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Protein labeling reactions in electrochemical microchannel flow: Numerical
simulation and uncertainty propagation
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This paper presents a model for two-dimensional electrochemical microchannel flow including the
propagation of uncertainty from model parameters to the simulation results. For a detailed
representation of electroosmotic and pressure-driven microchannel flow, the model considers the
coupled momentum, species transport, and electrostatic field equations, including variable zeta
potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as
detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the
model parameters and boundary conditions is propagated to the model predictions using a
pseudo-spectral stochastic formulation with polynomial chaos~PC! representations for parameters
and field quantities. Using a Galerkin approach, the governing equations are reformulated into
equations for the coefficients in the PC expansion. The implementation of the physical model with
the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as
well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional
channel show strong distortion of sample profiles due to ion movement and consequent buffer
disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage
across the channel. ©2003 American Institute of Physics.@DOI: 10.1063/1.1582857#
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I. INTRODUCTION

Microchannel flows, involving electroosmotic flow o
charged components in an electrolyte buffer, are gener
characterized by strong coupling between multiple phys
and chemical processes.1 Numerical simulations for detailed
studies of phenomena such as analyte dispersion there
require accurate models for the fluid flow, species transp
chemical reactions, buffer equilibrium, protein ampholy
behavior, electrostatic field strength, wall layer, and ma
other processes.2 Most of these processes are well und
stood and adequate models are generally available. M
simulations of microchannel flow can be found in the lite
ture, with varying detail in the resolution of the ongoin
physical processes.3–13 However, simulations that take int
account the full range of coupled processes in microchan
flows are hard to find.

Further, the mathematical models for these physical p
cesses generally require knowledge of several parame
such as species mobilities, viscosity, electrolyte dissocia
constants, reaction rate parameters, and other physical

a!Electronic mail: bjdebus@ca.sandia.gov
b!Electronic mail: hnnajm@ca.sandia.gov
c!Electronic mail: alan@mars.ce.jhu.edu
d!Electronic mail: knio@jhu.edu
e!Electronic mail: ghanem@jhu.edu
f!Electronic mail: olm@iup.univ-evry.fr
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environmental parameters. These parameters are typic
not known exactly due to experimental measurement un
tainties and/or inherent variability. Consequently, compu
tional predictions will have some uncertainty, associated w
the uncertainties in the input parameters. In order to m
valid comparisons between experimental and computatio
data, or to assess the reliability of computational predictio
a careful analysis of the uncertainty in the simulation resu
is required.

In the current work, a detailed model is developed
both electroosmotic and pressure-driven flow in a mic
channel filled with an electrolyte buffer and model prote
analyte samples. The construction considers the fu
coupled momentum, species transport, and electrostatic
equations, including a model for the dependence of the z
potential on pH and buffer molarity. A mixed finite-rate
partial-equilibrium formulation is applied for the chemic
reactions. In particular, ‘‘fast’’ electrolyte reactions are d
scribed by associated equilibrium constraints, while the
maining ‘‘slow’’ protein labeling reactions are modeled wi
finite-rate kinetics.

To quantify the uncertainty in the model predictions, d
to uncertainty in the input parameters, a stochastic un
tainty propagation method14 is applied. This method intro-
duces a new stochastic dimension for each uncertain pa
eter, and uses polynomial chaos~PC! expansions15 to
describe the dependence of model parameters and flow q
8 © 2003 American Institute of Physics
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tities on these dimensions. After introducing these PC rep
sentations into the governing equations, a Galerkin appro
is used to determine evolution equations for the spec
mode strengths in the expansion. The resulting system
more complex than the corresponding deterministic mo
requiring more computational effort. However, it is pote
tially more efficient than Monte Carlo~MC! simulations.16

Moreover, the pseudo-spectral PC approach readily prov
sensitivity information and the contribution to the total u
certainty by each of the model parameters.

First we outline the formulation of the governing equ
tions that constitute the deterministic system model. Ne
we implement the stochastic uncertainty quantificat
method to reformulate these equations into evolution eq
tions for the spectral mode strengths. We then proceed to
description of the numerical construction used to integr
the resulting set of equations, highlighting particular dev
opments necessary for handling the coupled evolution of
mentum, species, and the electrostatic field. The metho
ogy is then applied to model protein labeling reactions
homogeneous systems as well as two-dimensional mi
channel flows. The results illustrate the convergence of
construction as well as the propagation/growth of uncerta
in the simulations. The detailed physical model gives insi
into important microfluidic sample dispersion mechanism

II. PHYSICAL MODEL FORMULATION

A. Momentum

The continuity and momentum equations for a tw
dimensional flow field in the (x,y) plane, with uniform den-
sity and viscosity are given by17

¹"u50, ~1!

]u

]t
1u"¹u52¹p1n¹2u, ~2!

whereu is the velocity,p is the pressure normalized by de
sity, andn is the kinematic viscosity.

The microchannel flows in this study are electroosmo
cally driven with an applied electrostatic field in thex direc-
tion. Assuming a double layer that is thin with respect to
channel size, the effect of wall electrostatic forces can
represented in terms of a wall slip velocityuw , using the
Helmholtz–Smoluchowski relationship17

uw5
ez

m
¹tfw , ~3!

wheree is the permittivity of the fluid,z is the zeta potential
fw is the electrostatic field potential at the wall, andm is the
dynamic viscosity. Since both the electrostatic field and thz
potential depend on the fluid composition, Eq.~3! represents
a major coupling between the flow velocity and the spec
transport.

The z potential is a function of the wall material an
fluid characteristics.7,18 In this work, a relationship forz as a
function of the local pH and buffer molarity was obtaine
from empirical data for the zeta potential of a fused sil
capillary in an aqueous solution of KCl, as shown in Fig. 119
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These data were curve-fitted into the following relationsh

z~pH,M!

