfimainly affects the electrophoretic ion transport in the wall-normal direction,
slope of the[L] profile on the left side, consistent with the which can further distort sample profiles.
observed contribution of parameter pth Fig. 9. As indicated by Eq(3), the electroosmotic wall velocity
Figure 9 further shows more minor contributions, from depends on both the local electrostatic field strength &and
the dissociation paramet&, and from the coupled terms. potential, which in turn depends on the pH and the buffer
Even though their contribution is small in this case, thosemolarity, as modeled by E@4). Since all these variables are
coupled terms are interesting from a theoretical point ofdisturbed by the charged protein movement and annihilation,
view, as they represent coupled effects of independent pahe electroosmotic wall velocity varies in the streamwise di-
rameters. In the current figure, those terms represent the suraction. These wall velocity changes in turn cause pressure
of three different coupled effects: the coupled effectAdf  gradients and local recirculation zones, as indicated by the
and By, of AV and pH, and of AV andK,. velocity fields in Figs. 14 and 15. Figure 14 shows the
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_[ _ FIG. 11. (Color) Mean(top) and standard deviatiofibottom) of the electri-
cal conductivity of the electrolyte solution &t 0.50 s. Annihilation of ions

in the labeling reaction results in a significantly lower mean electrical con-
FIG. 7. (Color) Mean concentrations of proteins U, L, and dye Dtat ductivity near the L plug. The values of the contour levels go linearly from

=0.12 s. U and D just met and L is produced at their interface. The value§.1x 10 ° S/m (blue) to 1.3<10 2 S/m (red) in the top plot and from O
of the contour levels go linearly from @lue) to 1.3 10~ * mol/l (red). In (blue) to 1.5 102 S/m (red) in the bottom plot.

this figure, as well as in all subsequent contour plots, the full physical
domain is shown, from 0 to 1 cm xand from 0 to 1 mm iry.

FIG. 12. (Color) Mean(top) and standard deviatiofbottom of the electri-

cal field strength in the direction att=0.50 s. Near the L plug, the mean
streamwise electrical field strength is about 40% higher than in the undis-
turbed flow. The values of the contour levels go linearly from 91.4 kV/m
(blue) to 146 kV/m (red) in the top plot and from 0.20 kV/niblue) to 13
kV/m (red) in the bottom plot.

FIG. 8. (Color) Standard deviation of the protein and dye concentrations at

t=0.12 s. The values of the contour levels go linearly froniblue to

1.1x107° mol/l (red). The largest uncertainties are found in the reaction

zone.
F
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V e
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............. EIL:I FIG. 13. (Color) Mean(top) and standard deviatiofibottom of the electri-
8e-06 o Kz" cal field strength in the direction att=0.50 s. The magnitude of the mean
——— AV of this field strength is up to 15% of the initial field strength in tke
6606 —-—- coupled direction. The values of the contour levels go linearly freni6.3 kV/m
. —= all (blue) to 16.3 kV/m(red in the top plot and from Qblue) to 5.8 kV/m(red)
g in the bottom plot.
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FIG. 9. Major contributions of individual input parameters to the overall g 14. (Color) Mean (top) and standard deviatiofbottom of the stream-

standard deviation ifiL] in the area around the reaction zonda0.12's, \yise velocity att=0.50 s. The local increase in the electroosmotic wall

y=0.5 mm. The uncertainty in the applied voltage potentiaM” has the  yejocity leads to recirculation zones near the L plug. The largest uncertain-

most dominant contribution to the overall standard deviatiofLih ties are found near the wall. The values of the contour levels go linearly
from 6.8 mm/s(blue) to 9.1 mm/s(red in the top plot and from 5.6
%1072 mm/s (blue) to 0.59 mm/s(red) in the bottom plot.

FIG. 10. (Color) Mean(top) and standard deviatioffbottom of the labeled FIG. 15. (Color) Mean (top) and standard deviatiotbottonm) of the wall-
protein concentration L at=0.50 s. The initially flat profiles are now se- normal velocity at=0.50 s. The mean of this velocity has a magnitude of

verely distorted. The values of the contour levels go linearly frool@e) to up to 6 % of the initial streamwise velocity. The values of the contour levels
3.2x10* mol/l (red) in the top plot and from @blue) to 10~* mol/l (red) go linearly from—0.56 mm/s(blue) to 0.56 mm/gred) in the top plot and
in the bottom plot. from O (blue) to 0.26 mm/s(red) in the bottom plot.
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