5$2~pH22!1„

1
2 1 1

2 tanh~5~pH27.5!!…~pH27.6!%

3„22.7 ln~M12.331024!…, ~4!

whereM is the molarity of the KCl solution. The quantita
tive accuracy of this curve-fit is obviously limited to system
similar to the one considered in Ref. 19. However, Eq.~4!
qualitatively gives the correct behavior ofz(pH,M) for vari-
ous other systems.7,18

B. Species concentrations

A variety of species are considered in this work, rangi
from model proteins and dyes in samples, to the ions
aqueous buffer solutions. The transport of these specie
governed by17

]ci

]t
1¹"@ci~u1ui

e!#5¹"~Di¹ci !1ŵi , ~5!

where ci is the concentration of speciesi, and Di is the
corresponding diffusivity. The electromigration velocityui

e

accounts for the electrophoretic movement of electrica
charged species relative to the bulk flow. This velocity
given by17

ui
e52b iziF¹f, ~6!

whereb i is the electrophoretic mobility for speciesi, zi is the
charge number,F is the Faraday constant (9.6483104

C/mol!, andf is the electrostatic field potential. The termŵi

is a source term from the chemical and electrochemical
actions in which speciesi is involved. Note that for each
species, the diffusivityDi and the mobilityb i are coupled
through the Nernst–Einstein equation17

Di5RTb i , ~7!

whereR is the universal gas constant andT the temperature.
The integration of Eq.~5! is performed differently de-

pending on the chemical time scales involved. In gene

FIG. 1. Empirical data and curve fit for thez potential of a fused silica
capillary vs pH in an aqueous solution of KCl at various molarities. Adap
with permission from Ref. 19, Copyright 1992 American Chemical Socie
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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electrolyte association and dissociation reaction rates
several orders of magnitude faster than electrophor
phenomena1 and typical sample-processing reactions. Th
direct integration of fast reactions would impose severe t
step restrictions. In order to avoid these difficulties, an eq
librium approach for the electrolyte reactions is imp
mented. For example, consider a weak acid HA, which d
sociates according to

HA↔
KA

H11A2, ~8!

where

KA[
@H1#@A2#

@HA#
~9!

is the corresponding dissociation constant. Instead of i
grating Eq.~5! for the concentrations of species HA and A2

individually, consider the combined concentration of both
these quantitiesua5@HA#1@A2#. The source terms fo
@HA# and @A2# from the electrolyte reaction~8! cancel out
in theua transport equation, which is the sum of the transp
equations for the two individual quantities,

]ua

]t
1¹"@cHA~u1uHA

e !1cA2~u1uA2
e

!#

5¹"@DHA¹cHA1DA2¹cA2#. ~10!

Therefore, barring any other chemical reactions involv
these species,ua is a conserved quantity and can be in
grated with Eq.~10! without a chemical source term.2,4,10

Note that if the chemical source terms for HA or A2 in Eq.
~5! do include participation by reactions other than the H
buffer chemistry, e.g., by~typically slow! sample chemistry,
then the utilization ofua is still advantageous in that it elimi
nates the fast electrolyte reactions, but in this caseua is no
longer a conserved scalar. In either case, one arrives
governing equation forua , which does not include the fas
reaction terms. Onceua is known, the concentrations of th
individual components of the weak acid are obtained fro

@HA#5
@H1#

@H1#1KA
ua[aHA3ua , ~11!

@A2#5
KA

@H1#1KA
ua[aA23ua . ~12!

Note that this construction is equally useful for buffers w
multiple dissociation states, whereua is the sum of concen
trations of the weak acid and all of its dissociated sta
Since the mobilities and diffusivities are generally differe
for the species that make upua , the convection and diffusion
terms in the transport equation forua are calculated as th
sum of the convection and diffusion for each species inua .
A similar approach holds for weak bases.

For strong acids and bases, which are fully dissociate
the solution, or for other species that do not take part
electrolyte dissociation and association reactions, Eq.~5! can
be integrated directly. The model proteins and fluoresc
dyes in this work are assumed to have a fixed charge, so
concentrations are integrated using Eq.~5!, with an appropri-
Downloaded 26 Mar 2004 to 193.55.10.104. Redistribution subject to AIP
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ate finite-rate chemical source term. However, a comp
ampholyte description for proteins can readily be formula
with a similar framework as is used for the weak acids a
bases.2,20–22In the simulations in this work, proteins are a
sumed to take part in a finite rate, irreversible labeling re
tion of the form

U1D→
kL

L ~13!

with a pH-dependent reaction ratekL5kL(pH). In Eq. ~13!,
U is the unlabeled protein, D the fluorescent dye, and L
labeled protein.

Since a thin double layer is assumed, the system is
assumed to satisfy the electroneutrality condition

(
i

zici50 ~14!

everywhere in the domain. The concentrations of H1 and
OH2 are obtained from this electroneutrality condition a
the water dissociation constant

@H1#@OH2#5Kw . ~15!

Note that the composition, and therefore also the to
charge, of weak acids and bases in the system depends o
H1 concentration@see Eqs.~11! and ~12! above#. The sub-
stitution of Eqs.~12! and~15! into the electroneutrality con
dition ~14!, in order to account for the dependence of@A2#
and @OH2# on @H1#, introduces nonlinear terms in thi
equation. For buffers with multiple dissociation states, ev
more nonlinear terms are introduced. Therefore, an itera
solution of the electroneutrality condition for@H1# is usually
required.

C. Electrostatic field strength

Allowing for concentration field gradients, the electr
static field potential,f, is obtained from the current conti
nuity constraint,17

¹"~s¹f!52F(
i

zi¹"~Di¹ci !. ~16!

This equation is coupled to the species concentrati
through the right-hand side~diffusion of charge! and the
electrical conductivitys of the solution

s5F2(
i

zi
2b ici . ~17!

The electrostatic field strength is then obtained asE
52¹f.

This completes the description of the key elements of
deterministic model formulation. We next outline the st
chastic construction for uncertainty quantification, and
implementation in this model.

III. STOCHASTIC FORMULATION

To propagate uncertainty from the input parameters
the physical model, to the results of model simulations,
use a spectral stochastic formulation based on polynom
chaos ~PC! expansions.14,15 For each uncertain paramete
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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this technique introduces a new stochastic dimensionj,
wherej is a random variable with a standard normal Gau
ian probability density function~PDF!. The parameter is then
modeled as a random variable whose dependence onj is
described using a spectral PC expansion. For example
species diffusivityD is written as

D~j!5 (
k50

P

DkCk~j!, ~18!

where theCk are the PC basis functions and the determin
tic coefficientsDk are the spectral mode strengths. If t
model has only one uncertain parameter, then the basis f
tions are the one-dimensional Hermite polynomials:

C051, C15j, C25j221, C35j323j, . . . . ~19!

In this case,P corresponds to the highest order polynom
used in the expansion. For a model withN uncertain param-
eters, anN-dimensional stochastic space is considered,
the Ck are N-dimensional Hermite polynomials up to
specified order p in the Gaussian variablesu
5$j1 ,j2 , . . . ,jN%,14 such that

D~u!5 (
k50

P

DkCk~u!. ~20!

Note that in this case, the Gaussian variablesj1 , . . . ,jN are
assumed to be uncorrelated. The number of terms (P11) in
the expansion corresponds to the number of polynom
with order less or equal top. Higher order polynomial chao
basis functions increase the accuracy of the spectral re
sentation, but add a lot more terms for problems with ma
stochastic dimensions.

The solution field variables, such as velocities, conc
trations, and the electrostatic field potential are expan
similarly:

u~x,t;u!5 (
k50

P

uk~x,t !Ck~u!, ~21!

c~x,t;u!5 (
k50

P

ck~x,t !Ck~u!, ~22!

f~x,t;u!5 (
k50

P

fk~x,t !Ck~u!. ~23!

Using the orthogonality of the basis functions, the coe
cientsDk , uk(x,t), ck(x,t), and fk(x,t) can be calculated
by a projection operation onto the PC basis. Thus, forDk

Dk5
^CkD&

^Ck
2&

, ~24!

where the expectation is defined as

^ f &5
1

~2p!N/2ERN
f ~j1 ,j2 , . . . ,jN!

3expF2
( i 51

N j i
2

2 Gdj1dj2•••djN . ~25!
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Note that the expectations^Ck&50 for k.0. Therefore the
zeroth-order spectral mode for each field quantity repres
the mean field, whereas the higher order modes represen
variation, or uncertainty, around this mean. This is reflec
in the calculation of the standard deviations of a quantity, as
shown below for the concentrationc:

sc
25^~c2^c&!2&

5K S (
j 51

P

cjC j D S (
k51

P

ckCkD L
5(

j 51

P

(
k51

P

cjck^C jCk&

5 (
k51

P

ck
2^Ck

2&. ~26!

To further interpret this, consider the example of a seco
order PC expansion for the concentrationc in the case of two
uncertain parameters:

c5c01c1j11c2j21c3~j1
221!1c4j1j21c5~j2

221!.
~27!

In Eq. ~27!, thej1 dimension corresponds to the first unce
tain parameter in the system, andj2 corresponds to the sec
ond uncertain parameter. Substituting this expression
Eq. ~26! and evaluating thêCk

2&, we obtain the following
equation for the variance ofc in this example:

sc
25c1

21c2
212c3

21c4
212c5

2. ~28!

Grouping the terms that correspond to the same stocha
dimensions, it is possible to identify the contributions of i
dividual parameters to this overall standard deviation:

sc
25s1

21s12
2 1s2

2, ~29!

s15Ac1
212c3

2, ~30!

s125Ac4
2, ~31!

s25Ac2
212c5

2. ~32!

In these expressions,s1 ands2 represent the individual con
tributions of the first and second uncertain parameters,
spectively, to the overall uncertainty inc. The terms12 rep-
resents a coupled term involving the combined effect of
two parameters. This feature of the PC methodology is v
powerful, as it allows identification of the major contribu
tions to the uncertainty in the simulation output and mo
results.

After representing all model parameters and solut
fields with PC expansions, those expansions are substit
into the transport equations for the deterministic quantiti
Evolution equations for the unknown coefficients in the P
expansions are then obtained by a Galerkin approach.
example, consider the momentum equation. Substituting
appropriate PC expansions for velocities, pressure, and
cosity in Eq.~2!, multiplying by Ck , and taking the expec
tation gives23,24
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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]uk

]t
1(

i 50

P

(
j 50

P

Ci jk~ui "¹!uj

52¹pk1(
i 50

P

(
j 50

P

Ci jkn i¹
2uj ~33!

with Ci jk[^C iC jCk&/^CkCk&. Similarly, the equations for
the modescm,k of the species concentration~with m the spe-
cies index! become

]cm,k

]t
1(

i 50

P

(
j 50

P

Ci jk¹"~cm,i~uj1um, j
e !!

5(
i 50

P

(
j 50

P

Ci jk¹"~Dm,i¹cm, j !1ŵm,k , ~34!

where

um, j
e 5

^C ju
e&

^C j
2&

5 (
k50

P

(
i 50

P

Cki jbkzF¹f i , ~35!

ŵm,k5
^Ckŵ&

^Ck
2&

. ~36!

Equations~35! and~36! represent the pseudo-spectral proje
tion of the electrophoretic velocities and the stochas
chemical source terms onto theck basis functions~see also
Sec. IV F!. Finally, the electrostatic field equation~16! be-
comes

(
i 50

P

(
j 50

P

Ci jk¹"~s i¹f j !

52F(
m

zm(
i 50

P

(
j 50

P

Ci jk¹"~Dm,i¹cm, j !. ~37!

The modess i of the electrical conductivity are obtaine
from

s i5F2(
m

zm
2 (

j 50

P

(
k50

P

Cjkibm, j cm,k . ~38!

Equations~33!, ~34!, and ~37! each represent a set ofP11
coupled equations to be solved for the mode strengthsuk ,
cm,k , andfk , k50, . . . ,P. With M species, the total num
ber of equations to be solved is (M12)(P11).

IV. IMPLEMENTATION

A. Data structure

As described in Sec. II B, species concentrations are
tegrated differently, based on whether or not they take pa
equilibrium reactions. For instance, for components of we
acids or bases, which typically serve as buffers, only
combined concentration of all components is integrated
rectly. The total charge associated with the buffer com
nents is required for the enforcement of the electroneutra
equation~14!. For a given buffer, this total charge can b
obtained from the total buffer concentrationu and @H1#
through buffer-specific equations such as Eqs.~11! and~12!.
Downloaded 26 Mar 2004 to 193.55.10.104. Redistribution subject to AIP
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To make the treatment of weak acids or bases as gen
as possible, separate objects are used in the current co
represent these components. Each object contains all the
cies properties for the weak acid or base it represents, as
as the dissociation constants for the electrolyte reactions
tween its species. Specific functions are also associated
each object to return the total charge or other informat
about the weak acid or base, given its total concentration
@H1#. This way, different buffers can be included in th
simulations by simply including different objects, withou
the need for specific code modifications.

B. Spatial discretization

The computational domain is discretized using a Ca
sian mesh with uniform cell sizeDx andDy in the x andy
direction, respectively. Vector fields, such as the velocity a
the electrostatic field strength, are defined on the cell fa
Scalar fields, such as pressure and species concentration
defined at the cell centers. Spatial derivatives are discret
with second-order central differences.

C. Electroneutrality

As explained in Sec. II B, the individual concentratio
of the buffer ions and@H1# are obtained from the electro
neutrality condition~14!. This results in a set of nonlinea
algebraic relations betweenP11 stochastic modes. Thi
coupled nonlinear system of equations is iteratively solved
each point in the domain, using a Newton solver from t
NITSOL package.25 The solver uses an inexact Newto
method with backtracking. Using the solution from the pr
vious time step as initial guess, the convergence is gene
very fast.

D. Electrostatic field strength

To obtain the electrostatic field potentialf, the set of
P11 equations~37! needs to be solved over the domai
Since these equations are coupled, an iterative solu
method was developed, consisting of Gauss–Seidel iterat
over the spatial dimensions in combination with SOR ite
tions over the stochastic dimensions. To accelerate the
vergence speed, spatial coarsening with a multigrid appro
is applied. The electrostatic field strength is computed in t
as the gradient of the electrostatic potential.

E. Time integration

The time integration algorithm in this work is based on
previously developed stochastic projection method for
momentum equations in low-Mach-number flow.24 This mo-
mentum solver uses a time splitting approach in which
convection and diffusion terms are integrated in a first fr
tional step, and the continuity constraints are then enfor
in a pressure projection step.26 Since the continuity
constraints@Eq. ~1!# are decoupled in the stochastic dime
sion, this leads to a set ofP11 decoupled Poisson problem

In the current work, this method is expanded to the
tegration of the coupled momentum and species trans
equations, in combination with the electrostatic field so
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tion. For brevity, the equations for the stochastic modek of
the species concentrations and the velocity can be writte

]ck

]t
52Cspk1Dspk1Sspk , ~39!

]uk

]t
52Cmk1Dmk2¹pk ~40!

whereCspk , Dspk , andSspk represent the convection, dif
fusion, and chemical source terms in the species equa
~34!. Similarly, Cmk andDmk represent the convection an
diffusion terms in the momentum equation~33!. Using the
projection scheme for momentum, in combination with
Runge–Kutta~RK! time integration scheme, Eqs.~39! and
~40! are discretized betweentn and the RK stage time leve
t (s)5tn1Dt (s) as

ck
(s)2ck

n

Dt (s)
52Cspk

(s21)1Dspk
(s21)1Sspk

(s21)

[Fspk
(s21) , ~41!

uk
(s),* 2uk

n

Dt (s)
52Cmk

(s21)1Dmk
(s21)[Fmk

(s21) , ~42!

uk
(s)2uk

(s),*

Dt ~s! 52¹pk
(s) , ~43!

whereFspk and Fmk represent the full right-hand sides
the corresponding time integration steps. Equation~43! is the
pressure correction step, which requires the pressure t
solved for first. The equation for pressure is obtained
substituting Eq.~43! into the stochastic form of the continu
ity equation foru(s),

¹"uk
(s)50 ~44!

resulting in the following set of Poisson equations:

¹2pk
(s)52

1

Dt ~s! ¹"uk
(s),* k50, . . . ,P. ~45!

As discussed in Ref. 24, theseP11 Poisson equations ar
decoupled; therefore, each can be solved individually us
existing Poisson solvers for deterministic flow problems.
the current work, the same fast Fourier transform based fl
solver is used as in Ref. 24.

The time integration of Eqs.~41! and ~42! is performed
using the four-stage, fourth order Runge–Kutta sche
~RK4!,27 which was selected because of its good stability
convection dominated problems. Keeping in mind the c
pling between the equations, the computations during
subsequent stages of the RK4 integration over a time steDt
from time tn to tn115tn1Dt can be represented with th
following pseudo-code. The superscripts~s! denote the
Runge–Kutta stage number. For clarity, the subscripts for
mode strengthk have been dropped.
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Stages51; t5tn.
Calculate the right hand sides in Eqs.~41! and~42! using

the species concentrations, velocities and electrostatic
strength at timet5tn:

• Fsp(1)5Fsp(c(tn),u(tn),E(tn)),
• Fm(1)5Fm(u(tn),uw(tn)) whereuw is the electroosmotic

wall velocity.

Stages52,3,4; t5tn1Dt (s).
Update species concentrations to the current time lev

• c(s)5c(tn)1Dt (s)Fsp(s21) for all directly integrated spe-
cies.

• Solve electroneutrality constraint to obtain@H1# (s).
• Update concentrations of weak acids and/or bases.

Update electrostatic field strength and velocity bound
conditions using the updated concentrations:

• E(s)5E(c(s)).
• uw

(s)5uw(c(s),E(s)).

Update velocities to the current time level:

• Update the velocities to their intermediate (* ) values at the
current time level:u(s),* 5u(tn)1Dt (s)Fm(s21).

• Apply the boundary conditionsuw
(s) to the u(s),* velocity

field.
• Solve for pressure at this time level using Eq.~45!:

p(s)5p(u(s),* ).
• Apply the pressure correction tou(s),* to obtain u(s):

u(s)5u(s),* 2Dt (s)¹p(s).

Calculate the new right hand sides in Eqs.~41! and~42!
using the updated species concentrations, velocities,
electrostatic field strength:

• Fsp(s)5Fsp(c(s),u(s),E(s)),
• Fm(s)5Fm(u(s),uw

(s)).

Final update to timetn115tn1Dt.
Update species concentrations totn11:

• c(tn11)5c(tn)1Dt( 1
6Fsp(1)1 2

6Fsp(2)1 2
6Fsp(3)

1 1
6Fsp(4)) for all directly integrated species.

• Solve electroneutrality constraint to obtain@H1# at tn11.
• Update concentrations of weak acids and/or bases.

Update electrostatic field strength and velocity bound
conditions using the updated concentrations:

• E(tn11)5E(c(tn11)),
• uw(tn11)5uw(c(tn11),E(tn11)).

Update velocities totn11:

• Update the velocities to the intermediate (* ) values at

tn11: u* (tn11)5u(tn)1Dt( 1
6Fm(1)1 2

6Fm(2)1 2
6Fm(3)

1 1
6Fm(4)).

• Apply the boundary conditionsuw(tn11) to the u* (tn11)
velocity field.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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• Solve for pressure attn11 using Eq. ~45!: p(tn11)
5p(u* (tn11)).

• Apply the pressure correction tou* (tn11) to obtain
u(tn11): u(tn11)5u* (tn11)2Dt¹p(tn11).

In the above integration scheme, the respective t
stepsDt (s) of the Runge–Kutta stagess52, 3, and 4 are
given by 1

2Dt, 1
2Dt, andDt.

F. Tools for stochastic operations: Uncertainty
quantification toolkit

As explained in Sec. III, the governing equations for t
spectral mode strengths of the field variables are obtaine
substituting the PC expansions for those field variables
their original, deterministic governing equations. Instead
explicitly writing out these equations for the spectral mo
strengths, it is also possible to retain the governing equat
in their original form, but take into account during the impl
mentation that all arithmetic needs to be performed on
chastic instead of deterministic variables.

To facilitate this approach, we developed an uncertai
quantification ~UQ! toolkit which contains subroutines t
perform most of the common operations on stochastic v
ables that are represented by PC expansions. Using this
kit, many algorithms that were originally designed for det
ministic problems can easily be converted for stocha
computations by merely replacing mathematical opera
with calls to their stochastic equivalent. The details of so
of these operations are explained in the following.

Aside from additions, one of the most common ope
tions is the multiplication of two stochastic variables. Co
sider two stochastic variables,u and v, with the following
PC representations:

u5(
i 50

P

uiC i , ~46!

v5(
j 50

P

v jC j . ~47!

We need to find the modeswk in the PC representation o
w5uv:

w5 (
k50

P

wkCk . ~48!

As mentioned before, these coefficients are obtained by
ing the orthogonality property of the PC basis functions:

wk5(
i 50

P

(
j 50

P

Ci jkuiv j , k50, . . . ,P ~49!

with

Ci jk[
^C iC jCk&

^Ck
2&

. ~50!

Since the tensorCi jk is a function of the PC basis function
only, it only needs to be calculated once during a preproc
ing step and can then be stored for use throughout the c
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putations. The implementation of Eq.~49! also takes advan
tage of the fact that this tensor is sparse, reducing the am
of storage and CPU time needed.

A similar procedure could also be used to determine
PC expansion for the product of three stochastic variab
g5uvw. This would give the spectral coefficientsgl as

gl5(
i 50

P

(
j 50

P

(
k50

P

Di jkl uiv jwk , l 50, . . . ,P, ~51!

where

Di jkl [
^C iC jCkC l&

^C l
2&

. ~52!

Instead of this pure spectral approach, however, a pse
spectral approach is used in this work to calculate produ
such asg5uvw by repeated use of the regular product fun
tion. First the productuv is calculated with Eq.~49!, and the
result of this multiplication is multiplied in the same wa
with w to give the PC expansion forg. The advantage of this
pseudo-spectral approach is that it does not require the ev
ation and storage of the fourth-rank tensorDi jkl , is more
efficient, and is easy to generalize to products of any num
of variables. Some aliasing errors are introduced though
this approach, but they were found to be negligible as long
the order of the PC expansions is chosen sufficiently hig

Another frequent operation is the calculation of the
verse of a stochastic quantity. To explain how this operat
is implemented, consider again three stochastic variableu,
v, andw, with their respective PC expansions given by E
~46!–~48!. If we wish to calculateu5w/v, then this implies
w5uv, which is given by Eq.~49!. This equation, assuming
the modeswk and v j are known, represents a system ofP
11 linear equations in the unknown modesui . Since it is a
sparse system of equations, it is solved efficiently in t
work with a GMRES iterative solver, taken from th
SLATEC library.28

More challenging is the evaluation of nonpolynomi
functions of stochastic variables such as the exponen
which will show up in the calculation of the protein labelin
reaction rate with Eq.~56!, or the logarithm in the calcula
tion of pH. Currently, these operations are performed by
panding them in Taylor series around the mean of the ar
ment. For example, the exponential of a stochastic quan
u, with a PC expansion given by Eq.~46!, is computed as

eu5eu0S 11 (
n51

N
dn

n! D , ~53!

where

d5u2u05(
i 51

P

uiC i ~54!

is the stochastic part ofu. The powersdn are again calculated
in a pseudo-spectral way with the product formula~49!, as
dn5d dn21, with dn21 known from the previous term in the
Taylor series. The number of termsN in this truncated series
is chosen adaptively to satisfy a given tolerance level.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The Taylor series approach works reasonably well
long as the uncertainties in the field variables are mode
and the probability density functions~PDFs! of those vari-
ables are not too skewed. For highly skewed PDFs, howe
high order PC expansions are required to capture this
chastic information, and the evaluation of high power ter
dn in the Taylor series can become inaccurate. A new
proach, based on integrations, is currently under deve
ment to alleviate this problem.

All the operations described above, among many oth
have been implemented in the UQ toolkit library. The U
toolkit greatly facilitates the development of stochastic so
ers from scratch, as well as the conversion of existing de
ministic routines into stochastic ones. A more general a
effective approach would be to develop the capability to
tomatically convert existing deterministic programs to s
chastic arithmetic. As an extension of the UQ toolkit me
odology, this could conceptually be achieved by creatin
new data type for variables represented with PC expansi
and then overloading operators to perform the proper
chastic operations on these variables where needed. Su
approach is outside the scope of this paper but will be
plored elsewhere.

V. NUMERICAL RESULTS

A. Test system

This section presents some results of test problems il
trating the spatial and temporal convergence properties o
developed code. Figure 2 shows the geometry considere
these test problems, consisting of a rectangular microcha
in which a protein U and dye D react to form a label
protein L. An external electrostatic potential is applied acr
the system to generate an electroosmotic flow in thex direc-
tion. The unlabeled protein U has a charge of11 versus a
charge of21 for the dye D, so electrophoresis will move
forward and D backward, relative to the bulk flow. For a
cases simulated in this work, an aqueous potassium p
phate (KH2PO4) buffer solution is considered. Therefore, th
species in the solution are the proteins U and L, the dye
the electrolytes H1, OH2, K1 as well as the components o
phosphoric acid H3PO4, H2PO4

2 , HPO4
22 , and PO4

32 .
As mentioned in Sec. II B, the proteins in this solutio

are assumed to have a fixed charge and can therefor
integrated with Eq.~5! with a chemical reaction source ter
ŵi according to a model irreversible labeling reaction

U1D→
kL

L. ~55!

The rate constantkL in this reaction is pH dependent, give
by the following:

kL5kL
01dLe2(pH2pH0)2/dpH

2
. ~56!

The Gaussian dependence of this relationship on pH is b
on the shape of the measured pH-dependence of the ra
production of the high-fluorescence-efficiency species fr
the reaction of naphthalene-2,3-dicarboxaldehyde~NDA!
with amino acids in the presence of CN2.29 Unless stated
otherwise, the values for the reaction rate parameters
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chosen in this work askL
050.253106 mol21 l s21, dL

52.153106 mol21 l s21, pH057.40, anddpH50.85. The
chemical source terms used in Eq.~5! are correspondingly

ŵU5ŵD52ŵL52kL@U#@D#. ~57!

The concentration of the K1 ion, which is fully dissociated
and is a conserved quantity can also be integrated by Eq~5!
directly ~without a source term!. Phosphoric acid, however
is a weak acid and will dissociate according to the followi
electrolyte reactions:

H3PO4↔
K1

H11H2PO4
2 , ~58!

H2PO4
2↔

K2

H11HPO4
22 , ~59!

HPO4
22↔

K3

H11PO4
32 , ~60!

where theKi are the corresponding dissociation constan
As discussed in Sec. II B, an equilibrium formulation is us
for these fast electrolyte reactions. Therefore, we cons
the total concentration of this weak acid

ua5@H3PO4#1@H2PO4
2#1@HPO4

22#1@PO4
32# ~61!

whose transport equation is obtained similarly to Eq.~10! by
adding up the transport equations for all the component
ua so the dissociation reaction source terms disappear.
concentrations of the individual components ofua are then
calculated asci5a iua , where thea i are calculated from the
equilibrium expressions for the dissociation reactions~58!–
~60! and can be written as a function of@H1# and the disso-
ciation constants only:

aH3PO4
5

@H1#3

@H1#31K1@H1#21K1K2@H1#1K1K2K3
,

~62!

aH2PO
4
25

K1@H1#2

@H1#31K1@H1#21K1K2@H1#1K1K2K3
,

~63!

aHPO
4
225

K1K2@H1#

@H1#31K1@H1#21K1K2@H1#1K1K2K3
,

~64!

FIG. 2. ~Color! Geometry for the numerical test problems: a plug of prote
U and dye D are introduced in a rectangular microchannel and react to
a labeled protein L.
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aPO
4
325

K1K2K3

@H1#31K1@H1#21K1K2@H1#1K1K2K3
.

~65!

As discussed in Sec. II A, Eq.~4! is used to model the de
pendence of the zeta potential on pH and buffer molar
The concentration of the fully dissociated potassium i
@K1#, is used for the local buffer molarityM along the
walls. The temperature is assumed constant in this w
with all species properties and reaction rate constants ev
ated at 298 K.

For the computations in this paper, all parameters
field variables, were represented with third-order polynom
chaos expansions. The highest order stochastic modes i
expansions of the predicted field variables were significa
lower than the lower order modes, indicating that the thi
order expansions were sufficiently accurate.

B. Convergence with grid spacing

To test the spatial convergence rate of the code, sim
tions of the test case described above were run on a dom
with Lx51 cm andLy50.25 cm. The potassium phospha
buffer solution was initialized with a uniform concentratio
of 1023 mol/l and a pH of 7.25. The unlabeled protein U a
the dye D were initialized with a profile, Gaussian inx and
uniform in y, both with a maximum concentration of 1025

mol/l at x54 mm and a width of 1 mm. The labeled prote
concentration was initialized to zero. The electrostatic pot
tial differenceDV between the inlet and exit of the doma
was set to 10 V, creating an average field strength of 0
kV/cm. An uncertainty of 1% was assumed in the mobiliti
of both U and D, in the labeling rate parameter pH0 of Eq.
~56!, and in the potential differenceDV. Using third order
polynomial chaos expansions, these four uncertain par
eters led to four stochastic dimensions with a total ofP11
535 stochastic modes.

Four runs were performed, with uniform grid spacings
x and y doubling between each run, from 3.9131025 m in
the finest grid to 3.1331024 m in the coarsest grid~corre-
sponding, respectively, to 256364, 128332, 64316, and

FIG. 3. L2 norm of the difference between solutions on successive grid
a function of the fine grid spacingdxf . The slope of the lines shows
second-order spatial convergence rate for various species concentratio
well as the streamwise velocity.
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3238 cells in x3y). Each run used the same time step
1024 s for a total of 200 time steps. Figure 3 shows theL2

norm of the difference between the solutions for the strea
wise velocityu as well as several species concentrations
successive grid spacings. To monitor the spatial converge
of the full stochastic solution, theL2 norm was calculated
over all points in space and allP11 stochastic modes
Clearly, the slope of the curves in Fig. 3 shows an ove
second-order convergence rate with grid spacing, consis
with the spatial differencing scheme used.

C. Convergence with time step

The temporal convergence behavior of the code w
studied with a similar test case as in the previous sect
Referring to Fig. 2, the domain sizes were chosen asLx52
cm andLy50.25 cm. The buffer initialization was the sam
as in the previous case. For the unlabeled protein U and
dye D, however, the peak concentrations were raised to 124

mol/l, located atx54 mm andx56 mm, respectively. The
electrostatic potential differenceDV across the domain wa
set to 2000 V, giving an average field strength of 1 kV/cm
slightly higher uncertainty of 2% was assumed in the mob
ties of both U and D, the parameters pH0 andDV, as well as
the bulk kinematic viscosity. These five stochastic dime
sions with third-order polynomial chaos expansions led t
total of P11556 stochastic modes.

This test case was run for a total time of 0.5 s, with fi
different time steps, ranging in factors of 2 from 6.2
31024 s up to 1.0031022 s. In each case, the number
cells was 128316 in x3y. Figure 4 shows theL2 norm of
the difference between the solutions for the streamwise
locity u as well as several species concentrations at suc
sive time steps. The fourth-order temporal convergence
observed in Fig. 4 is consistent with the Runge–Ku
scheme used in the time integration.

VI. PROTEIN LABELING IN A HOMOGENEOUS
BUFFER

To illustrate the stochastic uncertainty quantificati
methodology, this section describes protein labeling in

s

s as

FIG. 4. L2 norm of the difference between solutions at successive time s
as a function of the shorter time stepdt. The slope of the lines shows
fourth-order temporal convergence rate for various species concentratio
well as the streamwise velocity.
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simple homogeneous system. Figure 5 shows the time
lution of the concentrations of the unlabeled and labeled p
tein in a homogeneous potassium phosphate buffer at a p
8.25. In this problem, the dye D was assumed to be pre
in abundance so that the source term for the labeled pro
in Eq. ~5! can be written as

ŵL5kL@U#. ~66!

The same expression as before, Eq.~56!, was used for the
reaction rate, but with the following parameters:kL

050.25
31023 s21, dL52.15 s21, pH059.25, anddpH50.85. Both
proteins U and L, as well as the dye D were assumed to h
no charge, and therefore the buffer equilibrium and pH
not change with time. For this simulation, a standard dev
tion of 1% was assumed for all parameters in the rate exp
sion~56!, as well as for the electrolyte dissociation constan
Third order PC expansions were used.

The resulting uncertainty in the protein concentrations
indicated in Fig. 5 with ‘‘error bars’’ that span the63s
range, wheres indicates the standard deviation. Clearly, u
certainty in the input parameters causes large uncertaintie
the simulated concentrations. At the point where@U#50.5, a
standard deviation of 1% in the parameter pH0 is magnified
about 16 times in the standard deviation of@U#.

Note that after about 3 s, the range of the63s ‘‘error
bars’’ becomes so large that it seems to include concen
tions for U that are negative, which is clearly not physica
possible. However, the interval63s around the mean valu
properly represents the full range of possibilities for a cert
variable only when its probability density function is Gaus
ian, and therefore symmetric. Figure 6 shows the probab
density function of@U#, generated from its PC expansion
various points in time. When the mean value of@U# is suffi-
ciently far away from zero, this PDF has a Gaussian sha
However, for mean values of@U# closer to zero, the PDF
becomes narrower and more skewed. This predicted un
tainty properly reflects the physical system behavior wh
all unlabeled protein reacts away, but its concentration
not be negative.

FIG. 5. Time evolution of U and L concentrations in a homogeneous pro
labeling reaction. The uncertainty in these concentrations, due to a 1%
certainty in the labeling reaction rate parameters, is indicated by63s ‘‘er-
ror bars.’’
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VII. PROTEIN LABELING IN A TWO-DIMENSIONAL
MICROCHANNEL

In this section, the simulation and uncertainty quant
cation code is used to tackle a more physically challeng
problem of protein labeling in a two-dimensional microcha
nel. The problem setup is similar to the numerical test pr
lems described in Sec. V. The labeling reaction is the sam
Eq. ~55! with the reaction ratekL and the corresponding
source terms as in Eqs.~56! and~57!. Again, a charge of11
is assumed for the unlabeled protein U and a charge of21
for the dye D, resulting in a neutral labeled protein L.

Referring to Fig. 2, a microchannel was considered w
a lengthLx51 cm and a heightLy51 mm. The potassium
phosphate buffer solution was initialized with a uniform co
centration of 1023 mol/l and a pH of 7.25. The Gaussia
profiles for the initial U and D concentrations had peak co
centrations of 1024 mol/l, located atx52.5 mm andx54
mm, respectively, and a width inx of 0.75 mm. The electro-
static potential differenceDV across the domain was set
1000 V, giving an average field strength of 1 kV/cm. A
uncertainty of 1% was assumed in the mobility of U, in t
labeling rate parameter pH0 , the dissociation constantK2 ,
and the potential differenceDV. Third-order polynomial
chaos expansions were used in the computations with a
of 35 stochastic modes. The time step was set to 231024 s
and the domain was discretized with 512332 cells inx and
y.

Figure 7 shows a contour plot of the mean concen
tions of the proteins and dye att50.12 s. At this point in
time, the plugs of U and D have just met atx'4 mm, and
labeled protein is generated at the interface. Note that
labeling reaction is fast compared to the electroosmotic
electrophoretic transport. Consequently, U and D react
soon as they meet, resulting in almost no overlap betw
the U and D profiles, and a sharp profile for L. Since L
neutral, it travels with the bulk convective velocity, which
the average of the total convective velocities of U and
Therefore the peak value of L is always located at the in
face of U and D, and since L is generated in that same a

in
n-

FIG. 6. PDF of the unlabeled protein concentration at different mean val
As the unlabeled protein reacts away, its PDF becomes narrower and
skewed.
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its peak concentration will keep increasing. Att50.12s, the
peak concentration for L is 1.331024 mol/l, which is al-
ready higher than the peak concentrations of 9.431025 mol/l
for U and D.

The standard deviations in the concentrations of Fig
are given in Fig. 8. The highest uncertainties appear in
reaction zone at the interface between U and D, with a m
mum coefficient of variation of about 20% in the L conce
tration. Even though Fig. 8 only shows the overall unc
tainty in the concentrations, a strong feature of the
formalism is that the contributions of the uncertainty in i
dividual parameters to this overall uncertainty can easily
retrieved, as explained in Sec. III. Figure 9, for examp
shows the contributions from each of the four uncertain in
parameters to the standard deviation of the L concentrat
in the area around the reaction zone, aty50.5 mm. These
contributions were obtained with a similar analysis as in E
~27!–~32!, but for the case of four stochastic dimensions a
third-order PC expansions. The total standard deviation
@L# is given by the curve labeled ‘‘all’’ in this figure. This
overall standard deviation has a profile with a double pe
which for a single peak mean species profile, is character
of uncertainty caused by the convection velocity. When
single peak species profile is transported by an uncer
convection velocity, the uncertainty in the position of t
peak at a given point in time will cause the most variabil
at the sides of the peak, where the profile has a steep slo
the x direction. At the top of the profile, there is no conce
tration gradient and uncertainties in peak position cause l
uncertainty in the observed concentrations at that locatio

As indicated by the curve labeled ‘‘DV, ’’ the uncertainty
in the applied electrostatic field potential has the most do
nant contribution to the overall standard deviation. Sin
both the electroosmotic and electrophoretic velocities are
rectly proportional toDV, the uncertainty caused by th
parameter naturally shows a double peak, characteristi
convection velocity uncertainty. Similarly, the parameterbU

affects the electrophoretic transport of the reactant U and
resulting contribution to the standard deviation of@L# also
has a double peak, albeit smaller than theDV contribution.

The contribution of parameter pH0 also shows a double
peak, but with its center located on the left side of the@L#
profile, where the gradient of@L# in x is very steep. The
steepness of the@L# profile in that area is largely determine
by the speed of the labeling reaction compared to the c
vection speed, with a faster reaction rate leading to a sha
increase in@L#. With the pH in this area between 7.0 and 7
~not shown!, Eq. ~56! predicts significant variability inkL for
changes in pH0. So the uncertainty in pH0 mainly affects the
slope of the@L# profile on the left side, consistent with th
observed contribution of parameter pH0 in Fig. 9.

Figure 9 further shows more minor contributions, fro
the dissociation parameterK2 and from the coupled terms
Even though their contribution is small in this case, tho
coupled terms are interesting from a theoretical point
view, as they represent coupled effects of independent
rameters. In the current figure, those terms represent the
of three different coupled effects: the coupled effect ofDV
andbU , of DV and pH0, and ofDV andK2 .
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As time goes on and the U and D plugs cross each ot
nearly all U and D are consumed in the labeling reaction.
t50.50 s, only labeled protein L remains, with its mean co
centration and standard deviation as shown in Fig. 10.
maximum mean concentration of L at this point in time
2.431024 mol/l in the center of the channel, and about 3
31024 mol/l near the walls. So the L concentration is up
three times as large as the initial U and D concentratio
The standard deviation in L, as shown in the bottom plot
Fig. 10, is very large near the wall, with maximum values
to 1024 mol/l and coefficients of variation up to 100%
Again, the standard deviation in@L# exhibits the double peak
near the centerline, which is characteristic of uncertai
caused by the convection velocity.

What is particularly significant though, is the major di
tortion of the L plug, as opposed to the straight profile o
served at early times. This distortion is caused by the dis
bance of the buffer electrolyte, in response to the movem
and annihilation of the charged protein U and the dye D.
explain why this is physically happening, consider Fig. 1
which shows the mean and standard deviation of the ele
cal conductivitys of the electrolyte solution att50.50 s.
Because two charged molecules are used up for every
labeled protein, the area around the L plug has a redu
concentration of ions, with a mean electrical conductivity
almost a third lower than in the undisturbed buffer. Upstre
of the L plug, the electrical conductivity shows some smal
fluctuations, which stem from shifts in the buffer equilib
rium. Since the buffer ions are primarily negatively charge
those disturbances travel slower than the labeled pro
plug. The bottom plot of Fig. 11 shows that the highest u
certainties in the electrical conductivity are found around
L plug, near the center and especially at the walls.

The large spatial variations in the electrical conductiv
in turn cause nonuniformities in the electrical field streng
as shown in Figs. 12 and 13. Near the L plug, the me
electrostatic field strength in thex direction reaches a valu
up to 40% higher than in the undisturbed flow. This increa
strongly affects the local electroosmotic and electrophor
velocities, causing an increased wall velocity, leading to
observed distortion of the L plug. The largest uncertaint
are again found near the L plug, with maxima up to 10
Even though the initial field strength in they direction was
zero, Fig. 13 shows that thisy component is quite significan
at t50.50 s. The magnitude of this field strength is up
15% of the initial, streamwise electrostatic field strength
the mean value. Even though thisy component does not af
fect the electroosmotic flow velocity directly, it does provid
electrophoretic ion transport in the wall-normal directio
which can further distort sample profiles.

As indicated by Eq.~3!, the electroosmotic wall velocity
depends on both the local electrostatic field strength anz
potential, which in turn depends on the pH and the buf
molarity, as modeled by Eq.~4!. Since all these variables ar
disturbed by the charged protein movement and annihilat
the electroosmotic wall velocity varies in the streamwise
rection. These wall velocity changes in turn cause press
gradients and local recirculation zones, as indicated by
velocity fields in Figs. 14 and 15. Figure 14 shows t
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. ~Color! Mean concentrations of proteins U, L, and dye D att
50.12 s. U and D just met and L is produced at their interface. The va
of the contour levels go linearly from 0~blue! to 1.331024 mol/l ~red!. In
this figure, as well as in all subsequent contour plots, the full phys
domain is shown, from 0 to 1 cm inx and from 0 to 1 mm iny.

FIG. 8. ~Color! Standard deviation of the protein and dye concentration
t50.12 s. The values of the contour levels go linearly from 0~blue! to
1.131025 mol/l ~red!. The largest uncertainties are found in the react
zone.

FIG. 9. Major contributions of individual input parameters to the over
standard deviation in@L# in the area around the reaction zone att50.12 s,
y50.5 mm. The uncertainty in the applied voltage potential ‘‘DV’’ has the
most dominant contribution to the overall standard deviation in@L#.

FIG. 10. ~Color! Mean~top! and standard deviation~bottom! of the labeled
protein concentration L att50.50 s. The initially flat profiles are now se
verely distorted. The values of the contour levels go linearly from 0~blue! to
3.231024 mol/l ~red! in the top plot and from 0~blue! to 1024 mol/l ~red!
in the bottom plot.
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FIG. 11. ~Color! Mean~top! and standard deviation~bottom! of the electri-
cal conductivity of the electrolyte solution att50.50 s. Annihilation of ions
in the labeling reaction results in a significantly lower mean electrical c
ductivity near the L plug. The values of the contour levels go linearly fro
7.131023 S/m ~blue! to 1.331022 S/m ~red! in the top plot and from 0
~blue! to 1.531023 S/m ~red! in the bottom plot.

FIG. 12. ~Color! Mean~top! and standard deviation~bottom! of the electri-
cal field strength in thex direction att50.50 s. Near the L plug, the mea
streamwise electrical field strength is about 40% higher than in the un
turbed flow. The values of the contour levels go linearly from 91.4 kV
~blue! to 146 kV/m ~red! in the top plot and from 0.20 kV/m~blue! to 13
kV/m ~red! in the bottom plot.

FIG. 13. ~Color! Mean~top! and standard deviation~bottom! of the electri-
cal field strength in they direction att50.50 s. The magnitude of the mea
of this field strength is up to 15% of the initial field strength in thex
direction. The values of the contour levels go linearly from216.3 kV/m
~blue! to 16.3 kV/m~red! in the top plot and from 0~blue! to 5.8 kV/m~red!
in the bottom plot.

FIG. 14. ~Color! Mean~top! and standard deviation~bottom! of the stream-
wise velocity att50.50 s. The local increase in the electroosmotic w
velocity leads to recirculation zones near the L plug. The largest uncer
ties are found near the wall. The values of the contour levels go line
from 6.8 mm/s ~blue! to 9.1 mm/s ~red! in the top plot and from 5.6
31023 mm/s ~blue! to 0.59 mm/s~red! in the bottom plot.

FIG. 15. ~Color! Mean ~top! and standard deviation~bottom! of the wall-
normal velocity att50.50 s. The mean of this velocity has a magnitude
up to 6 % of the initial streamwise velocity. The values of the contour lev
go linearly from20.56 mm/s~blue! to 0.56 mm/s~red! in the top plot and
from 0 ~blue! to 0.26 mm/s~red! in the bottom plot.
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streamwise velocity field, which has a mean wall veloc
that is up to 20% higher near the L plug. The wall-norm
velocity field shows positive and negative velocities near
L plug, with magnitudes up to 6% of the initial streamwi
velocity.

Clearly, the recirculation zones in the flow field will dis
tort initially flat sample profiles. This increases the hydrod
namic dispersion, on top of the electrokinetic dispers
caused by nonuniformities in the electrophoretic transpo

VIII. CONCLUSIONS

In this paper, a detailed physical model for microchan
flows was presented to study protein labeling reactions in
electrolyte buffer. The model incorporates the coupled na
of momentum transport, species transport, and the elec
static field as well as a full representation of the electrol
buffer reactions and the dependence of thez potential on the
local buffer properties. A stochastic uncertainty quantific
tion method was developed to propagate uncertainty fr
the input parameters in the model to the simulation resu
using polynomial chaos expansions for the uncertain mo
parameters and field variables.

Application of the model was illustrated in light of simu
lations of protein labeling reactions in homogeneous syst
as well as two-dimensional electroosmotically driven mic
channel flows. For the two-dimensional case, the simula
showed the impact of ion movement and subsequent bu
disturbances on the electrokinetic and hydrodynamic dis
sion of sample plugs in the channel. The uncertainty in
results was primarily due to uncertainty in the applied vo
age across the channel, with smaller contributions from
parameters in the labeling reaction rate as well as spe
properties.

Overall, the detailed physical model that was imp
mented in this work, allows the simulations of microchann
flows providing in-depth understanding of the transport a
dispersion of protein sample plugs. In combination with t
model, the stochastic uncertainty quantification method p
vides a powerful way to assess the impact of uncertain mo
input parameters on the uncertainty of the simulation resu
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